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In this article we present a method for obtaining simultaneous confidence intervals 
for the parameters of a multinomial distribution, and we compare this method with 
the one suggested recently by Quesenberry and Hurst (1964). For the usual proba- 
bility levels, we find, for example, that the confidence intervals introduced here 
have the desirable property that they are shorter than the corresponding intervals 
obtained by the Quesenberry-Hurst method. We also present methods for obtaining 
simultaneous confidence intervals for the differences among the parameters of the 
multinomial distribution, and we compare these methods with the one suggested 
earlier by Gold (1963) for studying linear functions of the multinomial parameters. 
For the usual probability levels, we find that the confidence intervals introduced in 
the present article have the desirable property that they are shorter than the corre- 
sponding intervals obtained by the Gold method applied to the differences among 
the multinomial parameters. In addition, we show how the methods presented here 
for studying the differences among the multinomial parameters can be modified in 
order to obtain simultaneous confidence intervals for the relative differences among 
the multinomial parameters. 

1. INTRODUCTION AND SUMMARY 

Let n1 , 72, , . *. , nk denote the observed cell frequencies in a sample of size 
N from a multinomial distribution, and let T, , TT~ , . . . , ?Tk denote the correspond- 
ing parameters of the distribution. In other words, let ni denote the number of 
observations falling in the ith cell (i = 1, 2, . * * , k) in a sample from a multi- 
nomial population, and let ri denote the probability that an observation will fall 
in the ith cell (i = 1, 2, * + * , k). In a recent article, Quesenberry and Hurst 
(1964) proposed the following large-sample simultaneous confidence intervals 
for’the k parameters r1 , z2 , . . . , rk : 

+; 5 7ri I i;: (i = 1,2, **a , k) (0 

where 

73; = {A +2ni - {ALA + 4ni(N - ni)/NljS)/W + 41, 
i;: = {A + 2ni + (A[A + 4n,(N - ni>/NlJf)/[2(N + 41, 
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and where A is the upper CY X lOO-th percentage point of the chi-square distribu- 
tion with k - 1 degrees of freedom. When N ---f co the probability will be at 
least 1 - LY that all of the k confidence intervals (1) will include the corresponding 
true values of the parameters. These confidence intervals were recommended 
by Quesenberry and Hurst for the situation where the probability should be 
1 - cy (or more) that the confidence statement about all of the ri (i = 1,2, - . . , k) 
is correct; i.e.; where the probability should be (Y (or less) that this confidence 
statement is incorrect. 

In the present article we shall present simultaneous confidence intervals 
for the g; (i = 1, 2, . . . , k) which are modifications of the confidence intervals 
(1). The modified confidence intervals will continue to meet the requirement 
that the corresponding confidence statement about all of the 7ri (i = 1,2, * . . , k) 
will be correct with probability 1 - (Y (or more), but the modified intervals 
will be shorter than those given by (l), for the usual probability levels (e.g., 
(Y = .Ol, .05, or even .lO). To illustrate the difference between the intervals 
introduced in the present article and those proposed by Quesenberry and Hurst, 
we shall reanalyze the data given in their article. We find, for example, that for 
data of this kind (where k = lo), at the probability level used by Quesenberry 
and Hurst (viz., cy = .lO), each of their ten confidence intervals could be reduced 
in length by approximately one-third of its original length (when N + m), and 
the confidence statement obtained with the reduced intervals would continue 
to be correct with probability .90 or more. Of course, the longer confidence 
intervals reduce the probability of an incorrect confidence statement, but in this 
situation where a 10 percent probability would be satisfactory (i.e., a! = .lO), 
we find that the probability is actually less than two-tenths of one percent 
(i.e., a = .002) for the longer confidence intervals (when N -+ m), thus indicat- 
ing the desirability of a reduction in length. 

The methods described herein for obtaining simultaneous confidence intervals 
for the k parameters ?T~ (i = 1,2, . + * , k) can be extended to provide simultaneous 
confidence intervals for the k(k - 1)/2 differences pi - ?T~ (; > j) or for any 
other contrasts among the pi . We shall discuss the estimation of these differences 
in the present article, and shall compare the simultaneous confidence intervals 
obtained here with those presented earlier by Gold (1963) for estimating linear 
functions of the 7ri . (In this case the 7ri - ri (; > j) are the linear functions of 
interest.) In addition, we shall show how the methods presented here can be 
modified in order to provide simultaneous confidence intervals for the relative 
differences among the multinomial parameters. 

2. SHORTER CONFIDENCE INTERVALS FORTHE pi 

Although Quesenberry and Hurst (1964) did not derive their confidence inter- 
vals by this method, it is possible to show that the confidence limits +r and ;it in 
(1) can be obtained simply as the two solutions of a quadratic equation in iri , viz., 

(pi - n-J* = Ari(l - R;)/N, (i = 1,2, *a* ,k) (2) 

where pi = ni/N. Quesenberry and Hurst set A equal to the upper OL X lOO-th 
percentile of the chi-square distribution with k - 1 degrees of freedom. For 
1~ = 2, the probability is 1 - (Y that the confidence statement obtained from 
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(1) and (2) will be correct (when iV -+ m); but for k > 2 the probability will 
be greater than 1 - a. For k = 2, the confidence statement obtained from (I) 
and (2) corresponds to the usual large-sample confidence interval for the param- 
eter of a binomial distribution (see, e.g., Mood and Graybill, 1963, p. 263). 
For k > 2, we find that this confidence statement can be improved by replacing 
A in (1) and (2) by B, where B is the upper (a/k) X lOO-th percentile of the chi- 
square distribution with one degree of freedom. When A is replaced by B in (1) 
and (a), the probability is oc/k that the confidence interval thus obtained 
will be incorrect for a single given parameter, say, ri ; and therefore the proba- 
bility is (Y (or less) that at least one of the k confidence intervals (i = 1,2, e . . , k) 
will be incorrect. (For a derivation of the inequality used in the above argument 
see, e.g., Wilks, 1962, p. 291.) For k > 2, we find that B < A at the usual probn- 
bility levels; e.g., cy = .Ol, .05, or .lO. (For each value of k, the upper bound for 
the value of LY for which B < A can be determined using the tabulated chi-square 
distribution, but we shall not go into these details here.) Note that B can be 
determined from the tabulated chi-square distribution or from the tabulated 
normal distribution, since B is the square of the upper (a/2k) X lOO-th percentile 
of the normal distribution with zero mean and unit variance. 

In addition to providing shorter confidence intervals than those given by 
Quesenberry and Hurst, the preceding remarks also provide us with a method 
for obtaining a more accurate bound for the probability that their confidence 
statement will be correct. If we let (Y’ denote the probability that a chi-square 
variate with one degree of freedom will exceed A, then the probability is cr’ 
that the confidence interval obtained from (1) and (2) will be incorrect for a 
single given parameter, say, gi ; and therefore the probability is kcr’ (or less) 
that at least one of the k confidence intervals (i = 1, 2, . . . , k) will be incorrect. 
For lc > 2, we find that km’ < a at the usual probability levels. This indicates 
that the upper bound of (Y, which is given by Quesenberry and Hurst for the 
probability that their confidence statement is incorrect, should be replaced when 
k > 2 by the more accurate bound ka’. 

Note that the value of A is a constant in each of the k confidence intervals 
(1). A more general set of simultaneous confidence intervals is obtained by re- 
placing A by Bi in the confidence interval for ?T< (i = 1, 2, * . * , k), where B< 
is the upper pi X lOO-th percentile of the chi-square distribution with one degree 
of freedom, and cTS1 pi = 01. If we consider the special case where pi = a/k 
and B, = B, we obtain the simultaneous confidence intervals introduced earlier 
herein. Both the special case and the more general method introduced above will 
be found useful in practice. 

3. AN EXAMPLE 

We shall now reanalyze the data given earlier by Quesenberry and Hurst. 
These data describe the frequency of ten different modes of failure as recorded 
in a study of 870 machines that failed. 

For this example, Quesenberry and Hurst took a = .lO and A = 14.6837 
(k = 10). For the corresponding method introduced in the present article, we 
obtain B = 6.6349 when a! = .lO and k = 10. (We could replace the constant 
B by a set of ten constants B,(i = 1, 2, . . . , 10) as described above, but we 
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TABLE 1 

Frequency Distribution of Modes of Failure 

Mode of Failure 1 2 3 4 5 6 7 8 9 10 
Frequency 5 11 19 30 58 67 92 118 173 297 

shall not go into these details here.) We now compare the Quesenberry-Hurst 
(Q-H) confidence intervals with the shorter intervals suggested here. 

In view of the fact that CY = .lO is the upper bound for the probability that 
at least one of the ten shorter confidence intervals will be incorrect (when N+ m ), 
the corresponding upper bound for the Q-H confidence intervals will be less 
than .lO. Calculating the upper bound for the Q-H intervals by the method 
introduced in the preceding section, we find that this bound will actually be less 
than .002 ! 

Comparing the shorter confidence intervals with the corresponding Q-H 
intervals with respect to their lengths, we find that the ratio of the two lengths 
vary, but we shall show in the following section that this ratio will converge in 
probability to (B/A)* when N ---) 00, which for the case under consideration 
here (where k = 10 and o( = .lO) gives a value of approximately .67 for the 
ratio of the lengths. 

4. OTHERMETHODSFOROBTAINING CONFIDENCE INTERVALSFORTHE ri 

In the usual analysis of binomial proportions, the term ~~(1 - rri) in (2) 
would often be replaced by p,(l - pi) when N is large (see, e.g., Mood and 
Graybill, 1963, p. 263). If this replacement is now made in (2), this would t,hen 
lead to the replacement of the simultaneous confidence intervals (1) by a simpler 
set of simultaneous confidence intervals; viz., 

c- 7ri = pi - [Api - p,)/Nl” (i = 1,2, *.* ,k) (3) 
?r: = pi + [Api(l - pi)/N]‘, 

TABLE 2 

Conjidence Intervals for the Mode-of-Failure Proportions 

Mode of Failure 

The Q-H Intervals 

i;; $+a I 

The Shorter Intervals 

-- 
ri ;+ 

1 .OOl .027 .002 .017 
2 .004 .037 .006 .027 
3 .009 .050 .012 .039 
4 .017 .067 .022 .054 
5 .041 .107 .048 .092 
6 .049 .119 .057 .104 
7 .072 .152 .082 .136 
8 .097 .186 .lOS .168 
9 .152 .256 .166 .236 

10 .283 .405 .301 .384 
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where A is as defined in Section 1 above. These approximate confidence intervals 
correspond to the simultaneous confidence intervals proposed earlier by Cold 
(1963) for linear functions of the rri (i = 1, 2, -. * , k), where in this case the r; 
are the linear functions of interest. These confidence intervals are actually 
asymptotically equivalent to the corresponding Quesenberry-Hurst intervals 
(1). By an argument similar to that used in Section 2 above, we see that for 
the usual probability levels the confidence intervals (3) can be improved when 
k > 2 by replacing the A in (3) by B as defined in Section 2 above. Comparing 
the intervals obtained when B is used in (3) with the corresponding intervals 
obtained when A is used in (3), we find that the ratio of their lengths is simply 
(B/A)“. 

This result concerning the ratio of the lengths of the confidence intervals 
can also be applied to the Quesenberry-Hurst intervals (1) since they are asymp- 
totically equivalent to the confidence intervals obtained when A is used in (3). 
Thus, comparing the intervals obtained when B is used in (1) with the cor- 
responding intervals obtained when A is used in (I), we find that the ratio of 
their lengths will converge in probability to (B/A)’ when N + ~0. 

Before closing this section, we take note of the fact that a simultaneous con- 
fidence statement about Ic - 1 of the parameters, say rr, , 1r2 , . . . , rkW1 , will 
also provide us with a statement about the remaining parameter, say 7rk , 
since 7rTk = 1 - x4:: 7ri . I n p t’ 1 ar mu ar, if the confidence intervals (3) are cal- 
culated for i = 1, 2, . * . , k - 1, this simultaneous confidence statement implies 
that 

k--l k--l 
l- c;:+rkI1- c;;. 

r=l i=l (4) 

This then provides us with a confidence interval for ak which is different from 
the corresponding interval calculated directly from (3); viz., 

& I 7rk 5 T: . (5) 

However, it can be shown that 
k--l 

and 

and therefore the confidence interval (5) is shorter than the interval (4). Thus, 
the simultaneous confidence statement about the lc parameters pi (i = 1,2,. * *, Ic) 
that is obtained by calculating (3) for i = 1, 2, . - . , k is preferable to the state- 
ment obtained by calculating (3) for i = 1, 2, . -. , k - 1 and (4). A similar 
result can be applied to the case where the A in (3) is replaced by B in all cal- 
culations. 

5. SIMULTANEOUS CONFIDENCE~NTERVALSFOR ri - ri 

The methods proposed above can be extended to provide simultaneous con- 
fidence intervals for the k(k - 1)/2 differences Aij = ri - 7ri (i > j). In this 
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case the method proposed by Gold (1963) would yield the K intervals 
& = dii - [Ah + pi - &J/N] 

(i > j) (7) 
ii; = dii + [A(pi + pi - d&W]“, 

where dii = p; - pi , K = k(k - 1)/2, and A is as defined in Section 1 above. 
By an argument similar to that used in Section 2 above, we find that for the 
usual probability levels these simultaneous confidence intervals can be improved 
when k > 2 by replacing the A in (7) by C, where C is the upper (a/K) x 100-th 

percentile of the chi-square distribution with one degree of freedom. (If the set 
of simultaneous confidence intervals includes the k intervals (3) for the ri 
(i = 1, 2, . . . , k) and also the K intervals (7) for the Aij (i > j), then for the 
usual probability levels an improvement can be obtained in both (3) and (7) 
when k > 4 by replacing the A in (3) and (7) by D, where D is the 
upper (a/L) X lOO-th percentile of the chi-square distribution with one degree 
of freedom, and L = k + K = k(k + 1)/2.) 

The K differences Aii (i > j) are particular examples of linear functions of 
the rTi . In the situation where we may be interested in all possible linear func- 
tions of the ri (i.e., functions of the form A(a) = xtFl Uiai), the method pro- 
posed by Gold would yield the following set of simultaneous confidence intervals 
for the A(Q): 

&d = d(td f ~A~‘(a)/~14, (8) 
where d(u) = C:V1 oipi and 

b”(a) = C Ufp< - [d(G)]‘. (9 i=l 
If a particular set of M linear functions are of interest, say A1 , A, , . . + , AM , 
the methods used in Section 2 above can be extended to show that simultaneous 
confidence intervals for these linear functions can be calculated from (8) applied 
to the M linear functions with A in (8) replaced by E, where E is the upper 
(a/M) X lOO-th percentile of the chi-square distribution with one degree of 
freedom. We noted earlier in this article that if M = k or M = k(k - 1)/2 then 
E < A for the usual probability levels when k > 2. For any particular applica- 
tion in which the probability level and the value of M have been specified, 
calculation of both E and A would indicate which should be used in (8). To 
reduce the length of the confidence intervals, replace A by E whenever E < A. 

6. SIMULTANEOUS CONFIDENCE INTERVALSFOR 7ri/gi 

The methods presented above for studying r< - gi (i > j) can be extended 
to provide similar methods for studying rr;/ri (i > j) or log (aJni), the natural 
logarithm of ri/‘Pi , which we denote by pij . The simultaneous confidence 
intervals for the R< - ‘1~~ were obtained by considering the distribution of the 
estimators pi - pi , and similarly simultaneous confidence intervals for the 
si/ni or for the pii can be obtained by considering the distribution of the cor- 
responding estimators p,/p, or bii = log (pi/pi). The bii are particular examples 
of contrasts of the logarithms (i.e., bii = log pi - log pi), and we can determine 
the distribution of the bii by regarding the log pi and log pi as asymptotically 
independent normal variates with variance estimated by n;’ and n;’ , respect- 
ively (see Plackett, 1962, and Goodman, 1963a). Thus, the variance of bii can 
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be estimated by 

X2(b,,) = n;’ + n;’ . (10) 
By the application of methods similar to those used earlier by the author (1964a, 
p. 93), we obtain the following simultaneous confidence intervals for the 
k(k - 1)/2 values of pi i (i > j): 

6, = b,, - [AS’(bij)]” 
(11) 

j$ = bii + [AX2(bii)]“, 
where S2(bii) is calculated by (lo), and A is (as above) the upper a! X lOO-th 
percentile of the chi-square distribution with k - 1 degrees of freedom. 

We noted above that the pii are particular examples of contrasts of the log xi . 
In the situation where we may be interested in all possible contrasts of the 
log ?T~ (i.e., in all functions of the form P(B) = c4p;l ai log r< , where x:-1 ai =0), 
the method given above can be extended to provide the following set of simul- 
taneous confidence intervals for the p(a): 

&cd = W f VS2(b(cN”, (12) 
where 

b(G) = 2 oi log pi and S”(b(g)) = & C&T’ . (13) *==1 
If a particular set of M contrasts are of interest, say p. , ,& , . . . , pM , the methods 
used in Section 2 above can be applied to show that simultaneous confidence 
intervals for these contrasts can be calculated from (12) applied to the M linear 
functions with A in (12) replaced by E, where E is the upper (a/M) X lOO-th 
percentile of the chi-square distribution with one degree of freedom. (See related 
comments in Section 5.) In particular, if the k(k - 1)/2 values of pii are of 
interest, then M = k(k - 1)/2 and E < A for the usual probability levels when 
k > 2. Thus, in this case the confidence intervals (11) and (12) can be improved 
by replacing A in (11) and (12) by E. 

The confidence intervals presented above for the pii and ,L?(G) can also be 
applied to obtain confidence intervals for the ratios r</ni , which we now denote 
by yii . Note that yii = exp [p,i]. From (11) we obtain the following simultaneous 
confidence intervals for the k(k - 1)/2 values of yii (i > j): 

?ii = exp [&I = (pJpJ/exp (IAS2(bii)l’) 
(14) 

-?i: = exp [fiGI = (PJPJ exp {[AS2(bii>l”I. 
A similar modification of (12) will provide simultaneous confidence intervals for 
all functions of the form 

i==l 

where Et=1 ai = 0, and the remarks in the preceding paragraph concerning the 
replacement of A by E will apply here as well. 

7. FURTHERREMARKS 

In the present article we have been concerned with the estimation of the 



254 TECHNOMETRICS, VOL 7, NO. 2, MAY 1965 

parameters of a single multinomial population. The ideas and methods developed 
here can be extended to situations where comparisons between two (or more) 
multinomial populations are of interest. For example, in situations where dif- 
ferences among multinomial parameters are of interest, the differences between 
the corresponding parameters of two (or more) multinomial populations can be 
analyzed by methods that are closely related to, but different in detail from, 
the methods presented in Section 5 above (see Goodman, 1964c). In situations 
where relative differences (or ratios) among multinomial parameters are of 
interest, the relative differences between the corresponding ratios in two (or more) 
multinomial populations can be analyzed by methods that are closely related to, 
but different in detail from, the methods presented in Section 6 above (see 
Goodman, 1964a). In addition, two (or more) sets of two binomial populations 
can be compared in situations where differences between the parameters are 
of interest using the generalization of the Stouffer method given by the author 
in (1963b), and two (or more ) sets of J multinomial populations can be compared 
in situations where ratios of the parameters are of interest using the various 
methods that have been developed for the analysis of three-factor interaction in a 
three-way contingency table (see, e.g., Goodman, 196413 and the literature 
cited there). 

Although the methods developed in the present article are different from the 
usual methods suggested for the analysis of multinomial data, they all have in 
common the feature that they are derived without recourse to a prior distribution 
of the parameters of the multinomial distribution. For a treatment of this subject 
when certain special prior distributions are used, we refer the reader to a recent 
paper by Lindley (1964). 
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