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We obtain exact and approximate confidence intervals (tabulated for 90%, 95% 
and 99%) for the scale parameter, c, of the exponential distribution in small and 
large samples. The exact confidence intervals are based on the distributions of the 
BLUE and ABLE of o, using k optimally selected order statistics from a random 
sample of size n and are tabulated for k = l(l)5 and various 12. The approximate 
intervals are based on approximating chi-square distributions. We find that in large 
samples, the optimal quantiles for the interval estimation of (r are the same as those 
for the point estimation of c, for several optimality criteria; or, in other words, these 
several criteria are equivalent in large samples. 
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1. INTRODUCTION 

Let X(1) < X(2) < .a* < X(n) denote the order statistics of a random 
sample of size n from an exponential population with p.d.f.: 

We wish to find confidence intervals for u on the basis of k suitably chosen 
order statistics X(q) (i = 1, 2, * * - , k), where 1 < n, < n, < . * . < nk 5 n 
and 1 < k 5 n. These intervals will be obtained from the distributions of UT, 
the best linear unbiased estimate (BLUE) of C, and from those of a$, the asymp- 
totically best linear estimate (ABLE) of u. 

Point estimation of u based on selected subsets of the order statistics in 
small samples has been studied by Harter (1961)) Iiulldorff (196313)) Saleh 
(1967)) Sarhan, Greenberg and Ogawa (1963)) Siddiqui (1963) and Ukita 
(19X3), and the large sample case (n -+ ~0 ) has been treated by Kulldorff (1963a), 
Ogawa (1960)) Saleh (1966) and Saleh and Ali (1966). Interval estimation of u 
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372 K. S. KAMINSKY 

has been studied by Hnrter (1964) and ICaminsky (196s) for small samples; 
Ogawa (p. 381 of Sarhan and Greenberg (1962)) and Iiaminsky (1968) for 
large samples. 

2. NOTATION AXD SOME PREVIOUSRESULTS 

First, it is well known that 

X(m) = p + 2 (n - j + l)-‘vi , 
I=1 

(m = 1, 2, .f. ) n), where the V’s are mutually independent and distributed 
as e(z; 0, a). 

Now, extending ICulldorff’s notation (1963b), let 

6,; = C (n - j + l)-‘, 
i(i) 

where r = 1, 2, . . * ; i = 1, 2, * .. , k; 61,/6,, = c&,~+~/&,~+~ = 0 and the sub- 
script form u(v) will mean throughout that u runs from n,-l + 1 to n, . 

If we let 0 = X, < X, < . . . < X, < X,,, = 1, then the population X,-quantile 
of e(z; 0, 1) is ui = In (1 - XJ1 (i = 0, 1, . . . , k) and uarl = a. 

The following results are from Kulldorff (1963a, 1963b) and Ogawa (1960): 
(a) If p is known, the BLUE and ABLE of u based on the ranks ni (i = 

1) 2) 0.. ) k) and no = 0 are respectively 

UT = a:@, n; P) = bOp + cfa1 b,X(n,) and 
a*, = u4(Ic, n; p) = Bop + Cf=, ISiX where 
bi = (S,,/L - 6,,~+,/62,i+,)/K (2: = 0, 1, . . . , k), 
B. = w/l (1 - exp (ud)K*l , 
Bi = (Ai - A,+l)/‘K* (i = 1, 2, . ** ) Ic), 
Ai = (u, - ui-J/(exp (u;) - exp (u;-~)) (i = 1, 2, . *. , Ic), 
A - 0, kfl - 
K = c:..1 LS~~/&~ and 
K* = c!_, (ui - u+,)“/{exp (u;) - exp (ui-J). Also, 

Var (UT) = u’/K, while if n is large and ni = [nhi] + 1 t#hen we have ap- 
proximately 

Var (u:) = u”/(nK*). It can be shown [4] that 
E(u:) = (xfE1 A,&JK*)u and 
Var (u:) = {cfzl A~&J(K*)“}a”, exactly. It will follow from Lemma 1 

that a*, is unbiased for u only in the limit (n ---f m) and the asymptotic variance 
formula above is valid. 

(b) If P and u are both unknown, the BLUE and ABLE of U, based on the 
same order statist’ics as in (a), are respectively 

UT = a:@, n; pT) = cfml d,X(nJ and 
0% = u:(lc, ?a; pb) = Cfsl D;X(n,) where 
4 = -6,,/(LL), 
d; = (61,/&j - 6 I.,+I/&.~+J/L (i = 2, 3, . . . , k), 
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D1 = -A&*, 
DC = (Ai - A,+J/L* (i = 2, . . . , k), 
L = Cf-, 6:;/62i and 
L* = c:-, (Ui - u,-J”/(exp (uJ - exp (u~-~) ). Also, the BLUE and 

ABLE of p are respectively 
p: = X(q) - a:(k, n; pT)&, and 
& = X(n,) - a:(k, n; &)u, while 
Var (~7) = u’/L; Var (P:) = a’(& + &/L). (1) 

3. SMALL SA~~PL~S 

If n, the sample size, is small, we will say that the ranks n1 , . . . , nk are 
optimal for the point or interval estimation of c (or p) if Var (CT) (or Var (b:)) 

is a minimum for these ranks over the n 
0 
k possible subsamples of size k of the 

random sample of size n. (Clearly, this is equivalent to maximizing K (or L)). 
We do this for two reasons: First, as we will see from Theorem 6, various other 
possible optimality criteria for selecting the ranks are equivalent in large samples 
to maximizing K (i.e., minimizing Var (UT)). Second, it enables us to use the 
tables of Harter (1961) and Kulldorl? (196313) where optimal ranks may be 
found for k = 1, 2 in Harter and k = 3, 4 and 5 in Kulldorff. 

Kulldorff (1963b) also discovered the pleasing fact that if both EL and u are 
unknown, then the optimal ranks for estimating them are the same: 

Theorem 1: (Kulldorff, 1963b) Let n: (i = 1, . . . , k - 1) be the optimal 
ranks when selecting k. - 1 order statistics from a sample of size n - 1 for the 
estimation of u when p is known; let bi (i = 0, + . . , k - 1) be the coefficients 
of the corresponding BLUE bOp + c::i b,X(n:); and let u2/K' be the variance 
of this BLUE. Then the variances (1) both attain their minima for n, = 1 
and ni = n:-, + 1 (i = 2, . . . , k). Also, di = biMl (i = 1, . . e , k), L = K’, 
Var (a;) = a2/K’ and Var (P;) = a’(1 + 1/K’)/n2. 

Now, noting that we can write uT(k, n; P) = 

where pii = (S1i/S2J/{ (n - j + l)K), it can be shown that uT(k, n; P;) and 
uT(k - 1, n - 1; p) have the same distribution, as long as n, = 1, ni = n:-, + 1 
(i = 2, . - - , k), uT(k, n; PT) is based on n, , * . * , nk and u:(k - 1, n - 1; ,.J) 
is based on n: , . . * , &I (whether or not these ranks are optimal). From this 
and from Theorem 1, we can state the particular result: 

Theorem 2: For optimal estimation of U, u:(k, n; &) and u:(k - 1, n - 1; ,J) 
have the same distribution. (All proofs are omitted but can be found in [4] or 
by contacting the author). 

A useful by-product of this result is that it will not be necessary to generate 
tables of confidence intervals for u when p is unknown, since tables for the case 
of p known can be used by entering these tables with k replaced by k - 1 and 
n replaced by n - 1 (see Example 2). 
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The distributions of certain linear combinations of exponential order statistics 
can be found in Like& (1967). We encountered two types of linear combination 
(2) in compiling Table 2. We now give the distribution of uT(k, n; cc): 

Theorem S: (a) If in (a), all pii’s are distinct, then the c.d.f. of uT(k, n; p)/~ is 

F,(z) = 1 - zip1 cicijaii exp (-z/pij), 5 > 0; 0 otherwise, where 

aii = Jj IJ {Piilbii - PA 1. 
*iri 

(b) If in (a), exactly m of the pii’s are equal to p while the remaining nk - m 
are distinct, then the c.d.f. of u:(k, n; ~)/a has the form 

( “b--m m m-i 
F,(z) = 1 - C aje-*“’ + e+’ C C 

j-1 j=1 r-0 
a”~-m+,wPY/i!), 

where we have (without loss of generality) rearranged the pii’s so that the 
first nk - m are distinct and these we have renamed qi (j = 1, . . . , nk - m). 
The a’s are functions of qi’s and p only. 

In Table 2, using the optimal ranks for u with p known, found in Harter 
(1961) and Kulldorff (1963b), we have compiled exact 90%, 95% and 99% 
confidence intervals for CT, k = l(l)5 and various n. The quantities cl and cf 
in the table are defined by (r/2 = P{uT/u 5 c;‘(k, n; a)] = P{u;/u 2 

c;‘(k, n; (Y)). Thus, an exact lOO(1 - a)7 e confidence interval for u, based on 
the k optimal ranks n, , . . * , nk , is 

(cl(k, n; 44 4% n; 44 (3) 

We will now compare this interval (3) with the corresponding interval based 
on the complete sample. We assume that p is known (and without loss 
of generality, that it is zero). If the complete sample is used to estimate u, 
then the BLUE of u is simply the sample mean: that is, u:(n, n; 0) = x. It is 
well known that 2nx/u is a chi-square variate with 2n degrees of freedom so 
that c,(n, n; LY) = 2n/xf-a,2,2n and c2(n, n; a) = 2n/xZ,,2,2n . The confidence 
interval based on 2, corresponding to (3) is 

(c,(n, f-2; a).Z, c*(n) 73; a)X). (4) 

u:(k, n; p) is known to be highly efficient for u when compared with z, even 
for small k. It is natural then to compare the intervals (3) and (4) to see how 
efficient the interval (3) is relative to (4). One simple way to do this is on the 
basis of the ratio of expected lengths of the intervals ((4) in the numerator). 
This ratio is 

This quantity has been tabulated in Table 2. We see that the interval (3) is 
quite efficient relative to the interval (4). The behaviour of REL in large samples 
is discussed in the next section together with several other criteria for comparing 
(3) and (4). 
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4. LARGE SAMPLES 

If we are dealing with large samples, we will base our estimate of u on the 
sample quuntiles X(n,) (i = 1, 2, . * . , k) where henceforth, unless otherwise 
specified, we will have 

n, = m,1 + 1, 

whele I.1 is the greatest integer function. The quantiles ui (; = 1, a. * , k) 
(or equivalently, the X’s) will be called optimal for the point OP interval estimation 
of u if and only if K* (or L* if p is unknown) is a maximum for these quantiles. 

From a result of KulldorR’s (1963,) analogous to Theorem 1, we can state 
a large sample analogue to Theorem 2: 

Theorem 4: For optimal estimation of U, in large samples, ut(k, n; p$) and 
u*,(k - 1, n - 1; CL) have the same distribution. 

Now, the c.d.f. of u%(k, n; P), F2(z), is the same as F,(z), with p,; replaced 
by Pij = A,/( (n - j + l)K*} (because u$(k, n; p) can be writt,en ug(k, n; cc) = 

CL CidiiK). w e can thus define a lOO(1 - LX)% confidence interval 
for u (based on the optimal quantiles), analogous to (3). It is: 

(Cl@, n; && C2(k, n; &9, (5) 

where C, and C, are such that a/2 = F,(C;‘(k, n; a)) = 1 - F,(C;‘(k, n; a)). 
Although we do not tabulate the interval (5), we discuss its large sample be- 
haviour relative to the small sample ones, and we also discuss approximating 
it (and the interval (3)) below. First, we state some limit theorems: 

Lemma 1: 6,i = Ui - ~i-1 + O(n-‘) while for m = 2, 3, . . . , 

n m-16mi = (e’“-““’ - e’m-l)ui-l)/(m - 1) + O(y),-‘). 

From this lemma we have 

Theorem 5: Given the quantiles ui (i = 1, . . . , k), then, 

(a) K/n = K* + O(n-I>, 
(b) L/n = L* + O(n-*), 
(c) while both c1z1 (cI,~/~,~K)“‘(~“-~~,~) and 

Et-, (Ai/K*)m(nm-18m,) converge to 
(K*)-” cfsl A”!(e(m-*)ui - e’m-l’ui-‘)/(m - 1) as n + co 

The cumulants of UT/U and ~*,/a are easily found to be 

w, = (m - l)! (K)-” 5 6;. S,,,JSE , and 
i-1 

ST?, = (m - l)!(K*)-” 2 AY 6,; (m = 1, 2, *me) 
i-1 

respectively. The coeffcients of skewness and excess (see for example p. 85, 
Kendall and Stuart, Vol I, 1963) of UT/CT are: 

y1 = 2(K)-% 2 s:i. &i/S,“< , and 
i-l 
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i-l 
respectively, while those of u*,/u are 

r, = 2 2 A: a,,/& A: &i)‘, and 
i-1 i-l 

l’s = 6 2 Af a,</( 2 AT 82,)’ respectively. 
i-1 i-l 

These quantities are used later to help justify approximating the distributions 
of #$/a (i = 1, 2) with chi-square distributions. 

Mosteller (1946) proved under regularity conditions that the k sample 
quantiles are jointly asymptotically normally distributed, and so it follows 
that a:/~ (i = 1, 2), properly normalized, converge to the univariate normal. 
This can be seen directly by noting that the cumulants of z/i7(a:/a - 1) 
and ax(gt/c - 1) converge to the cumulants of the standard normal 
distribution. 

Other criteria than those we adopted exist for declaring the ranks or quantiles 
optimal for estimation of u. Some of these are (comparing the intervals (3) 
and (5) to (4), with (4) in the numerator), the maximizing of: the ratio of 
expected lengths, REL (k, n; a); the ratio of expected squared lengths, 
RESL (k, n; a), the ratio of variances of the lengths, RVL (k, n; a), and Harter’s 
quantity (1964) of the ratio of the sum of mean squared deviations of the upper 
and lower confidence bounds from the true value, EFF (k, n; CZ). In large samples, 
all of these criteria are equivalent to maximizing K*. In other words, all of these 
optimality criteria are equivalent in large samples. This also means that the 
optimal quantiles for the interval estimation of u, in large samples, are the 
same as those for the point estimation of u. This is particularly useful since 
the optimal quantiles are tabulated for k = l(l)15 in Sarhan and Greenberg 
(1962) for example. That these facts are true follows from the next theorem, 
the proof of which depends on the asymptotic normality of UT/U (i = 1, 2): 

Theorem 6: For k and o( given, p known and a: (i = 1, 2) based on the quan- 
tiles u, (i = 1, . . . , k) (for both (3) and (5) compared with (4)) we have, as 
n+ w, 

(a) REL (k, n; a) -+ e, 
(b) RESL (k, n; a) + K*, 
(c) RVL (k, n; a) + (K*)‘, and 
(d) EFF (k, n; a) + K*. 

5. APPROXIMATE CONFIDENCE INTERVALSFORU 

A quite satisfactory approximation to the intervals (3) and (5) can be obtained 
by treating [2K]uT/o and [2nK*]u:/u as chi-square variates with [2K] and 
[2nK*] degrees of freedom respectively. Clearly, this amounts to matching the 
first two moments of [2K]al;/a and [2nK*]u:/u with the first two moments 
of &i-square variates (Harter (1968), suggests using 2K rather than [2K] 
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and interpolating in the chi-square tables). The approximate lOO(1 - CY)% 
confidence interval corresponding to the intervals (3) and (5) are therefore 

W3TWxLz, 12R1 , PKI~T/x~~~, ~4 and (6) 

(P~K*14xL2, 12nK*l , [2nK*l~~/x~~2. WW). (7) 

The asymptotic normality of UT/CT (i = 1, 2) and xi, can be used to show 
that (given ui , i = 1, . . . , k) the attained probability content of the intervals 
(6) and (7) converge to 1 - Q as n increases, and that the ratio of expected 
lengths (or any of the other three ratios mentioned in the preceding section) 
of the intervals (3) to (6) and (5) to (7) converge to one with increasing n. 
A further comparison can be based on the ratios of coefficients of skewness 
and excess. For xi, , these coefficients are &(df) = fi/q and .&(df) = 12/df. 
From Theorem 5c we easily see that 7&([2K]) and I’,/&([2nK*]) converge 
to &i(k) (i = 1, 2) as n 4 00, where 

Qmm2(k) = (K*)-’ 2 A”!{e’“-““’ - e’“‘-I’“‘-‘)/(m - l), 
i=1 

m = 3, 4. These two quantities (based on the optimal W’S) are given in Table 1 
below. That these quantities appear to be converging to one with increasing k 
further supports our approximations. 

The above results indicate that we may treat the intervals (3) and (6) (or (5) 
to (7)) as virtually interchangeable in large samples. On the strength of several 
examples in [4], there is considerable empirical evidence that the approximations 
are quite good even when n is small (see also, Examples 1 and 3). 

6. ILLUSTRATIVE EXAMPLES 

Example 1: To estimate homogeneity in performance, cr, of a certain electronic 
part subjected to continuous and constant stress, 25 such parts were subjected 

___-- 

k 

; 

3 
4 
2 

z 

9 
10 
11 
t; 

14 
15 

TABLE 1 
Limits of ratios of skewness and excess 

Ql(k) 

1.119 1.203 

1.078 
1.055 
1.041 1.032 

1.025 1.021 

1.017 
1.015 
1.013 
1.011 1.009 

1.008 
1.007 

~---.__.____ 

Q$k) 

1.376 1.659 

1.244 
1.172 
1.098 1.127 

LO64 1.078 

‘1%; 
Lo38 
1.033 

Es; 
1: 023 
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to specified conditions and their failure times, in ascending order were (in hours) : 
0.9, 10.0, 17.9, 23.9, 24.8, 27.1, 32.9, 37.5, 49.5, 59.2, 60.4, 65.4, 69.5, 80.4, 
88.3, 96.4, 134.9, 137.5, 138.2, 168.8, 172.0, 212.4, 215.0, 276.4 and 430.3. It 
is known from past experience that this type of part follows an exponential 
failure distribution, e(z; p, C) (the failure times are actually from e(z; 0, 100)). 
A 95% confidence interval is desired for u, but in the interest of compressing 
the data, only the best t’hree order statistics are to be used. Suppose (for the 
present) that it is known that P = 0. From Kulldorff’s Table 1, with k = 3 
and n = 25, we find K = 22.9074 and uT(3, 25; 0) = -.728691 .O + 
.465654*X(14) + .204237*X(22) + .058799.X(25) = 106.12 (Notice that 
z/liln = .9572, REL (3, 25; .05) = .9580 and 2/E = .9439 are reasonably 
close to each other, as expected from Theorems 5 and 6). From Table 2 we get 
the 95% confidence interval (.688613.106.12, 1.570782.106.12) = (73.08,166.69) 
for u. Now, if we had used the entire sample t,o estimate 6, we would have 
aT(25, 25; 0) = X = 105.18 and the corresponding 95% confidence interval 
(from (4)) is (.700.105.18, 1.545.105.18) = (73.6, 162.5). We can conclude 
that little information about u was lost by using only the best three ordered 
observations. We will now approximate the exact interval (based on k = 3, 
n = 25) using the chi-square approximation of Section 5: [2K] = 45, so that 
treating 45uT/a as xi, , we obtain the approximate 95% confidence interval 
(from (6)) (.688.106.12, 1.586.106.12) = (73.0, 168.3). This appears to be a 
quite adequate approximation. 

Example %‘: In the above example, suppose that the information on when 
the electronic parts were put on test has been lost (i.e., p is unknown) and we 
still wish to use the best three observations. Theorem 1 dictates that we enter 
Harter’s table (1961) with k = 2 and n = 24; this gives us uT(3, 25; P:) = 
-.683202.X(l) + .521895.X(17) + .161307.X(24) = 114.37. Now, Theorem 2 
tells us that a:(3, 25; P:) and aT(2, 24; P) have the same distribution when 
optimal ranks are used. Thus, we enter Table 2 with k = 2 and n = 24 and we 
obtain the exact 95y0 ,confidence jnterval for ,C (.672873.114.37, 1.619525. 
114.37) = (76.96, 155.23) and we see (as expected) that some precision has 
been lost by not knowing JL. K = c’/Var (a?@, 24; p)) = 20.1918 (or [2K] = 
40), so, if exact tables were not available, one would approximate the desired 
interval by treating 40aT(3, 25; ~:)/a as x& and this yields the approximate 95% 
confidence interval: (.674.114.37, 1.637.114.37) = (77.1, 187.2) and this agrees 
well with the above exact interval. 

Example S: Once again using the above data, we will estimate the homogeneity 
in performance of the electronic parts, but using the large sample theory ([lo], 
[14] and [15]) and our chi-square approximation. With k = 3, n = 25 and p = 0, 
we enter table llD.1 of [14] and find K* = .8910 and 4(3,25; 0) = -.7518.0 + 
.4477.X(14) + .2266.X(21) + .0775-X(25) = 108.3. Treating [2nK*]cr*,/a = 
44u$/u as xi, , we calculate the approximat,e 95% confidence interval for U: 

(.685+ 108.3, 1.596.108.3) = (74.2, 172.8), and this is reasonably close to the 
exact interval of Example 1. 
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TABLE 2 
Exact lOO(1 - ~4% con$dence intervals for D based on the k optimum ranks from a random 

sample of size n with P known. When P is unknown, the table applies for the k + I 
optimum ranks from a random sample of size n + 1. Entries accompanied 

k-1 

63!%00 1.807612. 581697 2.020217 . 491554 2.565150 -7800 
643369 1.767cKl . 590172 l.YI?WO . 5oB% 2.469204.7a 
650479 1.732242 . 597850 L9259m. 50%826 2.38%251.7@5 
656946 1.702CXE . 604846 1.865242 . 516361 2.318%8 .7923 
662865 1.675456 . 611258 1.849644 . 525287 2.258904 -7940 
669325 1.657403 . 610936 1.827436 . 532939 2.227036 .7a69 
674970 1.633831 . 625088 l.795%8. .53%66 2.174595 .7W9 
680164 1.612784. 63U779 1.768014 . 545897 2&?8304.7%!2 
685024 1.593855 . 636066 1.742921 . .551719 2.087031 .793B 
689533 1.576724 . 640998 1.720277 . .557153 2.m .7s2 
694514 1.564300 . 646922 1.705097 . .564647 2.028545.7906 
698842 1.548681. .651679 1.684529 . .569940 1.995162 .7929 

.702899 1.534395 . .656137 1.665757 . .574901 1.964874 .79# 

.7C%7l2 1.521266 . .660337 1.648560 . 

.710305 1.509169 . .664296 1.632719 . 

.679964 1.590680 .80 
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TABLE 2 Continued 

k=l 

1.408804 .8036 
1.402428 3039 
1.396378 .8040 
1.391698 .8030 
1.385928 .8034 
1.380450 .a037 
1.375229 .a039 
1.370237 X41 
1.366342 A031 
1.361495 .8036 
l.ocOOcn.8047 

:%E 
.710187 
.713006 
.715434 
.717776 
i.720028 
'.722202 
'.724665 
I.726788 
LoOoooo 

1.504372 .8017 
1.496183 .&I21 
1.488395 .8023 
1.482780 .@Oll 
1.475336 .8016 
1.468310 ,fIO20 
1.461645 .8022 
1.455191 .8026 
1.450725 .a013 
1.444173 A022 
1.ooGom.8047 

.631997 1.714888 ,7972 
,634977 1.703034 .7973 
.637832 1.690266 .7%3 
.641438 1.685424 .7945 
.644240 1.671766 .7969 
A46945 1.660564.7980 
.649559 1.65lU76 .7W 
,652070 1.637233 .&X6 
,654" 1.628, .7w 
.656= 1.620' .7%* 
LooocoO lAooooO.8047 

2.176914 .9114 
1.759803 .9150 2.122838 .9119 
1.730348 .9152 2.074810 .9123 
1.703617 .9153 2.031352 .9130 
1.679646 .9151 1.992608 ..9129 
1.658311 .9143 1.958476 .9121 
1.638011 .9144 1.926037 .!a22 
1.619525 .9141 
1.602602 .9136 
1.587260 .9127 
1.572460 .9125 

22 1.799649 .mg 
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4 .51589 -T- 5 .545536 
6 .569366 

TABLE 2 Conlinued 

k=3 

,454523 3.685041 .99 

k=4 

3.6697 1.00001.36438 5.9524 1.0000 
4.648026 .9974 
3.918669 .9950 
3.453@?0 .9928 
3.132116 .9913 
2.894764 .9889 
2.711432 .9888 
2.567283 .9870 
2.450402 .9854 
2.352375 .9842 
2.260@ .9ar 
2.180, .gar 
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TABLE 2 Continued 

k=5 

n c&10) c2LlO) REL c1(.c5) c2l.05) REL c&01) c2LOl) EL 

= .54624 2.5381 1.0000 -48821 3.0798 1.0000 .39701 4.6382 1.0000 
6 .570329 2.298191 .9986 .513745 2.727516 .9986 .423449 3.908164 .9984 
7 .590361 2.133980 .9972 .535134 2.491467 .9972 .445910 3.442582 .9972 
8 .6Q7304 2.014293 .9958 .553320 2.322211 .9957 .465214 3.1207~7 .99S8 
9 .622144 1.921884 .9950 .569343 2.193313 .9950 .482421 2.883010 .9949 

10 .635076 1.848925 .9938 .583354 2.277761 .9938 .497574 2.701381 .9938 
11 .646633 1.789205 .9931 .595927 2.010875 .9930 .511286 2.557022 .9928 
I.2 .656983 1.739543 .9921 .607229 1.943376 .9921 .514* 2 545* .992* 
13 .666352 1.697408 .9912 617482 1.886607 .9911 .527* 2.428" .991+ 
14 .669, 1.691* .990" .620, 1.87W .990" .538+ 2.33W .9!P 
15 .677+ 1.654* .980" .630+ 1.82Y .980" .549+ 2.247' .980'@ 
m#lxmcmo l.ooocm .9734a- 1.000000 .9734xOOOOOO 1.000000 .9734 

'7. COSCLUSIONS 

We conclude that the high efficiency of point estimates of CT based on optimally 
selected order statistics carries over into interval estimation of u based on these 
estimates. We have seen that, in large samples, the same quantiles are optimal 
for both point and interval estimation of u and that various optimality criteria 
for selecting these quantiles are equivalent. 

Finally, it is worth pointing out that the chi-square approximation of Section 5 
is surely most valuable when Table 2 is inapplicable because the sample size 
is too large or other than the optimal ranks are available. 
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