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Thii paper considers the use of rank sums from a combined ranking of k independent 
samples in order to decide which populations differ. Such a procedure is suggested as 
a convenient alternative to making separate rankings for each pair of samples, and 
the two methods are compared. Asymptotic use of the normal tables is given and the 
treatment of ties is discussed. A numerical example is given. 

1. INTRODUCTION 

Rank sum methods have been widely used to compare two or more samples 
and decide whether or not they came from identically distributed populations. 
See, for example, [la] and [4]. 

Many research workers, however, are not satisfied with merely knowing that 
there are some differences among the k populations. They wish to know which 
populations differ. Some of these research workers may be unaware that simple 
ranking procedures exist for picking out the particular populations which are 
different. 

Such a procedure was given in 1960 by Steel [9]. In his article, he gives tables 
to use for samples up to and including size six. For cases where it is appropriate 
to seek confidence intervals for the difference between populations rather than 
to pick out differences, Nemenyi [6] has described an adaption of Steel’s pro- 
cedure for this purpose. 

The present paper suggests a slightly different ranking procedure from Steel’s 
for picking out differences. This will be called Procedure I, and it is compared 
with Steel’s procedure (Procedure II), on the basis of asymptotic theory. 

Section 2 and Section 3 of this paper describe Procedures I and II, respectively. 
Section 4 gives a numerical example. Section 5 gives the mathematical justifica- 
tion of the procedures, and Section 6 discusses the matter of ties and the use of 
rank sums in contingency tables. Section 7 compares the two procedures from 
the standpoint of computation, and in Section 8 they are compared from the 
standpoint of probabilities of correct decisions on specified contrasts under two 
particular situations involving departure from the null hypothesis. 

2. PROCEDURE I 

The k samples are combined and then ranked from smallest to largest. When 
ties exist, they are given the average rank of the tied scores. Let Ti be the sum 
of the ranks of the ith sample. 

Suppose that there are p contrasts among the means which the experimenter 
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wishes to consider. He may wish, for example, to decide whether or not the 
first population has the same distribution as the second. To do this, he looks at 
Tllnl - Tz/nz , the difference in mean ranks. Or he might wish to combine his 
first, third, and fourth samples and decide whether the combined population 
from which they were drawn is the same as the population from which the fifth 
sample was drawn; for this he looks at (T, + T, + T,)/(n, + n3 + n,) - Tdn, . 
Combining several samples in this manner is appropriate if the k samples were 
actually one large sample drawn from the combined k populations. 

He calculates the value of the contrasts, 

ym = T Ti/Cni - F Tir/C nip , m = 1, *.. ,p, (1) 
i i’ 

where the summations over i and i’ are over distinct subsets of the integers 
1, ***, k. A significance level a is selected. Each contrast ym is then divided by 
its standard deviation u,,, . If no ties exist, then 

2 urn = WW + WWN F nJ+ + CT 4-7 (2) 

k 
where N = xi.=, ni . The formula for u: must be adjusted if there are ties. If 
there are r groups of tied scores and if the sth group of tied scores has t, numbers 
in it, then 

L 
2 (R - NW + 1) _ R=, 4) 2 u, = 12 12(N - 1) 1 -1 i -L-+2 Cni Cni, 1 (3) 

i i ’ 

The experimenter thus has p values: yl/al , . . . , y,/u, . Each of these values 
y,,,/u,,, is then compa’red with z~-,/~~ , the 1 - 42~ point of the standard normal 
distribution. 

If Y,l~, -c -zl-ceP , he decides that the population contrast is negative. 
If -%--a/2p < YJUm -c &--o/29 , he decides that the population contrast may 

be zero. 
If YmlUm > Zl-,/zr , he decides that the population contrast is positive. 
When the contrast is of the most usual form, Ti/ni - Tit/ni, , these three 

decisions mean, respectively, that the mean (or median) of the ith distribution 
is less than the mean (or median) of the i’th distribution, that the two means 
may be the same, or that t’he ith mean is greater than the i’th mean. For several 
populations combined compared with several other populations combined, the 
decisions are the same concerning the combined populations. 

If no differences exist among the k populations, then the probability of making 
one or more mistakes in decisions on contrasts is at most equal to CL 

3. PROCEDURE II 

Procedure II is exactly the sa,me as Procedure I except that now for each of the 
p comparisons, a separate ranking is made, using only those samples which are 
used in that particular contrast. 

When two samples are ranked together, it is usual to look at the sum of ranks 
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of the smaller sample. Here instead, we will use the difference of the two mean 
ranks, an equivalent statistic since the two ranks add to a constant. This is done 
for convenience, in order to be able to use exactly the same formulas for Pro- 
cedures I and II. 

Again one looks at ym/um , where 

y/6 = F Ti,/Cni - F Tigm/CniT , m = 1, ... ,p (4) i i ’ 
and 

2 (t: - ,2 _ 
L 
NW + 1) _ a=1 4) 

uni - I, 1 - __ 
12 12(N - 1) g n, + F1ni, (5) 

i 
Here, however, N is defined by N = xi ni + xi, ni’ , so equals only the 

number of observations involved in that particular contrast instead of the 
number in all k samples, as it did in (2) and (3). The subscript m has been 
included on the rank totals Ti because they now differ from one contrast to 
another. 

The value of yA/uA is compared with z 1 01,2p , exactly as in the first procedure. _ 

4. A NUMERICALEXAMPLE 

The author is indebted to Dr. Roger Egeberg and Dr. Ann Elconin for data 
used to illustrate the methods. The data have been adapted from a study of a 
group of patients entering the Los Angeles County General Hospital during the 
years 1959-61. All the patients in the study had been judged medically eligible 
for being cared for at home under a home care program, and they were then 
classified into three groups, according to their home situation. The groups were: 

Group l-Eligible: Patients able to be cared for at home. 
Group ~--NO responsible person: Patients ineligible for home care because 

they had no person responsible for their care. 
Group 3-Responsible person unable: Patients ineligible for home care be- 

cause the person responsible was unable or unwilling to care for 
them. 

The patients’ occupations were recorded for 383 patients on a scale on which 
increasing numbers represent decreasing prestige levels. The data are given in 
Table 1. 

It should be noted first that there are a great many ties, and that the distribu- 
tions can hardly be claimed to be continuous. Some discussion of this point will 
be given in Section 6. 

The contrasts which seemed of interest were: 

1. Eligible for home care versus ineligible (group 1 versus groups 2 and 3). 
2. Responsible person versus no responsible person (groups 1 and 3 versus 

group 2). 
3. Responsible person able versus responsible person unable (group 1 versus 

group 3). 
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TABLE 1 

Occupation and Home Care Eligibility for 383 
Patients Medically Eligible for Home Care 

Occupation 
Level* 

(1) 

Eligible 

(2) (3) 
No Responsible 

Responsible Person 
Person Unable All 

10 3 
20 12 
30 10 
40 20 
50 47 
60 74 
70 62 

- 

Total 228 

4 
7 

10 
9 

12 
26 
- 

68 

1 4 
2 18 
4 21 

11 41 
10 66 
21 107 
38 126 
- - 

87 383 

*Occupational classification: 
10 executives, large proprietors, major professionals 
20 business managers, medium proprietors, lesser professionals 
30 administrators, small owners, semiprofessionals, farm owners 
40 clerical, sales, technical, small business, small farm owner 
50 skilled manual, small farm 
60 semiskilled, tenant farmer 
70 unskilled, share cropper 

At the outset it was thought that the patients who had a responsible person 
able and willing to care for them at home (group 1) might differ somewhat in 
prestige of occupation from the patients who did not (groups 2 and 3). Also, it 
was anticipated that patients eligible for home care (group 1) might be on the 
average somewhat lower in prestige of occupation than those who had a responsi- 
ble person unable or possibly unwilling to keep them at home (group 3). 

The contrasts to be calculated are then: 

y1 = Tl/nl - CT, 4 T3)/(n2 + n3> (6) 

yz = (T, + T,)/(n, + n,) - T,/nz (7) 

y3 = Th - T3/n3 (8) 

Here, k = 3, p = 3, n, = 228, n, = 68, and n3 = 87. 
Hand calculations of the rank totals Ti for Procedure I are given in Table 2. 

Table 3 gives the same calculation for the third contrast using Procedure II. 
Since the first two contrasts involve all three groups of patients, Procedure II was 
exactly the same as Procedure I for these two contrasts. Table 4 calculates the 
contrasts, their standard deviations with and without adjustment for ties, and 
gives the ratio of each contrast to its standard deviation. 

If a! = .20 is used, then zl-,,,, = x1--.20/6 = x.~~~, = 1.834 from univariate 
normal tables. Thus for either procedure one decides that pl is less than pQ . 
In other words, the patients whose responsible person could and would care for 
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TABLE 2 

Calculation of Rank Totals, Procedure I 

(1) (2) (3) (4) (5) 
Occupation Cumulative Rank times Frequency 

Level Frequency Rank Group 1 Group 2 Group 3 

10 4 2.5 7.5 0 2.5 
20 22 13.5 162 54 27 
30 43 33 330 231 132 
40 84 64 1,260 640 704 
50 150 117.5 5,522.5 1,057.5 1,175 
60 257 204 15,096 2,448 4,284 
70 383 320.5 19,871 8,333 12,179 

Ti = 42,249 12,763.5 18,503.5 

(1) From the last column in Table 1. 
(2) Calculated from the figures in column (1) as follows: 2.5 = (4 + 1)/2; 13.5 = 

4 + (22 - 4 + l)@; 33 = 22 + (43 - 22 + 1)/2, etc. 

Check: $I T< = 73,536 = (383)(384)/2 

TJnl = 42,249/228 = 185.4 
Th = 12,763.5/68 = 187.7 
T&a = l&503.5/87 = 212.7 

TABLE 3 

Calculation of Rank Totals, Procedure II Responsible Person 
Able vs. Responsible Person Unable* 

Occupation 

(1) 
Cumulative 
Frequency, 

(2) 

Rank times Frequency 

Level Groups 1 and 3 Rank Group 1 Group 3 

10 14 2.5 7.5 2.5 
20 18 11.5 138 23 
30 32 25.5 255 102 
40 63 48 960 528 
50 120 92 4,324 920 
60 215 168 12,432 3,528 
70 315 265.5 16,461 10,089 

Ti = 34,577.5 15,192.5 

*Other two contrasts include all 3 groups of observations, so calculations are the same 
as for Procedure I. 
(1) From the sums of columns (1) and (3) in Table 2. 
(2)Calculated from the figures in column (1) the same way as in Table 2. 
Check: T13 + Ta3 = 49, 770 = (315)(316)/2 
Tdn~ = 34,577.5/228 = 151.7 
Tat/m = 15,192.5/87 = 174.6 



TABLE 4 

Calculation of y,,,/g,,, by Two Procedures, with and without Adjustment for Ties* 

Contrast 
Number 

Coefficients of 1 1 

T1 T2 T8 Ym Ci ni c;, njr N N(N + 1)/12 z +cni* 6; uln YmlGn A 
2 

Procedure I 6 
z 

1 l/228 -l/155 -l/l55 -16.3 155 228 383 12, 256 .01084 132.9 11.53 -1.41 
(11, 471) (124.3) (11.15) (-1.46) 

3 
2 l/383 -l/68 + l/383 + 5.2 68 315 383 12, 256 .01788 219.1 14.80 + .35 ,c 

(11, 471) (205.1) (14.32) (+ .36) 3 1 I228 -l/87 -27.3 228 87 383 12, 256 .01588 194.6 13.95 -1.96 3 

(11, 471) (182.2) (13.50) (-2.02) 9 

Procedure II 6 

1 Same as for Procedure I, since all groups included in these contrasts -1.41 -O 
(-1.46) 

2 +.35 
; 
5 

(+ .36) -I 
3 l/228 -l/87 -22.9 228 87 315 8, 295 .01588 131.7 11.48 -1.99 2 

(7, 744) (123.0) (-2.06) p 

* In parentheses below unadjusted figures are given the adjusted ones. 12,256 - 785 = 11,471, where 735 = (43+183+213+413+663f107~+1263) - 
(4 + 18 + 21 + 41 + 66 + 107 + 126). 

8,295 - 551 = 7,744, where 551 = (43 f 14a + 143 + 313 + 57a + 953 + 1003) - (4 + 14 + 14 + 31 + 57 + 95 + 100). 
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them at home were in higher prestige occupations than those whose responsible 
person could not care for them at home (higher since a low rank indicated high 
prestige!), a conclusion not anticipated. 

5. MATHEMATICAL ANALYSIS 

The null hypothesis to be tested is that the samples come from populations 
with identical, continuous distributions. It will be assumed in order to test H,. 
that the k populations are identically distributed except for possibly differing in 
a location parameter. 

Considering the samples being ranked as one large sample of size N, the 
rank assigned to the jth observation, say ri , is well known to have expected 
value E(ri) = (N + 1)/2 and variance uzj = (N’ - 1)/12. Further, the co- 
variance between the ranks of the jth and j’th observations is Cov (ri , riS) = 
-(N + 1)/12. Then Ti is the sum of ni of the rj’s. 

ThusT1;..,Tk(orTlm;.. T,,, for Procedure II) have means n,(N+ 1)/2, 

where N = giEl ni is the size of the combined sample for Procedure I, or 
N = cc ni + c;JLir f or P rocedure II. If there are no ties, the variances of 
the Ti are equal to (N + l)(N - n,)n,/12, and the covariances are equal to 
--n,n;, (N + 1)/12 (see, for example, Nemenyi [7]). 

For samples sufficiently large asymptotic theory may be applied. This tells 
us that the Ti are approximately jointly normally distributed. 

To establish the asymptotic joint normal distribution of the Ti , it is sufficient 
to establish that all linear combinations of the Ti are normally distributed 
(Anderson [l], p. 37). This will be shown using a theorem of Wald and Wolfowitz 
WI. 

Let an arbitrary linear combination of the Ti be z = kie, ciTi . Since each 
Ti is the sum of ni ranks, z is a linear combination of the N ri , that is, 

Z== kCj ( 

nr+...+nj 
c ri- i-1 i-n,+...+nj-l 1 

(9) 

Wald and Wolfowitz’s theorem states that z (their LN) is asymptotically normally 
distributed provided that two sequences satisfy their condition W. These two 
sequences (their A, and 0,) are in this problem the sequences of positive inte- 
gers 1, 2, . . . , N and the sequence of coefficients consisting of n, cl’s, n, c2’s, and 
so forth (in other words, the coefficients of the ri in z). 

Condition W for a sequence H, of real numbers h, , . . . h, is that for all 
integral r > 2, 

k@J~) = O(1) 
MfJNNr'2 f 

where 

j&H,) = N-’ 2 (ha - N-’ 5 hg)‘. 
a=1 @=1 (11) 

Condition W is easily seen to be satisfied by the first N positive integers. For 
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fhe sequence of coefficients c1 , * . . , c, , c2 , * . . , cz , * * + , ck , . * . , ck , it can be 
shown that condition W is satisfied provided as N approaches infinity, each ni 
:approaches biN, i = 1, . . . , lc, where bi are non-negative constants which add to 
one. 

Thus, the asymptotic distribution of the Ti is a multivariate normal distribu- 
tion with means equal to ni (N + 1)/2, variances equal to (N + 1) (N - ni)ni/l2, 
and covariances equal to -nin,,(N + 1)/12. Therefore, the usual methods for 
picking out individual contrasts whose means differ from zero apply, since one 
simply has k normally distributed variates. Tukey’s method which uses the 
,distribution of the range applies directly only when the ni are all equal [lo]. 
Scheffe’s method [8] using the F distribution to obtain confidence intervals 
usually gives unduly long intervals, so that the choice in general falls t,o the use 
of the univariate normal distribution, with the level adjusted to give an overall 
test level of 1 - (Y. These methods, Tukey’s and Scheffe’s, and that using the 
univariate t distribution have been compared by Dunn [2] for confidence inter- 
vals, and the same considerations apply here in choosing among them. 

As indicated earlier, p contrasts y,,, are selected with a view to deciding which 
populations differ in the location parameter. If y,,, is any linear combination of 
the Ti , say ym = xi amiT< , then its variance ai can be calculated from the 
variances and covariances of the Ti’s. It is found to be 

2 u, = NW + 1) 
12 (12) 

For ym = xi T,/z, ni - xi, T,,/c,, nit , where the i is summed over a 
subset of the integers 1, . . . , k and i’ is summed over a second subset, (12) 
reduces to 

2 urn = N(N + 1) 
12 1 ’ (13) 

This, in conjunction with the fact that y,,, is approximately normally dis- 
tributed, justifies the use of the 1 - 42~ point from the normal tables on each 
of the p y,,,/~,,, values; if H, is true and all the populations are identical, then the 
probability of making all p decisions correctly is at least 1 - a. 

It should be mentioned that choosing the 1 - 42~ point of the univariate 
normal is a conservative choice in order to obtain a 1 - a! overall level. Probably 
the $ + $(l - 0~)~” point could also be used, though proof of the necessary 
inequality has not been given in full generality for p larger than 3. For Q = .05, 
it makes little difference. However, for higher values of cy, say (Y = .20 or .25, 
there is some difference, and it would be helpful if the use of the 4 + a(1 - (Y)“* 
point could be substituted for the 1 - 42~ point. See Dunn [3]. 

On the general subject of choice of CX, I believe that in making multiple tests 
and comparisons, one might tend to use a value of a considerably larger than the 
traditional .05. The advantage of using the overall level rather than making p 
tests each at a .05 level, say, lies in being able to communicate one’s results 
better with an overall level. And so it seems that there is usually no reason to 
choose the level so high that substantial differences become exceedingly dif- 
ficult to establish. 
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6. MATHEMATICAL ANALYSIS: TREATMENT OF TIES 

The treatment of ties seems of particular importance since the choice of rank 
sum methods often means that the distribution from which one is sampling is 
not continuous but instead involves a number, perhaps small, of ranked cate- 
gories. 

Kruskal and Wallis suggested in 1952 [4] that for any group of t, tied observa- 
tions, the s ranks be replaced by their mean. They note that the variance of 
an individual rank is decreased from (N3 - N)/12N to 

[(N3 - N) - c (t: - t.)]/l2N. 

It can be shown directly in a similar manner that the covariance of ri and ri. 

isincreasedfrom -(N + 1)/12 to -[(N3 - N) - kSEl (tz - t,)]/lBN(N - l)- 
Then the variance of ym = c a,;Ti can be calculated directly and is found to be 

2 
l7, = (14) 

2 
urn = 

This variance can also be written down as a particular case of the variance of 
the difference of two means from a finite population of size N, given in Nemenyi 
[71. 

When as in the numerical example ties are the rule rather than the exception, 
one actually has k samples from k multinomial distributions, or else one large 
sample of size N from a multinomial distribution. The distribution of the rank 
sums Ti is then complicated. However, in the conditional distribution of the 
counts in all the cells with the number of the observations in each category 
fixed (that is, the number of ‘(ties” fixed), the various probabilities in the multi- 
nomial distribution do not appear, under the null hypothesis. In the conditional 
distribution of counts, the rank sums may be calculated and used just as in the 
numerical example. The rank sum methods considered here are appropriate for 
use with contingency tables or with Ic samples from multinomial distributions. 
They are simply methods based on conditional distributions with fixed marginals. 

It is interesting in the numerical example to notice how slight the adjustment. 
is for ties. This is in line with the findings of Lehman [5] whose work was with 
very small samples. Using the normal approximation for large samples, the 
adjustment for ties, however, is easy to make. Without it, one is always being 
more conservative than is necessary. 

7. COMPARISON OF METHODS: COMPUTATION 

Procedure I can be justified on the basis of being a convenient approximation 
to Procedure II, as the most obvious comparison between the two methods of 
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ranking is that the first is easier to do than the second. For machine users, either 
can be programmed, and the difference in the amount of work then becomes 
unimportant. 

Frequently the comparisons are simply all Iz(k - 1)/2 of the form Ti/ni - 
Tip/n,, . For either procedure, it has been found convenient in programming the 
procedures to have an option between a) using all Ic(k - 1)/2 contrasts of the 
form Ti/ni - Tip/nit and b) reading in the desired contrasts. We have chosen 
as output to have, in either case, a table giving, for each contrast ym , the coef- 
ficients of each rank total, the sample value of the contrast, its standard devia- 
tion, and the sample value divided by its standard deviation. If y,,, = c amiT< , 
the headings for the columns in the output are: 

am1 amz . . * amk Ym urn YJ% 

The values in the last column may then easily be compared to &A-,,~, . 

8. COMPARISON OF METHODS: PROBABILITIES OF CORRECT DECISIONS 
WHEN THE NULL HYPOTHESIS IS FALSE 

In both procedures the actual level of significance is unknown and is somewhat 
lower than the specified level, CX. That is, the procedures are both conservative. 
This is for practical purposes unavoidable in considering multiple contrasts 
among means, since the actual level varies for different sets of contrasts. In this 
paper, the attitude is adopted that the actual level is of little importance; what 
really matters to the investigator are 1) knowing that the level of significance is 
bounded below by a certain set cr and 2) the probabilities of making correct 
decisions on various types of contrast under various departures from the null 
hypothesis. 

To compare the two procedures, one may look at easily handled departures 
from the null hypothesis and calculate the probabilities of making correct deci- 
sions by the two methods. In this section it will be assumed that the distributions 
are continuous, so that the probability of a tie is zero. 

First, consider the possibility that the lc populations have continuous distribu- 
tions which do not overlap at all, and, to be specific, that p1 < pclz < . . . pk. 
Suppose that all lc(k - 1)/2 contrasts of the form pi - pLi, , i > i’, are being 
considered, and that the ni are all equal, say, to n, so that N = kn. 

Under Procedure I, Ti = (i- l)n’+n(n+1)/2, so that T,/n- T<./n= (i-i’)n. 
The correct decision (that pi > pLij) is made provided 

n > (i - i’)-’ z,-,,,,dk(kn + 1)/6 (1’3) 

With the second procedure, Tim/n - T,),/n = n, and the corret decision 
is reached provided 

n > z1--n~21,~2~2n + 1)/6 (17) 
The right hand side of (16) is larger than the right hand side of (17) provided 

2 - i’ < dk(kn + 1)/2(&z + 1) (18) 
Thus, for any particular values of 7~ and k, and i-i’ < dlc(kn + 1)/2(&z + 1)) 



MULTIPLE COMPARISONS USING RANK SUMS 251 

if n is large enough so that a correct decision is always reached using the first 
procedure, then certainly a correct decision is reached using the second procedure, 
so that the second procedure is at least as good as the first. In the same way, 
for i - i’ > l/k(kn + 1)/2(2n + l), the first procedure is at least as good as 
the second. 

In this extreme example, any reasonable person would naturally reject the 
null hypothesis with samples of even moderate size. The example may, neverthe- 
less, yield a clue as to the difference between the two tests. As might be expected, 
using all k populations seems to be a help in detecting differences for those which 
are “far apart;” it is a hindrance for the “closer” populations. Here “far apart” 
is used to indicate that two population means are separated by relatively many 
other population means; “closer” indicates that two population means are 
separated by relatively few other population means. 

Note also that in this example, the original populations were not assumed to be 
normally distributed (since they were nonoverlapping). The normal distribu- 
tion has been used in evaluating probabilities of correct decisions because the 
Ti are asymptotically normal. 

A second situation might be that k - 1 populations are identical, but that 
pk > pi , for i = 1, . . . , lc - 1, and that there is no overlap between the 16th 
population and the first Ic - 1 populations. The distributions are continuous, 
but otherwise arbitrary. Again taking N = Icn, under the null hypothesis 
Ti/ni - Ti,/‘ni* would be approximately normally distributed, with mean zero 
and variance (using N = kn in (2)) equal to k(kn + 1)/6. The correct decision 
is reached (that pLi may equal pLi,) provided Ti/ni - T,,/n,. is less in absolute 
value than ~~~~~~~ dlc(lcn + 1)/B. Actually, however, the null hypothesis is 
false, and for i, i’ # k, Ti/ni - T,,/n,, is approximately normally distributed 
with mean zero and variance equal to (1~ - l)[(lc - 1)n + 1]/6, so that the 
probability of a correct decision is seen to be 

2%-,,2,dW~n + 1)/b - UC@ - 11% + 111 - 1, 

where @ is the c.d.f. of the standard univariate normal distribution. 
With the second procedure, Tim/n - Til,,,/n has mean zero and variance 

42(2n + 1)/6, just as it does under the null hypothesis, so that the probability 
of a correct decision on P( - pi, is 2+(~:,-,,,,) - 1. 

Since dk(kn -I- l)/(k - l)[(k - l)n + I] > 1 for all values of Ic and n under 
consideration, the probability of a correct decision is improved by using the 
combined ranking. 

For pLlc - ~~ , i # k, for the first procedure one obtains the means and variances 
as follows. The quantity T, is always equal to n[(k - l>n + (n + 1)/a], and so its 
variance is zero. For Ti , i # 7;, ni = n, N = (Ic - 1)n are substituted in E(Ti) = 
ni(N + 1)/2 and in Var Ti = (N + l)(N - ni)ni/12, to obtain E(T;) = 
[(1c - 1)n + l]n/2 and Var Ti = [(lc - 1)n + l][(k - l>n - n]n/12. The mean 
of T,/n- T;/n reduces to h/2, and its variance equals [(k - 1)~. + 1](1c - 2)/12. 
The probability of a correct decision (Pi > pLi) is then 

1 - @[(z1-~,2,~lc(kn + 1)/6 - Ln/2)/2/[(k - 1)n + l][/c - 21,421 (19) 
Wit’h the second procedure, T,,/n - T,,,/n has mean n and variance 
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(2n + 1)/12, so that the corresponding probability of a correct decision is 

1 - @[(~~.-~,~~d2(2n + I)/6 - n)/d@n + 1)/W. cm 
It can be seen from (19) and (20) that for a given k, if n is large enough, the proba- 
bility of a correct decision is higher with Procedure I than with Procedure II. 

9. CONCLUSIONS 

In the numerical example, the one contrast which differed in the two pro- 
cedures had a slightly higher value of (~,,,/u,,,( under Procedure I; the difference 
was slight. 

Tables for Procedure I for small samples would involve an additional param- 
eter (N - xi ni - xi, n,,) so would be more difficult to produce except for 
equal sample sizes. 

For hand computations, Procedure I is of course more convenient than Pro- 
cedure II. 

The existence of many ties does not invalidate the use of either procedure. 
The special cases considered in Section 8 indicate that Procedure I may be 

somewhat better at picking out differences between populations which are close 
together, while Procedure II may be better at picking out differences between the 
more distant populations. Comparisons made between the methods under more 
usual situations might be illuminating. 

In general, either procedure seems good where ra,nking methods are appropri- 
ate. Perhaps until further work is done comparing the two procedures, II may 
be preferred for small samples because of lack of available tables for I, and I may 
be recommended for larger samples when calculations are to be done by hand. 
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