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This paper is concerned with the two-parameter Weibull distribution which is 
widely employed as a model in life testing. Maximum likelihood equations are derived 
for estimating the distribution parameters from (i) complete samples, (ii) singly 
censored samples and (iii) progressively (multiple) censored samples. Asymptotic 
variance-covariance matrices are given for each of these sample types. An illustrative 
example is included. 

1. INTRODUCTION 

Because of its versatility in fitting time-to-failure distributions of a rather 
extensive variety of complex mechanisms, the Weibull distribution has in 
recent years assumed a position of importance in the field of reliability and 
life testing. Various problems associated with this distribution have been con- 
sidered by numerous writers, among whom are Dubey [3], Esary and Proschan 
[4], Jaech [5], Kao [6, 7, 81, Lehman [lo], Leone, Rutenberg, and Topp [ll], 
Lloyd and Lipow [12], Menon [13], Procassini and Roman0 [14], and Proschan 
[15]. A major deterrent to wider usage of the Weibull distribution has been 
the difficulty in estimating its parameters. Unfortunately, the calculations 
involved are not always simple. 

This paper is concerned with maximum likelihood estimation in both com- 
plete and censored samples from the two-parameter Weibull distribution with 
density function 

f(z) = (-f/O)zy-’ exp (-z’/0); 2 2 0, y > 0, e > 0. (1) 

When y = 1, this becomes the density function of the well-known one-parameter 
exponential distribution. The particular form in which (1) is written was chosen 
for the purpose of simplifying derivations of the maximum likelihood esti- 
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mating equations. As written here, though differing in form, (1) is equivalent 
to the two-parameter Weibull density function considered by Pros&an [Is], 
Menon [13] and others. 

Estimating equations obtained here for complete samples are presented in 
a form which seems to be somewhat simpler to solve than equivalent equations 
given previously by other writers. Estimating equations for censored samples 
which arise naturally from life tests which are discontinued before all sample 
specimens fail, are presented in a form analogous to that employed for com- 
plete samples. Apparently censored samples from the Weibull distribution 
have received little if any previous attention in the literature. Asymptotic 
variances and covariances are given for the estimators obtained here from 
both complete and censored samples. 

2. COMPLETE SAMPLES 

Consider a random sample consisting of 72 observations when (1) is the ap- 
plicable density function. The likelihood function of this sample is 

L(x, ) ** * 2, ; y, 0) = fi (r/O)xr-’ exp (-x:/0). (2) i=1 

On taking logarithms of (2), differentiating with respect to y and 0 in turn 
and equating to zero, we obtain the estimating equations 

~3 In L - = 
8-l 

;+ 21 
1 

n zi - 5 2 Z? In xi = 0, 
1 

(3) 
a In L - = = 

ae 
-s+fi &: 0. 

1 : 

On eliminating 0 between these two equations and simpljfying, we have 

= t $ In xi , (4) 

which may now be solved for the RI. L. estimate q. This can be accomplished 
with the aid of standard iterative procedures, but in most instances a simple 
trial and error approach will suffice. Once two values y, and yz have been found 
within a sufficiently narrow interval such that y1 < y < y2 , linear interpolation 
will yield the required value. 

With q thus determined, 0 is estimated from the second equation of (3) as 

e = 2 x~/n. (5) 

The symbol (^) is employed here to distinguish M. L. estimators from the 
parameters being estimated. 

3. SINGLY CENSORED SAMPLES 

In a typical life test, N specimens are placed under observation and as each 
failure occurs, the time is noted. Finally at some pre-determined fixed time x0 
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or after some pre-determined fixed number of sample specimens fail, the test 
is terminated. In both of these cases the data collected consist of observa- 
tions x1 , x2 , . . . x, plus the information that (N - n) specimens survived 
beyond the time of termination, x0 in the former case, and x, in the latter. 
Consistent with standard terminology as employed in [l], when x,, is fixed and 
n is thus a random variable, censoring is said to be of type I. When n is fixed 
and the time of termination x, is a random variable, censoring is said to be 
of type II. 

In both type I and type II censoring, the likelihood function may be written as 

L = (NTn)! I=1 [ fi (y/e)d--’ exp (--i::e)]. 11 - F(.T~)]-‘-~, (6) 

where in type I censoring, the time of termination xT = x,, , and in type II 
censoring xT = x, . The distribution function P(x) follows from (1) as 

F(x) = <I’ yt’-’ exp (-r/e) dt/e 

= 1 - exp (-XT/e). 

Accordingly In L follows from (6) and (7) as 

In L = 12 In y - n In e + (7 - 1) 2 In J, - (l/e) 2 21 
1 1 

(7) 

- [(N - n)/e]x; + cod. (8) 

On differentiating (8) with respect to y and t3 in turn and equating to zero, 
we obtain the estimating equations 

a In L 

- = 5 + 2 In 2; 
- 

87 
6 C* xy In 2; 

= 
1 

0, I 
a In L - = 

ae 
-;+$c*x: 

(9) 

where c* signifies that the summation extends over the entire sample with 
the (N - n) survivors assigned the value x1. ; i.e. x,, or x, . In particular 

C* ~7 In xi = $ XT In X; + (N - n)x’, In xT , 

1 

(10) 

c* XT = $ x7 + (N - n)x; . 

In the form given above, estimating equations (9) are fully analogous with 
equations (3) for complete samples, and on eliminating 0 between the two 
equations of (9), we have 

[ 
C* 27 In 5; 1 

c*xy -3 1 = i $ In xi , (11) 
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to be solved for 5 employing the same techniques suggested for use in solving 
equation (4) in the case of a complete sample. With T thus determined, it 
then follows from the second equation of (9) that 

6 = C* x:/n. (12) 

4. PROGRESSITELT CENSORED SAMPLES 

In many life testing situations, the initial censoring results in withdrawal 
of only a portion of the survivors, with some remaining on test and therefore 
continuing under observation until ultimate failure or until a subsequent 
stage of censoring is performed. For sufficiently large samples, censoring may 
be progressive through several stages. Progressive censoring in connection 
with the normal and the exponential distributions was considered in an earlier 
paper PI. 

Suppose that censoring occurs progressively in k stages at times Ti where 
T; > T,-, , i = 1, 2 *. * k, and that at the ith stage of censoring ri sample 
specimens selected randomly from the survivors at time Ti are removed (cen- 
sored) from further observation. If we let N designate the total sample size 
as in section 3, and n the number of specimens which fail and therefore provide 
completely determined life spans, it follows that 

N=n+ &ri. (13) 
1 

In type I progressive censoring where the Ti are fixed, the likelihood func- 
tion may be written as 

L = c fi f(xJ fi [I - F(T,)]“, 
i=l i=l (14) 

where C is a constant, f(x) is the density function, and F(x) is the distribution 
function. 

With f(x) given by (1) and F(x) by (7), the logarithm of the likelihood func- 
tion becomes 

In L = 72 In y - n In e + (7 - 1) 2 In xi 

- (l/e) i: ~7 - (l/e) 2 r,Tl + In C. 05) 
1 1 

On differentiating (15) with respect to y and 0 in turn and equating to zero, 
the resulting estimating equations follow as 

a In L -= 
a7 

t + 8 In xi - 5 C** XT In xi = 0, 

! 

06) 
a In L - = 

de 
-;+-$c**x’ = 0, 

where c** signifies summation over the entire sample with the ri observa- 
tions censored at time Ti assigned the value xi = Ti . More specifically 
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c** XT In xi = 2 ~1 In xi + $ r,Tr In Tj , 
1 

1 

(17) 

c** XT = $ XT + $ r,T: . 

In the above form, estimating equations (16) are fully analogous with equations 
(3) for complete samples and with equations (9) for singly censored samples. 
In fact equations (3) and (9) may be considered as special cases of equations 
(16). Accordingly on eliminating 0 between the two equations of (16), we have 

[ 
C** XT In zi 1 

C**xr -r 1 = t $ In 2< , (18) 

to be solved for 9 in the same manner as that suggested for solving (4) in the 
case of a complete sample and for solving (11) in the case of a singly censored 
sample. With T thus determined, it follows from the second equation of (16) that 

e = c** xy/n. (1% 
As noted in [a], intermediate steps in the derivation of estimating equations 

for type II progressively censored samples differ from corresponding steps in 
the case of type I samples. The end result, however, is the same in both cases, 
and the estimating equations given here are applicable for both sample types. 
It is necessary only to keep in mind that the times T, are the times at which 
withdrawals are actually made. 

5. VARIANCES AND COVARIANCES OF ESTIMATES 
The asymptotic variance-covariance matrix of (9, 8) is obtained by inverting 

the information matrix with elements that are negatives of expected values 
of the second order derivatives of logarithms of the likelihood functions. In 
the present situation, it seems appropriate to approximate the expected values 
by their maximum likelihood estimates. Accordingly, we have as the approx- 
imate variance-covariance matrix 

I d2 In L d2 In L -’ 
--zq- 4,; 

-- 
a-l de q,e’ 

I L I 

V(Y) cov (q, 6) 
& 

(20) 
a2 In L a2 In L -~ 
aea-f +,s^ --zP- 9.8 cov (-q, 8) V(@ I 

The elements of the information matrix on the left side of (20) follow by dif- 
ferentiating (3) for complete samples, (9) for singly censored samples, and (16) 
for progressively censored samples. We thereby obtain 

For Complete Samples 
a2 In L 

-dy2 9.8 Y 
= 2 + +j $ z”(ln xi)‘, 

a2 In L a2 In L -- 
a? de +,s* = -de, a7 +j 

= -+ $ x9 In zi , 
I 

(21) 

a2 In L 
--z- 9,; 

= -;+gi:xl, 
1 I 
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For Singly Censored Samples 
a2 In L 

-7 9.8 
= + + + C* zt(ln xi)‘, 

a2 In L a2 In L -- l c* ayae +,J = - aeay +.; = -2 x:’ In zi , (2% 

a2 In L 
--s- .$,e’ 

= -;+g c*xc, 

For Progressively Censored Samples 
a2 In L 

--$- 9.; y = Ti + $ c** zT(ln 2J2, 

a2 In L a2 In L I -- 
ay ae TV3 = - aeay 9,e^ = jP ’ C** 5: In xi ,I (23) 

a2 In L 
--z- q*s^ 

= -+ + ;$ c** XT , 
1 

where as in the case of estimating equations (9), c* signifies summation over 
the entire sample with the (N - n) survivorg*assigned the value zT , and as 
in the case of estimating equations (16), c signifies summation over the 
entire sample with the ri observations censored at times Ti assigned the values 
xi = Ti . 

Although the foregoing results are valid in a strict sense only for large samples, 
they may be relied upon to provide reasonable approximations to estimate 
variances and covariances for moderate size samples. In small samples, it 
must be recognized that errors due to bias sometimes greatly exceed the errors 
induced by large estimate variances. This is an area which requires further 
investigation with respect to the Weibull distribution. Perhaps some linear 
combination of order statistics will ultimately provide unbiassed estimates 
that may be preferred over the estimates considered here. At least the max- 
imum likelihood estimates are consistent and we are thereby assured that the 
bias diminishes as the sample size becomes large. 

6. A FIRST APPROXIMATION TO THE SHAPE PARAMETER 
The coefficient of variation of the Weibull distribution is a function of the 

shape parameter y alone. Therefore with the aid of a suitable graph or table 
of this function, it is easy to obtain a good first approximation to the max- 
imum likelihood estimate 5 by equating the first two moments of a complete 
sample to corresponding population (theoretical) moments. 

The kth non-central moment readily follows from (1) as 

/AC: = fFr[(li/y) + 11, (24) 

where p signifies the gamma function 

r(m) = lrn xrn-‘eC da, (m > 0). (25) 

Accordingly, when the variance is divided by the square of the mean, we obtain 
the following expression which is a function of y only 
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w9 wh) + 11 - r2[(lh) + 11 
-iT = 

’ PI r”[(lh> + 11 

where V(z) = pz = pi - p:“. 
On taking square roots of (26), we have for the coeficient of variation 
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(26) 

cv = dwh) + 11 - r”w-7) + 11. 
w/Y) + 11 (27) 

Following is an abridged table of the coefficient of variation and of its square 
with y as the argument. At some future date it might be advisable to prepare 
a more extensive table at closer intervals of the argument as a further aid in 
obtaining moment estimates of y in practical applications. 

TABLE 1 

The Weibull Coejicient of Variation as a Function of the Shape Parameter 

Coefficient 
Y v(z)/P:2 of Variation 

19 4.3589 
5 2.2361 
1.5904 1.2611 
1 1 
0 6480 0.8050 
0.3801 0.6165 
0.2732 0.5227 
0.1323 0.3637 
0.0787 0.2805 

The graphs of Figure 1 were plotted using values from this table. With the 
sample quantity s2/8’ equated to V(x)/&, the moment estimate y* might 
be read from Figure 1 with an accuracy of at least one decimal and perhaps 
two. The value thus read should provide a satisfactory first approximation 
for use in iterating to the maximum likelihood estimate. For many purposes, 
the moment estimate thus read will be of such accuracy that no further im- 
provement through iteration is necessary. In such cases the moment estimate 
of 0 follows from (24) with k = 1 and with cl{ equated to Z, as 

e* = (f/r[(i/y*) + i])y’. (28) 

The stars (*) serve to distinguish moment estimates from maximum likelihood 
estimates denoted (*) and from the parameters being estimated. 

Kendall [9, page 2331 has shown that the approximate asymptotic sampling 
variance of the coefficient of variation (valid for large samples) is 

V(CV) =k (CV)*/2n. (2% 

This result can be used in conjuction with the CV graph of Figure 1 to provide 
an indication of the extent of the samplin g variation in estimates of y. For 
example, suppose n = 50, and suppose further that y = 1; i.e. our distribu- 
tion is in fact the exponential distribution. When y = 1, then CV = 1 and 
from (29) 



0.25 0.5 0.75 1.00 1.25 1.50 1.75 2.00 
Y 

V(m) s 0.01. 

Accordingly u&, = 0.1, and there is approximately a 95’% probability that the 
sample value of CV will be in the interval .8 to 1.2. As can be shown from the 
graph, this corresponds to an interval of from .83 to 1.25 for the estimate r*; i.e. 

.83 < y* < 1.25, 

when the sample size is 50 and actually y = 1. 
This result tends to justify the natural reluctance which one might have 

toward abandoning the much simpler exponential distribution as a model for 
a life distribution in favor of the Weibull distribution on the sole evidence of a 
single small sample. 

7. AN ILLUSTRATIVE EXAMPLE 

A sample given by Menon [13] has been selected to illustrate the practical 
application of results obtained here. Data for this sample are given below. 
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x In x x In x x In x X In x 

0.806 -0.216 57.628 4.054 1.550 0.438 7.057 1.954 
0.664 -0.410 1.033 0.032 9.098 2.208 2.046 0.716 
0.345 -1.064 3.532 1.262 0.470 -0.754 0.185 -1.686 
0.001 -6.824 0.970 -0.030 0.505 -0.684 0.435 -0.832 
0.469 -0.758 0.071 -2.640 0.030 -3.506 1.550 0.438 

According to Menon, this sample is from a population in which y = .5, and 
0 = 4 A 1.649. These data are summarized as: 12 = 20, cf” zi = 88.445, 
CT” x; = 3479.170201, and CT” In xi = -8.302. It follows that 3 = 4.42225, 
s2 = 154.402, (CV)” = 7.895, and CV = 2.810. Reading from the chart,s of 
Figure 1, we have as the moment estimate and first approximation to the 
maximum likelihood estimate of the shape parameter, y* = 0.43. To obtain 
the maximum likelihood estimate we decide to try interpolating between 
y = .4 and y = .5 using estimating equation (4). We subsequently calculate 
xi” xi,4 = 23.550, cf” zp.4 In xi = 27.661, cf” x:,5 = 27.007, and c:oxi.5 In xi = 
41.637. On writing equation (4) in the form 

we calculate K(.4) = -0.9118 and K(.5) = -0.0432. Since both of these 
values are negative, we now calculate XI” xp.’ = 32.086, cf” xp.” ln Xi = 
61.018 and it follows that K(.6) = 0.6501. To obtain the required estimate, 
we interpolate linearly as shown below. 

Y K(r) 

.500 -0.0432 

.506 0 

.600 0.6501 

Thus we have 9 = 0.506. To obtain 6, we calculate CT” xp.506 = 27.261 and 
from (5) 

6 = 27.261/20 = 1.363. 

For comparison, the maximum likelihood estimates are listed below with 
corresponding moment estimates, and estimates based on Menon’s results, 
along with the population values. The moment estimate of 8 was calculated 
using equation (28). 

Population Moment Menon’s M.L. 
Values Estimates Estimates Estimates 

e 1.649 1.23 1.40 1.363 
Y .5000 .43 .57 ,506 
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In order to evaluate the variance-covariance matrix (20), we first obtain 
the additional summations cf” x:.~“~ In xi = 42.611596 and CT” z$.“~ (In xi)’ = 
166.254404. We then evaluate the partials of (21), and the desired matrix 
follows as 

L 

200.09 

-22.94 
-=:;;r = [$::y; @YZ]. 

Accordingly, V(q) G 0.007, V(e) s 0.123, and Cov (9, 6) = 0.014. The cor- 
relation coefficient between estimates follows as 

Calculations for censored samples are essentially the same as for the com- 
plete sample illustrated here and are not likely to present any unusual com- 
putational difficulties. 
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