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Investigation of Rules for Dealing With Outliers
in Small Samples from the Normal Distribution:
I: Estimation of the Mean

IrwiN GurTMAN AND DENNIS E. SMITH*

University of Wisconsin

The performance of three rules for dealing with outliers in small samples of size n
from the normal distribution N(u, ¢?) are investigated when the primary objective of
sampling is to obtain an accurate estimate of u. It is assumed that at most one observa-
tion in the sample may be biased, arising from either N(u + ao, 02) or N (g, (1 + b)e?).
Performance of each rule is measured in terms of “Protection’, the fractional decrease
in the Mean Square Error (MSE) obtained by using the rule when a biased observa-
tion actually is present in the sample. Although numerical results have been obtained
for n € 10 when o? is known, computational difficulties have prevented evaluation
of protections when ¢? is unknown except when n = 3.

1. INTRODUCTION

The problem of how to deal with data which contain “outliers”, i.e., observa-
tions which look suspicious in some way, has long been a source of concern to
experimenters and data analysts. An historical discussion and extensive biblio-
graphy on outliers may be obtained from Rider (1933), Grubbs (1950), and
Anscombe (1960).

As pointed out by Dixon (1953), the existence of outliers actually presents
two distinct problems:

(1) Toidentify any particular observation or observations that are “spurious”,
i.e., are from a population other than the one assumed to be under study.

(2) To obtain an analysis of the data which is not unduly affected by any
spurious observations.

It is the second problem toward which this paper is directed. As a solution to
this problem, a specific rule, which provides for the discarding or modifying of
certain observations, may be used in an attempt to obtain a more “accurate”
estimate of a desired parameter.

Anscombe (1960) emphasized that such a rule should be regarded in the same
manner that a homeowner would regard a household fire insurance policy. A
homeowner, accepting the fact that fires do oceur, is concerned with buying an
insurance policy which offers good protection for a moderate premium. Like-
wise, an experimental scientist, accepting the faet that spurious observations
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528 1. GUTTMAN AND D. E. SMITH

do occur, is concerned with using a rule which provides a relatively small mean
square error (MSE), i.e., provides good protection, when a spurious observation
is present. At the same time, the experimenter would want the rule not to seri-
ously inflate the MSE if no spurious observation is present, i.e., the rule should
have a moderate premium.

If we consider only rules which provide an unbiased estimate in the null case,
we may define:

Premium = Fractional increase in variance due to using a given rule instead
of the usual estimator, in the null case.

Protection = Fractional reduction in MSE due to using a given rule instead of
the usual estimator, when a spurious observation is present.

Of course, if we apply a rule in the null case, Protection = —Premium.
The three basic assumptions underlying Anscombe’s ‘‘Premium-Protection”
approach are:

(i) The factors causing a spurious observation will not affect any other
observation.
(ii) Computation costs and sampling costs may be ignored.
(iii) No prior information exists about unknown parameters or about which
observation, if any, is spurious.

Most of the work which has been done on the ‘“‘Premium-Protection’ approach
has been concerned with samples from the normal distribution when it is desired
to estimate the mean p. Although he also considered more general situations,
Anscombe (1960) applied the ‘“Premium-Protection” approach to investigate
a rejection rule for outliers in samples of size three and four from a normal dis-
tribution. Further work was done for a sample size of three by Anscombe and
Barron (1966), who considered a rejection rule and a modification rule. Veale
and Huntsberger (1965) have also dealt with the outlier problem from the
“Premium-Protection” approach when ¢° is known, and used the value of the
residual with largest magnitude to assign a weight to the corresponding observa-
tion for use in the estimation of u. Gebhardt (1964) essentially used the ‘“Pre-
mium-Protection” approach in a decision-theoretic framework. He assumed,
however, that any spuriousity parameter was known, an assumption which he
relaxed somewhat in a subsequent paper. (Gebhardt (1966)).

In this paper we shall, using the “Premium-Protection’” approach, investigate
three specific rules as applied to small samples from the normal distribution
N (u, ¢®) when it is desired to estimate the mean g, and it is assumed that af most
one spurious observation is present, either from N(x + as, ¢°) or N(u, 1 +
b)o®). If the occurrence of a spurious observation is a “rare” event, the assump-
tion that at most one appears in a small sample should not be too far removed
from reality.

We label the rules we shall investigate as Anscombe’s rule, the Winsorization
rule, and the Semiwinsorization rule, which we abbreviate to the A-rule, the
W-rule, and the S-rule, respectively. Each of these rules provides an unbiased

estimate of the desired parameter x in the null case, i.e., when no spurious ob-
servation is present.
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Further, each of the rules discussed depends on a statistic exceeding a constant
of the type C(n, p, r) where n is the sample size, p is the premium to be paid,
and 7 is the rule used. In our discussion of the rules, the generic notation C is
used, but it should be held in mind that these constants are functions of (n, p, r).

We now summarize the notation that will be used in the subsequent sections.
Let us consider a sample of n independent observations (¥, , * - , ¥.) Where it is
hoped that the underlying distribution from which this sample is taken
is N(u, ¢°). Denote the ordered observations by y, < -+ < Y , define the

residuals z; = y; — 4, 6 = 1, -+, n), where § = 1/n 2"y, , and the ordered
residuals as 2, < +++ < 2m . Let us further define the quantities:
_ 1 ” _ 1 n—1
Yoo =77 22?!(*) Y =777 lZy(i)
2 1 < 2 _ 1| <
S = n—=1 Z i — 9) Yamw = Z Yo + Y — Y
1 1

Anscombe’s rule (the A-rule)

Anscombe (1960) proposed a rejection rule for guarding against a spurious
observation when the mean u is to be estimated. This rule is such that the suspect
observation is discarded, and estimation proceeds using the remaining (n — 1)
observations as a “new’”” sample.

When ¢” is known and u is to be estimated, the A-rule uses the estimator
g if eyl < Co and |ee| < Co
i = 9w i lzw| 2 Co and |eqy| > |zl
Lﬂn) if |ew| 2 Co and [zm| > |20

When ¢° is unknown and p is to be estimated, the estimator is of the same form,
with o replaced by s throughout.

The Winsorization rule (The W-rule)

The term “Winsorization” has been applied to the procedure suggested by
C. P. Winsor (see Dixon (1960)), whereby the value of a suspect observation
is replaced by the value of the nearest retained observation, so that not all the
information contained in the suspect observation is thrown out.

Applying Winsor’s technique to construct a rule when ¢° is known and u is
to be estimated, we arrive at an estimator which may
be written as

:l] if 12(1) l < C(T and lz(n) l < CO’
po = Lgm.x) if |ewy| = Co and lzn)l > |eml
-(n—l ) lf IZ(") I __>_ CG’ and 12(”) ‘ > lz“) I

When ¢ is unknown and u is to be estimated, the estimator is of the same form
with ¢ replaced by s.
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The Semiwinsorization Rule (The S-rule)

The technique which we label ‘“‘Semiwinsorization’ is a modification of the
Winsorization procedure. If any observation is deemed suspicious using the
Semiwinsorization rule, the value of the statistic used by the rule is replaced
by that of the appropriate boundary, with the resulting estimation subject to
the constraint imposed by this procedure. The application of this rule will be
made clearer by looking at the various cases under study.

For example, when ¢* is known and u is to be estimated, the S-rule uses esti-
mator

g if ‘Z(;)l < Co and !Z(,.)i < Co

1 .
2. n (n — Doy + 7 — Co] if lzny] 2 Co and  Jeoy| > Jew]

}L[(n D + 54 Co] i el > Co and Jzw| >l

which is to say that if for instance, z(,, the smallest of the residuals, is such that
2y < —Coand |zy| > |2m]|, then we put 2., equal to the boundary, i.e., we
have “z;,”" = ~Coe so that “y,, — §’ = —Coor “yu,"” = § — Co, and replace
Yy by “yuy” = § — Co in the usual estimator of the mean, etc. When o° is
unknown and g is to be estimated, the rule is of the same form, with o replaced
by s.

2. FuncrioNAL ForM oF PREMIUMS AND PROTECTIONS

The definitions of premium and protection may be rewritten using statistical
notation. For a given rule which uses an estimator g, we have:

Premium = [V(a) — V(@)1/V(@®) (2.1)
when all observations are from the assumed population N (g, ¢%), and
Protection = [E@ — »)* — E(@ — w)*)/E®G — »)° (2.2)

when a spurious observation is present.

Premiums

When all n observations are from N(u, ¢%), then § ~ N(g, ¢*/n), and hence

V(7) = o*/n. Thus, only V(2) must be computed in order to evaluate the pre-
mium for a given rule.

To calculate the premium charged by the A-rule when the rejection region,

i.e., a particular value of C, is given, we may rewrite the estimator g, as g, =
7 + A, where

A= A(z) = 4@, - ,2)
0 if Jew| < Co and fzm| < Co
=y=—zq/(n — 1) if [z4h] 2 Co and |zgy] > |zm] (2.3
l—-z(,.)/(n — 1) if |gm| 2 Co and [|z44] > |z
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if o is known, with ¢ replaced by s if ¢* is unknown. Since 7 is independent of the
z."s,

V(pa) = E@§ — w)’ + E(4")
= o’/n + E(4?)
Thus, from (2.1) we have for this rule that
Premium = n/¢*-E(A®) (2.4)
Similarly, by rewriting the estimator i, = § + W, where
W=Wz=We,- -, 2z)
0 if lzy] <Co and [2m] < Co
=1 o —zol/n i kel 2 Co and jeuy| > lzw] (2.5)
l[z(,._l, —zml/n i o] 2 Co and o] > lzwl
if o* is known, with o replaced by s if ¢° is unknown, we then have
V(@) = (*/n) + E(W?)
and
Premium = (n/¢*)E(W?) (2.6)

under the W-rule. Further, since the estimator 2, may be written as g, = § + S,
where

S=28z) = 8@, ,z)
0 if ley| < Co and |z(m| < Co
= [—Co — zyl/n if |zw]| = Co and lzg,] > 2wl (2.7
1 [Co —2wl/m if gl 2 Co and |24 > |z
if ¢® is known, with o replaced by s if ¢* is unknown, it follows that
V@) = (*/n) + E(S)
and
Premium = (n/s%)-E(S?) (2.8)
Protections—Biased Mean Case

Let us assume now that y; ~ N(u, 0*),4 =1, --- ,n — 1, that y, ~ N(u +
ac, 0’), —o < a < «, and that the y,’s are independent. It will be noticed that
the assumption that y, is the biased observation does not incorporate any apriori

knowledge into the rules, since the rules to be examined do not make use of any
such assumption.

Hence, we have that

g~ N + ao/n, a*/n)
and

E@g — w = (@"/n)1 + da*/n)



532 I. GUTTMAN AND D. E. SMITH

Thus, to determine the protection provided by a given rule using estimator
2, only E(p — w)® must be evaluated.
Again, in this case, § is independent of the z,’s, so

E@, — ' = E@ — v — ao/n)’ + E(4 + ao/n)’

= (¢’/n) + E(A + ao/n)?
Thus, using the A-rule, we see from (2.2) that

Protection = —n’E[4A(4 + 2a¢/n)l/c’(n + a%). (2.9)
In a similar manner, we have that using the W-rule,

Protection = —n’E[W(W + 2ac/n)]/c*(n + a°). (2.10)
Likewise, the S-rule has protection given by

Protection = —n’E[S(S + 2ac/n)]/c’(n + a°). (2.11)

Protections—Biased Variance Case

Let us assume that y; ~ N(u, 6®) s = 1, --+ ,n — 1, that y, ~ N(u, (1 +
b)o®), 0 < b, and that y,’s are independent. Again we note that identifying y,
as the biased observation does not bring any apriori knowledge into the rules.

Under these assumptions,

b
g~N (#, (n—:z——) az)
and thus,

B - w = 23D,

Hence, we need only evaluate E(2 — p)° to determine the protection. For the
A-rule we have

E@s — w)' =E@G — w)' + 2E[A@G — w] + E4Y)

In this case, 7 is not independent of the z,’s, and we are left with
b
B, — w7 = 830 o 4 pageg - + 4))

where the expectation is over the 2,’s and §. Thus, the protection afforded by the
A-rule is

Protection = —L. [Ajf(ff_; b‘;) + A}] 2.12)

Similarly, for the W-rule, we have

—n'E(W{2(F — u) + W}]
T (2.13)

Protection =

and for the S-rule,

~n’E[8{2(F — w) + S}

Protection = 0 ¥ D) (2.14)
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3. ANALYsIS WHEN ¢° 1s KNowN

The case n = 38

To obtain the constant C corresponding to a given rule and premium, we must,
of course, investigate the rule in the null case. Thus, our sample consists of three
independent observations ¥, , ¥2 , ¥ each from N (u, ¢”) where u is to be estimated.
Without loss of generality we may take ¢ = 1 if ¢” is assumed known.

With ¢* = 1, the joint density of (2., , 2¢s) in the null case takes the form,
fleaw s 2) = (3\/?;/"") exp {— (%4, + 2mze T+ 2t} (3.1)

over the region

-2
{(z(l) 72(3)) ]l —_—2_’ll < Z(3) < —22(1)}'

In his 1960 paper, Anscombe calculated the premium corresponding to a
given rejection constant for a sample of three, essentially by finding the dis-
tribution of 2, , the residual with largest magnitude. (It should be noted that
although the density of z,, , or equivalently z.;, , was given by McKay (1935)
and Nair (1948) for general n, this is not sufficient to determine the density of
Z1x , since 2, depends on both 2,y and z(,y). However, in order to investigate the
W-rule, the distribution of 2, does not suffice, and the joint density of (i) , 2(3)
is required. For this reason, we have approached the computational problem by
using this density.

Forn = 3 and ¢° = 1, we have from (2.3) and (2.4) that for the A-rule,

Premium = 3E(A4%)

2
z
=3 o ‘il feay » 2m)) deg dza
z?
+ 3 j; “Z—) few » 2) d2ay degy

3
= 'Z‘j; zil)f(zm ) 2ay) A2y dzay (3.2)

where

-2
G, = {(2(1) ' 23) | —» <z < —C, _'2(_1)’ <2z < —z(,,}

and

2
G, = {(2(1) ) 2@) I C <2y < ®©, =20 <2gy < _%}

For a given premium of p, then, the constant C must be found which when sub-
stituted into (3.2) makes the expression equal to p. Expressions similar to (3.2)
may be derived for the W-rule from (2.5) and (2.6) and for the S-rule from (2.7)
and (2.8).

Having chosen a rule and a premium with corresponding constant C, we may
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calculate protection in the biased mean case, i.e., when y; ~ N(u + ag, ¢°),
using the formulas of section 2. In order to do this, we need the joint density
of (2(1y , 2(»), which now reflects the presence of the biased observation Let us
denote this density by g(z(, , 2 , @), Where “a’’ is the bias. If ¢* = 1, this density
is given by

9y » 2@ ; Q)

Do {- (o + %)2 + (o e +5)+ (o + 5/}
Eol kB ]
—= exp { [ zay + + (z(n + %)(zm - 232) + (zm - %a)z]} 3.3)

over the region

-2
{(Zm y ) "sz <z < "2?«(1)}'

We may also ealculate protection in the biased variance case, i.e., when y, ~
N, 1+ b)az)y 0L
If ¢® = 1, the joint density of (z() , 2 , 7) 1, for a bias of “b”,

hzay » 2 » ;5 D)

= 60 + b ep {3 (2L @ + )

2 2b 2b
+ mz(l)zm + ‘l“jl__b @ — W + 2@) + 31_:_ b G —w )}

+ 6@n7 + b exp{ 1 (22(,, + %%zis)

2b 2b
+ 220)2:) — mz(m@ -+ 31-:_ b (y ) )}
2
1

+ 6(2"")_i(1 + b~ €xp {_% (23?& + i
+ 220,23 — ﬁ%z(x)(ﬁ -w+ 31-:_ bb G—w >} 3.9

over the region

{(2(1) s Z(3) :g) ‘ —o K 17 < ©, —w < 2(1) < 0 22“) < Z(3) < —22(”}
These are the densities used to compute the expectations required to obtain the
protections afforded by a specific rule for a given bias. The resulting integrals
can be reduced to at most double integrals which may be easily evaluated by
numerical integration.
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The case n > 3

For a sample of n observations, the formulas for protections and premiums
involve, in general, (n — 1)-fold integrals, which, unfortunately, cannot be
reduced. For n > 3, then, Monte Carlo procedures are utilized.

The method used to determine the constant C for a given premium, sample
size, and rule consists of sampling over certain regions a given number of times,
say N, by means of a specific sampling technique. The theory underlying this
sampling is equivalent to that used in computing protections (discussed below),
except that the inherent symmetry of the null case is taken into consideration
to simplify the computer programs.

The actual value of N used to determine the value of C varied for each rule,
premium, and sample size, and was such that reasonably small standard errors
of the estimated premiums were obtained. In practice moderate values of N
were used to establish rough bounds on C, and larger values of N were used for
iteration to determine C to two decimal places.

To deal with protections in the biased mean case more easily, we may reformu-
late the problem as follows:

Lety,, - - -, y. be independently distributed, where y, ~N(0,1) forz =1, - - -,
n — 1, and y, ~ N(a, 1).

Thus, this restatement reduces the original problem to one of “estimating”
the mean g = 0, where ¢° = 1. This of course, does not alter the results, since
o is assumed known, and the rejection rules make no use of any information
about .

The joint density of (2, *+* , 2._1) is, wWith u = 0 and o” = 1,

g1, o0 2a1 5 0)

L n—1

= Z2—:),,—,§exp{—-% [2 z‘:z§+2a Zz+2 3z + 2= laz:\}

i<i n

—o <z < ®, 1=1,2,---,n—1.

That is, the vectorz’ = (2, - - + , 2,—1) is multivariate normal with mean vector
—(a/n)(1, -+, 1) and variance-covariance matrix I,., — (1/n)11’ =
11 - -1 1]
11 - - 11

In—l - -

- —dri=1

where I,_, is the identity matrix.
Let us now consider the transformation

w =1Lz (3.5)

where w' = (w,, ---, w,_;) and where
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i [n_ v v
n—1 n—1 n—1

1
-\/5 0 0
1 1

\[6' —245 0

L

2L 23
o] il |

J 1 J 1 J T —a-d
LN®—2)n—1) N@—2)n—1) N@n—D{n—1) vV (n—2)n—1)

Thus, w’ is multivariate normal with mean —av/(n — 1/0)(1,0, -+, 0) and
variance-covariance matrix I, , . Note that, by definition,

n—1
/n—l
2,.=—Zz,~=—w1 .
1 n

The inverse of transformation (3.5) is

-1

3

z=L"'w (3.6)
where L™" is obtained by replacing the first row of L by the vector 1/v/2{n — 1)
(1,1, ---, 1) and then transposing the resulting matrix. Heace,

o, = =P W ‘/""2_
n—1 _\/m n—1 n—'l

To calculate the protection given by the A-Rule, the W-Rule, and the S-Rule,
we need E[A(4 + 2a/n)], E]W(W 4 2a/n)], and E[S(S + 2a/n)], respectively,
where 4, W, and 8§ are the functions of z defined previously. We shall deseribe
the procedure used to compute the required expectation E[A(4 + 2a/n)]. The
expectations needed for evaluation of protection given by the other two rules
in the biased mean case may be computed by analogous procedures. The pro-
cedure when dealing with the biased variance case will not be considered here,
since it is similar, although greater use may be made of symmetry conditions.
The details are given in Smith (1966).

In order to simplify our derivations, let us denote the residual with largest
magnitude by 2z, . Note that the random variable A (see (2.3)) may be written as

0 if |en| <C

A=1_ 3.7)

Zu .
T if |ey| =2 C

Rewriting, we have

E[A(A + %")] = Prob (jou]| < C)E[za A+ 4

n

el < ]

+ Prob (kul 2 OB[ 2 4 4+ 47|l > €|
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Using (3.7), we may write

E[A(A + —2;(1)] = Prob (|z,] > C)E\:n(;b?zzm{) T o o 1)

el 2 )

= iProb (le;} 2 C and M =7)

i=1

—2az; 2 ]
-E = - : d>C and M =
F[n(n -1 " (=17 ledl 2 € anc ¢
Now, for¢ = 1, -+, n — 1, the symmetry of the situation gives

; —2az, 2
Prob (Jz;| > ¢ and M = l)E[n(n — 1 + - 1)

= Prob (lz..,| > C and M =n - 1)

—20a2,_, 22,
'E[n(n )T =

Considering z-space, and defining the regions

lg;} 2 C and M = i]

2] > C and M =n — 1]

U*=1{z|l2y| >2C and M =n — 1}
V¥*={z||z| 2 C and M = n}

where 2z, = —>_."' 2, , we have

. 2a . —202,_4 2,
IL[A(A + ;):\ =m— 1) Prob(ze U )E[n(n iy + o — 1"

2

Ze U*]
—2az 2
Yo n n *
-+ Prab (ZsV)L[n(n_ 1)—|- =17 ze V :| (3.8)
The procedure which we have constructed involves taking a number, N, , of
random samples in z-space when z ¢ U*, and N, when z ¢ V*,
If we define the function

—2az 2

0z;0) = dnfn — 1) T

w—1 Izl (3.9)

0 if zeU — U*
where

we may write

2

U = {Z l !zn-ll Z C and ‘Z -1l Z lznl})
w77 =202 Za1 *
PI‘Ob (2’2 U )L[n(n - 1) + (n . 1)2 Ze U ]

= Prob (ze U)E{g(z,-y ;@) | 22 U] (3.10)
In terms of the w’s (3.5), z ¢ U is equivalent to

n — 1
n

> max (C,

w,

wedo ||yt = o N
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Now, it is easily seen that by using the orthogonal transformation

_ =V'nm — 2)( n — 1) Wa_y
s B R R ) B

x2=n_1<w1+a n;:l)_\/Z(n__IQ)w"_l
(3.11)
T3 = W,
Ty ? W
Tpoy = Wp-2
we have that ¥’ = (z,, --- , z,-;) is distributed as a spherical (n — 1)-variate

normal random variable, i.e., with mean 0 and variance-covariance matrix I,,_, .
Thus, z £ U is equivalent to x ¢ B, where

N e )

The region R is the union of two disjoint regions R, and R, as Figure 1 indicates.

2
X
- n-2 n-1
x2 _‘n Xl + a T
= (2 n
X, (1n + C) T
¥
= . B - n-l
*2 2z 11U

F1aurE 1—The region R \U R; in the (21, 12)-plane.
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Let us now define P, = Prob (x ¢ R,) and P, = Prob (x ¢ R,), which may be
easily found with the aid of the computer. Note that

Prob (ze U) = Prob e R) = P, + P,

Now, if we wish to select, at random, x ¢ R, we must weight the region R, ,
with probability p = p,/p, + p., and the region R, with probability (1 — p).
The problem then becomes one of selecting x e R, (or R;) according to the prob-
ability law given by the (n — 1)-variate spherical normal density.

Since there exist computer routines which generate pseudo-random normal
deviates, we may easily obtain x5, - - - , ,_, . However, the restrictions imposed
by the region under consideration present difficulties in the generation of z; and
z, , since (x, , ), the points of interest, fall in the tails of the underlying prob-
ability distribution.

To circumvent these difficulties, we follow Box and Muller (1958) and con-

sider a sample of two, say (u, , u,), from a uniform distribution on (0, 1). Thus,
the joint density of (u, , u.) is

O0<u <1

fla, ,u) = 1 0<u <1

Now, the transformation

u, = exp [—3(] + 23)]

o _l_tan—x (@3) (3.12)
? 2r Z,

is one-to-one, with Jacobian

1
—5 exp [~ 3@ + 23]
Hence, the joint density of (z, , z.) is

—°°<£l)1<°°
—w Ly < ®

Suppose now that (z, , z,) is to be chosen at random, given that x ¢ R, . (In
the following discussion we shall concern ourselves only with x & R, , although
similar results hold for x ¢ R, ,) Due to symmetry, we need only consider biases,

“a”’, which are positive. For ease of notation, let K = (a/n — O)Vn/n — 1.
Since the inverse of transformation (3.12) is

1 : 2 2
p(x, , 2,) = Zr exp [—3(z; + 23)]

z, = (=2 Inu)! cos (2mu,) (3.13)

2, = (—2 Inu,)* sin (2ru,)
we have that

—o <5, <K= — o < (—2Inw)!sin 2rug) < K
With 0 < ¢ < C and K < 0, it follows that & < u, < 1, and thus we have

1 K ?
0 <wu < exp {_5 [s—in_(T_’Es] }
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Now, the maximum value which %, can attain is exp (—21K?), so we may obtain
a pseudo-random number, say u* , on (0, 1), multiply it by exp (—1K?*) to obtain
a random number %, less than this maximum value. Similarly, we may obtain
at random, u, e (3, 1).

We may use this pair (u, , 4,), and apply the transformation of (3.13) to give
us an T, which has a high probability of being less than K. If 2, > K, we repeat
the above steps, while if , < K, we proceed to obtain z, , not from transforma-
tion (3.13) which would impose an unwanted restriction, but by means of the
pseudo-random normal deviate generator mentioned above. Having obtained
(z, , ), we check to see if the resultant x ¢ B, . If not, the above procedure is
repeated in its entirety until a satisfactory pair (x, , x,) is found.

The procedure outlined above is quite efficient when Prob (x 2 R, | 2z, < K)
is relatively large, as it is when 0 < a < C. When this probability is small,
as it is when 0 < C < q, the difficulty is overcome by rotating the x, and z,
axes to an orientation which allows a similar procedure to be used.

Assuming, then, that we have obtained x ¢ B, we may, by means of the inverse
of transformation (3.11), obtain w from the given x. The 2’s are obtained via
transformation (3.6), that is, z = L™'w. Thus, the 2’s have been chosen such that
z ¢ U. We then compute g(z.-1 ; a), where the function ¢ is defined by (3.9), and
keep track of how many times z e U¥, stopping when a total of N, repeats have
been taken in U*,

We will then have obtained a set of z’s, N, of which are in U*, and the rest of
which, say T, , are in U — U*, If we denote the value of the function g for the
k-th z by ¢. , and recall that Prob (ze U) = p, + p,, we may write (3.10) as
Ni+T,

* _Mp_z
“U]‘N1+T1 2 o

1

—20z,_ a_
QW n—1 n—1
Prob(ze U )E[n(n Y + @ — 1)
As may be seen from (3.8), this quantity provides that portion of E[A(4 +
2a/n)] involving U*. An analogous procedure may be followed to compute the
remaining portion which involves V*.

4. AnaLysis WHEN ¢ 1s UNKNOWN

The casen = 8

Trom section 1 and 2 we see that when ¢° is unknown, the rules under con-
sideration use estimators whose values are dependent upon the boundary

max (2wl [2]) = Cs

where

3 3
f=320—9 =122,
1 1

The ordered residuals are 2, < 2y < 2, , and since 2y = —z(

— 2@3)
we have that

2 _ 2 2
§ =z + z2mezm + 2

Let us now assume for the moment that |2¢,| > |2¢s|. Thus, our interest is in
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the boundary |z¢1,| = Cs. Since we have assumed that [z¢)| > 23], i.e., =2y >
Z) , it follows that |z(,,] > s. The region of definition of (2 , 2) is

{(2(1) ) 2a))

Thus, if |zy] > |ew], then s < Jzqy| < (2/3Y)s, and likewise, if |2a)| > 2,
then s < |z@| < (2/3%s. Hence, if C < 1, a rejection (or modification) will
always be made, and if ¢ > (2/3%), a rejection (or modification) will never be
made.

Let us return to the assumption that |z(,| > |2(s|, and consider again the

2y
5 <zZm < —2zmy(*

boundary |z(;,| = Cs. Solving for z(;, in terms of 2, , we have that
4 — 3CH
23 = 2(1)[—% + gT :

This, coupled with the region of definition and the assumption that [2¢,| >

|2(s|, implies that the rejection (or modification) region for the observation y,
corresponding to 2y is

— 307} . 4 — 307
—&y-max [%; 3 - (i—Q-C?)“Q—)"] < 2@ < —2g - M [1, 3+ ;20—)—]

and since (4 — 3C*)}/2C > 0, the rejection (or modification) region is

—2w
2

<2y < —Rzq

or, equivalently,

2@
=224, <zm <

R
where
_ 307
R
1 it 0 <1

Similarly, we find that when |z(s,| > |2(1|, the rejection or modification region is
—2z
”'R(—l) <z < —22q, .

Since we have written the rejection (or modification) region in terms of 2z, and

23 , we need not be concerned with the distribution of s. Let us now define, for a
given R, the events (or regions)

_ 23 2
T, = {(2(1) y2) |0 <2y < o, R <z < —=2e, —2a <&@ <

R
T, = 0 —Z
1 {(2(1) 72(3)) l L<zagy < o, =G <zg < _&}

—z
Ty = {(Zu) y2) |0 < z@ < @, _I?(L) <zy < —22“)}
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Hence, using the definitions of T, , T, , and T’ , the estimators g, , f» , and
fs , may be written as g, = 9 + 4, fw = § + W, and g5 = § + S, where

0 if (w,zm)eTH

4= <’_;m if o ,z@)eT) (4.1)
_;(3, i (o s 2a) e Ts
0 if (o, 2@)eTo
- ﬁ_&a%ﬁi& it (a,2ze)eTh “.2)
_z“_"_;.g.z.ﬁl if (zay ,2@)eTs
and ( 0 if (2@ e T
o T_—”_;;_zm if @y ze)eTs (4.3)

L’"C_v:?)‘g& if (2ay,20)eTs

For a given constant C, the premiums are of the same functional form as in the
case when o is known. Hence, we still need to evaluate the expectations E(47),
E(W?), and E(S%), and substitute the values of these quantities into (2.4),
(2.6), and (2.8), respectively, to obtain the premiums “charged” by the three
rules under consideration. In order to do this, the density of (2.1, , 2s) is required.
It is easily verified that this density is (1/¢°)f(2(1,/0, 2(s)/0), Where f is given by
(3.1).

Similar results hold for protections and the densities of (2() , 25)) in the cases
where a spurious observation is present. All required quantities may be obtained
by means of numerical integration.

The case n > 8

The theoretical aspects of computing premiums and protections when o°
is unknown present no extreme difficulties when a sample size n larger than three
is considered. However, the practical problem of deriving a reasonable method
of obtaining numerical results has been severe because of the computer time that
would be needed to evaluate the required (n — 1)-fold integrals by numerical
integration, while consideration of Monte Carlo procedures get bogged down
because of the form of the regions in which samples must be taken. For example,
sampling of (z;, -+, 2,-1) is required subject to conditions of the form

2 2C*
Zp-1 2 n—1

G TR S A X e ER R S A B

The products z:z; add considerable complications to the problem, for essen-
tially we need to sample in a cone in (n — 1)-space, which is no easy task.
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5. DiscussioN oF ReEsuLTs

From the following tables and graphs it can be seen that, in general, for
estimation of x with ¢® known when a spurious observation from N(u + ao, ¢%)
is present, the S-rule is best for small values of a, the W-rule is best for moderate
values of a, and the A-rule is best for large values of a. When a spurious ob-
servation from N(u, (1 + b)o®) is present, the S-rule performs best for small

Protection Protection
1.0 1.0
5% Premium .8 1% Premium
sl o 3 7 e L
) y .
/’/ a— — W-Rule
.2 s —-———~ S-Rule ‘ ,
0 /// 0 _f”/
= b 6 8 10 a [ 6 8 10 a
-2 -.2

Figure 2—Protections corresponding to premiums of 5% and 1%, when a spurious obser~
vation from N(u + ao, o?) is present in a sample of size three and ¢? is known. (Symmetric

about a = 0)
Protection Protection
1. 1.0
5% Premium - gl 1% Premiwm T T
. .6
. o
A-Rule
<2 vsi-léuie ) , g-guie
—— -Rule / <Rule
L 17 —
F/f 4 6 8 10 a 4 3 8 10 a
o -.2

Figure 3—Protections corresponding to premiums of 5% and 19, when a spurious obser-
vation from N(x + as, o?) is present in a sample of size six and ¢? is known. (Symmetric

about a = 0)
Protection Protection
1.0 .
g| 5% Premium — 1% Premium
== )
6 7z .6
o4 A-Rule ot
. —- — W-Rule . e — W-Rule
2 2 — o= — S-Rule 2 2 Z — — — S-Rule
0 f==2% | S 6 10a° 3 Iy B 1o a
-.2 -.2

Fieure 4—Protections corresponding to premiums of 5% and 1% when a spurious obser-
vation from N(u + ao, o%) is present in a sample of size ten and ¢* is known. (Symmetric
about a = 0)
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values of b, while the W-rule performs best for large values of b. In this case there
is no interval over which the A-rule performs best.*

It seems to us that we may look at our results from two viewpoints:

(1) If we cling to our original concept of no prior knowledge regarding the
magnitude of bias of a spurious observation if any should occur, we have

Protection Protection A-Rule
1.0 «——— A-Rule 1.0 4 —— V-Rule
.8 5% Premium :_: g:ﬁﬁ: .8 1 1% Premium T s-Rule
.6
R
2
Ol= + )
r=—/’4 8 12 16 b
-2

Fieaure 5—Protections corresponding to premiums of 59, and 19, when a spurious obser-
vation from N(u, (1 + b)o?) is present in a sample of size three and ¢? is known.

Protection Protection
.5 .5
-
44 5% Premium 4 1 1% Premium o
.3 3y =
.2
2 A-Rule
.1 .1 ~— — W-Rule
------ -—-——— S-Rul
Z . L ‘ ule
0 =2 i 3 8 10 b 3 [ 3 ) 10 b
-.1 -1

Ficure 6—Protections corresponding to premiums of 5% and 19, when a spurious obser-
vation from N (g, (1 4 b)o?) is present in a sample of size six and o2 is known.

Protection Protection

S A-Rule 0 A-Rule

§ 5% Premium =——— —— W-Rule 41 1% Premium «— — W-Rule

' -m-mmn- S-Rule

.3 .3

2 21

Jd4 53

4] 0

- b 6 8 10 b p) T B ¥ 0 b

-1 -.1

F1aure 7—Protections corresponding to premiums of 5%, and 19, when a spurious obser-
vation from N(u, (1 + b)o?) is present in a sample of size ten and ¢? is known.

* As one of the referees has indicated, the overall situation may be summarized to some
extent by stating that the W-rule is never worst and is sometimes best, and noting that similar
statements cannot be made for the A-rule or the S-rule.
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Protection
.5
4 =TT
//”
.34 P ~——————  A-Rule
’// —— —— W-<Rule
21 R S-Rule
/
d —
o
11 / —
/ /
/
s e
[0} :// // + — + N 4 -+
= 3 4 5 6 7 8 9 10 a
-,14

F1GURE 8—Protections corresponding to a premium 59, when a spurious observation from
N(u + ao, o) is present in a sample of size three and ¢? is unknown.

Protection
‘5‘[ A-Rule
—— —— W-Rule
N S-Rule
.34 T
24 7
7
i
,
I
14 o
g ///
/
7/
0 z - ; . — —
,;:i;—g”"—q 6 8 10 12 14 16 b
-al

Fiovie 9—Protections corresponding to a premium of 5% when a spurious observation from
N(u, (1 4+ b)o?) is present in a sample of size three and o? is unknown.
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TaBLE 1

Regquired constants, C, corresponding to a given
premium for a sample of size three.

Premium

.0500

+ 0400

.0300

.0200

.0100

.0050

A-Rule

2.39038

2.146003

2.54623

2.66184

2.84625

3.01724

TasLE 2

W-Rule

2.30555

2.37957

2.47075

2.59230

2.78u87

2.96228

.98911
1.07104
1.17252
1.30853
1.52501

1.72493

Protections corresponding to premiums of 6%, and 1%, when a spurious observation

Bias "a"
Lies &

* .5

i+

1.0

+ 1.5

i+

2.0

i+

3.0

+

4.0

H i+
=) v
Q [=]

12
~3
N

Q

* 10.0

from N(u + ao, o?) is present in a sample of stze three and o is known.

Protections for a 5% Premium

-‘A-Rule W-Rule
-.065 ~.083
-.098 _=.089
~.126 -.104
-.125 -.083

033 .109
.364 431
667 .697
.831 .835.
+900 .895
+930 .923
.946 .940
.856 ..951

.=,054
-.050
-.016

.051
.242
432
<571
.659
<711
« THY
.767

.783

Protections for a 1% Premium

A-Rule W-Rule S-Rule
~.015 - 024 ~.011
-.027 -,025 ~.009
-.048 -.035 .008
-.051 -.036 046

2008 .oug .176
..243 .298 .337
.566 .603 476
.7%4 » 804 574
.893 889 532
.929 .923 682
946 940 .712
.856 .951 .738
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TasLE 3
Protections corresponding to premiums of 6% and 19, when a spurious observalion
Jrom N(u, (I 4 b) o2) is present tn a sample of size three and o? is known.

‘Bias "b"

Protections for a 5% Premium

Protections for a 1% Premium

A-Rule W-Rule S-Rule A-Rule W-Rule S-Rule

1 -.084 -.071 -.022 -.025 -.020 .006
2 ~.055 -.027 .ol -.o1 .002 .C50
3 .008 -0u5 114 .030 .050 .100
4 .081 .121 .17 .085 .109 .150
5 .154 .194 .230 . 145 171 .195
6 221 <261 274 .203 .230 .236
7 .282 .320 .310 .258 .284 .272
8 .33 .372 .338 .308 .33 .305
9 .384 .418 .360 .354 .379 .334
10 .u26 458 .376 .396 JH19 .360
12 .498 .525 395 .468 488 .hou
i .556 .580 01 .526 545 439
16 .603 .624 420 575 591 .466

TasLE 4

A comparison of protections given by analytic and Monte Carlo methods, biased mean
case, 19, premium, n = 3, ¢* known. (Estimated standard errors are indicated
in parentheses.)

A= Rule W - Rule S - Rule
Bias "a" Analytice Monte Carlo Analytie Yonte Carlo Analytic Yonte Carlo
X2 -.051 -.050(.002) -.036 -.038(.002) JOu6 .049(,010)
+ 4 .243 .236(.008) .298 .298(.006) .337 .335(,008)
+6 <794 .798(.004) .80 .810(.004) 570 .576(,006)
+8 -929 +930(.003) .923 .927(.004) .682 .679(.004)
+10 956 .952(.,003) .950 -952(.003) .735 .719(.009)
TABLE §

A comparison of protections given by analytic and Monte Carlo methods, biased variance case,
1% premium, n = 3, o2 known. (Estimated standard errors are indicated in pa-

reniheses.)
A - Rule W - Rule S - Rule

Biag "b¥ Analytic Monte Carlo Analytic Monte Carlo Analytie Monte Carlo
2 ~,011 ~.012(.001) . 002 .002(.002) - 050 .051(.004)

u .085 .076(.00u) .109 .110(.007) .150 .161(.008)

6 .203 .204(.004) .230 .230(,004) .236 L246(.008)

8 .308 .311(.006) L334 .334(.006) «305 .309(.010)

10 .396 .402(.008) 419 .425(,009) .360 +340(.009)
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TABLE 6
Required constants, C, determined by Monte Carlo for premiums of 5% and 1%,.
A - Rule W -~ Rule S - Rule
n 5% Premium 1% Premium 5% Premium 1% Premium 5% Premium 1% Premium
3 .2.39 2.85 2.30 2,78 .99 1.52
u 2.51 2.93 2,34 2.87 1.09 1.62
6 2.61 3,13 2.28 2.91 1.21 1.79
8 2.66 3,19 2.18 2.90 1.25 1.90
10 2.68 -3.23 2,03 2.88 1.27 1.94
TABLE 7

Protections (computed by Monte Carlo) when a spurious observation from N{(u -+ ac, o%) s
present in a sample of size n and o 1s known. (Estimated standard errors are indicated in pa-
rentheses.)

5% Premium 1% Premium
Bias "a'" _A-Rule W-Rule S-Rule A-Rule W-Rule S-Rule

n=4
£l ~.080(.004) -,073(.002) -,039(,009) -.023(,001) -,020(,001) ~,006(,003)
+2  =~.080(,005) -,020(,00%) 4072(,009) -,035(,002) «.012(.001) .063(,004)

+3 .129(,008) .213(,006) .276(,010) +064(.002) +125(,002) .227(.006)
4 J465(.010) .523(.008) .493(.008) 4+331(.006) 1403(.002) .387(.007)
+6 .847(.004) .833(,004) ,701(.,004) .832(,004) .817(.004) .634(.005)
*8 .922(.003) .910(.005) .796(.003) .917(.003) .902(.005) .738(.004)
£10  .946(.007) .932(,004) .831(,003) .9u6(,002) .935(.004) .793(.004)

nz=6
.033(.007) -.018(.001) -,016(.001) =,007(.002)

#1  -,072(.003) -,056(.003) -

12 -,053(.008) .016(.005) .070(.008) -,022(,001) .009(.001) .060(.003)
%3 +164(.006) .271(.007) ,293(.009) .098(.002) .168(.002) ,219(.006)
*y +520(.003) .530(.005) .489(.007) +387(.00u) J4uk(,002) W407(.007)
£ +826(,008) .788(.004) .719(.004) .823(.002) .785(.00u4) .647(,005)
18 .897(,002) .873(.005) .810(.003) .890(.004) .873(.005) .767(.003)
10 ,934(.002) .905(.006) .859(.003) .930(.002) .916(.004) .820(.003)

n=8
31 -,083(.004) -,048(.004) -,044(,008) -.017¢.001)  -.013(.001) =-.005(.002)
12 -.048(.005) .048(.006) .072(.007) -.015(.002) .016(.002) .047(.003)
+3 +175(.005) .262(.007) .272(.008) .099(.002) .176(.002) .193(.005)
*y .493(,008) .492(,007) .469(.006) .385(.004) 434(,003) .382(.006)
16 +794( 003} L746(.004) +707(.004) .789(.003) L740(.004) .639(.004)
i3 .875(.,002) .840(.007) .810(,002) .876(.003) .8u7(.006) .762(.003)
10 ,915(.002) .897(.005) +857(.006) .815(.002) .892(.004) .825(.003)
n = 10

%1 -,061(.004) -.040{.004) =~,038(.007) -.015(.001) -.012(.001) ~,005(.002)
2 ~.041(.003) .037(.008) .0u8(.007) ~.014(,002) ,018(.003) .042(.007)
*3 +172(.007) .236(.008) .249(,007) .098(.002) .169(.003) .191(.005)
*y .481(,003) .452(,008) L446(,008) .371(.005) L407(.007) .358(.,006)
1g .756(.001) .711(.008) .686(.003) +757(.003) .701(.010) .621(,004)
*g .849(.001) .810(.007) .794(.002) .857(.001) .825(.00u) .753(.003)
%10  .898(.001) +876(.004) .852(.005) +897(.002) .877(.00u) .822(.006)
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TasLE 8

549

Protections (computed by Monte Carlo) when a spurious observation from N(u, (1 + b)o?) 7s
present in o sampl: of size n and o? is known. (Estimated standard errors are indicated tn pa-

rentheses.)

5% Premiun
Bias "b" A-Rule W-Rule S~Rule
a=
1 ~.067(.004) ~-.044(.004) ~-.010(.005)
2 -.016(.004)  .001(.006) .047(.008)
& .109¢.009)  .166(.004) +200(.009)
6 .248(.006)  .298(.007) .299(.009)
8 .371(.009)  .390(.009) .375(.009)
10 .451(,008)  .477(.008) L447(.009)
n=
1 ~.055(.003) -.035(.005) =~.023(.004)
2 -.009(,005) .027(.008) 044 (.007)
4 L112(.003)  .162(.005)  .164(.008)
6 .245(.006)  .279(.008) .268(.009)
8 .346(.008)  .356(.010) .357(.009)
10 .432(.008)  .439(.009) .412(.009)
=
1 -.056(.003) ~.033(.006) -.023(.004)
2 ~-.010(.005)  .022(.008) .028(.006)
4 .102(.010)  .139(.005) .138(.007)
6 .213(.005)  .241(.008) .245(.008)
8 2314(.009)  .298(.010) .329(.008)
10 .372(.010)  .390(.009) .383(.009)
Q=
1 ~-.048(.003) =~.034(.006) ~-.028(.003)
2 -.019(¢.002)  .028(.008) .026(.005)
4 .086(.003)  .112(.006) .109(.009)
6 .193(.005)  .194(.008) .199(.007)
8 «282(.007)  .287(.008) ,286(.009)
10 .349(.009)  .351(.010) .341(.010)

A-Rule

4
~.018(.
.003(,
.109(.
.230¢
,330(.
L415(.

6
-.014¢
L011¢.
.105¢
.233¢(
.310¢
.395(.

8
-.012(.

.009¢(.
.107(.
.198¢(.
.293(.
+368(.

10
-.012(.

.010(.
.087(.
177¢.
L264(,
.333(.

001)
001}
006}

.004)

006)
008)

.001)

001)

.005)
.004)
.006)

008)

001)
001)
006)
003)
005)
008)

001)
001)
005)
003)
005)

1% Premium
W-Rule S-Rule
-.012(.001)  .008(.002)
.021(.002)  .051(.004)
.149(.009) .178(.009)
.262(.004) .267(.008)
.364(.007) .333(.009)
.452(.009)  .398(.010)
-.004(,001)  .007(.002)
.029(,002) .043(.004)
.141(.008) 146 (.007)
.251(.005) +239(.008)
«341(.007) .294(.009)
.410(.009) .389(.010)
-.005¢.001)  .007(.001)
.027(.002) .040(.003)
.125¢.009)  .124(.006)
.226(.005) .213(.009)
.309(.006) .280(.009)
.379(.009)  .338(.008)
-.003(.001) .002(.004)
.027(.002) .029(.007)
.103(.008) .103(.005)
.197(.004) .195(.009)
.280(.007) .241(.010)
.335(.008) .306(.009)

007)

given the experimenter an overall guide to show him exactly how each rule
functions, and having this guide he may decide which rule has the character-
istics most suited to his needs.
(2) If we admit the possibility of prior knowledge which can be used to
put even rough bounds on the bias of a spurious observation which might
oceur, the experimenter would, of course, be able to choose the rule which
functions best in this restricted region.

Leaving aside both the multivariate and designed experiments situations, where
the field of outliers is verdant, we find no lack of open problems in the univariate

case. Immediately, the problems of larger sample sizes

(%)

more than one spurious observation, and non-normality arise.

, the possibility of



550 I. GUTTMAN AND D. E. SMITH

However, even the somewhat restricted framework in which we have been
working is not void of problems. One such problem which would be quite in-
teresting to attack is the performance of a composite A-W-S-rule whereby the
mean p would be estimated by 7 if |2a] < Cio, by a Semiwinsor estimator if
Cio < |2n] < Cyo, by a Winsor estimator if Cyo £ |2x| < Css, and by an
Anscombe estimatorif Cyo < |2, where C; < C, < Ciand 2y = max (—2ay , 2w)-
Of course, an obvious starting question is how to optimally determine C, , Cs,
and C; for a given premium, if this is possible.

In the case where ¢° is unknown, the protection afforded by the W-Rule and
the A-Rule is extremely small for even moderate biases. Thus, we must echo
Anscombe (1960) and say that these two rejection rules are ‘“‘utterly useless
and absurd” for a sample size of three. We must, however, add a note of guarded
optimism in regard to the S-Rule, which performs extremely well with respect
to the A and W-Rules. Of course, whether this performance will be of the same
caliber for larger sample sizes is an open question.
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