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We obtain exact and approximate confidence intervals (tabulated for 909, 95%,
and 999%,) for the scale parameter, s, of the exponential distribution in small and
large samples. The exact confidence intervals are based on the distributions of the
BLUE and ABLE of ¢, using k¥ optimally selected order statistics from a random
sample of size n and are tabulated for & = 1(1)5 and various n. The approximate
intervals are based on approximating chi-square distributions. We find that in large
samples, the optimal quantiles for the interval estimation of ¢ are the same as those
for the point estimation of o, for several optimality criteria; or, in other words, these
several criteria are equivalent in large samples.
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1. INTRODUCTION

Let X(1) < X(2) < -+ < X(n) denote the order statistics of a random
sample of size n from an exponential population with p.d.f.:

e(x; u, o) = (1/0) exp {(u — 2)/0}, @ > py, o > 0.

We wish to find confidence intervals for ¢ on the basis of % suitably chosen
order statistics X(n;) (¢ = 1,2, -+ , k), wherel < n, < n, < - <, < n
and 1 < k < n. These intervals will be obtained from the distributions of &%,
the best linear unbiased estimate (BLUE) of o, and from those of ¢%, the asymp-
totically best linear estimate (ABLE) of 4.

Point estimation of ¢ based on selected subsets of the order statistics in
small samples has been studied by Harter (1961), Kulldorff (1963b), Saleh
(1967), Sarhan, Greenberg and Ogawa (1963), Siddiqui (1963) and Ukita
(1955), and the large sample case (n — o) has been treated by Kulldorff (1963a),
Ogawa (1960), Saleh (1966) and Saleh and Ali (1966). Interval estimation of «
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372 K. 5. KAMINSKY

has been studied by Harter (1964) and Kaminsky (1968) for small samples;
Ogawa (p. 381 of Sarhan and Greenberg (1962)) and Kaminsky (1968) for
large samples.

2. NoraTioN AND SoME Previous RESULTS

First, it is well known that
Xm)=p+ 2 (—3j+D7V,,
=1

(m =1,2, ---,n), where the V’s are mutually independent and distributed
as e(x; 0, o).
Now, extending Kulldorff’s notation (1963b), let

= 7(2; mn—3+ D7,

wherer = 1,2, -+ ;2 =1,2, -+ | k; 8,0/030 = 81 1+1/02.241 = 0 and the sub-
seript form % (v) will mean throughout that % runs from n,., + 1 to n, .

IfweletO = A < A, < -+ < A < Mexy = 1, then the population A;-quantile
ofe(z;0, Disu; =In (1 —X\)'GE=0,1,--,k) and uy,, = .

The following results are from Kulldorff (1963a, 1963b) and Ogawa (1960):

(a) If g is known, the BLUE and ABLE of ¢ based on the ranks n; ( =
1,2, --+ , k) and n, = 0 are respectively

o* = o¥(k, n; ) = bou + 2%, b;X(n;) and
o% = o%(k, n; u) = B + D%, B.X(n,) where

bi = (511'/52«‘ - 51,i+1/62,i+1)/K (7: = 0! 1} ) k))

By, = u,/{(1 — exp (u.))K*},

B, = (Ai - Ai+1)/1<* (7/ =1,2 - :k)y

A; = (us — wim)/lexp (w) —exp (wi-)} G =1,2, -+, k),
Ay = 0

K = Zl_l 82./64; and

K* = )% (u; — ui-1)?/{exp (u:) — exp (u;-1)}. Also,

Var (¢%) = ¢/K, while if n is large and n;, = [n\;] + 1 then we have ap-
proximately

Var (¢%) = ¢°/(nK*). It can be shown [4] that

E@%) = Ok, Ab;/K¥)e and

Var (o%) = {D i, A¥W,./(K*)®}s°, exactly. It will follow from Lemma 1
that o% is unbiased for ¢ only in the limit (n — «) and the asymptotic variance
formula above is valid.

(b) If 4 and ¢ are both unknown, the BLUE and ABLE of ¢, based on the
same order statistics as in (a), are respectively

ot = o%(k, n; u¥) = Z‘.,l d.X(n;) and
o% = o¥(k, n; u%) = 2. *., D.X(n;) where
d1 = —512/(L522);

d;, = (51.'/52; - 51.¢+1/52,;+1)/L (1 = 2: 3» ) k);
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Dl = —AI/L*)

D; = (A; — Auy)/L* t=2---, k),

L = Yk, 8%,/8, and

L* = D%, (ui — ui—y)?/{exp (u;) — exp (u;-,)}. Also, the BLUE and
ABLE of u are respectively

pt = X(n) — o%(k, n; p%)d1 and

wy = X(n) — o%(k, n; p%)u, while

Var (¢%) = o*/L; Var (u%) = ¢"(6u + &,/L). @)

3. SMALL SAMPLES

If n, the sample size, is small, we will say that the ranks n, , --- , n, are
optimal for the point or interval estimation of o (or u) if Var (¢%) (or Var (u*))

is a minimum for these ranks over the Z possible subsamples of size k of the

random sample of size n. (Clearly, this is equivalent to maximizing K (or L)).
We do this for two reasons: First, as we will see from Theorem 6, various other
possible optimality criteria for selecting the ranks are equivalent in large samples
to maximizing K (i.e., minimizing Var (¢*)). Second, it enables us to use the
tables of Harter (1961) and Kulldorff (1963b) where optimal ranks may be
found for k£ = 1, 2 in Harter and k¥ = 3, 4 and 5 in Kulldorff.

Kulldorff (1963b) also discovered the pleasing fact that if both u and o are
unknown, then the optimal ranks for estimating them are the same:

Theorem 1: (Kulldorff, 1963b) Let n, ( = 1, -+-- , k¥ — 1) be the optimal
ranks when selecting & — 1 order statistics from a sample of size n — 1 for the
estimation of ¢ when u is known; let b; ( = 0, --- , k — 1) be the coefficients
of the corresponding BLUE bou ++ D %! b, X(n!); and let ¢*/K’ be the variance
of this BLUE. Then the variances (1) both attain their minima for n, = 1
andn;, =nj_, +1¢=2--+,k). Also,d;, =b,., ¢=1, --- , k), L =K,
Var (¢%) = ¢°/K’ and Var (u*) = ¢*(1 + 1/K’)/n".
Now, noting that we can write o*(k, n; ) =

k ni

k
L b=+ DTV = 3 paVy, @
where p;; = (81,/82:)/{(n — j + 1)K}, it can be shown that ¢*(k, n; u%) and
o*(k — 1,n — 1; u) have the same distribution, as longasn, = 1,n, = n/_, + 1
@=2 . ,k), %k, n;pt)isbasedonn, , --+ ,nand e*(k — 1, n — 1; p)
is based on n{ , -+, n[_, (whether or not these ranks are optimal). From this
and from Theorem 1, we can state the particular result:

Theorem 2: For optimal estimation of o, o%(k, n; u*) and o*(k — 1, n — 1; )
have the same distribution. (All proofs are omitted but can be found in [4] or
by contacting the author).

A useful by-product of this result is that it will not be necessary to generate
tables of confidence irftervals for ¢ when g is unknown, since tables for the case
of u known can be used by entering these tables with k replaced by & — 1 and
n replaced by n — 1 (see Example 2).
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The distributions of certain linear combinations of exponential order statistics
can be found in Like§, (1967). We encountered two types of linear combination
(2) in compiling Table 2. We now give the distribution of ¢%(k, n; u):

Theorem 3: (a) If in (2), all p,,’s are distinct, then the e.d.f. of o*(k, n; u)/c is
Fi(x) =1 — 2% > . ha: exp (—x/pi;), £ > 0; 0 otherwise, where

H II (pii/@i; — .2)}.

r=1 8(r)
1121

(b) If in (2), exactly m of the p;;’s are equal to p while the remaining n, — m
are distinet, then the c.d.f. of o*(k, n; u)/e¢ has the form

ng~m m m—j
Fiiz) =1 - (Z ae M + e 3 3, a,,,,_m+,(x/p)‘/i!>,
j= F=1 i=
where we have (without loss of generality) rearran
first n, — m are distinet and these we have renamed ¢; (j =
The a’s are functions of ¢,’s and p only.
In Table 2, using the optimal ranks for ¢ with u known, found in Harter
(1961) and Kulldorff (1963b), we have compiled exact 909, 959, and 999,
confidence intervals for ¢, & = 1(1)5 and various n. The quantities ¢; and c.,
in the table are defined by o/2 = Plo*/c £ 'k, n; )} = Plo%/c >
cit(k, n; @)}, Thus, an exact 100(1 — «)9%, confidence interval for ¢, based on
the % opt1mal ranks n, , - -+ , M, I8

(Cl(k: n; a)a'*l‘) 02(k7 n; a)a*f)- (3)

We will now compare this interval (3) with the ecorresponding interval based
on the complete sample. We assume that u is known (and without loss
of generality, that it is zero). If the complete sample is used to estimate o,
then the BLUE of ¢ is simply the sample mean: that is, e*(n, n; 0) = X. It is
well known that 2nX/c is a chi-square variate with 2n degrees of freedom so
that ¢i(n, n; @) = 2n/x}_./2.2. a0d c2(n, n; @) = 2n/x%,2.2. - The confidence
interval based on X, corresponding to (3) is

(cl(n> n; a)X) 62(n) n; a)X) (4)

o*(k, n; u) is known to be highly efficient for ¢ when compared with X, even
for small k. It is natural then to compare the intervals (3) and (4) to see how
efficient the interval (3) is relative to (4). One simple way to do this is on the
basis of the ratio of expected lengths of the intervals ((4) in the numerator).
This ratio is

&M, n;a) — aln,n;e)
ek, m;a) — ek, n; @)

REL (k,n;a) =

This quantity has been tabulated in Table 2. We see that the interval (3) is
quite efficient relative to the interval (4). The behaviour of REL in large samples

is discussed in the next section together with several other criteria for comparing
(3) and (4).
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4. LARGE SAMPLES

If we are dealing with large samples, we will base our estimate of ¢ on the
sample quantiles X(n.) ({ = 1, 2, --- , k) where henceforth, unless otherwise
specified, we will have

n, = [n\] + 1,

where [-] is the greatest integer function. The quantiles u; (¢ = 1, -+ , k)
(or equivalently, the X’s) will be ealled optimal for the point or interval estimation
of ¢ if and only if K* (or L* if x is unknown) is a maximum for these quantiles.

From a result of Kulldorff’s (1963a) analogous to Theorem 1, we can state
a large sample analogue to Theorem 2:

Theorem 4: For optimal estimation of o, in large samples, o%(k, n; p¥%¥) and
o%(k — 1, n — 1; u) have the same distribution.
Now, the c.d.f. of ¢%(k, n; u), Fo(z), is the same as F,(x), with p,,; replaced
by P;; = A;/{(n — j + 1)K*} (because ¢%(k, n; u) can be written o%(k, n; u) =
1 ioPiiV). We can thus define a 100(1 — )% confidence interval
for ¢ (based on the optimal quantiles), analogous to (3). It is:

(Cl(k’ n’y a)dﬂ;: CZ(ky 77) 0!)0’";), (5)

where C; and C, are such that o/2 = F,(C;'(k, n; &) = 1 — F(C;'(k, n; @)).
Although we do not tabulate the interval (5), we discuss its large sample be-
haviour relative to the small sample ones, and we also discuss approximating
it (and the interval (3)) below. First, we state some limit theorems:

Lemma 1: 8, = u; — %y + 0(n™") while form = 2,3, ---
n o = [TV = TV (m — 1) + 0(n7T).

From this lemma we have

Theorem 5: Given the quantiles u;, (z = 1, --- , k), then,

(a) K/n = K* + 0(n™"),

(b) L/n = L* 4- 0(n™"),
(¢c) while both X *_, (81:/8::K)"(n™ '8,;) and

* o (A /K®™(n™'5,,,) converge to
(K*)™ 20, A" — ™) /(m — 1) asn — o

The cumulants of ¢*/o and ¢%/c are easily found to be

k
wn = (m — DK™ 3 87 6n:/05 , and

i=1
k
Qn=(m—DUEHN™ 2 AT 8, (m=1,2--°)

réspectively. The coefficients of skewness and excess (see for example p. 85,
Kendall and Stuart, Vol I, 1963) of ¢*/¢ are:

%
Y = 2(K)~% Z 5?-"53(/5:-' , and

i1
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%
Yz = 6(K)_2 Z 5:."545/5;4 ,

i=1

respectively, while those of ¢%/s are

k k
T, =2 3 A 6,./() A2 8%, and

=1 i=1

k k

T, =6 2 A 8,:/(D A? 8,,)° respectively.
i=1 i=1

These quantities are used later to help justify approximating the distributions

of ¢%/c (i = 1, 2) with chi-square distributions.

Mosteller (1946) proved under regularity conditions that the k sample
quantiles are jointly asymptotically normally distributed, and so it follows
that o%/o (¢ = 1, 2), properly normalized, converge to the univariate normal.
This can be seen directly by noting that the cumulants of VV/K(c*/oc — 1)
and VnK*(s%/s — 1) converge to the cumulants of the standard normal
distribution.

Other criteria than those we adopted exist for declaring the ranks or quantiles
optimal for estimation of s. Some of these are (comparing the intervals (3)
and (5) to (4), with (4) in the numerator), the maximizing of: the ratio of
expected lengths, REL (k, n; a); the ratio of expected squared lengths,
RESL (k, n; ), the ratio of variances of the lengths, RVL (k, n; «), and Harter’s
quantity (1964) of the ratio of the sum of mean squared deviations of the upper
and lower confidence bounds from the true value, EFF (k, n; a). In large samples,
all of these eriteria are equivalent to maximizing K*. In other words, all of these
optimality criteria are equivalent in large samples. This also means that the
optimal quantiles for the interval estimation of ¢, in large samples, are the
same as those for the point estimation of ¢. This is particularly useful since
the optimal quantiles are tabulated for ¥ = 1(1)15 in Sarhan and Greenberg
(1962) for example. That these facts are true follows from the next theorem,
the proof of which depends on the asymptotic normality of o%/¢ (@ = 1, 2):

Theorem 6: For k and « given, u known and ¢* ( = 1, 2) based on the quan-
tiles u; (Z = 1, --- , k) (for both (3) and (5) compared with (4)) we have, as

n — @,

(a) REL (k, n; ) > VK*,

(b) RESL (k, n; a) — K¥,

(¢) RVL (k, n; ) — (K*)? and
(d) EFF (k, n; a) — K*.

5. APPROXIMATE CONFIDENCE INTERVALS FOR o

A quite satisfactory approximation to the intervals (3) and (5) can be obtained
by treating [2K]o*/¢ and [2nK*]e%/c as chi-square variates with [2K] and
[2nK*] degrees of freedom respectively. Clearly, this amounts to matching the
first two moments of [2K]o%*/c and [2nK*|o%/¢ with the first two moments
of chi-square variates (Harter (1968), suggests using 2K rather than [2K]
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and interpolating in the chi-square tables). The approximate 100(1 — )%
confidence interval corresponding to the intervals (3) and (5) are therefore

([2K]°'T/Xf—a/2, 12K] » [2K]UT/X2;/2. [2K1) and (6)
([2nK*10%/Xi-ara.120x0 5 [20K*10%/Xes2. 12nk01) - )

The asymptotic normality of ¢*/¢ (z = 1, 2) and x3, can be used to show
that (given u, ,7 = 1, - - - , k) the attained probability content of the intervals
(6) and (7) converge to 1 — « as n increases, and that the ratio of expected
lengths (or any of the other three ratios mentioned in the preceding section)
of the intervals (3) to (6) and (5) to (7) converge to one with increasing n.
A further comparison can be based on the ratios of coefficients of skewness
and excess. For x5, , these coefficients are ¢,(df) = \/§/df and &,(df) = 12/df.
From Theorem 5c¢ we easily see that v./£:(J2K]) and T./¢.([2nK*]) converge
to Q;(k) (7 = 1, 2) as n — «, where

Queal) = (%)™ 25 A3 — & fm — 1),

m = 3, 4. These two quantities (based on the optimal u.’s) are given in Table 1
below. That these quantities appear to be converging to one with increasing k&
further supports our approximations.

The above results indicate that we may treat the intervals (3) and (6) (or (5)
to (7)) as virtually interchangeable in large samples. On the strength of several
examples in [4], there is considerable empirical evidence that the approximations
are quite good even when 7 is small (see also, Examples 1 and 3).

6. ILLUSTRATIVE EXAMPLES

Example 1: To estimate homogeneity in performance, o, of a certain electronic
part subjected to continuous and constant stress, 25 such parts were subjected

TabLe 1
Limits of ratios of skewness and excess

Q; (k) (k)

k
1 1,20% 1.659
2 1.119 1.376
3 1.078 1,244
4 1.055 1.172
5 1.041 1.127
6 1.032 1.098
7 1.025 1.078
8 1.021 1.064
9 1.017 1.053
10 1.015 1.045
11 1.013 1.038
12 1.011 1.033
13 1.009 1.029
14 1.008 1.025

15 1.007 1,023
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to specified conditions and their failure times, in ascending order were (in hours):
0.9, 10.0, 17.9, 23.9, 24.8, 27.1, 32.9, 37.5, 49.5, 59.2, 60.4, 65.4, 69.5, 80.4,
88.3, 96.4, 134.9, 137.5, 138.2, 168.8, 172.0, 212.4, 215.0, 276.4 and 430.3. It
is known from past experience that this type of part follows an exponential
failure distribution, e(z; u, o) (the failure times are actually from e(zx; 0, 100)).
A 959, confidence interval is desired for ¢, but in the interest of compressing
the data, only the best three order statistics are to be used. Suppose (for the
present) that it is known that ¢ = 0. From Kulldorff’s Table 1, with k¥ = 3
and n = 25, we find K = 229074 and o%(3, 25; 0) = —.728691-0 +
465654 - X (14) 4+ .204237-X(22) + .058799-X(25) = 106.12 (Notice that
VK/n = 9572, REL (3, 25; .05) = .9580 and V/K* = .9439 are reasonably
close to each other, as expected from Theorems 5 and 6). From Table 2 we get
the 959, confidence interval (.688613-106.12, 1.570782-106.12) = (73.08, 166.69)
for ¢. Now, if we had used the entire sample to estimate s, we would have
a%(25, 25; 0) = X = 105.18 and the corresponding 959, confidence interval
(from (4)) is (.700-105.18, 1.545-105.18) = (73.6, 162.5). We can conclude
that little information about ¢ was lost by using only the best three ordered
observations, We will now approximate the exact interval (based on k = 3,
n = 25) using the chi-square approximation of Section 5: [2K] = 45, so that
treating 450%/¢ as x3; , we obtain the approximate 959, confidence interval
(from (6)) (.688-106.12, 1.586-106.12) = (73.0, 168.3). This appears to be a
quite adequate approximation.

Example 2: In the above example, suppose that the information on when
the electronic parts were put on test has been lost (i.e., u is unknown) and we
still wish to use the best three observations. Theorem 1 dictates that we enter
Harter’s table (1961) with & = 2 and n = 24; this gives us ¢*(3, 25; p¥) =
—.683202- X (1) -+ .521895- X (17) + .161307- X (24) = 114.37. Now, Theorem 2
tells us that ¢%(3, 25; u%) and ¢%(2, 24; u) have the same distribution when
optimal ranks are used. Thus, we enter Table 2 with ¥ = 2 and n = 24 and we
obtain the exact 959, ,confidence ,interval for ,s: (.672873-114.37, 1.619525-
114.37) = (76.96, 185.23) and we see (as expected) that some precision has
been lost by not knowing p. K = ¢°/Var {¢%(2, 24; 1)} = 20.1918 (or [2K] =
40), so, if exact tables were not available, one would approximate the desired
interval by treating 400%(3, 25; u*) /¢ as x3, and this yields the approximate 95%,
confidence interval: (.674-114.37, 1.637-114.37) = (77.1, 187.2) and this agrees
well with the above exact interval.

Ezample 3: Once again using the above data, we will estimate the homogeneity
in performance of the electronic parts, but using the large sample theory ([10],
[14] and [15]) and our chi-square approximation. With k = 3,n = 25and ¢ = 0,
we enter table 11D.1 of [14] and find K* = .8910 and ¢%(3, 25;0) = —.7518-0 +
4477-X(14) + .2266-X(21) 4 .0775-X(25) = 108.3. Treating [2nK*|a%/a =
440%/0 as x5, , we caleulate the approximate 959, confidence interval for o:
(.685-108.3, 1.596-108.3) = (74.2, 172.8), and this is reasonably close to the
exact interval of Example 1.
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TABLE 2

379

Ezact 100(1 — @)% confidence intervals for o based on the k optimum ranks from a random
sample of size n with p known. When u is unknown, the table applies for the k + 1
optimum ranks from a random sample of size n + 1. Entries accompanied
by an asterisk (*) are approximate a

ks

1

cl(.lo) cz( .10) REL

el(.OS)

c,(,05) REL

°1( 001)

o,(.01) BT

RbEBomwaovnaunys~

BEBYHNRUN R BY

+333808 19.49573 1.0000
.408037 5.926602 ,9428
449639 3.989633 .9017
4TT512 3,253636 8687
498026 2,865222 8413
524031 2.677141 .8014
543563 2.440875 .8115
559438 2,279599 .8145
572694 2.161954 .8138
585929 2,103160 .7952
.598237 2 013521 .8017
608918 1.942589 .8053
.618298 1.884920 .8067
.626634 1,836986 .8070
.635500 1,807612 .7993
.643369 1.767051 .8023
650479 1,732242 .8041
.656946 1.702005 .8049
.662865 1.675456 .8051
669325 1,657403 .8011
674970 1.633831 .8027
.680184 1,612784 ,8038
685024 1,593855 .8043
.689533 1,576724 .8045
694514 1,564300 .8020
.698842 1,548681 .8031
.702899 1.53439%5 ,8038
JT06712 1,521266 .8041
.710305 1,509169 ,8042
.T14301 1.499997 .8026
.TIT769 1.488764 ,8033
.721054 1.478332 .8037
724167 1.468615 .8040
727127 1.459534 .8041
.T30426 1,452428 ,8029
733294 1.443901 8035
736027 1.435691 .8038
.T308638 1.428355 8040
741387 1.422670 ,8026

+271065
« 342801
.383617
,411262
431779
461747
481927
.498424
.512261
.527887
.540921
.552269
.562269
.571174
.581697
.590172
.597650
.604846
.611258
.618936
.625088
630779
.636066
.640998
.651679
.656137
660337
.664296
.669050
.672684
.676516
.679964
.68%246
.687170
.690356
»693392
.696299
699567

39.49769 1,0000
8,715328 ,9442
5.300539 ,9017
4.109393 .8689
3.510519 8417
3.263140 ,789L
2.912336 ,8029
2.677920 .m
2.509626 ,8090
2.435124 .
2.308955 .7947
2.210162 ,79%
2.130475 .8021
2.064715 .8031
2.028217 7937
1.973050 ,7974
1.925980 .7999
1.885242 ,8013
1.849644 ,8019
1.&7436 .7%9
1,795988 .7990
1.768014 .8004
1.742921 8014
1,720277 .8018
1.705097 7987
1.684529 ,8001
1.665757 .8010
1.648560 8016
1.632719 .8018
1.621551 .T7999
1,606905 ,8008
1,593321 .8014
1,590680 8018
1,568307 .8020
1.560267 ,8006
1,549229 ,8013
1.538870 8017
1.529140 .8021
1.522240 8005

286674
.311741
330644
+364486
»384294
. Wl
+414494
433453
3 446%2
458659
.469104
478442
-491554
4500596
. m
.516361
525287
.532939
539666
.545897
551719
557153
.569940
»574901
579590
«584019
»590056
-994382
+598467
+602365
606080
611084
618165
.621468
+625652

.188739299,4996 1,0000
.250409 20.45403 .9422

9.776458 ,9022
6.739301 8696
5.365608 .6424
4,948279 .59
40%61 .7816
3.T37567 .7928
3.411015 .7969
3.295958 .7655
3.059585 .TT16
2,8768552 .T856
2,735205 .7906
2.618905 7932
2.565150 .
2.469204 .
2,388251 .
2.318968 .
2.258904 .T940
2.227036 .
2.174595 .
2.128304 .
2.087031 .T978
2.050005 .
2,028545 .
1.%162 .
1.964874 7942
1.937204 .
1.911941 .
1.896280 ,7951
lum .
1.851493 7956
1,831584 .
181305 .
1.801028 ,7950
1,783
1.767€17 .T969
1752480 7972
1,742921 .7950
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TaBLE 2 Continued

k=1

e,(.10)

c,(,10)

REL

¢, (.05)

02( uos)

e,(.01)

cz(.OI)

REL

4
42
43
44
45
46
47
48
49

»T746348
«748674
750907
753274
+755447
757539
»759552
761492
.763561
765453
1000000

1,408804
1.402428
1.396378
1.391698
1.385928
1,380450
1,375229
1,370237
1,366342
1.361495
1,000000

8036
,8039
8040
.8030

705099
+T07694
710187
.T13006
«T15434
STL7776
720028
«722202
«T24665
.726788

000000

1,504372
1,496183
1,488395
1,482780
1.475336
1.468310
1.461645
1.455191
1,450725
1.444173
1,000000

.631987
.634977
637832
641438
.644240
646945
.649559
.652070
.654%

.656%

1,000000

1,714888 ,7972

10703034
1,690266
1,685424
1.671766
1,660564
1.651076
1,637233
1,628

1.620%

1,000000

1973
7963
. 7“5
7969
~7980
. 7m
.8016
S T95%
.T96*
L] m?

k=2

.42159
05074&
536464
.559246
577527
.593191
.607527
.619791
.630441
.6402735
.649382
.657553
.664910
.672908
.679843
.686180
692290
.697936
.703161
. 708054
.712792
.717216
.721361
.725307
.729131
132737
.T36*

. T40%
000000

5.6243 1.0000
3.708892 .9864

2.993964
2.600570
2.357417
2.193866
2.075932
1,979818
1.904845
1.844600
1.795375
1.750942
1,713262
1.680860
1.6570%1
1.629012
1.604351
1.582002
1.561702
1,543452
1.527128
1,511579
1.497388
1.484378
1.472520
1.461084
1.450481
1.439%

1.430%

1, 000000

.9699
.9649
.95%
.9525
.9449
. 9424
.9388
.9345
.9297
.9278
.9252
.9222
.9161
.9165
.9162
.9163
.0164
.9160
L9152
.9151
.0148
.9142
.9134
.9131
.9126
.O13%
L9153

. 9057

. 35896

.410918
446224
LAT6737
.500699
.519995
.536811
.552199
.565390
.576866
587603
.597564
.606473
.614505
.623862
.631481
.638450
.645219
.651462
.657244
.662684
.667951
.672873
677486
681900
.686171
690202
.694%

.698599
000000

8,2645 11,0000

4,905481
3.760035
3.162896
2,568503
2.401290
2,267017
2.163235
2.080481
2.013679
1.953627
1,902938
1,859533
1.829846
1.792533
1,759803
1.730348
1.703617
1.679646
1,658311
1.638011
1.619525
1,602602
1.587260
1.572460
1.558721
1.546%

1.533946
1, 000000

.9864
.9699
.9648
.95%
9525
.9447
.9423
.9388
.9345
.9295
.9276
.9251
.9222
.9144
.9150
.9150
.9152
.9153
.9151
.9143
.9144
.9141
.9136
9127
.9125
.9121
.912*
.9120
20057

.26918 19,3050 1,0000

.318176
.352067
.383183
~407547
.427310
.445133
.461424
.475449
.487700
.499544
.510402
.520140
.528942
.540438
.548903
.556664
.564300
.571331
577852
.584032
590025
595634
.602%
. 606*
610884
.615522
«620%
000000

8.991545
6.112578
4.780509
4,034661
3.565275
3.245401
2.996993
2,808997
2.661685
2,545384
2.442116
2.355864
2.282699
2,239045
2.176914
2.122838
2.074810
2.031352
1.992608
1.958476
1.926037
1,896855
1.865*

1.832%

1.823012
1,799649
1,760

1,765%

1., 000000

.9871
9702
.9646
-9596
.9526
.9448
L d %18
.93%
.9345
.9293
.9274
.9248
.9223
.9105
.9114
29119
L] 91”

<9129

<9121
9122
9123
«9l2*
. 912‘
+9107
.9119
JO12%
912w
29057
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k=3

381

cl(.lo)

ca(.lo)

REL

cl(.05)

cz(.OS)

REL

c,(.01)

cz(.OI)

REL

.47649
.514452
.543289
.566895
585964
.602166
.616936
.629910
.641216
.651569
.660842
669155
.676883
684000
.690584
.696827
.702723
.708176
.113238
.718101
J121*
.To6*
.T30%
000000

3.6697 1.0000

2,938568
2.556025
2.315944
2.153950
2.035647
1,942426
1.867746
1.807634
1.756980
1.714243
1,677877
1.645993
1,617848
1.593391
1.570705
1.550072
1.531516
1.514770
1.499232
1.488%

1.471%

1.460%

1,.000000

9948
9895
.9866
.9819
9774
L9757
9746
9727
9715
<9102
.9683
. 9668
.9654
.9635
.9626
.9621
.9614
.9603
.9596
.959*
.958¥%
.958%
L9439

454523
.484703
509670
529916
+547245
563250
«577299
589566
.600862
.610996
.620095
.628588
.636422
.643730
.650637
657173
.663224
.668845
LOT3*
.679321
.684*
.688613
000000

4,8497 1,00001.32349
.9947 |, 362240
9895 1,392687
.9864 |,418393
.9819 1.439408
.9773 |.457665
L9757 1.474974
.9746 |.490136
.97271.503427
.9715 [.515808
.97011.526952
9683 |.536986
.9668 |,546430
.9654 |,555171
.96351.563462
.9626 |.571245
.9621.578*
.9613.585505
.96021.592*
.960* | .59T7*
.9589}.603*

3,685041
3.,103784
2,750609
2.517145
2,349492
2.219504
2.116422
2.034093
1,965315
1,907620
1.858765
1.816188
1.778749
1,746428
1,716478
1.689403
1.665043
1.643202
1.621*

1,604282
1.588%

1.570782
1.000000

.958*

609*

.9580 :614’
29439 1,000000

k=4

8.8731
5,977308
4,679388
3.945961
3,483456
3.163488
2.923659
2.737854
2,592059
2.472485
2.373439
2,290558
2.219190
2.156907
2,104020
2.054356
2.009*
1.971838
1.960%
1.950*
1.935*
1.870%
1 845*

1,0000
.9952
.98%

9867

9820

LITTT

9752

.9748

L9727

.9716

-9702

0%82

.9670

.9656

.9631

.9630

.962*

-9615

.960%

-960"

.959*

.958%

.958*

«51589
545536
569366
.589134
.605934
.620561
.633587
.644981
.655150
.664441
ET2%
OSM
000000

2,9274 1
2.542117
2.303125
2.139486
2.019959
1.927892
1.854167
1,794659
1,745269
1.703073
1.673%
1,634967
1., 000000

» 0000
.9977
.9952
.9929
9909
+9893
.9884
‘9%9
.9852
.9840
.982%
.9819
.9628

.45622
487366
512601
533676
551703
567473
+581595
+593975
.605057
615217
.624416
632%
000000

3.,6697 1
3.085387
2.733934
2,498559
2,329449
2.200940
2.099192
2.017722
1.950596
1.893629
1.845319
1,815+
1, 000000

.0000
.9975
.9952
.9929
9908
+9893
.9884
+9869
.9851
9839
. 9824
982

.36438
+395959
.422023
.444086
.463209
.480096
.495381
.508845
.520970
532169
543
553+

196281

5.9524 1
4,648026
3.918669
3.453870
3.132116
2,894764
2.711432
2.567283
2.450402
2,352375
2.260%

-0000
.9974
«9950
. %28
. %13
9689
9888
.9870

. 2,180% 982+
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TasrLE 2 Conlinued

k=5

ncl(.lo) cz\.IO) REL cl(.os) cz(.os) REL cl(.Ol) c2(.01) REL

.54624 2.5381 1.0000}.48821 3,0798 1,0000}.39701 4.6382 1.0000
.570329 2.298191 .9986!.513745 2.727516 .9986).423449 3.908164 .9984
590361 2.133980 .9972|.535134 2.491467 .9972|.445910 3.442582 .9972
607304 2.014293 .9958],553320 2.322211 .9957.465214 3.1207s7 .9958
622144 1.921884 .9950|.569343 2,193313 .9950|.482421 2.883010 .9949
.635076 1.848925 .9938|.583354 2,277761 .9938|.497574 2.701381 .9938
11|.646633 1.789205 .9931{.595927 2.010875 .9530.511286 2.557022 .9928
12|.656983 1.739543 .9921).607229 1.943376 .9921|.514* 2 545%  .ggo*
13{.666352 1.697408 .9012| 617482 1.886607 .9911{.527*  2.428%  ,991*
14].669*  1.601* .990%|.620%  1.878% .990%|.538%  2.330¢  .990%
150.677%  1.654% .980%|.630%  1.829%  .980%(.549%  2.247%  ,980*

mLOOOOOO 1,000000 ,222&@,000000 1,000000 ,9734 E,OOOOOO 1,000000 ,9734

7. CONCLUSIONS

We conclude that the high efficiency of point estimates of o based on optimally
selected order statistics carries over into interval estimation of o based on these
estimates. We have seen that, in large samples, the same quantiles are optimal
for both point and interval estimation of ¢ and that various optimality criteria
for selecting these quantiles are equivalent.

Finally, it is worth pointing out that the chi-square approximation of Section 5
is surely most valuable when Table 2 is inapplicable because the sample size
is too large or other than the optimal ranks are available.
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