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Heavy-Tailed Distributions: Properties and Tests
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Distributions with heavier-than-exponential tails are studied for describing empirical
phenomena. It is argued that the concept of increasing “conditional mean exceedance’’
provides a reasonable way of describing the heavy-tail phenomenon, and a family of
Pareto distributions is shown to represent distributions for which this parameter is
linearly increasing. A test is developed and modified so as to be suitable for testing
heavy-tailedness, and some graphical procedures are also suggested.
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1. INTRODUCTION

Despite the wide variety of continuous statistical
distributions encountered in theoretical work only
a relatively few families of them are commonly
used in applications as models for empirical phenom-
ena. Classically, of course, the normal distribution
has nearly two centuries of use as a “law of errors”
for the empirical data. The widespread use of the
exponential family, particularly for lifetime data,
seems to date only since the work of Davis (1952)
and Epstein and Sobel (1953). Barlow and Proschan
(1965) note the popularity of the gamma, Weibull,
lognormal, and modified extreme value families
as alternatives for lifetime distribution models.
Since the work of Gumbel (1958), the extreme-
value distribution has been important in hydro-
logical and meteorological study, but for describing
empirical data the lognormal and the gamma family
(including exponential) seem to be by far the most
widely used; see, for example, Yevjevich (1971).
The gamma family also shows up in operations
research applications under its alias of the Erlang
distribution (see Wagner (1969)). Finally, the
Pareto family has found application only as a
distribution for income statistics and a few other
specialized variables (see Johnson and Kotz (1970)
and Malik (1970)). These and other families have
been conveniently summarized and extensively
discussed by Johnson and Kotz.

The experimenter today, with reference to a long
history of use for one particular family of distribu-
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tions in his area, typically makes an a priori selection
of the family and then estimates its parameters in
order to get a best fit. It is in the selection of the
family, though, that an important mistake can be
made. In particular, it is difficult to make a selection
of a family that will suitably model the ‘‘tails” of
the distribution. By definition, there will not be
many observations from the tails of the distribution
to be fit, so that a chi-square goodness-of-fit test
can never reveal an ill-fitting tail without a very
large amount of data. Likewise, the empirical cdf
will be close to zero or one in the tails, so that a
Kolmogorov—-Smirnov test will also fail.

Nonetheless, failure to suitably fit the tail of the
distribution can be very serious even if the fitted
distribution ‘“looks good’ in terms of the resemblance
between its density function and a frequency histo-
gram. Suppose, for example, that a set of flood data
were erroneously modeled using a one-sided normal
distribution when in fact a one-sided Cauchy
distribution was called for. As every student notices
in his first course in distribution theory, the normal
and Cauchy density functions look remarkably
similar. However, the hypothesized error would
result in underestimating the magnitude of a 100-
year flood, compared to that of a 10-year flood, by
a factor of 6.44; for the 200-year flood, he would
similarly underestimate by a factor of 11.8.

This example is of course artificial, particularly
so in that the experimenter wouldn’t be using a
normal distribution; ordinarily he would be using
a gamma,. But the same principle applies, and it is
therefore that we should consider the question:
when is a gamma tail too light? Henceforth we will
in this paper restrict the problem to one of fitting
continuous non-negative data (such as hydrologic,
meteorological, or life testing data), and concentrate
on the question of whether the actual tail of the
distribution is heavier than a gamma tail. The
gamma tail is, of course, an exponential tail since
the polynomial component becomes relatively un-
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important at the extreme. Based on this empirical
situation, then, we may say without being exces-
sively arbitrary that ‘“heavy-tailed” means having
a density function that goes to zero less rapidly than
an exponential function. As will be seen, this is a
convenient definition for theoretical reasons as well.
It will be noted that most of the commonly used
distributions mentioned above have either exponen-
tial or lighter-than-exponential tails; the heavy-
tailed exceptions are the lognormal and Pareto
families, and rarely used sub-families of the Weibull.

There is evidence that heavy-tailed distributions
may in fact occur more commonly than would be
supposed from the infrequency of their use. Mielke
(1973), in investigating precipitation data, found
that they could better be fit by “kappa’ distri-
butions, a heavy-tailed family with distribution
function

F@) = &"/( + 2™

than with gamma distributions. Granger and Orr
(1972) suggest the use of infinite-variance stable
distributions as possible fits for various types of
economic data. The stable distributions also seem
to be important in hydrology; Boes and Salas-
La Cruz (1973) have shown them to be of great
value in explaining the “Hurst phenomenon” of
partial sum ranges that increase faster than the
square root of sample size.

2. Tue ConNprrioNAL MEAN ExcEEDANCE (CME)

If one were to approach the subject of heavy-
tailedness from a theoretical viewpoint, he might
argue as follows: a distribution has a “heavy tail”
if there tend to be many large exceedances of a given
magnitude. “Many”’ and ‘“large’”’ are comparative
terms, so he might be more specific by saying that
the average exceedance (the concept of average
incorporating both the number and the magnitude
of the exceedance) tends to get bigger as you get
farther out into the tail of the distribution. This
leads immediately to the concept of the conditional
mean exceedance, which is here defined as

CME, = E(X —z | X > ).

In words, CME, is the average amount by which
the random variable X exceeds a given z, conditional
on that exceedance being non-negative. If X is a
lifetime, as in demographic or reliability work,
CME, will be recognized as the ‘“‘mean residual
lifetime’’.

This line of argument, then, leads to the definition
of a heavytailed distribution as one for which CME,
is an increasing function of z—at least for suffi-
ciently large z, since our concern is only with the
tail of the distribution. Likewise, a decreasing
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CME, characterizes a light-tailed distribution, and
a distribution for which CME, is constant is the
borderline case.

But this is immediately seen to be the same
definition as that arrived at empirically, for from
the definition

1 *_
CME. = 73 f 7t dt

where F(z) = 1 — F(z) is the tail probability
function. Solving the equation for constant CME,
shows that if CME, = 1/A, then the distribution is
exponential with rate parameter A.

Thus, we may characterize the class of heavy-
tailed distributions as those for which the CME is,
for large z, an increasing function of x. This will
henceforth be denoted as ICME (increasing condi-
tional mean exceedance). It may be seen from the
above formula that CME, depends only on the
values of F(t) for t > x, so that the CME does in
fact provide a representation of the tail behavior
as was desired.

3. TestinG ror ICME

Because of its interpretation as mean residual
lifetime, the CME has been studied primarily in
connection with demographic and reliability statis-
tics. Bryson and Siddiqui (1969) identified decreasing
mean residual lifetime as one of seven criteria that
may be used to describe the “aging” of an entity,
and a test for decreasing mean residual lifetime was
suggested by Bryson (1968). It was previously
shown by Barlow and Proschan (1965) that de-
creasing mean residual lifetime is implied by the
more commonly used “aging criterion” of increasing
failure rate (or hazard rate). But the mean residual
lifetime is a weaker parameter than the hazard rate,
in that its behavior depends only on the tail of the
distribution. Many authors have considered the
question of testing for increases or decreases in the
hazard rate, as summarized by Fercho and Ringer
(1972). Hollander and Proschan (1972) developed
a related test for a “new better than used” (NBU)
criterion, but this criterion depends primarily on
the behavior of the lifetime distribution for small x
rather than for large . Among the various descrip-
tors of lifetime distributions that can be used, the
mean residual lifetime seems to have had relatively
little attention.

We now consider testing the null hypothesis
CME, = constant against the alternative that it is
increasing. To be more specific, a reasonable choice
of alternatives is the set of linear functions

CME, = a + bx.
Applying the definition of CME, and solving the
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resultant differential equation yields immediately

_ 1+1/b
F(z) = (a -Ic-l b;)

as the alternative hypothesis (b > 0). Letting
b — 0 gives as the limiting case

F_v(x) — e——z/a

as intended. It is noted by Johnson and Kotz that
the alternative distributions are sometimes called
the family of Lomax distributions, or Pareto
distributions of the second kind. Although originally
suggested by Pareto as one model for income distri-
butions, the family does not seem to have been much
in use this century.

In considering possible tests, we note first that
there is a natural condition of invariance that
applies, in that the test should be independent of
the measurement scale for X. Thus we impose the
constraint that the test be invariant with respect
to the group of transformations

g () = kz, k> 0.
With respect to this group, a maximal invariant for
the sample (171 y L2y T, 13,,) is (yl y Y2, 77, yﬂ—l)
where
Yi = Toy/Tm t=12--,n—1
and the ordered sample is
Ty < T (2) < - K L(ny -

Equivalent y samples must obviously be derived
from data which differ by no more than a scale
factor, so any invariant test must be based on the
y statistics. Application of routine transformation
mechanics gives as the distribution of the y statistics
under the null hypothesis,

nl (n — 1)!
wn

Ly Y2y o0 s Yaet) =

where
n—1 n
w=1+ }:y; = fo/xm) ;
1 i=1

and the density is over the range
0<y <y < "+ < Ypa < L

Under the alternative hypothesis, a similar procedure
yields the result

fu(yl y Y2, 00 :yn-1) = n! (1 + b)n

© » 1 n—1 i ](2b+l)/b
S [1+uIII1+y.-u iy

over the same range. The expression, unfortunately,
remains intractable even in the simplest of special
cases.

Without sacrificing the basic approach of the
problem, we can simplify the mathematics con-
siderably by the following device. If X does have
the indicated Lomax distribution, then

Z=X+A4

will have the more tractable Pareto distribution
F@) =1 0<z< A
=(§>K Z>AA,K>0

where, 1n terms of the previous notation,

K=141/b
and

A = a/b.

(Note that while the distribution exists for all
K > 0, the mean exists only when K > 1.)

A scale-invariant test can now be developed on the
basis of the statistics z, , -+ - , 2z, . The price to be
paid for the simplification of the mathematics is
that it will be necessary to estimate the parameter A
before the xz-statistics can be used. The density
function of Z is now

) = (K/A)A/H™ @ > A).

For a scale-invariant test, take A = 1 without loss
of generality. Then, transform to the maximal
invariant as before, with ¥, = 2, /2 :

» Y1)
= o- v e-er(Tw)

=1

f(ylyy27"'

again over the range
O0<y <ya< - <yoaa < L

Substituting for the y’s gives a likelihood function
proportional to

[ + )/ + AT
{11t + /e + a3

i=1

this may be written

I:v’c(l) + A:l"KM_l:x(n) + A]"

Toa o + A’
where #s, denotes the geometric mean modified
by 4,

for = ([T @ + )

Dividing by the likelihood under the null hypothesis
gives a likelihood ratio proportional to
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[-’L'(n) + A]n[i]n[$<1> + A:|"K+"

Ty + A Z(n) Tga

Again it is evident that no uniformly best test can
be found. However, the following procedure appears
to be a reasonable one. First, select a convenient
value of K for which the most-powerful test could
be selected. Such a value would be K = 1, which
represents the limiting case of distributions for
which the mean exists, and as such is very heavy-
tailed (tail behavior is the same as for the Cauchy
distribution). Second, choose A so that the theoreti-
cal cdf matches the empirical cdf at the point
represented by the largest observation. This esti-
mation procedure guarantees that the tail behavior
will be modeled well, though possibly at the expense
of other parts of the distribution. This constraint
gives

fi = x(ﬂ)/(nl/K - 1)7

or for the case K = 1, simply z.,/(n — 1). After
some simplification, the likelihood ratio is now

proportional to
. T(n)
x(mm - 1).

- 2
Loa

T=

T could be used as a test statistic except for one
remaining problem. Under the assumption that X
has an exponential distribution, X ;, will usually be
small compared to z.,/n — 1, but this will not
necessarily be true if X has, say, a gamma distribu-
tion with a large shape parameter. Accordingly the
use of 7 might run the risk of rejecting the null
hypothesis because of a large x(, rather than
because of a heavy tail. An example of this will be
seen in section 4. It therefore seems desirable to
use instead

r T (n) .

= (n — l)fGAz !
recognizing that this will differ very little from T
when 2y, is small. (The constant (n — 1) is retained
only to reduce the dependence of critical values
on n.) The statistic T” is proposed as a test statistic—
the null hypothesis to be rejected when T is large—
against the ICME alternative, and its use will now
be investigated.

4. UskE OoF THE TEST STATISTIC

To use the proposed test statistic 77, its critical
values are needed under the hypothesis that X has
an exponential distribution. By design, rejection of
the null hypothesis will occur when the distribution
is heavier-tailed than the exponential. Since the
test is scale-invariant, it can be assumed that
E(X) = 1 without loss of generality.
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The complicated form of Zs4 makes it unlikely
that the distribution of T’ can be found explicitly.
Thus, critical values were estimated for the cases
n = 10, 15, 20, 25, and 30, by generating 1,000
values of T for each case on a Hewlett—Packard
9810A programmable caleulator. The 109, 59,
and 1%, critical values were then taken as the 90th,
95th, and 99th percentiles of the generated distri-
bution. Because of the randomness in the method,
using a sample of size 1,000, we have with 959,
confidence:

Quoted level « = 0.01 corresponds to actual
0.004 < o < 0.017

Quoted level a = 0.05 corresponds to actual
0.036 < a < 0.064

0.10 corresponds to actual
0.08 < a < 0.120.

With this understanding, critical values are as
follows:

Quoted level «

a=001l «a=005 «=0.10

n = 10 40 .369 .362
n =15 .39 .358 331
n =20 .37 .334 312
n = 25 .36 322 .208
n = 30 .35 295 271

Although there is some dependence of critical values
on n, the table indicates sufficiently slow variation
that interpolation ean be used safely.

In order to estimate the power of the test, the same
kind of Monte Carlo simulation was performed
against the Lomax distributions

_ 1 1+1/b
F(x) = (T—i— bx)

for the values b = 1/7, 1/5, 1/3, 1, and 3, and for
sample sizes n = 10 and n = 20. Since 1000 runs
were again used in the simulation, it should be
understood from binomial distribution theory that
power values may (at 959, confidence) be off by as
much as +.032, with somewhat better accuracy at
very high or very low power. For n = 10, ecstimated
power values are as follows:

b=1/7b=1/56b=1/3 b=15b=3

a= .01 051 057 097 256 398
a= .05 127 151 .203 388 523
a= .10 .149 181 234 .407  .553
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For n = 20, estimated powers are

b=1/7b=15b=1/3b=1>b=3

a= .01 .061 100 178 393 .663
a= .05 .147 196 .308 526 768
a = .10 229 281 388 627 819

These power functions are graphed in Figures 1
and 2—as functions of 1/b rather than b, for con-
venience of reading the graph for small values of b
while demonstrating the approach toward the
exponential distribution at b = 0. Thus the abcissa
is essentially the degree of the polynomial tail in
the density function. It is interesting to note that
even for a 7th degree tail, the power is still noticeably
above its asymptotic value of a.

(It should be noted that the same data run was
used in each case to estimate the power at the three
different « levels. Thus, these power estimates are
not independent. The estimates for different values
of b and N are based on independent simulations,
though.)

To illustrate empirical applications, the statistic
was applied to three sets of data. The first, from
Mielke (1973), is a set of 30 1-day precipitation data
collected at Climax, Colorado, by Mielke, Grant,
and Chappell (1971):

.085 .030 .060 .080 110 .100

.495 .260 .085 .220 .390 .045

.010 .020 .035 .055 .190 .015

025 .065 125 .010 125 .020

015 .010 .005 .070 .100 .030.

.80
ALTERNATIVE HYPOTHESIS
.TOF 2ol ' /b
F {x) (I r bx)
SAMPLE SIZE N= 10
.60}
50
3
w
2 40
©
a
.30p
.20 =10
as 05
A0
a=.0l
o0 ; 2 3 49 5 6 7
1/b
FIGURE 1

These data were found by Mielke to be well fitted
by a kappa distribution (v.s.). Applying the proposed
test statistic to the data yields

T = 265,

and the hypothesis is marginally acceptable (p = .15
by extrapolation). Although there is an indication
of heavy-tailledness here, it aiso appears that an
exponential-tail hypothesis would not be badly out
of line (as was found in the referenced work).

The second set of data consists of 26 observations
of precipitation in a Florida meteorological study
by Simpson (1972):

129.6 303.8 200.7 978.0 118.3
314 119.0 274.7 198.6 255.0

2745.6 4.1 274.7 703.4 115.3
489.1 92.4 7.7 1697.8 242.5
430.0 17.5 1656.0 334.1 32.7

40.6

With these data,
T’ = .353,

and the null hypothesis can be rejected at the 29,
level, approximately (interpolating in the table of
critical values). Thus there is somewhat stronger
evidence of heavy-tailedness in this case.

Finally, a set of data from Yevjevich (1972)
presents annual flows of the Weldon River at
Mill Grove, Missouri (1930-59):

108.0 472.0 143.0 4410 2440 1320

53.6 96.5 93.7 386.0 400.0 44.0

585.0 217.0 398.0 567.0 245.0 72.5

98.1 4277 298.0 1220 1140 135.0

40.6 208.0 2480 151.0 659.0 635.0

.80
ALTERNATIVE HYPOTHESIS
70 oy, i 1+1/b
Fix) (I + bx )
SAMPLE SIZE N=20
60
50}
[ 4
w
z 40t
=)
a
.30}
.20}
A0}
o0 Il é 3 4 5 6 7
I/b
FIGURE 2
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For this set of data,
T = .1309

and the hypothesis cannot be rejected. This con-
firms the result of Yevjevich which indicates a
gamma distribution. It should be noted, however,
that if we had instead used the unmodified statistic
T from the previous section, we would have found
T = .365, and (using results not given here for the
distribution of 7') the null hypothesis would have
been rejected at about the 0.01 level. This phenom-
enon results from the fact that for these data, x,
is not small compared to z¢,/n — 1; in fact, it is
larger. It is this kind of data that argues for the
ues of 7" rather than T.

5. GrapHICAL METHODS

Often a graphical display is the fastest and
clearest indication of the form of a distribution.
However, for reasons already noted, the usual
graphical techniques of a frequency histogram or
an empirical edf tend to be uninformative regarding
tails of a distribution.

For non-negative data of the type we have been
concerned with, a convenient technique is to plot
log F,(x) against x, where F,(z) is the complement
of the cmpirical cdf. The technique is convenient,
requiring only standard semilog paper; it serves the
purpose of amplifying the tail of the distribution;
and it often provides an easy visual check for the
ICME property.

For the exponential distribution F(z) =
exp (—\z), a plot of log F(x) against = will be a
straight line emanating downward from the origin.
Likewise, the graph of a distribution with an
exponential tail, such as thc gamma will approach
such linearity for large x. ICME distributions, then,
will be characterized by graphs that do not approach
such linecarity and which remain too high. Un-
fortunately it is difficult to be more precise. This
property means that the graph will fend to be
concave (bending upward) for large z, but it is
possible to have temporary interruptions of the
concavity without destroying the ICME property.

It is true, and easily verified, that for the ICME
distributions the graph of log G/(z) will be concave,
where

G) = f "R at.

However, G(X) is more often than not difficult to
express in closed form or to calculate, and has little
intuitive appeal. Thus its use appears less desirable
in spite of this mathematical convenience.

The utility of a graph of log F(x) can perhaps be
best shown by example. Figure 3 compares the
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graphs of five distributions:
A: Parecto distribution:

flx) = 24%/2° for a> A
B: Kappa distribution (see Mielke (1973)):
fx) = A/(A + 2)
C: Exponential distribution:
f(x) = A7" exp (—a/A)
D: Gamma distribution:
f(x) = A7 exp (—a/A)
E: One-sided normal distribution:
f@) = 2(v/2r A)7" exp (—a?/24%).

In each case the scale parameter 4 has been selected
to satisfy the condition

F(10) = .05,

so that the five distributions can be compared with
respect to their tail behavior around the 95th
percentile.

For comparison, Figure 4 shows log F,(x) for the
Florida precipitation data presented in section 4.
Despite the small number of observations, a con-
cavity can be seen that is suggestive of the kappa
distribution in Figure 3.
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6. ALTERNATIVE APPROACHES

The analytical and graphical methods discussed
here appear to be reasonable ways of testing for
ICME, but in the absence of any uniformly most
powerful test there are alternatives that should be
investigated. One easy test would be based on the
statistic

T = x(n)/-if

the ratio of the largest observation to the sample
mean. It was discussed by Bryson (1968) in con-
nection with tests for decreasing mean residual
lifetime (or decreasing CME), and in fact provides
a most powerful test of the exponential hypothesis
against the alternative of a uniform distribution.
It is an easy statistic to calculate, is intuitively
reasonable, and has a known distribution, being
equivalent to a statistic given by Fisher (1950) for
testing spectral density significance.

Fercho and Ringer (1972) discuss several tests for
exponentiality, of which one appears suitable for the
prupose discussed here. This is a statistic proposed
by Gnedenko,

= Ssm/ X S,
where S, = (TL -1+ 1)(1’“) - x(i—l)) and x, = 0.

This statistic has an F distribution with 27 and
2(n — 1) degrees of freedom if X has an exponential
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distribution. By choosing r = n — 1 or n — 2,
perhaps, the statistic could be made to depend
sufficiently strongly on the tail observations to make
it a desirable test statistic against the ICME
alternative.

A further subject for investigation should be the
behavior of the various tests under exponential-
tailed, but non-cxponential distributions such as the
gamma. Since the gamma distributions (with shape
parameter cxceeding 1) have decrcasing CME, it
seems reasonable that a test of the exponential
distribution would be a conservative test of gamma
distribution; however, this should be verified for
any given test.

A final question that could be investigated con-
cerns the existence of the variance in a heavy-tailed
distribution. Both the kappa and Pareto families
have cases where the variance does and does not
exist. As noted in the introduction, certain economic
and hydrologic applications seem to call for infinite-
variance distributions. However, testing for infinite
variance is intrinsically a difficult problem, in that
there is no upper bound to finite variances and that
sample variances arc always finitc. There may be
some convenient families of distributions that could
be investigated from the standpoint of testing for
infinite variance, and this problem seems worthy of
further study.
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