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Maximum Likelihood Estimation of the 
Parameters of the Beta Distribution 

from Smallest Order Statistics 

R. GNANADESIKAN, R. S. PINKHAM* AND LAURA P. HUGHES 
Bell Telephone Lnboratories, Incorporated 

Numerical methods, useful with high-speed computers, are described for obtaining 
the maximum likelihood estimat.es of the two (shape) parameters of a beta distribu- 
tion using the smallest M order statistics, 0 < ~1 5 uz 5 * . . 5 u&f , in a random 
sample of size K( >M). The maximum likelihood estimates are functions only of the 
ratio, n = M/K, the Mth ordered observation, UM , and the two statistics, 
G1 = [II;?=“=, u$‘M and Gz = [IIftr (1 - ui)]ll*‘. For the case of the complete sample 
(i.e., R = l), however, the estimates are functions only of G1 and Gz , and hence, for 
this case, explicit tables of the estimat,es are provided. When R < 1, the methods 
described depend crucially for their usefulness on the availability of a high-speed 
computer. 

Some esamples are given of the use of the procedures described for fitting beta dis- 
tributions to sets of data. In one example, the fit is studied by using beta probability 
plots. 

1. INTRODUCTION 

The family of beta distributions is related to many of the common statistical 
distributions, including the t, F, binomial and negative binomial distributions. 
Also, the beta distribution has been used in certain Bayesian applications 
as a prior distribution for the binomial parameter, p. [See, for example, Anscombe 
(1961).] Chnddha has, in some unpublished reports, suggested the use of a 
special case of the beta distribution as a model in Queueing Theory and in 
reliability applications. The beta distribution may also serve as an appropriate 
approximation to fit the distribution of the probability integral transformation, 
when estimates of parameters are used in the transformation so that the trans- 
formed variable may no longer have the uniform distribution. [See David and 
Johnson (1948) .] 

The present paper is concerned with the maximum likelihood estimation 
of the two parameters of an underlying beta distribution using the smallest 
observations in a random sample. The case of maximum likelihood estimation 
from the complete sample is included as a special case. 

The formulation of the problem in terms of smallest order statistics appears 
to be natural for reliability applications where the data often arrive in an 
ordered fashion starting with the smallest observation. Also, in many applications 
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of probability plotting, such as in the analysis of variance, when the data to 
be plotted is also to provide the basis for estimating the necessary parameters, 
a reasonable and natural formulation of the estimation problem appears to 
be one in terms of smallest order statistics. [cf., for example, Wilk and 
Gnanadesikan (1961, 1964) and Wilk et al. (1963).] In other applications, 
one may wish to base the estimation on the “middle” or “larger” observations 
in the sample. [cf. Wilk et al. (1966).] 

The results of the present paper are germane to an interest in fitting beta 
distributions. Section 2 of the paper gives a statement of the problem with 
necessary notation. In Section 3 the likelihood equations are derived and in 
Section 4 numerical methods employed in solving these are described. Some 
examples of application of the estimation procedure are given in Section 5. 
Section 6 consists of summary remarks and general discussion. An appendix 
contains the numerical approximations used in solving the likelihood equations. 
A table of the maximum likelihood estimates for the complete sample case is 
included in Section 3. 

2. NOTATIO~VAND STAmMENT OFTHEPROBLEM 

Consider the ordered observations, 0 < u1 < uz 5 . . . 5 uK < 1, resulting 
from a random sample of size K from a beta distribution with density 

1 
fh; a, PI = B(OLIP)a-l(l - UK O<U<l, a > 0, B > 0. (1) 

It is desired to estimate (Y and P simultaneously, utilizing the M(<K) smallest 
observations, u1 , u2 , * * * , uM . The method of estimation used in the sequel 
is that of maximizing the likelihood based on this formulation in terms of 
order statistics. 

The estimation problem for the so-called beta type II distribution with 
density 

1 a-l 
Q(Vi (y) P) = f& p> (1; v)rr+8 1 oiv<oo, a > 0, B > 0, 

can be transformed to the above framework by setting u = v/(1 + v). 

3. MAXIMUM LIHELIHOOD ESTIIXATION 

The likelihood of a! and P given the M smallest observations, u1 , uZ , . . . , udb 
is 

ax, P> cc [j&J fi UF’(l - u;P][ lM P(l - tY dtJ-? (2) 

The likelihood equations, d log CJ’& = 0 and 8 log .$/afl = 0, reduce to 
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and 

where 

R = M/K, G, = (f1 ~i)l’~, 
i=1 

G2 = (fi (1 - Ui))l’M, 
i-1 

rw q(x) = 2: In I@) = r(z) , 

s 

1 
ax;%@) = P(l - ,)s-l dt, (0 i x I 11, 

z 
1 

I&; ffl s ta-l(l - L)‘-l In t dt, (0 5 5 5 11, 
z 

and 

P> = 5 1(x; a, P) = s 

1 
Ia&; a, t”-‘(1 - Q8-l In (1 - t) dt, (0 i x < 1). 

I 

Clearly the maximum likelihood estimates, (Y and /3, depend on uM , G, , Ga 
and R. In general, therefore, tabulation of the roots of equations (3) and (4) 
would involve four-way tables which would be too unwieldy for practical 
purposes. However, in the special case when R = 1, (i.e., the complete sample 
case), the likelihood equations simplify to 

InG, =@(a) -*(a+P), (5) 

lnG, =\k@) -$~+p). 03) 

A tabulation of the roots of these equations, in terms of (observed values) 
G1 and G, , is provided in Table 1. While the maximum likelihood estimates 
for specific values of G, and G, , and some indication of the general pattern 
of their values, may be gleaned from Table 1, yet the grid shown for G, and G2 
is so coarse that linear interpolation in the table would yield accuracies of at 
most only two significant digits and not even single-significant-digit accuracy 
when G, and G2 have extremely disparate values. More detailed tables, using a 
grid for G, and G, which is fine enough for linear interpolation to be adequate 
for three-significant-digit accuracy, are available but have not been included 
here. The problem of tabulating values of some simple single-valued functions 
of the estimates, which are more nearly linear in G, and G, , instead of the 
estimates themselves is under continuing study. 

The singularities in the equations when either G, or G, is zero, led to con- 
sidering 0.01 as the smallest value of G, and G, for tabulation purposes. Further, 
G, + G, _< 1, with the equality holding if and only if the observations are all 
equal which is an unlikely and uninteresting occurrence in practice. Hence, 
the largest values of G, (or G,) for a specified value of G2(G,) was chosen such 
that G, + G, = 0.99. The condition, G, + G, < 1, and the symmetry implied 
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TABLE 1 
Complete samvle maximum likelihood estimates of parameters qf the beta distribution. 

-Range ofG1 is .Oi, .1(.1).9. Range of Gz is-.dl, .1(.1).9. [Gl + Gz _< 1.01 
In each cell the first entry is d and the second entry is 8. 

G1 
G2 

.Ol 

.I 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.98 

.Ol .l .2 .3 .4 .5 .6 .7 .8 .9 .98 

.112 .192 .254 ,318 ,395 .495 .639 ,877 1.376 3.162 42.128 

.112 .135 ,147 .157 ,168 ,179 ,192 ,210 .237 ,299 .850 

.245 ,337 .441 ,576 ,770 1.093 1.756 3.864 * 

.245 ,276 ,310 ,345 ,389 ,451 ,560 ,846 * 

,395 .537 ,735 1.057 1.701 3.669 * 
,395 .456 ,531 .640 .S34 1.367 * 

,647 ,947 1.532 3.280 * 
.647 ,604 1.086 1.869 * 

1.320 2.832 * 
1.320 2.358 * 

BY SYMMETRY** * 
* 

* 
* 

* 
* 

+ 
* 

* 
* 

NOT POSSIBLE (G1 + Gn > 1) 

* Gx + Gz = 1 
** For example, the estimates of OL and fl when Gz = 0.2 and G1 = 0.1 are respectively the 

estimates of fl and a when G1 = 0.2 and GI = 0.1, namely 0.278 and 0.337. 

by equations (5) and (6) with respect to G, and G2 lead to Table 1 having 
fewer entries than might be anticipated. 

4. METHOD FOR SOLVING LIKELIHOOD EQUATIONS 

The expressions on the right-hand sides of the likelihood equations (3) and (4) 
may be denoted FI(~, P) and F2(cq P) respectively, and the likelihood equations 
rewritten as 

R In G, = Fib, PI, (?I 

RhG, = F&,/3). (8) 
F, and F, involve R and uM in addition to being functions of CY and p. Given 
the sample of observations to be used in the estimation of CY and 6, the quantities 
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R, uni , G, and G, are known, and the aim is to find the values of CY and p that 
satisfy equations (7) and (S) simultaneously. Knowing R and u.~ , the functions 
F, and F, can be evaluated at any specified point, (CQ , p,), provided that \li, I, I, , 
and I,, defined in Section 3, can be evaluated at ((Y,, , &). Approximations 
useful for computing these functions are given in the Appendix and a detailed 
discussion of them and the attendant errors may be found in Gnanadesikan et al. 
(1966). Using these approximations and the given values of R and unf , one 
can compute FI(ao , &) and FZ(a,, , &) at a trial value, (a0 , ,8,,), for the root, 
(2, p), of equations (7) and (S). 

Iterative methods may be employed for the numerical solution of the likelihood 
equations, (7) and (8). Newton’s method, involving the linearization of F, 
and F, in the neighborhood of the root, leads to an iterative scheme defined by 

R ln G, = F,(a, , A,> + h,+ 1 - a,> 
a”.& an.bn 

R In G, = Fda, , A,> + (a,+, - 4 
=..&I c2..8. 

n = 0, 1,2, *** (9) 

Instead of using the explicit, computable, analytical approximations, provided 
by Gnanadesikan et al. (1966), for the partial derivatives of F, and F, with 
respect to (Y and p, the present approach employed the oft used device of 
approximating derivatives by divided differences. Thus, the iterative scheme 
defined by equation (9) was used with the modification that the partial 
derivatives are replaced by 

and 

The mesh sizes, CY* - CY, and p* - &, , which are essential ingredients of the 
approximation of the derivat,ives by the divided differences, were chosen to 
be both equal to 10m3 based on preliminary empirical investigations. 

The st.arting values, (CY~ , p ) 0 , used are crucial for the efficient convergence 
of the iterative scheme. When R = 1, the moment estimates provide an adequate 
set of starting values defined by 

where ml = (l/K) cFC1 ui , and lnz = (l/K) cfZ1 u: . When R < 1, however, 
the moment estimates from the observations on hand, u1 , uz , . . . , uM , appear 
to be inappropriate and inadequate for obtaining starting values that lead 
to rapid convergence. For this case, therefore, alternate starting values were 
devised. The basic idea consists of equating certain of the order statistics to 
quantiles of an approximat’ing distribution suggested by Wise (1950). 
Specifically, Wise (1950, equation 5.2) suggests, as a first order approximation 
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for the quantile, z, , of a beta distribution 

In x, = -xXp)/2N, (12) 
where x&(p) denotes the quantile corresponding to p, (0 < p < l), of a x2 
distribution with 2fi degrees of freedom, and N = cr + (/3 - 1)/2. Thus, 
corresponding to the order statistics, u, and ZC,~ , one obtains from equation (12), 
the relationships 

Inu, ‘v -xL4llK + 1) 
2N ’ 

ln uM ~ -x&WK + 1). 
2N 

As a further simplificationrthe well-known standard normal approximation 
to the distribution of (d2xz - dm) was used with the relationships 
provided by equation (13), and the following starting values, CY~ and &, , were 
obtained: 

where 
Bo = HP*” + I>, (Yg = NO - wo - 11, (14) 

and 

N, = -xkdllK + 1) 
2hz6, ’ 

and ,zo,) denotes the standard normal quantile corresponding to the proportion p. 
Any of the available methods for computing the percentage points of a chi- 
square distribution (see for example, Wilk et al. (1962a)) might be used to 
obtain &.(1/K + 1) and thence N, . For R < 1, the starting values provided 
by equation (14) were used in the iterative scheme defined by equation (9) 
and the iterations repeated until IR In G, - Fl(a, , /I,)] 5 low4 and 
IR In G, - Fs(an , &)I 5 10e4. The values, N,, , & , at the first stage of iteration 
when these criteria of convergence are met are then the desired maximum 
likelihood estimates, d and b. 

For the desired degree of convergence, the authors found, in some cases, 
that the number of iterations required was fairly large. In these cases, the 
pattern of convergence was one wherein within a few iterations (i.e., for small n), 
either IR In G, - Fl(a, , P,,) 1 _< lo-’ or IR In G, - F,(cY, , P,) 1 5 10w4, but 
not both criteria were satisfied simultaneously for small n. To cut the number 
of iterations (and the saving was found to be considerable in many cases), 
the authors used a scheme for adjusting the values of CQ , pi at certain stages 
of the iteration. For instance, if F, is adequately close to R In G, and has remained 
thus for a specified number of iterations (the value used was 5) including the 
ith iteration, while Fz is not sufficiently close to R-ln Gz , then (Y~+~ and pi+, 
were adjusted by the value of the ratio of R In G, to the computed value of 
F2(ai , p,). That is, (Y. ,+I = aiR ln GJF,(w , Pi> and Pi+1 = I?$ In Gz/Fz(ai , Pi>. 
Similarly, if F, is adequately close to R In G, and has remained thus for five 
iterations including the ith one, while F, is not sufficiently close to R In G, , 
then 01. SC* = cd ln G/Fl(ai , A> and A+, = AR In G,/F,(cc , A). 
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5. EXAiVPLES OF APPLICATION 

The methods of Sections 3 and 4 are next illustrated by application to two 
sets of data. 

The first set consists of a computer-generated random sample of size K = 20 
from a beta distribution with parameters (Y = 1.5 and p = 11.0. Table 2 gives 

TABLE 2* 
Maximum Likelihood Estimation of Parameters of the Beta Distribution from Order Stati.stica 

Generated Data where Alpha is 1.6 and Beta ia 11.0 

Sample Size = 20 No Probability Plots 
Observation Fraction Alpha Beta 

Number Ordered Observation of Sample Estimate Estimate 

1 0.153967293 -01 
2 0.320867483 -01 0.100 1.443 6.472 
3 0.40187541E-01 
4 0.450339803-01 0.200 1.472 8.145 
5 0.478155023-01 
6 0.524276293 -01 0.300 1.483 9.602 
7 0.792888673 -01 
8 0.867556573 -01 0.400 1.564 9.760 
9 0.894018393 -01 

10 0.900712683 -01 0.500 1.672 11.765 
11 0.101527993 -00 
12 0.1053445YE -00 0.600 1.774 13.175 
13 0.106104133-00 
14 0.119286933 -00 0.700 1.902 14.995 
15 0.187141803 -00 
16 0.197745913 -00 0.800 1.732 12.202 
17 0.203103993-00 
18 0.237293373-00 0.900 1.800 12.920 
19 0.303876263 -00 
20 0.315323913-00 1.000 1.793 12.781 

* The titles and fOT?NLt of this table are reproduced from computer output. 

the ordered sample and contains the maximum likelihood estimates of CY and /3 
for R = O.l(O.l)l. When R = 0.1, in this case, only two ordered observations 
are being used to estimate the two parameters. The indications from this 
example, which are typical, are that the maximum likelihood estimates are 
statistically reasonably behaved with biases being negative for small R, positive 
for large R and with the estimates of the two parameters tending to be positively 
correlated. In this example, the number of iterations involved in obtaining the 
solutions of the likelihood equations ranged from 7 to 19, the former being 
for R = 1 and the latter for R = 0.4. 

The second set of data arose in a problem of talker identification (Becker 
et al. (1965)) where there was an interest in selecting features whose variations 
across speakers relative to variations within speakers are large. The data 
consisted of ratios of “between-speakers” mean squares to “within-speakers” 
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mean squares for a specific set of 20 statistics that were of interest. These 
ratios of mean squares were transformed to the “equivalent” ratios, b/(b + w), 
wit,h range 0 to 1 where b and w denote, respectively, the sums of squares between 
and within speakers. The resulting data, ordered, is given in Table 3 which 
also contains the estimates obtained corresponding to four values of R. 

The estimates when R is 0.25, 0.5 and 0.75 are quite similar while being 
quite different from those when the complete sample (R = 1) is used. In the 
present application the larger observations in the sample might indeed depart 
markedly from the statistical configuration of the rest of the sample and the 
estimates might, for some purposes, be based more reasonably on R < 1 rather 
thanonR = 1. 

In order to study further the implications of these different sets of estimates 
and to uncover possible peculiarities in the sample (e.g., some observations 
being overly large), the sets of estimates when R = 0.5 and when R = 1 were 
used and probability plots of the data obtained. These are plots of the ordered 
data against appropriate quantiles of the fitted beta distribution and their 
use and interpretation is quite similar to those of other probability plots. 
(See, for example, Wilk et al. (1962a), Wilk and Gnanadesikan (1964).) 

TABLE 3* 
Maximum Likelihood Estimation of Parameters of the Beta Distribution from Order Statistics 

Data from Talker Identification Problem 

Sample Size = 20 Probability Plots Included 
Observation Fraction Alpha Beta 

Number Ordered Observation of Sample Estimate Estimate 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.202723303 -00 
0.231443003-00 
0 238273903 -00 
0.25358330E -00 
0.275744003 -00 0.250 9.565 18.076 
0.309741103 -00 
0.311871403-00 
0.326940603 - 00 
0.339539803 -00 
0.343798803 -00 0.500 10.479 19.378 
0.365921203 -00 
0.366160303 -00 
0.3692888OE -00 
0.37460130E -00 
0.41196090E-00 0.750 10.377 19.014 
0.479849403 -00 
0.439329103-00 
0.495321903 -00 
0.55465619E+OO 
0.66715830E+OO 1.000 6.543 11.052 

* Format reproduced from computer output. 
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For each set of estimates, & and fi, two types of probability plots were obtained. 
The first corresponds to plotting the ordered quantities with range 0 to 1 
against quantiles of the fitted beta type I distribution while the second is 
a plot of the ordered original ratios of mean squares against quantiles of the 
fitted beta type II distribution. Figure A, shows the beta type I plot based on 
the estimates obtained when R = 0.5, and Figure A, shows the corresponding 
beta type II plot. In spite of the mildly ragged nature of the plots, the “largest 
point” (i.e., the one in the top right-hand corner) departs from the configuration 
indicated by the others. An interesting feature is that this departure is more 
clearly indicated in the beta type II plot of Figure A, than in the “equivalent” 
beta type I plot of Figure A, . Transforming to a distribution with infinite 
tails from one with finite tails may increase the “sensitivity” of the probability 
plot to departures in the tails. 

Figures A, and A, show beta types I and II plots for the same data using 
the maximum likelihood estimates when R = 1. In spite of the estimates 
themselves being very different from those when R = 0.5, the configurations of 
the probability plots are not very different. Again the largest point is indicated 

0.7 

0.2 

- 

- 

- 

oe~@ 
I l . 

0 
0. - 

0 
0 

0 l 

al I I I 
0.2 0.3 0.4 0.5 

BETA QUANTILES 
Data From Talker Identification Problem 

Beta One Plot Alpha Estimate = 10.479 Beta Estimate = 19.378 
Number of Points on Graph = 20 Sample Size = 20 Parameters were 

Estimated with 10 Smallest Order Statistics 

Figure A1 
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as being overly large although, as one would expect, the indication of the 
aberrant point is not as clear in Figure A, as it is in Figure A, . 

6. CONCLUDINGREMARKS 

Analytical methods based on the approach of Halperin (1952) could be 
used to study the large sample properties of the maximum likelihood estimates 
obtained by the methods described in the preceding sections. Useful small 
sample indications concerning bias, variance and covariance of these estimates 
could also be obtained from a systematic Monte Carlo study using computer- 
generated random samples from beta distributions. It would also be of interest, 
in such a study, to assess the maximum likelihood estimates in terms of some 
criterion of linearity of the configuration of the sample in the beta probability 
plot whose axis of quantiles is determined by using the estimates of a! and 0 
for that sample. Such a Monte Carlo study of various statistical properties 
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of estimators obtained by different techniques for a wide class of distributions, 
including the gamma and beta distributions, was envisaged and initiated by 
the present authors but has not been completed. The partial results, as typified 
by the first example of Section 5, indicated that the maximum likelihood 
estimates obtained by the methods described in the present paper have 
reasonable stat.istical properties which justify publication of the methods 
involved even though definitive information on the properties of the estimates 
still needs to be sought and provided. 

The techniques of the present paper are available for routine use on a high- 
speed computer and Tables 2 and 3 as well as the probability plots show typical 
output from the programs. 

APPENDIX ON NUMERICAL METHODS 

(1) The digamma function, q’(z) = I”(~)/I’(~), is evaluated using the 
relationship [See Wilk et al. (1962b)l 

l 

o* l 

0.21 0 1 I I I 
0.2 0.3 0.4 0.5 0.6 

BETA QUANTILES 
Data from Talker Identification Problem 

Beta One Plot Alpha Estimate = 6.543 Beta Estimate = 11.052 
Number of Point’s on Graph = 20 Sample Size = 20 Parameters were 

Estimated with 20 Smallest Order Statistics 

Figure AI 
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Figure Aa 

1 
3 In [lo + ‘,)(11 + ‘f)] + ,310 + x,)(ll + 2.) 

[ ;+--1-+ **-+j&y x+1 1 , if 0 < x < 11, 
/ 

3 ln [x(x - 111 + 6xcx ‘_ 1j , if 2 1 11, 

where 2, is the fractional part of x. As stated in Will< et al. (1962b), the absolute 
error in the approximation is less than 3 X 10M6 for moderate and large ~$13). 
For x = 1.5, the absolute error is less than 8 X 10mB. 

(2) The incomplete beta function, 
1 

nx;a,P) = s 
t=-‘(1 - Ly-1 dt, 

t 
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is evaluated using the first few terms of a modified Laplacian expansion (Molina 
(1932)) Gnanadesikan, Hughes and Pinkham (1966))) 

I(x; a, p) z $ ff & .?f+j D@ + j, z), 

where 

N=cY+;-;, x = -N In x, 

A, = 1, 

A, = A, = A, = 0, 

A =@-l 2 12 ’ 

(P 
- 

1)(5P 7) 
- 

A, = 240 ’ 

(/I 
- 

1)(3.5@ 
- 

& 112p + 93) = 4032 1 

and 

D(a, b) = I’ ta-le-*t dt, a > 0, b > 0. 

[NOTE: The integral, D(a, b), may be evaluated using the computational 
procedure described in Wilk et al. (1962a).] The above expression for I(z; 01, p) 
is used when N > 0, i.e., 2ar + /3 > 1. For values of N between -3 and 0, i.e., 
0 < 2cr + p < 1, the recurrence relation, 

I(x;a, P) = I(x;cr + 1, P) + I(z;cr, P + 11, 

may be used to obtain 1(x; a, /3). 
(3) The partial derivatives, I1(z; q /3) and Iz(zr; cr, p), are computed using 

procedures described in Gnanadesikan, Hughes and Pinkham (1966). The 
first seven terms of the modified Laplacian expansion for 1,(x; (Y, 0) yield 

I&; a, D@ + j + 1, z), 

where N, x, D and the coefficients Ai are the same as defined above. 
For small values of CC, (Y and p the error in using the above series is worse 

than for larger values. For instance, when x = 0.01, a: = 1 and /3 = 3, the 
absolute error is 1 X 10m3 while the relative error is approximately 0.2%. 

The above expression for computing I, is used when N > 0, and, 
if -4 < N 5 0, the recurrence relation, 

1,(x; 00 P) = I&; a + 1, PI + I1(x;a, P + 11, 

The integral, 1,(x; a, p), is obtained using the relationship 
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