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The performance of three rules for dealing with outliers in small samples of size n 
from the normal distribution N(p, 9) are investigated when the primary objective of 
sampling is to obtain an accurate estimate of p. It is assumed that at most one observa- 
tion in the sample may be biased, arising from either N(r + au, 9) or N(r, (1 + b)u*). 
Performance of each rule is measured in terms of “Protection”, the fractional decrease 
in the Mean Square Error (MSE) obtained by using the rule when a biased observa- 
tion actually is present in the sample. Although numerical results have been obtained 
for n 5 10 when ~2 is known, computational difficulties have prevented evaluation 
of protections when ~2 is unknown except when n = 3. 

1. INTRODUWI~N 

The problem of how to deal with data which contain L’outliers”, i.e., observa- 
tions which look suspicious in some way, has long been a source of concern to 
experimenters and data analysts. An historical discussion and extensive biblio- 
graphy on outliers may be obtained from Rider (1933), Grubbs (1950), and 
Anscombe (1960). 

As pointed out by Dixon (1953), the existence of outliers actually presents 
two distinct problems: 

(1) To identify any particular observation or observations that are “spurious”, 
i.e., are from a population other than the one assumed to be under study. 

(2) To obtain an analysis of the data which is not unduly affected by any 
spurious observations. 

It is the second problem toward which this paper is directed. As a solution to 
this problem, a specific rule, which provides for the discarding or modifying of 
certain observations, may be used in an attempt to obtain a more “accurate” 
estimate of a desired parameter. 

Anscombe (1960) emphasized that such a rule should be regarded in the same 
manner that a homeowner would regard a household fire insurance policy. A 
homeowner, accepting the fact that fires do occur, is concerned with buying an 
insurance policy which offers good protection for a moderate premium. Like- 
wise, an experimental scientist, accepting the fact that spurious observations 
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do occur, is concerned with using a rule which provides a relatively small mean 
square error (MSE), i.e., provides good protection, when a spurious observation 
is present. At the same time, the experimenter would want the rule not to seri- 
ously inflate the MSE if no spurious observation is present, i.e., the rule should 
have a moderate premium. 

If we consider only rules which provide an unbiased estimate in the null case, 
we may define: 

Premium = Fractional increase in variance due to using a given rule instead 
of the usual estimator, in the null case. 

Protection = Fractional reduction in MSE due to using a given rule instead of 
the usual estimator, when a spurious observation is present. 

Of course, if we apply a rule in the null case, Protection = -Premium. 
The three basic assumptions underlying Anscombe’s “Premium-Protection” 

approach are: 

(i) The factors causing a spurious observation will not affect any other 
observation. 

(ii) Computation costs and sampling costs may be ignored. 
(iii) No prior information exists about unknown parameters or about which 

observation, if any, is spurious. 

Most of the work which has been done on the “Premium-Protection” approach 
has been concerned with samples from the normal distribution when it is desired 
to estimate the mean p. Although he also considered more general situations, 
Anscombe (1960) applied the “Premium-Protection” approach to investigate 
a rejection rule for outliers in samples of size three and four from a normal dis- 
tribution. Further work was done for a sample size of three by Anscombe and 
Barron (1966), who considered a rejection rule and a modification rule. Veale 
and Huntsberger (1965) have also dealt with the outlier problem from the 
“Premium-Protection” approach when o2 is known, and used the value of the 
residual with largest magnitude to assign a weight to the corresponding observa- 
tion for use in the estimation of cc. Gebhardt (1964) essentially used the “Pre- 
mium-Protection” approach in a decision-theoretic framework. He assumed, 
however, that any spuriousity parameter was known, an assumption which he 
relaxed somewhat in a subsequent paper. (Gebhardt (1966)). 

In this paper we shall, using the “Premium-Protection” approach, investigate 
three specific rules as applied to small samples from the normal distribution 
N(p, u”) when it is desired to estimate the mean p, and it is assumed that al most 
one spurious observation is present, either from N(p + au, CT”) or N(p, (1 + 
b)a2). If the occurrence of a spurious observation is a “rare” event, the assump- 
tion that at most one appears in a small sample should not be too far removed 
from reality. 

We label the rules we shall investigate as Anscombe’s rule, the Winsorization 
rule, and the Semiwinsorization rule, which we abbreviate to the A-rule, the 
W-rule, and the S-rule, respectively. Each of these rules provides an unbiased 
estimate of the desired parameter p in the null case, i.e., when no spurious ob- 
servation is present. 
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Further, each of the rules discussed depends on a statistic exceeding a constant 
of the type C(n, p, r) where n is the sample size, p is the premium to be paid, 
and T is the rule used. In our discussion of the rules, the generic notation C is 
used, but it should be held in mind that these constants are functions of (n, p, r). 

We now summarize the notation that will be used in the subsequent sections. 
Let us consider a sample of n independent observations (y, , * - * , yn) where it is 
hoped that the underlying distribution from which this sample is taken 
is N(p, g”). Denote the ordered observations by y(,) < . * - < Y(,,, , define the 
residuals zi = yi - g, (i = 1, . . . , n), where g = l/n c; yi , and the ordered 
residuals as x(,) < - . + < z(,,) . Let us further define the quantities: 

!7cn, = 5 Yg Y(i) 

S2 = & $ (Yi - ?J>” !3(i.k) = ;t- 
[ 

$ Y(i) + Y(i) - Y(b) 1 
Anscombe’s rule (the A-rule) 

Anscombe (1960) proposed a rejection rule for guarding against a spurious 
observation when the mean p is to be estimated. This rule is such that the suspect 
observation is discarded, and estimation proceeds using the remaining (n - 1) 
observations as a “new” sample. 

When a2 is known and cc is to be estimated, the A-rule uses the estimator 

PA = J g if Izo’\ < Ca and Ix~,,,] < Ca 

1 

g(,) if IZWI 2 Cc and IZWI > IZWI 

I?(,,) if Izcnl I 2 Ca and I+,) I > 1~~~) I 
When u2 is unknown and p is to be estimated, the estimator is of the same form, 
with u replaced by s throughout. 

The Winsorization rule (The W-rule) 
The term “Winsorization” has been applied to the procedure suggested by 

C. P. Winsor (see Dixon (1960))’ whereby the value of a suspect observation 
is replaced by the value of the nearest retained observation, so that not all the 
information contained in the suspect observation is thrown out. 

Applying Winsor’s technique to construct a rule when c2 is known and p is 
to be estimated, we arrive at an estimator which may 
be written as 

I 
Q if Iz,,‘I < Co and Iz~~,I < Co 

PI. = 

L 

?7(2.1) if hl 2 Co ad l~,l > h,I 
(n-1 .VL) if Iz(,) I 2 CU ad 1~) I > Iz~~~I 

When u2 is unknown and p is to be estimated, the estimator is of the same form 
with u replaced by s. 
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The Semiwinsorization Rule (The S-rule) 
The technique which we label “Semiwinsorization” is a modification of the 

Winsorization procedure. If any observation is deemed suspicious using the 
Semiwinsorization rule, the value of the statistic used by the rule is replaced 
by that of the appropriate boundary, with the resulting estimation subject to 
the constraint imposed by this procedure. The application of this rule will be 
made clearer by looking at the various cases under study. 

For example, when o2 is known and p is to be estimated, the S-rule uses esti- 
mator 

B if \zo,I < Ca and I.z(,)( < Ca 

which is to say that if for instance, z (,, the smallest of the residuals, is such that 
Z(1) 5 -Cg and Izo,I > Iz(.)I, then we put zo) equal to the boundary, i.e., we 
have “z~,,” = -CU so that ‘9~~~’ - g” = -Ca or “ye,,” = g - Cu, and replace 
~(1, by “yw” = g - Cu in the usual estimator of the mean, etc. When uz is 
unknown and p is to be estimated, the rule is of the same form, with u replaced 
by s. 

2. FUNCTIONALFORM OFPREMIUMSANDPROTECTIONS 

The definitions of premium and protection may be rewritten using statistical 
notation. For a given rule which uses an estimator p, we have: 

Premium = [V(p) - V($]/V(ji) 

when all observations are from the assumed population N(p) u”), and 

Protection = [E@ - PL)~ - E@ - c()~]/E(~ - p)2 

when a spurious observation is present. 

(2.1) 

(2.2) 

Premiums 
When all n observations are from N(p) a’), then 9 - N(p) u2/n), and hence 

V(g) = u2/n. Thus, only V@) must be computed in order to evaluate the pre- 
mium for a given rule. 

To calculate the premium charged by the A-rule when the rejection region, 
i.e., a particular value of C, is given, we may rewrite the estimator flA as gA = 
g + A, where 

A = A(z) = A@, , . *. ,z,) 

I 
0 if Izo)I < CO and I.z~~,I < CO 

= 

1 

-h/b - 1) if Iz,~~I 2 Co and hjl > lzcnjI (2.3) 

-d(n - 1) if Izwl 2 Cc and hl > Izm I 
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if aa is known, with u replaced by s if ba is unknown. Since g is independent of the 

VW = EGi - d” + MA*) 

= g’/n $ h’(A*) 

Thus, from (2.1) we have for this rule that 

Premium = n/c”. E(A*) 

Similarly, by rewriting the estimator pl. = g + W, where 

(2.4) 

,I < Ca 

I > 1%) I (2.5) 

I > hl 
if a* is known, with u replaced by s if a2 is unknown, we then have 

VW = (u2/n> + E(W2) 

and 

Premium = (n/a*)E(W*) (2.6) 

under the W-rule. Further, since the estimator p, may be written as p. = g + S, 
where 

s = S(z) = S(z, ) * * * ) 2%) 

i 
0 if Iz,~,I < Ca and Iq,,,I < Ca 

= [-Ca 

1 

- zcIjl/n if Izcl)I 2 Cc and 1~~~~ I > IG,) I (2.7) 

Ku - zdn if Izcm,I 2 Ca and IGI > IzcIjI 
if u* is known, with u replaced by s if u* is unknown, it follows that 

VW = (u”/n> + as*) 
and 

Premium = (n/u*) . E( 8”) (2.8) 

Protections-Biased Mean Case 
Let us assume now that yi - N(p, u’), i = 1, . . . , n - 1, that y. - N(p + 

au, u”), - 0~ < a < Q) , and that the yi’s are independent. It will be noticed that 
the assumption that y,, is the biased observation does not incorporate any apriori 
knowledge into the rules, since the rules to be examined do not make use of any 
such assumption. 

Hence, we have that 

g - NC/J + au/n, a*/4 
and 

ml7 - r>” = (u’ln)(l + a*/74 
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Thus, to determine the protection provided by a given rule using estimator 
P, O~Y E@ - p)* must be evaluated. 

Again, in this case, g is independent of the Zi’s, so 

NPA - /A)’ = E(g - /J - u(r/nJ2 + E(A + au/n)* 

= (u”/n) + E(A + m/n)* 

Thus, using the A-rule, we see from (2.2) that 

Protection = -n*E[A (A + 2cm/n)]/u*(n + a’). 

In a similar manner, we have that using the W-rule, 

Protection = -n’E[W(W + 2au/n)]/u*(n + a*). 

Likewise, the S-rule has protection given by 

Protection = -n’E[S(X + 2m/n)]/~*(n + a*). 

Protections-Biased Variance Case 

w-0 

(2.10) 

(2.11) 

Let US assume that yi - N(p) u”) i = 1, *.* , 12 - 1, that yn - N(p) (1 + 
b)u2), 0 5 b, and that yi’s are independent. Again we note that identifying y,, 
as the biased observation does not bring any apriori knowledge into the rules. 

Under these assumptions, 

g - iv(P, @p a) 
and thus, 

Hence, we need only evaluate E(p - IL)* to determine the protection. For the 
A-rule we have 

E(iL - /JCL)* = E@ - I-L)* + 2E[A@ - 1.~11 + E(A*) 
In this case, Q is not independent of the Xi’s, and we are left with 

EQA - ,4* = cn + @ ----i--u* + E[AI2@ - r-l> + AI1 n 

where the expectation is over the G’S and 8. Thus, the protection afforded by the 
A-rule is 

Protection = -n*E[A{2(g - p) + A)] 
u”(n + b> 

(2.12) 

Similarly, for the W-rule, we have 

Protection = -n2WW{2(Q - M> + WI1 
u’(n + b) 

(2.13) 

and for the S-rule, 

Protection = --n2EISi2(j7 - P) + S)] 
u”(n + b> 

(2.14) 
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3. ANALYSIS WHEN u* IS KNOWN 

The case n = S 
To obtain the constant C corresponding to a given rule and premium, we must, 

of course, investigate the rule in the null case. Thus, our sample consists of three 
independent observations y1 , y2 , y3 each from N (p, a*) where p is to be estimated. 
Without loss of generality we may take u* = 1 if u* is assumed known. 

With u2 = 1, the joint density of (z (1, , .zc3)) in the null case takes the form, 

fh , 4 = (3&/r) exp i - (& + *U+W + &>I (3.1) 

over the region 

In his 1960 paper, Anscombe calculated the premium corresponding to a 
given rejection constant for a sample of three, essentially by finding the dis- 
tribution of sM , the residual with largest magnitude. (It should be noted that 
although the density of x(,) , or equivalently x(,) , was given by McKay (1935) 
and Nair (1948) for general n, this is not sufficient to determine the density of 
Z~ , since zM depends on both zcl) and z(,,). However, in order to investigate the 
W-rule, the distribution of znn does not suffice, and the joint density of (x(~, , zc3,) 
is required. For this reason, we have approached the computational problem by 
using this density. 

For n = 3 and u* = 1, we have from (2.3) and (2.4) that for the A-rule, 

Premium = 3E(A*) 

where 

Gl = { (%n 9 4 I -a < .q*, < -c, =p < z(3) < -z(1) ) 
and 

(3.2) 

For a given premium of p, then, the constant C must be found which when sub- 
stituted into (3.2) makes the expression equal to p. Expressions similar to (3.2) 
may be derived for the W-rule from (2.5) and (2.6) and for the S-rule from (2.7) 
and (2.8). 

Having chosen a rule and a premium with corresponding constant C, we may 
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calculate protection in the biased mean case, i.e., when y3 - N(P + au, u”), 
using the formulas of section 2. In order to do this, we need the joint density 
of (z(,, , zt3,), which now reflects the presence of the biased observation. Let us 
denote this density by g(zc,, , .zC3) , a), where “a” is the bias. If u* = 1, this density 
is given by 

over the region 

We may also calculate protection in the biased variance case, i.e., when y3 - 
Nh (1 + bb*), 0 5 b. 

If a* = 1, the joint density of (zC1) , .zC3) , 9) is, for a bias of “b”, 

hh, , zta, t zi; b) 

= 6(2~r)-#(l + b)-* exp s (&, + z:,,) 

2 
+l+b ‘k)‘(3) + 1 + b 2b (g 3+2b _ 

- d(>(‘(l, + ‘(3)) + 1 + b 
p2 

(Y - I)} 

+ 6(2?r)-“(1 + b)-” exp 2&j 2+b + - 2* 1 + b (3’ 

+ 6(2?r)-‘(1 + b)-” exp 

(3.4) 

over the region 

{ (2 (11 f %3) t s> I -m<g<a, - 03 < Z(1) < 0, =y < Z(3) < -2q1, 
) 

These are the densities used to compute the expectations required to obtain the 
protections afforded by a specific rule for a given bias. The resulting integrals 
can be reduced to at most double integrals which may be easily evaluated by 
numerical integration. 
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For a sample of n observations, the formulas for protections and premiums 
involve, in general, (n - 1)-fold integrals, which, unfortunately, cannot be 
reduced. For n > 3, then, Monte Carlo procedures are utilized. 

The method used to determine the constant C for a given premium, sample 
size, and rule consists of sampling over certain regions a given number of times, 
say N, by means of a specific sampling technique. The theory underlying this 
sampling is equivalent to that used in computing protections (discussed below), 
except that the inherent symmetry of the null case is taken into consideration 
to simplify the computer programs. 

The actual value of N used to determine the value of C varied for each rule, 
premium, and sample size, and was such that reasonably small standard errors 
of the estimated premiums were obtained. In practice moderate values of N 
were used to establish rough bounds on C, and larger values of N were used for 
iteration to determine C to two decimal places. 

To deal with protections in the biased mean case more easily, we may reformu- 
late the problem as follows: 

Lety,, se- ,yn be independently distributed, where y1 - N(0, 1) for i = 1, * . a, 
n - 1, and y,, -N(a) 1). 

Thus, this restatement reduces the original problem to one of “estimating” 
the mean cc = 0, where u* = 1. This of course, does not alter the results, since 
u* is assumed known, and the rejection rules make no use of any information 
about cc. 

The joint density of (zl , . . + , z,-,) is, with p = 0 and u* = 1, 

g& , * * * 1 G-1 ; 4 

= 4zexp -l 
i 13 

n--l n--l n-1 

cw 2 C ZT + 2a C z + 2 C 
zdzf 

+ 1 1 i<f “-, 1 a* II 
- 0) <Zf < a, i = 1,2, ..* ,n - 1. 

That is, the vector z’ = (z, , . . . , a,-,) is multivariate normal with mean vector 
-(a/n)(l) + . * , 1) and variance-covariance matrix I,_1 - (l/n)ll’ = 

I l n--l - - n 

1 1 * * 1 1 

1 1 * * 1 1 
. . . . . . 
. . . . . . 
1 1 * * 1 1 

Jl**ll 

where I.-l is the identity matrix. 
Let us now consider the transformation 

w = Lz 

where w’ = (w, , . . . , w,-,) and where 
(3.5) 
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L= 

I 4 

T 
s 

n 
J- n-l 

0 . . . 0 

-25 . . . J 0 

n-1 

Thus, w’ is multivariate normal with mean -a z/(n - l/n) (1, 0, * * * , 0) and 
variance-covariance matrix I,_1 . Note that, by definition, 

The inverse of transformation (3.5) is 

z = L-‘w (3.6) 

where L-’ is obtained by replacing the first row of L by the vector l/ dn 
(1, 1, -** , 1) and then transposing the resulting matrix. Heace, 

+* - wn-l 
n-2 z,-, = 4 -. n - 1 

To calculate the protection given by the A-Rule, the W-Rule, and the S-Rule, 
we need E[A(A + au/n)], E[W(W + 2a/n)], and E[S(S + 2a/n)], respectively, 
where A, W, and S are the functions of z defined previously. We shall describe 
the procedure used to compute the required expectation E[A(A + 2a/n)]. The 
expectations needed for evaluation of protection given by the other two rules 
in the biased mean case may be computed by analogous procedures. The pro- 
cedure when dealing with the biased variance case will not be considered here, 
since it is similar, although greater use may be made of symmetry conditions. 
The details are given in Smith (1966). 

In order to simplify our derivations, let us denote the residual with largest 
magnitude by zM . Note that the random variable A (see (2.3)) may be written as 

(3 -7) 

Rewriting, we have 
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Using (3.7), we may write 

E[A(4 + p)] = Prob (\znrl 2 C)E n(n”““;, + $& ) IzMl 2 c] 

= 2 Prob ( lzil 2 C and ib? = i) 

[1 
-2uz; 2 

*E n(n - 1) + (n 2 1)2 IXiI 2 C iLlId M = i 
1 

Now, for i = 1, *. . , n - 1, the symmetry of the situation gives 

Prob (12; 1 >_ C and M = i)E 
[ 

-2azi 
n(n - 1) + &G-T)’ ]zi j > C and M = i 1 

= Prob (\z,-, I 2 C and M = n - 1) 

.E - 2ax,-, 
n(n - 1) + $!+j5 Ix,-,llC and M=n-1 1 

Considering z-space, and defining the regions 

U* = (Z 1 j~,-~j 2. C and M = n - 1) 

V* = (z 1 Iz,( 2 C and M = n) 

where Z, = -CT-’ zi , we have 

.[A(, + E)] = (n - 1) Prob (z E U*)E -$‘:-i) -I- AS 1 z E I:*] 

+ Prob (z E V*)E (3.8) 

The procedure which we have constructed involves taking a number, N1 , of 
random samples in z-space when z E U”, and N, when z E V*. 
If we define the function 

-2az 
g(z; a) = 

i 
n(n - 1) + &’ if ZE U* 

(3 9 

where 
L 0 if zeU- U* 

u = Iz I l~-,l 2 C and IG-~\ 2 Iz,,\]~ 
we may write 

Prob (z e u”)E 

= Prob (z E U)E[g(z,,-I ; a) 1 z e U] 
In terms of the w’s (3.5), z E U is equivalent to 
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Now, it is easily seen that by using the orthogonal transformation 

X 
1 = - 40 - 2) ----~(wI+u~Eg-n~ 

n-l 

5 2=n,(w1+u+g- ~;“,“‘w”-I (311) 

x3 = w2 

54 = w3 

x,-1 = wn-* 

we have that x’ = (x1 , . . . , x,-,) is distributed as a spherical (n - 1)-variate 
normal random variable, i.e., with mean 0 and variance-covariance matrix I,-l . 

Thus, z E U is equivalent to x E R, where 

The region R is the union of two disjoint regions R, and Rz , as Figure 1 indicates. 

FIGURE l-The region RI W 122 in the (21, -)-plane. 



OUTLIERS AND ESTIMATION OF THE MEAN 539 

Let us now define P, = Prob (x e R,) and P, = Prob (x E R,), which may be 
easily found with the aid of the computer. Note that 

Prob (z e U) = Prob (x E R) = PI + P, 

Now, if we wish to select, at random, x E R, we must weight the region RI , 
with probability p = pl/pl + pz , and the region R, with probability (1 - p). 
The problem then becomes one of selecting x r R, (or R,) according to the prob- 
ability law given by the (n - 1)-variate spherical normal density. 

Since there exist computer routines which generate pseudo-random normal 
deviates, we may easily obtain z3 , . * . , x,,-~ . However, the restrictions imposed 
by the region under consideration present difficulties in the generation of x1 and 
x2 , since (x, , x2), the points of interest, fall in the tails of the underlying prob- 
ability distribution. 

To circumvent these difficulties, we follow Box and Muller (1958) and con- 
sider a sample of two, say (U 1 , uz), from a uniform distribution on (0, 1). Thus, 
the joint density of (u, , uz) is 

f(% , 24,) = 1 O<U,<l 
O<u,<l 

Now, the transformation 

u1 = exp [-4(x; + xf)] 

1 uz = -tan-’ 0 
2 

2ir Xl 

(3.12) 

is one-to-one, with Jacobian 

-& exp L--+(x”1 + x31 

Hence, the joint density of (x, , xz) is 

Suppose now that (x 1 , x,) is to be chosen at random, given that x E R, . (In 
the following discussion we shall concern ourselves only with x L R, , although 
similar results hold for x e R, ,) Due to symmetry, we need only consider biases, 
(‘a”, which are positive. For ease of notation, let K = (u/n - C) d&&-? . 
Since the inverse of transformation (3.12) is 

we have that 

2, = (-2 In Ul)$ cos (27r~~) (3.13) 
x 2 = (-2 In ul)$ sin (274 

- 00 < x2 < K =a - 03 < (-2 In ul)” sin (2*uz) < K 

With 0 5 a 5 C and K < 0, it follows that + < uz < 1, and thus we have 
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Now, the maximum value which u, can attain is exp (- $K’), so we may obtain 
a pseudo-random number, say UT , on (0, l), multiply it by exp (-SK’) to obtain 
a random number u1 less than this maximum value. Similarly, we may obtain 
at random, uz P (4, 1). 

We may use this pair (u, , u2), and apply the transformation of (3.13) to give 
us an x2 which has a high probability of being less than K. If zz > K, we repeat 
the above steps, while if xz 2 Ii, we proceed to obtain x1 , not from transforma- 
tion (3.13) which would impose an unwanted restriction, but by means of the 
pseudo-random normal deviate generator mentioned above. Having obtained 
(Xl , x2), we check to see if the resultant x E R, . If not, the above procedure is 
repeated in its entirety until a satisfactory pair (x, , x,) is found. 

The procedure outlined above is quite efficient when Prob (x E R, 1 x2 < K) 
is relatively large, as it is when 0 5 a < C. When this probability is small, 
as it is when 0 5 C < a, the difliculty is overcome by rotating the x1 and xa 
axes to an orientation which allows a similar procedure to be used. 

Assuming, then, that we have obtained x P R, we may, by means of the inverse 
of transformation (3.11)) obtain w from the given x. The z’s are obtained via 
transformation (3.6), that is, z = L-‘w. Thus, the x’s have been chosen such that 
z E U. We then compute g(znel ; a), where the function g is defined by (3.9), and 
keep track of how many times z e U*, stopping when a total of N, repeats have 
been taken in U*. 

We will then have obtained a set of z’s, N, of which are in U”, and the rest of 
which, say T, , are in U - U”. If we denote the value of the function g for the 
k-th z by gk , and recall that Prob (z E U) = p, + p, , we may write (3.10) as 

prob (z E UY)E I 1 zEU* =-- Pl + Pz Ng-l gk N, + T, 1 - 
As may be seen from (3.8), this quantity provides that portion of E[A(A + 
2u/n)] involving U”. An analogous procedure may be followed to compute the 
remaining portion which involves V*. 

4. ANALYSIS WHEN a2 IS UNKNOWN 

The case n = 3 
From section 1 and 2 we see that when c2 is unknown, the rules under con- 

sideration use estimators whose values are dependent upon the boundary 

max (IhI, IhI> = Cs 
where 

The ordered residuals are z w < XU) < zc3) , and since zCz) = -zC1) - zC3) , 
we have that 

2 s = ZT,) + 2(1)%3) + 43) 
Let us now assume for the moment that Ix~~~] > 1~~~~1. Thus, our interest is in 
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the boundary Izcl)( = Cs. Since we have assumed that lzo)\ > IzcR)(, i.e., -Q) > 
~(3) , it follows that Izcl)I > s. The region of definition of (zcl, , zc3)) is 

{h , %d 1 y < Z(3) < -%}. 

Thus, if Izcl)\ > /zc3)(, then s < I.z~~)I < (2/3l)s, and likewise, if Iz~~)I > Iz~~)[, 
then s < /zc3)l < (2/3*)s. Hence, if C < 1, a rejection (or modification) will 
always be made, and if C > (2/31), a rejection (or modification) will never be 
made. 

Let us return to the assumption that Iz~~)\ > \.+,I, and consider again the 
boundary Ix~~)I = Cs. Solving for zc3) in terms of .zcl) , we have that 

Z(3) = Z(l) 
[ 

-3 * (4 - 3C2)" . 
2c 1 

This, coupled with the region of definition and the assumption that Ixcl)I > 
j.zc3)I, implies that th e rejection (or modification) region for the observation ycl) 
corresponding to zcl) is 

(4 - --Z~lI.max [ 3, 4 - 30' 1 2C < 2(3) < -zcl).min [ 1, 3 + -1 

and since (4 - 3C2)*/2C > 0, the rejection (or modification) region is 

or, equivalently, 
-%) --2%3, < Z(1) < - R 

where 

R= 
4 + (4 - 3C2)' 

2c if C>l 

1 if C<l 

Similarly, we find that when lxc3) I > 1~~~) 1, the rejection or modification region is 

IllE!A < Z(3) < -22,,, . R 

Since we have written the rejection (or modification) region in terms of zcl) and 
z(~) , we need not be concerned with the distribution of s. Let us now define, for a 
given R, the events (or regions) 

T, = (2 (1) , %3d I 0 < Z(3) < uJ, F < Z(1) < --Z(3) , --Z(l) -=c Z(3) < + 

IO < -z(3) 
Z(3) < m, -2.h < Z(l) < ~ R > 

IO < Z(3) < m f - < Z(3) < R -2q,, 
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Hence, using the definitions of To , T, , and T3 , the estimators pA , pW , and 
ps , may be written as pll = g + A, pW = g + W, and ps = 27 + S, where 

0 if h , zd E TO 

and 

I -cv + Z(l) 

S= 3 if (ZW , zc3)) c T, 

cv - Z(3) - 
3 if h) , 4 e T3 

(4.1) 

(4 3 

(4.3) 

For a given constant C, the premiums are of the same functional form as in the 
case when B’ is known. Hence, we still need to evaluate the expectations EM’), 
E(W’), and E(S2), and substitute the values of these quantities into (2.4), 
(2.6), and (2.9, respectively, to obtain the premiums “charged” by the three 
rules under consideration. In order to do this, the density of (zcl, , +) is required. 
It is easily verified that this density is (l/g”)f( ztl) / U, z&u), where f is given by 
(3.1). 

Similar results hold for protections and the densities of (zcl, , X(W) in the cases 
where a spurious observation is present. All required quantities may be obtained 
by means of numerical integration. 

The case n > 3 
The theoretical aspects of computing premiums and protections when u2 

is unknown present no extreme difficulties when a sample size n larger than three 
is considered. However, the practical problem of deriving a reasonable method 
of obtaining numerical results has been severe because of the computer time that 
would be needed to evaluate the required (n - 1)-fold integrals by numerical 
integration, while consideration of Monte Carlo procedures get bogged down 
because of the form of the regions in which samples must be taken. For example, 
sampling of (2, , . . . , Gl-1 ) is required subject to conditions of the form 

The products zizi add considerable complications to the problem, for essen- 
tially we need to sample in a cone in (n - 1)-space, which is no easy task. 
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5. DISCUSSION OF RESULTS 

From the following tables and graphs it can be seen that, in general, for 
estimation of p with uz known when a spurious observation from N(p + au, CT’) 
is present, the S-rule is best for small values of a, the W-rule is best for moderate 
values of a, and the A-rule is best for large values of a. When a spurious ob- 
servation from N& (1 + b)cr’) is present, the S-rule performs best for small 

Protection 
1.0. 

Protection 
1.0 

1 ,O “---I.- 
.a I 5% Premium 

FIWRE 2-Protections corresponding to premiums of 57e and 170 when a spurious obser- 
vation from iVG( + aa, u*) is present in a sample of size three and u* is known. (Symmetric 

about a = 0) 

Protection 

1.0, 

Protection 

5% Premium 

- A-Rule 
- W-Rule 
-- S-Rule 

-. 2L 

FICXJRE 3-Protections corresponding to premiums of 57c and 1% when a spurious obser- 
vation from Nb + au, us) is present in a sample of size six and u* is known. (Symmetric 

about a = 0) 

Protection 
1.0, 

Protection 
1.0, 

. 8.. 5% Premium 

-A-Rule 
--W-Rule 

-A-Rule 

-.21 -.21 

FIGURE 4-Protections corresponding to premiums of 57c and 1% when a spurious obser- 
vation from N(JI + au, u*) is present in a sample of size ten and ~9 is known. (Symmetric 

about a = 0) 
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values of b, while the W-rule performs best for large values of 6. In this case th.ere 
is no interval over which the A-rule performs best.* 

It seems to us that we may look at our results from two viewpoints: 

(1) If we cling to our original concept of no prior knowledge regarding the 
magnitude of bias of a spurious observation if any should occur, we have 

Protection 

1.0 

Protection A-Rule 

- A-Rule 1.0 

W-Rule 
5% Premium - - W-Rule -- .8 

S-Rule 
.8 

1 
1% Premium S-Rule ---- 

----- 

FIGURE 5-Protections corresponding to premiums of 5% and 1% when a spurious obser- 
vation from N(J.Q (1 + b)G) is present in a sample of size three and u2 is known. 

Protection 
.5- 

s4.. 5% Premium 
.3- 

Protection 
.5 - 

*Q .. 1% Premium 

- A-Rule 
- - W-Rule .l - - W-Rule 
______ S-Rule ------ S-Rule 

-. l- -. 1’ 

FIGURE GProtections corresponding to premiums of 5% and 1% when a spurious obser- 
vation from N(p, (1 + b)u”) is present in a sample of size six and u* is known. 

Protection Protection 
.5 T .5- - A-Rule - A-Rule 
.4 .. 5% Premium - - W-Rule .I+.. 1% Premium - - W-Rule 

------ S-Rule 
.3 . . .3 ‘. 

.2 '. .2.- 

.1 .- 

0 A 4 6 8 
-. 1s -. 1. 

FIGURE 7-Protections corresponding to premiums of Fi% and 1% when a spurious obser- 
vation from N(p, (1 + b)u*) is present in a sample of size ten and u* is known. 

* As one of the referees has indicated, the overall situation may be summarized to some 
extent by stating that the W-rule is never worst and is sometimes best, and noting that similar 
statements cannot be made for the A-rule or the S-rule. 
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Protection 

.5 - 

_#_----- 

HH 
/M-C 

c- 
./ / / A-Rule / 

/ / - - W-Rule / 
/ 

/l 
----- -__ S-Rule 

/ 

-. 1A 

FIWJRE 8-Protections corresponding to a premium 5<2 when a spurious observation from 
NG( + aa, 02) is present in a sample of size three and 02 is unknown. 

Protection 

.5 

t 

A-Rule 
-- W-Rule 

.4 ---___ S-Rule 

.3 .- _--- 
_L -- 

__-- 

d- 
se-- 

.2 .- ,’ 
AC 

/ 
/ 

/ 
/ 

-. l- 

F IWI(K !)--Frotectiol\s corl,esponding to a premium of 5oj, when a spurious observation from 
NCJ.L, (1 + h)Gj is present in a sample of size three and u2 is unknown. 
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Premium 

.0500 

.0400 

.0300 

.0200 

.OlOO 

.0050 

TABLE 1 
Required wnstants, C, corresponding to a given 

premiumfw a sample of size three. 

A-Rule W-Rule S-Rule 

2.39038 2.30555 .98911 

2.46003 2.37957 1.07104 

2.54623 2.47075 1.17252 

2.66184 2.59230 1.30853 

2.84625 2.78487 1.52501 

3.01724 2.96228 1.72493 

TABLE 2 
Protections corresponding to premiums of 6oJ, and 1 To when a spurious observation 

from iV(t~ + au, ~2) is present in a sample of size three and f is kncum. 

Protections for a 5% Premium Protection* for a 1% Premium 

Eias ‘I,,,, 

f .!i 

t 1.0 

* 1.5 

+- 2.0 

-+ 3‘0 

+- 4.0 

f 5.0 

+ 6.0 

2 7.0 

It 8.0 

f 9.0 

t 10.0 

.A-Rule W-Rule 

-.065 -.063 

-.098 -.069 

-.126 - .104 

-.125 -.063 

.033 .109 

.364 .431 

.667 .697 

.a31 .835 

;900 .a95 

..930 .923 

.946 -940 

.956 .951 

S-Rule 

.-.054 

-.050 

-.Olb 

.051 

.242 

.432 

,571 

.659 

.711 

.744 

.767 

.783 

A-Rule 

-.a$5 

-.027 

-.048 

-.051 

:ooa 

..243 

.566 

.794 

,893 

,929 

.946 

.956 

W-Rule S-Rule 

-.014 -.oll 

-.025 -.009 

-.035 .008 

-.036 .046 

.049 .176 

-298 .337 

,603 .476 

,804 ,574 

.a89 .63? 

.923 .6E2 

.940 .712 

.951 .735 
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TABLE 3 
Protections wrresponding to premiums of 6oJ, and 1 y. when a spurious observation 

from Nb, (1 + b) us) ia present in a sample of size three and u2 is known. 

Protections for a 5% Premium Protections for a 1% Premium 

'Bias "b" 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

12 

14 

16 

A-Rule -- 

-.084 

-.055 

.ooe 

.061 

.154 

.221 

.282 

.336 

.304 

.426 

.49e 

.556 

.603 

W-RUG S-Rule 

-.071 -.022 

-.027 .044 

-045 .114 

.121 .176 

.194 .230 

.261 .274 

.320 .310 

.372 .33e 

.418 .360 

.458 .376 

-525 .395 

.5eo . 'ho1 

.624 .420 

A-Rule 

-.025 

-.Oll 

.030 

.08S 

.145 

.203 

.25e 

.308 

.354 

.396 

.468 

.526 

.575 

W-RiAe 

-.020 

.002 

.050 

lG3 

.171 

.230 

.2e4 

.334 

.379 

.419 

.4ee 

.545 

.591 

S-Rule 

.006 

.c50 

.lOO 

.150 

.195 

.236 

.272 

.305 

,334 

.x0 

.404 

.439 

.466 

TABLE 4 
A comparison of protections given by analytic and Monte Carlo methods, biased mean 

case, 1 To premium, n = 3, uf known. (Estimated standard errors are indicated 
in parentheses.) 

A'- Rule W - Rule S - Rule 

Bias "a" Analytic mntc Carlo Analytic Wante car10 AdytiC Monte car10 

32 -.OSl -.050(.002) -.036 -.03Q(.002) $046 .049(.010) 

f4 .243 .236(.008) .299 .298(.006) ,337 .33X.008) 

f6 .794 .798( .OOU) . a04 .810(.004) .574 .576(.006) 

f.8 ,929 .930(.003) .923 .927(.004) .682 .679(.004) 

t 10 .956 .952(.003) .950 .952(.003) .735 .719(.009) 

TABLE 5 
A comparison of protections given by analytic and Monte Carlo methods, biased variawx case, 

1 y. premium, n = S, a2 krwwn. (Estimated standard errors are indicated in pa- 
rendhess. ) 

A - Rule w - Rule S - Rule 

Bias "b" Analytic Monte Carlo Analytic Monte Carlo Analytic nonte Car10 
2 -.Oll -.012(.001) .002 .002(.002) .oso .051(.OOY) 

4 .085 .076(.OOS) .109 .110(.007) .150 .161( .OOE) 

6 ,203 .2O~f.O0'0 .230 .230(.004) .236 .246(.008) 

8 .JOQ .311(.006) .3311 .3?4(.006) .305 .309(.010) 

10 .396 .402(.ooa) .419 .U25(.009) I360 .3UO(.CO9) 
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TABLE 6 
Required constants, C, determined by Monte Carlo for premiums of 5% and 1%. 

A - Rule w - Rule s - Rule 

n .5% Premium 1% Premium 5% Premium 1% Premium 5% Premium 1% Premium _ - ~ ~ 

3 .2.39 2;135 2.30 2.78 .99 1.52 

4 2.51 2.99 2.34 2.87 1.09 1.62 

6 2.61 3.13 2.28 2.91 1.21 1.79 

8 2.66 3.19 2.18 2.90 1.25 1.90 

10 2.68 ,3.23 2.03 2.88 1.27 1.94 

TAI~LE 7 
Protections (computed by Monte Carlo) when a spurious observation from N(p + au, 9) is 

present in a sample of size n and S is known. (Estimated standard e-rrors are indicated in pa- 
rentheses.) 

Bias "a" A-Rule -- 

+1 -.080(.004) 

-Lz -.080(.005) 

+3 .129( ,008) 
f4 .465(.010) 

t6 .847(.004) 

ta .922(.003) 

f10 .946( .007.) 

5% Premium 
W-Rule 

-.073(.002) - 

-.020(.00u) 

.213(.006) 

.523(.006) 

.833(.004) 

.910(.005) 

.932( ,004) 

1% Premium 

S-Rule A-Rule H-Rule 
nr4 

..039(,009) ~.023C,OOl) -,a20c.001~ 
.072(,009) -.035(.002) -.012(.001) 

.276(.010) .064(.002) .125(.002) 

.493(.008) .331(.006) .403(.002) 

.701(.004) .832(,004) .817(.004) 

.796( .003) .917(.003) .902(.005) 

.831(.003) .946(.002) .935(.004) 

nt 
+1 -.072(.003) -.056(.003) -.033(.007) 
f2 -.053(.008) .016(.005) .070(.008) 

f3 .164(.006) .271(.007) .293(.009) 

fS .520(.003) .530(.005) .489(.007) 

2'6 .826(.008) .788(.004) .719(.004) 
f8 .897(.002) .873(.005) .810(.003) 

*10 .934(.002) .905(.006) .859(.003) 

S-RUk 

. ..006(.003) 
,063(.004) 

.227(.006) 

.387(.007) 

.634(.005) 

.738(.004) 

.793( .004) 

i 
-.OlE(.OOl) -.016(.001) -.007(.002) 
-.022(.001) .009(.001) .060(.003) 

.098(.002) .168(.002) .219(.006) 

.387(.004) .444(.002) .407(.007) 

.823(.002) .785(.004) .647(.005) 

.890(.004) .873(.005) .767(.003) 

.930( .002) .916(.004) .820(.003) 

n-8 
+1 -.063(.004) -.049(.004) -.044(.008) -.017(.001) -.013(.001) -.005(.002) 
f2 -.048(.005) .048(.006) .072(.007) -.015(.002) .016(.002) .047(.003) 
f3 .175(.005) .262(.007) .272(.008) .099( .002) .176(.002) .193( .005) 
*4 .493(.008) .492(.007) .469(.006) .385(.004) .434(.003) .382(.006) 
f6 .794(.003) .746(.004) .707(.004) .789(.003) .740(.004) .639(.00+) 
28 .875(.002) .840(<007) .810(.002) .876(.003) .847(.006) .762(.003) 
210 .915(.002) .897(.005) .857(.006) .915(.002) .892(.00'+) .825(.003) 

n = 10 
*1 -.061(.004) -.040(.004) -.038(.007) ' -.015(.001) -.012(.001) -.005(.002) 
*2 -.041(.003) .037(.006) .048(.007) -.014(.002) .018(.003) .042(.007) 
+3 .172(.007) .236(.008) .249(.007) .098(.002) .169(.003) .191(.005) 

24 .461(.003) .452(.006) .446(.006) .371(.005) .407(.007) .358(.006) 
+6 .756(.001) .711(.008) .686(.003) .757(.003) .701(.010) .624(.004) 
+8 .849(.001) .810(.007) .794(.002) .857(.001) .825(.004) .753(.003) 
*lo .898(.001) .876(.004) .852(.005) .897(.002) .877(.004) .822(.006) 
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TABLE 8 
Protections (computed by Monte Carlo) when a spurious observation from N(p, (1 + b)G) is 

present in a sampl: of size n and 02 is known. (Estimated standard errors are indicated in pa- 
rentheses.) 

5% Premim 1% Premium 
Bias "b" A-Role W-Rule S-Rule A-Rule h'-Rule S-Rule -- - 

II=4 

1 -.067(.004) -.044(.004) -.010(.005) -.018(.001) -.012(.001) .008(.002) 

2 -.016(.004) .001(.006) .047(.008) .003(.001) .021(.002) .051(.004) 

4 .109(.009) .X6(.004) .200(.009) .109(.006) .149(.009) .178(.009) 

6 .248(.006) .298(.007) .299(.009) .230(.004) .262(.004) .267(.008) 

a .371(.009) .390(.009) .375(.009) .330(.006) .364(.007) .333(.009) 

10 .451(.008) .477(.008) .447(.009) .415(.008) .452(.009) .398(.010) 

n = 6' 

1 -.055(.003) -.035(.005) -.023(.004) -.014(.001) -.004(.001) .007(.002) 
2 -.009(.005) .027(.008) .044(.007) .011(.001) .029(.002) .043(.004) 
i .112(.003) .162(.005) .164(.008) .105(.005) .141(.008) .146(.007) 

6 .245(.006) .279(.008) .268(.009) .233(.004) .251(.005) .239(.008) 
a .346(.008) .356(.010) .357(.009) .310(.006) .341(.007) .294(.009) 

10 .432(.008) .439(.009) .412(.009) .395(.008) .410(.'009) .389(.010) 

n=8 
1 -.056(.003) -.033(.006) -.023(.004) -.012(.001) -.005(.001) .007(.001) 
2 -.010(.005) .022(.008) .028(.006) .009(.001) .027(.002) .040(.003) 

4 .102(.010) .139(.005) .138(.007) .107(.006) .125(.009) .124(.006) 

6 .213(.005) .241(.008) .245(.008) .198(.003) .226(.005) .213(.009) 

8 .314(.009) .298(.010) .329(.008) .293(.005) .309(.006) .280(.009) 

10 .372(.010) .390(.009) .383(.009) .368(.008) .379(.009) .338(.008) 

n = 10 
1 -.048(.003) -.034(.006) -.028(.003) .-.012(.001) -.003(.001) .002(.004) 
2 -.019(.002) .028(.008) .026(.005) .010(.001) .027(.002) .029(.007) 

4 .086(.003) .112(.006) .109(.009) .087(.005) .103(.008) .103(.005) 
6 .193(.005) .194(.008) .199(.007) .177(.003) .197(.004) .195(.009) 
8 .282(.007) .287(.008) .286(.009) .264(.005) .280(.007) .241(.010) 

10 .349(.009) .351(.010) .341(.010) .333(.007) .335(.008) .306(.009) 

given the experimenter an overall guide to show him exactly how each rule 
functions, and having this guide he may decide which rule has the character- 
istics most suited to his needs. 
(2) If we admit the possibility of prior knowledge which can be used to 
put even rough bounds on the bias of a spurious observation which might 
occur, the experimenter wouId, of course, be able to choose the rule which 
functions best in this restricted region. 

Leaving aside both the multivariate and designed experiments situations, where 
the field of outliers is verdant, we find no laclc of open problems in the univariate 
case. Immediately, the problems of larger sample sizes’*), the possibility of 
more than one spurious observation, and non-normality arise. 
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However, even the somewhat restricted framework in which we have been 
working is not void of problems. One such problem which would be quite in- 
teresting to attack is the performance of a composite A-W-S-rule whereby the 
mean p would be estimated by 5 if 1~~1 < Cla, by a Semiwinsor estimator if 
CP 5 I4 < c20, by a Winsor estimator if Ga < lznrl < C3a, and by an 
Anscombeestimatorif Cau 5 1.~~1, where C, 5 C, 5 C, andzM = max (-zcl, , z(,,). 
Of course, an obvious starting question is how to optimally determine Cl , CZ , 
and C3 for a given premium, if this is possible. 

In the case where q2 is unknown, the protection afforded by the W-Rule and 
the A-Rule is extremely small for even moderate biases. Thus, we must echo 
Anscombe (1960) and say that these two rejection rules are “utterly useless 
and absurd” for a sample size of three. We must, however, add a note of guarded 
optimism in regard to the S-Rule, which performs extremely well with respect 
to the A and W-Rules. Of course, whether this performance will be of the same 
caliber for larger sample sizes is an open question. 
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