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The simplest structure that a two-way table of responses zii can display is 
that of complete additivity. For this structure the model is 

or 

Zif = A, + Bi + random error 
i 

i= ltom 
(1) 

j= 1 to n 

E(Zii) = Ai + Bj s (2) 

Then sit is, apart from random error, partitionable into two additive parts. 
The simplicity and practical usefulness of this model, whenever it is applicable, 
results from the reduction of a function of two variables, zi ,. , into two functions 
of a single variable each, Ac and Bi . 

Using the common analysis of variance notation, the additive model is 
usually represented by 

zii = P + Pi + Yi + Qf 9 (3) 

which diiers from (2) only in that a general mean, P, has been extracted from 
the data prior to the partitioning into row and column effects. The Eii term 
represents random error. 

Few sets of data obey a strictly additive model. To obtain an algebraic 
representation for the more general, non-additive situation, it is customary 
to write 

zif = Cc + Pi + Yj + llCf 3 (4) 

where qif is referred to as the interaction between rows and columns, and 
where qif , unlike Eif , is no longer considered as just random error. However, 
a part of qii may be just random error. Because of the presence of q<i , which, 
apart from its random error component, is a function of two variables, all 
advantage of the additive model will be lost, unless one can again partition the 
non-random portion of qii into functions of only one variable each. Obviously, 
an additive partitioning of vii is impossible since all additive parts have already 
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2 J. MANDEL 

been extracted from the model. We propose a partitioning of vii into the sum of 
multiplicative functions of i and j, according to the model 

zii = (P + Pi + Tj> + (el%ivlj + ~!2~Ziv2j + ” *>- 

Thus, the interaction term is represented by 

(5) 

K 
rlii = C ekUkrVki* (6) 

k-l 

As mentioned above, part of the interaction may well be random error. 
Consequently, in practice, the partitioning of the interaction into multiplicative 
terms is carried out only partially; i.e., only a few multiplicative terms of the 
8uivj type (generally one or two such terms) are retained; the remaining terms 
are pooled together and considered as experimental error. The theory of this 
partitioning as well as practical details of the procedure will be taken up after 
discussion of the illustrative example. 

A NUMERICAL ILLUSTRATION 
The data in Table EI are measurements of the density of aqueous solutions 

of ethyl alcohol of different concentrations, at temperatures ranging from 10 
to 40°C [6]. Our aim is twofold: 1) to learn as much as possible about the structure 
of these data; and 2) to express density as an explicit function of concentration 
and temperature. The function will be empirical, but it should be valid over the 
entire range of the independent variables covered by the data. 

TABLE EI 
Density of Aqueous Solutions of Ethyl Alcohol 

concen- 
tration 

30.086 
39.988 
49.961 
59.976 
70.012 
80.036 

10. 15. 20. 25. 30. 35. 40. 
.959652 .¶56724 .953692 .$50528 .947259 .943874 .940390 
.942415 .938851 .935219 .931502 .927727 .923876 .919946 
.921704 .917847 .913922 .909938 .905880 .901784 .897588 
.899323 .895289 .891202 .887049 .882842 .878570 .874233 
.875989 .871848 .867640 .a63378 .859060 .854683 .a50240 
.851882 .847642 .a43363 .839030 .834646 .830202 .825694 

The first step in our solution is to make an analysis of variance as shown in 
Table EII. It will be noted that in addition to the usual three terms (the two 
main effects and the interaction between rows and columns) there appear 
several more items, corresponding to the partitioning of the interaction term. 
The additional terms follow the usual pattern of the analysis of variance: each 
one involves a number of degrees of freedom (fractional in this case), a sum of 
squares, and a mean square. The sums of squares 0: , 0: , and 0: are computed 
as explained in the Appendix, and the corresponding degrees of freedom are 
taken from Table II, using r = m - 1 = 5, and s = n - 1 = 6. The sum 
of squares and the degrees of freedom for “residual” (last line) are obtained by 
difference. All mean squares are obtained in the usual manner. 
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TABLE EII 
Density of Alcohol Analysis of Variance 

3 

I elylivlj 15.5 26.107899 " 1.690,000 " 

I 
%"2i"2 j 8.2 

83U3i"3j 4.2 

Residud 2.1 

Residual variance (2 last lines combined) = 34 X 10-l* C( = 6 X 10-6 

In the present case, the interaction has been partitioned into three multipli- 
cate terms and a remainder (residual). The mean square for the third term is 
practically identical with that for the residual, and is therefore pooled with that 
term to give an estimate for the error variance.* The first two multiplicative 
terms, on the other hand, and especially the first of these have mean squares 
that are considerably larger than the pooled error variance. They represent real 
effects. 

It may be concluded that the following model represents the data to within 
their experimental error. 

Dii = CC + pi + ~j + 4UiVi + &u:v: + cii 

or**: 

Dii = p + Rri + Gc~ + Oluivi + &u$$ + Eij (El) 

with u, = 6 X lo-‘. 
The next step in the analysis involves an examination of the parameters 

occurring in this equation, particularly of the vectors r< and ci and the “eigen- 
vectors” Ui , Vi , 26: , Vi , both in their relationship to each other and to the 
independent variables. We will refer to all parameters occurring in Eqs. (5) 
and (El) as “structural parameters”; their numerical values, for our example, 
are shown in Table EIII. 

* The standard deviation of error thus calculated is 6 X lOmE. The data are recorded to 
six decimals, but the last decimal is of doubtful validity. 

** The “eigenvectors” U< , u: , Vi , ui are “normalized” in the sense that Cut = CU$’ = 
Cvj* = Cuis = 1. For purposes that will soon become apparent, it is advantageous to also 
normalize the vectors pi and yj of Eq. (5) (see Eqs. (11) and (12)). 
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TABLE EIII 
Density of Alcohol-Values of Structural Parameters 

a. conetmts 

P = .896,764.8; R = .093,799,1; G = .021,@J0,6 

sl = .005,109,6 $ = .000,057,2 

b. Row Parameters 

Concentra.tion 

30.066 

39.988 231494 

49.961 -.052135 

59.976 -.220479 

70.012 

80.036 -.408933 

.724416 

.x2934? 

-.049510 

-.3X264 

-.223783 

C. column Parametera 

TeIVeP.lt”ra E. 
r ’ 

” V! 

10 .558524 -.590282 .511802 

1.5 .377862 -.377433 .008420 

20 .194035 -.173152 -.337774 

2s r006635 .018319 -.46837&T 

30 -.183922 .201870 -.355629 

3s -.377766 -376021 .129797 

40 -.575363 .544656 .511083 

It should be noted that whereas Ui is a monotonic function of ri , and vi is 
monotonic in ci , the parameters u: and vi pass through a maximum and mini- 
mum, respectively. We will see that according to theory Ui and u$ are orthogonal, 
i.e., linea& independent, but they are obviously not functionally independent. 
The behavior of u: suggests that it may be expressible as a quadratic function of 
ui . Consider the function U* = au: + bui + C, where xi Ui = 0, Ci U: = 1, 
i = 1 to m, and impose the conditions: 

cu:=o 

C U*Ui = 0 

Cu’” = 1. 

Then it follows that 

uf = c [ ~-(~U~)Ui-~] ui 

where the constant C is such that c uf2 = 1. This yields two solutions for C, 
say C and (-C). Thus, the normalized form of any quadratic function of ui , 
if it is to be orthogonal to ui , must be either u* or (-u:). Table EIV shows 
both u: and u: , and it is seen that, to within approximately fO.l, we have 
u{ = -u$ . If we substitute (-~5) for u{ , the error induced in Dii (Eq. (El)) 
will be less than (19,) (0.1) or 6 X lo-‘. Thus, this substitution is empirically ac- 
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ceptable. A similar procedure leads us to substitute vr for vi (see Table EIV), 
where v: is derived from vi as UT is derived from Ui . Table EIV also lists the 
coefficients necessary for the calculation of u* and v$ . 

TABLE EIV 
Relations Between First and Second Eigenvectors 

9 4 “3 5 - 
.4487 -.4594 .5516 .5118 

-.5928 .7244 -.0491 .0084 

'-.4257 .3293 -.3660 -.3378 

-.I019 -.0495 -.4320 -.4664 

.2131 -.3213 -.2856 -.3556 

.4591 -.2238 .0433 .1298 

.5379 .5111 

,,; = 2.95216 u; - 1.11869 ~~-0.492027 

vi = 3.04771 v' + 0.126972 v j - 0.435387 

The only remaining task is to express the quantities ri and ui as functions of 
the concentration, and ci and Vi as functions of the temperature. Before com- 
pleting the empirical fit in this way, however, it is interesting to observe the 
remarkable similarity (except for an inversion of all signs) between the vectors 
ci and vi . If we identified Vi with (-ci), the empirical fit would suffer some- 
what, but it is interesting, nevertheless, to examine the consequences of such an 
approximation in terms of the mathematical model. 

Let US then assume, tentatively, that vi = -ci and let us, at the same time, 
neglect the term &u:v~ (which is only of the order of 6 X lo-“). Under these 
assumptions, the model (El) becomes 

Dii = /.J + RT< + (G - Oui)ci + Eii 2 (J-W 

which may be rewritten in the form 

Dii = P + pi + Biri + eii * (E3) 

This is a model of the general type 

Dii = f(4 + g(i)h(j) + cii , (E4) 

which has been discussed by the author in a previous paper [2]. 

If we fitted this model to our data, we would obtain a residual standard 
deviation (estimated with 25 degrees of freedom) of 5 X 1Om5. Furthermore, 
the vector pi , of Eq. (E3), when normalized, would become 

[ - .784443, - .231949, .051948, .220520, .334918, .409085] 

which, apart from a reversal of all signs, is practically identical with the vector 
UC of Table EIII. 
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TABLE EV 
Density of Alcohol 

~omulas for Empirical Fit 

Zij = 0.896765 + 0.093799 li + 0.021001 c, + 0.005,109 UiY, + 0.000057 up; 

ri = 0.457609 - 0.018006 (xi - 35.589532) Ixi - 35.589532~"'0774g6 

<IQ =-0.784676 + 107.858450 (xi - 4.882253)-1'310860 

,,I =-u; (see Table EIV) 

Y 

'j 
= 5.289.976 - 4.380455 (1 + 252.j91v650 1 

1.988011 

vj = -15.778065 + 6.620529 (yj + 57.866579)"'1g6868 

"; = "; (see Table EIV) 

xi = concentration yj = temperature 

Use of the slightly more complicated model (El) will result in a substantial 
improvement in the accuracy of fit. To complete the analysis we must fit the 
vectors ri and Ui to “concentration”, and Ci and ai to “temperature”. To this 
end, use was made of the general formula* 

y = yo + A(z - zo) 12 - ZolB-l. 035) 

The four constants y. , A, x0 , and B were calculated by an iterative least squares 
procedure. The results are given in Table EV which lists all numerical equations 
required for the fit. The “percent residuals” of this fit, i.e., the quantities 

fitted value-observed value 
100 observed value 

are shown in Table EVI. It is seen that the accuracy of fit is of the order of 
0.0047,. No percent residual exceeds 0.00770 and no residual exceeds 0.00006 
density units. Had we used model (E3) we would have obtained residuals about 
ten times larger than those shown in Table EVI. 

An important use of an empirical fit such as the one just discussed, lies in its 
role as an interpolation device. The formula provides values of the response for 
any combination of values of the independent variables, provided that the 
latter are inside the range covered by the experimental data. Since all functions 
used in the empirical fit are monotonic, the fit may be expected to have about 
the same precision for interpolated values as it has for directly fitted values. 
While interpolation is greatly facilitated by an empirical formula, any attempt 
to use it for extrapoIation outside the range of values covered by the experi- 
mental data should be avoided or undertaken only with the greatest caution, 
even when the extrapolation is to a region close to that covered by the data. 

* In many cases, one can use the simpler formulas y = yo + A(z - zajB or y = yo + A(ZO - 
s)B. Eq. (E5) contains both of these forms and is applicable even when xo is inside the range 
of the x values. 
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TABLE EVI 
Density of Alcohol-Percent Residuals1 of Empirical Fit 

Temper.3t”?CB 
CO”Ce*- 
tration 10. 15. 20. 25. 30. 35. 40. 
30.086 .00089672 -.00011837 .00096014 .00054790 .00092261 .00046336 .00057124 
39.988 .00118904 .00064836 .00078472 -.00023276 .00047624 .00097419 .00091275 
49.961 -.00463022 -.00391099 -.00401094 -.00380333 -.00481802 -.00297186 -.00505511 
59.976 -.00120045 -.00078892 -.00004431 -.00024190 .00012828 -.00004240 -.00064941 
70.012 .00649297 .00738266 .00683711 .00653345 .0064l.104 .00626342 .00538656 

80.036 -.00330687 -.00518157 -.00527765 -.00516904 -.00432763 -.00369028 -.00362110 

lpercent residual = loo fitted value - observed value 
Observed value 

THEORETICAL RESULTS(~) 
We now return to Eqs. (5) and (6), and concern ourselves with the estimation 

of the quantities Or , uki , and vkf . The estimation is accomplished by applica- 
tion of the method of least squares. The details have been developed in a previous 
paper [4] in which the following facts are also derived. 

1. There are at most (m - 1) or (n - 1)-whichever is the smaller-number of 
terms in the partitioning of vii according to Eq. (6). Thus, K < min (m - 1, 
n - 1). It follows that a$nite set of multiplicative terms, at most (m - 1) or 
(n - 1) in number, s&ices to express the total interaction between rows and 
columns. 

2. The parameters OE , uki , vki , for all values of k, are estimated entirely 
from the matrix of residuals dii , where 

Ci?ii = Zij - fi - fii - Ti = Zij - 2.. - (Zi. - Z..) - (2.j - Z..), (7) 

(where a dot indicates averaging over the index replaced by a dot). This is the 
usual matrix of residuals in the analysis of variance, resulting from the elimi- 
nation of row effects, column effects, and of the grand mean. 

In fact, the procedure is sequential, so that any term &?&ivkj , and all sub- 
sequent terms, are completely determined by the table of residuals obtained 
by stopping after the term &--1&--I ,ivk--1, i . 

3. Denoting estimates by a caret (I) placed over the symbols of the param- 
eters (6, a, O), we have 

c ski = F tiki = 0, for all k 
i 

(8) 

C Cti = 7 O,“i = 1, for all k. (9) 

By definition, each 8, is positive (unless it is zero). 
Equations (8) and (9) are expressed by stating that the vectors tiki and Oki 

are “normalized.” 
4. For any two values of k, say k and k’ (k # k’) we have 

1 The understanding of this section will be facilitated if the reader will refer back to the 
illustrative example wherever applicable. 
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c vkjvk’f = 0 
i 

Equations (10) are expressed by stating that the vectors &( and &C are OT- 
thogonal, with a similar statement for vbi and vkli . 

For reasons that were discussed in connection with the illustrative example, 
it is advantageous to also “normalize” the vectors fii and qi . The first condition 
xi pi = cj qi = 0 is always fulfilled. In order to satisfy the second condition 
of normalization, we write 

ji = RT~ and ‘j?j = GCi , 01) 
where 

R=1/?$: and G=dv. (12) 

It then follows that 

Cri= TCi=O 03) 

Fr’= p:= 1. 04) 

Corresponding to Eq. (5), we now can write a relation in terms of parameter 
estimates, as follows: 

zij = @ + Rr< + Gc,) + 5 dkak$ki . 
k-l 

(15) 

The analog of Eq. (6) becomes: 

since dii , as given by Eq. (7), is the least squares estimate of v<j . 
It has also been shown in the previous paper [4] that to the partitioning of the 

interaction according to Eq. (16), there corresponds a parallel partitioning of 
the sum of squares of interaction of the usual analysis of variance table. Thii 
partitioning is based on the identity 

(17) 

where the components of the sum of squares, 8: , are simply the squares of the 
estimates of the coefficients 8k of Eq. (6). 

As noted above, the main advantage of the additive model, i.e., the possi- 
bility of expressing a function of two variables in terms of functions of a single 
variable, is retained in the more general model (5), since all u terms are functions 
of i only and all v terms functions of j only. 

If the partitioning is complete, using all K terms in Eqs. (6) and (16), the 
residuals remaining at the end of this process will all be zero, leaving no esti- 
mate for the experimental error eii . In practice, one generally stops the par- 
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titioning process long before this has occurred. For example, if the partitioning 
of the interaction is limited to two terms, then the remaining (K - 2) terms 
provide an estimate of the residual error eir . The main problem is to derive a 
criterion by which a decision can be made as to where the partitioning process 
should be ended. After this decision has been made, using criteria to be de- 
veloped in the following two sections, the next phase of the analysis consists 
in examining: 

a) the relationships between the vectors ri , ui , u: , etc., with each other* 
and with the independent variable (or combination of variables) representing 
the rows (the “row labels”), and 

b) the relationships between the vectors ci , vi , vi , etc., with each other* 
and with the “column labels”. 

This second phase generally results in a considerably simpler model, re- 
quiring fewer constant and vectors, for the functional representation of the data. 

Both of these phases of the analysis were discussed in detail in connection 
with the numerical illustrative example. 

THE ANALYSIS OF VARIANCE TABLE 

The additive model represented by Eq. (3) is usually represented by an 
analysis of variance table containing sums of squares, degrees of freedom, and 
mean squares for the grand mean cc, the row effects pi , the column effects yi , 
and for the “residuals” tii . 

If we are to represent the non-additive model of Eqs. (5) and (15) in an 
analogous way, we must find, for each term 8fiiai : a corresponding sum of 
squares, a number of degrees of freedom, and a mean square. A schematic of 
such a partitioning process is shown in Table I. 

The sums of squares corresponding to the multiplicative terms are, as men- 
tioned above, simply the quantities ef , 8: , * . . , 8: , . * . and these can be com- 
puted (see Appendix A) by appropriate methods. On the other hand, there is no 
simple way by which the “degrees of freedom” y1 , vz , etc., can be written down 
in analogy to the degrees of freedom of ordinary analysis of variance tables.** 
The reason for this is that whereas the quantities 6: are legitimate additive 
components of the sum of squares Xi xi d:, , they are not distributed in 
accordance with the chi-square distribution. We must first dejine degrees of 
freedom in a more general way, before attempting to calculate them. 

DEGREES OF FREEDOM 
The clue to an appropriate definition of degrees of freedom in the non-additive 

case is given by the entries in the last column of Table I. The number of degrees 

* The vectors ui, IL:, etc. are orthogonal and therefore linearly independent. They may, 
however, be, and often are, functionally dependent. Furthermore, r< is generally not even 
linearly independent of the ~4, u{, etc. A similar situation holds for the column dependent 
vectors cj, uj, vi, etc. 

** The various attempts to do this, as discussed in the literature, are all erroneous (see 
Ref. [4]). 
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TABLE I 
Analysis of Variance for Non-additive Model 

. 

92 %i "2j v2 8' 2 a;/v2 

. 
% uki "kj 

: . 

'k 

. 

of freedom vk is the divisor corresponding to 8: . It must be such that the result- 
ing quotient (which we still call mean square, in analogy to the additive case) 
is, in the absence of real systematic interaction e$ects, merely an estimate of 
random experimental error. Thus, if (r2 is the variance of the random error cii , 
and if none of the terms 0kUkiVki occur in the real model, then we must have 

E(&f/v,) = fJ2 for each Ic. (18) 

Equation (18) can be written 

vk = E(&/aa. (19) 

Equation (19) provides our deJinition for the degrees of freedom. It also provides 
us with a way of calculating the v k , as explained in the following section. 

CALCULATION OF DEGREESOFFREEDOM 
Suppose we start with an m X n matrix of independent, normally distributed 

variates zii , of common variance c2, and assume that 

-Wii) = P + pi + yi . (20) 

These zii obey a strictly additive model. If we analyze them, nevertheless, in 
accordance with the analysis of variance shown in Table I, then the partitioning 
of the interaction should faithfully reflect the absence of any real terms of the 
type euivi in the model. Thus, each of the mean squares 6:/v, must then simply 
be an estimate of c2, in accordance with Eq. (18). 

For convenience we can take our zii from a table of random normal deviates. 
Then c2 = 1 and ~1 = pi = yi = 0 for all i and j. In that case, it follows from 
Eq. (19) that 
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Vk = E(tQ. (21) 

Thus, in order to obtain vk it is only necessary to repeat the analysis a large 
number of times, taking a diierent set of random normal deviates each time 
and averaging, for each value of k separately, the 8: values obtained in all sets. 

A Monte Carlo experiment of the type just described was carried out on a 
high-speed computer, using 625 independent sets of Z<i for each combination 
of m and n, with: 

m = 4(1)8(2)12, 16, 20, 32, 50, 100 

n = 4(1)8, 10, 12, 16, 20. 

In addition to the average of the 8: , for each value of k, we also calculated 
their standard deviations. The averages and standard deviations are shown in 
Table II and III, respectively. Rather than labelling the rows and columns 

TABLE II 
Values of vk for k = 1, 2, S 

k \ r5 2 3 4 5 6 7 9 11 15 19 

1 3.55 
5.03 
6.34 
7.53 
8.96 

10.15 
12.77 
15.09 
19.58 
24.10 
37.88 
57.85 

111.22 

0.45 0.97 1.66 2.47 
0.97 2.01 3.01 4.00 
1.66 3.01 4.21 5.45 
2.47 4.00 5.45 7.02 
3.04 4.98 6.66 a.22 
3.85 6.01 7.88 9.70 
5.23 7.98 10.12 12.08 
6.91 10.02 12.50 14.77 

10.42 14.04 16.90 19.62 
13.90 17.96 21.25 24.28 
24.12 29.99 34.26 38.32 
40.15 48.10 53.79 58.20 
86.78 97.81 106.11 112.48 

5.03 
6.71 
8.33 
9.85 

11.32 
12.74 
15.56 
18.08 
23.23 
28.34 
42.87 
63.78 

120.09 

0.28 
0.66 
1.15 
1.69 
2.25 
3.46 
4.89 
7.72 

10.70 
20.14 
35.12 
79.09 

6.34 
8.33 

10.21 11.81 
11.81 13.51 
13.40 15.47 
15.03 16.97 
18.16 20.23 
21.00 23.24 
26.51 29.14 
31.83 34.90 
47.26 50.70 
69.31 73.46 

127.27 133.44 

3.04 
4.98 
6.66 
8.22 
9.76 

11.28 
14.06 
16.79 
22.05 
27.10 
41.60 
62.55 

118.85 

3.85 5.23 
6.01 7.98 
7.88 10.12 
9.70 12.08 

11.28 14.06 
12.82 15.78 
15.78 19.30 
18.76 22.18 
24.14 28.59 
29.59 34.00 
44.55 50.38 
66.40 73.25 

123.83 133.46 

.66 1.15 1.69 2.25 3.46 4.89 7.72 10.70 
1.37 2.22 3.06 3.76 5.43 7.11 10.70 14.33 
2.22 3.19 4.16 5.24 7.24 9.22 13.24 17.17 
3.06 4.16 5.44 6.51 8.85 11.06 15.47 19.73 
3.76 5.24 6.51 7.81 10.44 12.82 17.55 22.24 
5.43 7.24 8.85 10.44 13.43 11.07 21.32 26.37 
7.11 9.22 11.06 12.82 16.07 19.07 25.02 30.58 

10.7c 13.24 15.47 17.55 21.32 25.02 31.71 37.95 
14.33 17.17 19.73 22.24 26.37 30.58 37.95 44.89 
25.27 29.30 32.66 35.60 41.34 46.33 55.94 64.20 
41.77 47.46 51.66 55.60 62.55 68.84 79.94 90.41 
89.71 97.33 103.25 109.53 119.41 127.69 143.41 156.36 

7.53 
9.85 

il.96 
11.32 
13.40 
15.47 
17.17 
19.11 
22.34 
25.63 
31.56 
37.58 
54.71 
77.51 

138.99 

10.15 12.77 
12.74 15.56 
15.03 18.16 
16.97 
19.11 
20.96 
24.35 
27.77 
34.24 
40.30 
57.34 
81.39 

144.25 

20.23 
22.40 
24.35 
27.99 
32.04 
38.79 
45.38 
63.52 
88.82 

152.80 

15.09 19.58 24.10 
18.08 23.23 28.34 
21.00 26.51 31.83 
23.24 29.14 34.90 
25.63 31.56 37.58 
27.77 34.24 40.30 
32.04 38.79 45.38 
36.25 42.73 50.33 
42.73 50.84 58.76 
50.33 58.76 65.94 
68.65 7R.R9 88.15 
95.34 106.R2 117.83 

161.46 176.77 192.05 

m and n, of these tables (as was done in Ref. [4]), we have labelled them r and s 
for reasons which will be explained in the next section. 

The values in Table II differ slightly from the corresponding values listed in Table Al 
of Reference [4]. In the present paper, the values were corrected by a least squares adjustment 
procedure, and are consistent with those listed in Table IV, and with Table A3 of Ref. [4]. 
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TABLE III 
Standard Deviations 82 of for k = 1, g, 3 

k rs \ 2 3 4 5 6 7 9 11 15 19 

12 2.68 
3 3.08 

: 
3.16 
3.56 

6 3.92 
7 4.01 
9 4.64 

11 5.00 
15 5.65 

:'L 
6.05 
7.22 

49 9.07 
99 12.98 

2 2 0.66 
3 0.98 
4 1.38 
5 1.69 
6 1.87 
7 2.00 

1: 
2.50 
2.87 

15 3.71 
19 4.39 
31 5.49 
49 7.57 
99 10.34 

3 3 
4 
5 
6 
7 
9 

:: 
19 
31 
49 
99 

3.08 3.16 3.56 3.92 4.01 4.64 5.00 5.65 6.05 
3.24 3.83 4.05 4.36 4.52 4.72 5.26 5.71 6.25 
3.83 4.18 4.12 4.28 4.71 5.12 5.45 5.84 6.40 
4.05 4.12 4.30 4.88 4.71 5.64 5.51 6.09 6.92 
4.36 4.28 4.88 4.80 5.16 5.28 5.64 6.03 6.51 
4.52 4.71 4.71 5.16 5.26 5.30 6.02 6.49 6.88 
4.72 5.12 5.64 5.28 5.30 5.50 6.41 6.25 6.89 
5.26 5.45 5.51 5.64 6.02 6.41 6.65 6.57 7.53 
5.71 5.84 6.09 6.03 6.49 6.25 6.57 7.10 7.60 
6.25 6.40 6.92 6.51 6.88 6.89 7.53 7.60 7.87 
7.38 7.59 7.96 7.89 7.98 8.02 8.26 8.37 8.77 
9.55 9.55 9.44 8.88 9.04 9.36 9.77 9.86 10.16 

12.96 12.22 12.50 11.84 11.96 11.67 11.59 11.95 12.19 

0.98 1.38 1.69 1.87 2.00 2.50 2.87 3.71 4.39 
1.39 1.77 2.08 2.25 2.62 2.77 3.17 3.56 4.11 
1.77 2.04 2.29 2.48 2.70 3.11 3.43 3.95 4.32 
2.08 2.29 2.61 2.83 2.94 3.36 3.68 4.00 4.46 
2.25 2.48 2.83 3.04 3.04 3.36 3.77 4.20 4.12 
2.62 2.70 2.94 3.04 3.17 3.43 3.82 4.26 4.75 
2.77 3.11 3.36 3.36 3.43 3.99 4.09 4.66 5.00 
3.17 3.43 3.68 3.77 3.82 4.09 4.10 4.85 4.93 
3.56 3.95 4.00 4.20 4.26 4.66 4.85 5.30 5.55 
4.11 4.32 4.46 4.72 4.75 5.00 4.93 5.55 5.83 
5.48 5.24 5.60 5.44 5.52 5.82 5.88 6.27 6.20 
6.93 7.09 6.79 6.96 6.61 6.92 7.08 7.36 7.20 

10.15 9.59 9.08 9.56 9.04 9.23 8.90 9.21 9.41 

37 
:69 
.92 

1.20 
1.35 
1.72 
2.13 
2.80 
3.14 
4.59 
6.34 
9.21 

.69 
-97 

1.23 
1.56 
1.66 
1.86 
2.30 
2.90 
3.36 
4.29 
5.64 
8.27 

92 
1:23 
1.53 
1.75 
2.00 
2.21 
2.46 
3.08 
3.44 
4.53 
5.68 
8.12 

1.20 1.35 
1.56 1.66 
1.75 2.00 
2.00 2.07 
2.07 2.31 
2.43 2.62 
2.66 2.80 
3.32 3.19 
3.62 3.56 
4.55 4.80 
5.67 5.84 
7.71 7.98 

1.72 2.13 
1.86 2.30 
2.21 2.46 
2.43 2.66 
2.62 2.80 
2.95 3.11 
3.11 3.34 
3.53 3.60 
3.68 3.87 
4.52 4.98 
5.78 5.77 
7.83 7.36 

2.80 3.14 
2.90 3.36 
3.08 3.44 
3.32 3.62 
3.19 3.56 
3.53 3.68 
3.60 3.87 
4.17 4.45 
4.45 4.76 
5.09 5.38 
5.R7 6.01 
8.11 8.05 

GENERALIZATION OF RESULTS 
The partitioning of the sum of squares xi xi d:, can conceivably be carried 

out on sets of residuals obtained in a variety of ways. For example, instead of 
Eq. (5), we could have written 

Zif = (P + Pi> + (elulivij + e2~2i~,f + * * *> + Ed{ . (22) 

Equation (22) differs from Eq. (5) in that the term yf was not removed from 
the observations prior to partitioning the residuals. Thus, here the residuals 
that are partitioned are 

zii - p - jsi . 

Similarly, we could have partitioned the residuals 

zij - P - 9f , 

or even the original observations Zii themselves. 
More generally, we might have extracted from the original observations, 

prior to partitioning into sums of multiplicative terms, not only p, ji , and qi , 
but any number of “sweeps” of the “vacuum cleaner”. [7] 

It can be shown [5] that Tables II and III are applicable to all these cases, 
provided that the following rule is observed. 
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TABLE IV 
vb ezpressed as yo of total interaction degrees of freedom for k = 1, g, 9 

k A. 2 3 4 5 6 7 9 11 15 19 

* 
3 
4 
5 
6 
7 
9 

11 
15 
19 

:'9 
99 

2 

: 
5 
6 
7 
9 

11 
15 
19 
31 
49 
99 

3 

5" 
6 
7 

1: 
15 
19 
31 
49 
99 

88.73 83.78 79.24 75.32 74.70 72.51 70.92 68.61 65.26 63.43 
83.78 74.54 69.42 65.66 62.91 60.68 51.64 54.80 51.63 49.72 
79.24 69.42 63.83 59.06 55.83 53.67 SO.46 47.74 44.18 41.89 
75.32 65.66 59.06 54.05 51.57 48.48 44.96 42.26 38.89 36.74 
74.70 62.91 55.83 51.57 47.70 45.50 41.47 38.84 35.07 32.96 
72.51 60.68 53.67 48.48 45.50 42.79 38.66 36.07 32.61 30.30 
70.92 57.64 50.46 44.96 41.47 38.66 34.55 32.36 28.73 26.54 
68.61 54.80 47.74 42.26 38.84 36.07 32.36 29.96 25.90 24.08 
65.26 51.63 44.18 38.85 35.07 32.61 28.73 25.90 22.59 20.62 
63.43 49.72 41.89 36.74 32.96 30.30 26.54 24.08 20.62 18.27 
61.09 46.09 38.12 32.71 29.41 26.42 22.77 20.13 16.96 14.97 
59.03 43.39 35.36 29.98 26.36 23.73 20.14 17.69 14.53 12.66 
56.17 40.44 32.14 26.96 23.40 20.82 17.15 14.83 11.90 10.21 

11.27 16.22 20.76 24.68 25.30 27.49 29.08 31.39 34.74 36.57 
16.22 22.39 25.06 26.69 27.67 28.61 29.56 30.38 31.21 31.51 
20.76 25.06 26.34 27.25 27.75 28.13 28.13 28.40 28.17 27.96 
24.68 26.69 27.25 28.09 27.41 27.72 26.85 26.86 26.17 25.55 
25.30 27.67 27.75 27.4,. 27.13 26.86 26.04 25.44 24.90 23.77 
27.49 28.61 28.13 27.12 26.86 26.17 25.05 24.36 22.99 22.24 
29.08 29.56 28.13 26.85 26.04 25.05 23.83 22.41 21.18 19.88 
31.39 30.38 28.41 26.86 25.44 24.36 22.41 21.16 19.65 la.40 
34.74 31.21 28.17 26.17 24.50 22.99 21.18 19.65 17.58 16.28 
36.57 31.51 27.96 25.55 23.77 22.24 19.88 la.40 16.28 14.83 
38.91 32.25 27.62 24.73 22.37 20.53 18.06 16.30 14.08 12.56 
40.97 32.72 27.44 23.76 21.28 19.36 16.61 14.89 12.38 10.93 
43.83 32.93 26.80 22.72 20.01 17.87 14.98 13.09 10.59 9.10 

3.07 5.52 7.65 9.42 10.71 12.80 
5.52 8.56 il.08 12.75 13.41 15.09 
7.65 Ii.08 12.76 13.86 14.96 16.10 
9.42 12.75 13.86 15.12 15.50 16.38 

10.71 13.41 14.96 15.50 15.94 16.57 
12.80 15.09 16.10 16.38 16.57 16.58 
14.82 16.15 16.77 16.76 16.65 16.23 
17.16 17.83 17.66 17.19 16.71 15.79 
la.77 la.86 18.08 17.30 16.72 15.42 
21.66 20.38 la.90 17.56 16.41 14.82 
23.89 21.31 19.37 17.57 16.21 14.18 
26.63 22.65 19.66 17.38 15.81 13.40 

14.82 17.16 la.77 
16.15 17.83 18.86 
16.77 17.66 la.08 
16.76 17.19 17.30 
16.65 16.71 16.72 
16.23 15.79 15.42 
15.76 15.16 14.63 
15.16 14.09 13.32 
14.63 13.32 12.44 
13.59 12.03 10.90 
12.77 10.88 9.71 
11.73 9.66 a.31 

Rule for Use of Tables II and III: 

Tables II and III are applicable to any interaction matrix of T degrees of 
freedom by s degrees of freedom [5]. The parameter T may be thought of as a 
number of degrees of freedom associated with the rows of the table, and the 
parameter s as a number of degrees of freedom associated with the columns of 
the table. Tables II and III should be entered with values of r and s obtained 
as follows: 

1. Partitioning on original observations zi ,. (neither row nor column averages 
removed) : 

T = 112, s = n. 

2. Partitioning on Zij - p - i;i (row averages removed; column averages 
not removed) : 

T = 112, s=n-1. 

3. Partitioning on zii - p - qi (row averages not removed; column averages 
removed) : 

r=m-1, s = 12. 

4. Partitioning on Zij - Ji - fii - qj (both row averages and column aver- 
ages removed) : 
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r=m-1, 8=73- 1. 

5. Partitioning on residuals after removal of row and column averages and p 
sweeps of the vacuum cleaner: 

r=m-l-p, s=n-l-p. 

A MOREPRACTICALTABULATION 
For a table of random normal deviates (g” = l), we have, according to 

Eq. W, 

But, 

Hence: 

Since the model is additive and a2 = 1, we have 

Hence: 

E 
c c d:i 

(m - l)(n - 1) 1 = ” 

zvk = (m - l)(n - 1). 

(25) 

(26) 

(27) 

Equation (27) suggests that we compute the values vk/(m - l)(n - 1) for 
each k. The sum of these values must be unity. Alternatively, one can express 
these quantities as percentages by calculating 

loo (m - ly(n - 1) ’ cw 

and the sum of these values must be 100. The quantities (28) are tabulated in 
Table IV. They lend themselves much more readily to accurate interpolation 
than those of Table II. 

USE OF DEGREESOFFREEDOM INTHEANALYSIS OFNON-ADDITIVEDATA 
Suppose that we have a set of observations xii tabulated in an m X n matrix. 

We can now perform the analysis of variance shown in Table I, using the vk 
values defined above. Let us observe the calculated mean squares. If the real 
model underlying our data is additive, the mean square for vii will be an esti- 
mate of c2, the error-variance of the data. But then, according to our method 
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of calculation of the vk , each term @/vk will also be an estimate of c2. The value 
of the mean square for qii , as well as for every mean square resulting from the 
partitioning of vii will have the same order of magnitude. 

If, on the other hand, the real model contains a single term Ouivi , then only 
one of the mean squares of the partitioning will reflect the existence of this term 
(and will be considerably larger than u”) while all other mean squares will 
only be estimates of a2. Since, by the very nature of the calculation of the 6: , 
they always appear in decreasing order (see Appendix A), the large mean 
square of the partitioned interaction will be the first one. A similar reasoning 
applies if two or more multiplicative terms occur in the real model. 

Thus, by observing the magnitude of the mean squares in the partitioned 
interaction, a judgment can be made on how far the partitioning process should 
be carried. At this time, no analog to the F-test has been developed, but it 
turns out that in most practical situations, the behavior of the mean squares 
leaves little doubt as to which of them reflect real terms in the model and 
which can be considered as the result of random fluctuations. This was strikingly 
illustrated in the numerical example discussed earlier, and has been verified by 
the author in many practical applications. 

PRECISION OF MEAN SQUARES, DEGREES OF FIRMNESS 
An interesting conclusion can be reached from a study of Tables II and III. 

Consider, for example, the entries for k = 1, r = 9 and s = 7. We find: 

E(tj2) = 24.35 

u(f?“) = 5.30 

The value 6” is a sum of squares. For an ordinary sum of squares in analysis of 
variance, say SS, we have, under the null hypothesis, 

ss=$ 
where xl is a central chi-square variate with cp degrees of freedom. Hence, for 
u2 = 1, we have 

E (SS) = E(x,2) = cp, and Var (SS) = Var (x:) = 2~. 

Consequently, 

PWf31” 46 
Var (SS) = 2 ’ 

or 

(30) 

where CVss is the coefficient of variation, u,,/E (SS), of SS. Thus, cp is not only a 
divisor to derive a mean square from a sum of squares, but also a measure 
of the stability, or “firmness”, of the sum of squares, since it is inversely pro- 
portional to the square of its coefficient of variation. 
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The concept of “degrees of firmness” and its expression in terms of the 
quantity B/(CV,,)” are due to J. Tukey [l]. For any multiple of a chi-square 
variate, the degrees of jirmness are identical with the degrees of freedom. 

TABLEV 

Comparison of Degrees of Freedom (D. Fr.) and Degrees of Firmness (D. Fi.) 

3 9 19 
D.W. D.Fi. D.W. D.Fi. D.PZ. D.Fi. 

13 6.7 6.6 16. 22. 28. 41. 
9 16. 22. 28. 52. 45. 87. 

19 28. 41. 45. 87. 66. 140. 
99 120. 172. 153. 343. 192. 496. 

a 3 2.0 4.2 8.0 17. 18. 38. 
9 8.0 17. 19. 47. 34. 92. 

19 18. 38. 34. 92. 54. 169. 
99 98. 186. 134. 418. 171. 666. 

3 3 -TTm---I.12 3.5 8.1 11. 23. 
9 3.4 a.1 13. 41. '26. 103. 

19 11. 23. 26. 103. 45. 178. 
99 79. 148. 119. 465. 156. 755. 

Let us now calculate the degrees of firmness for our numerical example above. 

-- 
(C42)’ = (5.3/224.3)’ = 42*2. 

Thus, for e”, the degrees of firmness are considerably larger than the degrees of 
freedom, 24.3. Table V lists the degrees of firmness as well as the degrees of 
freedom for some of the combinations listed in Table II. It is seen that the 
degrees of firmness are larger in all cases than the degrees of freedom, and in 
many cases considerably larger. It follows that the mean squares obtained in 
our partitioning of interaction are generally more “firm” (i.e., have smaller 
coefficient of variation) than ordinary mean squares with the same number of 
degrees of freedom. 

THE PROPOSED METHOD AS A DIAGNOSTIC TOOL IN DATA ANALYSIS 
The model chosen for the illustrative example, (Eq. (El)), contains two 

multiplicative terms of the type &vi . However, if one is satisfied with a slightly 
poorer fit, Eq. (E3) is appropriate. The point of interest here is that the method 
of analysis described in this paper is of sufficient generality to automatically 
lead to simpler models when these are applicable. 

The following is a further illustration of the value of our model as a diag- 
nostic tool. 

In a study of the performance of spectrophotometers, Wernimont [S] uses 
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the method of principal components for the analysis of a table of 6 rows and 
20 columns. This method is equivalent to the one discussed in the present paper, 
except that a) neither row effects nor column effects are eliminated prior to the 
partition of the data into the sum of multiplicative terms, and b) the degrees 
of freedom are not properly allocated to the terms in the partitioned sum of 
squares. Application of our method of analysis to Wernimont’s data reveals 
at once that: 

a. A single multiplicative term &vi suffices; 
b. ui = T< ; 
C. Vi = Ci * 

This leads directly to the following model (see [3]): 

zii = zO + R&j [(P + Pi) - ZOIIIGC + Ti) - 4 + 'ii j 

where z. is a constant equal to cc - RG/9. Wernimont’s conclusion, which he 
expressed in geometric language, is that the data obey the model Zii = AiBi , 
which is consistent with the result of our analysis provided that z. = 0. (The 
estimate for z. in our analysis is quite small, of the order of 0.001 absorbance 
units, which is less than the standard deviation of experimental error.) Thus, 
our method of analysis leads readily to the simple model applicable to these 
data, without the risk of unwarranted prior assumptions. 

APPENDIX 
There exist several algorithms+ for obtaining the quantities 8, and the vectors 

[uki] and [Q]. One of these is as follows: 

1. Multiply the matrix (dii) by its transpose (d)‘. Let P = (d)(d)‘. 
2. The eigenvalues of P are the quantities 8: , 8: , * . . 8: . 
3. The vectors [Uki] are the eigenvectors of P, associated with the eigenvalues 

e: , e,z , * * * 
4. The vectors [v,,] are calculated by the formula: 

It should be noted that the procedure above is indicated when m 5 n. For 
the case m > n, it is more expeditious to compute the matrix P* = (d)‘(d). 
The non-zero eigenvalues of P* are the same as those of P. The eigenvectors 
of P* are the [vki], and the vectros [uki] are then obtained by the formula: 

t See for example: Golub, G. H. and Reinsch, C., Singular Value Decomposition and Least 
Squares Solutions, Technical Report No. CS 133. Computer Science Department, School of 
Humanities and Sciences, Stanford University (May 1969). 
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