
TECHNOMETRICSO, VOL. 16, NO. 1, FEBRUARY 1974 
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Distributions with heavier-than-exponential tails are studied for describing empirical 
phenomena. It is argued that the concept of increasing “conditional mean exceedance” 
provides a reasonable way of describing the heavy-tail phenomenon, and a family of 
Pareto distributions is shown to represent distributions for which this parameter is 
linearly increasing. A test is developed and modified so as to be suitable for testing 
heavy-tailedness, and some graphical procedures are also suggested. 
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1. INTRODUCTION 

Despite the wide variety of continuous statistical 
distributions encountered in theoretical work only 
a relatively few families of them are commonly 
used in applicatioils as models for empirical phenom- 
ena. Classically, of course, the normal distribution 
has nearly two centuries of use as a “law of errors” 
for the empirical data. The widespread use of the 
exponential family, particularly for lifetime data, 
seems to date only since the work of Davis (1952) 
and Epstein and Sobel (1953). Barlow and Proschan 
(1965) note the popularity of the gamma, Weibull, 
lognormal, and modified extreme value families 
as alternatives for lifetime distribution models. 
Since the work of Gumbel (1958), the extreme- 
value distribution has been important in hydro- 
logical and meteorological study, but for describing 
empirical data the lognormal and the gamma family 
(including exponential) seem to be by far the most 
widely used; see, for example, Yevjevich (1971). 
The gamma family also shows up in operations 
research applications under its alias of the Erlang 
distribution (see Wagner (1969)). Finally, the 
Pareto family has found application only as a 
distribution for income statistics and a few other 
specialized variables (see Johnson and Kotz (1970) 
and Malik (1970)). These and other families have 
been conveniently summarized and extensively 
discussed by Johnson and Kotz. 

The experimenter today, with reference to a long 
history of use for one particular family of distribu- 
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tions in his area, typically makes an a priori selection 
of the family and then estimates its parameters in 
order to get a best fit. It is in the selection of the 
family, though, that an important mistake can be 
made. In particular, it is difficult to make a selection 
of a family that will suitably model the “tails” of 
the distribution. By definition, there will not be 
many observations from the tails of the distribution 
to be fit, so that a chi-square goodness-of-fit test 
can never reveal an ill-fitting tail without a very 
large amount of data. Likewise, the empirical cdf 
will be close to zero or one in the tails, so that a 
Kolmogorov-Smirnov test will also fail. 

Nonetheless, failure to suitably fit the tail of the 
distribution can be very serious even if the fitted 
distribution (‘looks good” in terms of the resemblance 
between its density function and a frequency histo- 
gram. Suppose, for example, that a set of flood data 
were erroneously modeled using a one-sided normal 
distribution when in fact a one-sided Cauchy 
distribution was called for. As every student notices 
in his first course in distribution theory, the normal 
and Cauchy density functions look remarkably 
similar. However, the hypothesized error would 
result in underestimating the magnitude of a lOO- 
year flood, compared to that of a lo-year flood, by 
a factor of 6.44; for the 200-year flood, he would 
similarly underestimate by a factor of 11.8. 

This example is of course artificial, particularly 
so in that the experimenter wouldn’t be using a 
normal distribution; ordinarily he would be using 
a gamma. But the same principle applies, and it is 
therefore that we should consider the question: 
when is a gamma tail too light? Henceforth we will 
in this paper restrict the problem to one of fitting 
continuous non-negative data (such as hydrologic, 
meteorological, or life testing data), and concentrate 
on the question of whether the actual tail of the 
distribution is heavier than a gamma tail. The 
gamma tail is, of course, an exponential tail since 
the polynomial component becomes relatively un- 
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important at the extreme. Based on this empirical 
situation, then, we may say without being exces- 
sively arbitrary that “heavy-tailed” means having 
a density function that goes to zero less rapidly than 
an exponential function. As will be seen, this is a 
convenient definition for theoretical reasons as well. 
It will be noted that most of the commonly used 
distributions mentioned above have either exponen- 
tial or lighter-than-exponential tails; the heavy- 
tailed exceptions are the lognormal and Pareto 
families, and rarely used sub-families of the Weibull. 

There is evidence that heavy-tailed distributions 
may in fact occur more commonly than would be 
supposed from the infrequency of their use. Mielke 
(1973), in investigating precipitation data, found 
that they could better be fit by “kappa” distri- 
butions, a heavy-tailed family with distribution 
function 

F(x) = [xaB/(a + x‘q”” 

than with gamma distributions. Granger and Orr 
(1972) suggest the use of infinite-variance stable 
distributions as possible fits for various types of 
economic data. The stable distributions also seem 
to be important in hydrology; Boes and Salas- 
La Cruz (1973) have shown them to be of great 
value in explaining the ‘(Hurst phenomenon” of 
partial sum ranges that increase faster than the 
square root of sample size. 

2. THE CONDITIONAL MEAN EXCEEDANCE (CME) 

If one were to approach the subject of heavy- 
tailedness from a theoretical viewpoint, he might 
argue as follows: a distribution has a ‘(heavy tail” 
if there tend to be many large exceedances of a given 
magnitude. “Many” and “large” are comparative 
terms, so he might be more specific by saying that 
the average exceedance (the concept of average 
incorporating both the number and the magnitude 
of the exceedance) tends to get bigger as you get 
farther out into the tail of the distribution. This 
leads immediately to the concept of the conditional 
mean exceedance, which is here defined as 

CME, = E(X - z ( X 2 5). 

In words, CME, is the average amount by which 
the random variable X exceeds a given Z, conditional 
on that exceedance being non-negative. If X is a 
lifetime, as in demographic or reliability work, 
CME, will be recognized as the ‘lrnean residual 
lifetime”. 

This line of argument, then, leads to the definition 
of a heavytailed distribution as one for which CME, 
is an increasing function of x--at least for suffi- 
ciently large 5, since our concern is only with the 
tail of the distribution. Likewise, a decreasing 
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CME, characterizes a light-tailed distribution, and 
a distribution for which CME, is constant is the 
borderline case. 

But this is immediately seen to be the same 
definition as that arrived at empirically, for from 
the definition 

1 m- 
CME, = p(z> z F(t) dt 

s 

where F(Z) = 1 - F(Z) is the tail probability 
function. Solving the equation for constant CME, 
shows that if CME, = l/x, then the distribution is 
exponential with rate parameter X. 

Thus, we may characterize the class of heavy- 
tailed distributions as those for which the CME is, 
for large 2, an increasing function of 2. This will 
henceforth be denoted as ICME (increasing condi- 
tional mean exceedance). It may be seen from the 
above formula that CME, depends only on the 
values of p(‘(t) for t 2 x, so that the CME does in 
fact provide a representation of the tail behavior 
as was desired. 

3. TESTING FOR ICME 

Because of its interpretation as mean residual 
lifetime, the CME has been studied primarily in 
connection with demographic and reliability statis- 
tics. Bryson and Siddiqui (1969) identified decreasing 
mean residual lifetime as one of seven criteria that 
may be used to describe the “aging” of an entity, 
and a test for decreasing mean residual lifetime was 
suggested by Bryson (1968). It was previously 
shown by Barlow and Proschap (1965) that de- 
creasing mean residual lifetime is implied by the 
more commonly used “aging criterion” of increasing 
failure rate (or hazard rate). But the mean residual 
lifetime is a weaker parameter than the hazard rate, 
in that its behavior depends only on the tail of the 
distribution. Many authors have considered the 
question of testing for increases or decreases in the 
hazard rate, as summarized by Fercho and Ringer 
(1972). Hollander and Proschan (1972) developed 
a related test for a “new better than used” (NBU) 
criterion, but this criterion depends primarily on 
the behavior of the lifetime distribution for small z 
rather than for large Z. Among the various descrip- 
tors of lifetime distributions that can be used, the 
mean residual lifetime seems to have had relatively 
little attention. 

We now consider testing the null hypothesis 
CME, = constant against the alternative that it is 
increasing. To be more specific, a reasonable choice 
of alternatives is the set of linear functions 

CME, = a + bx. 

Applying the definition of CME, and solving the 
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resultant differential equation yields immediately 

P(x) = (-&2)““b 
as the alternative hypothesis (b > 0). Letting 
b -+ 0 gives as the limiting case 

jqx) = e-“‘” 

as intended. It is noted by Johnson and Kotz that 
the alternative distributions are sometimes called 
the family of Lomax distributions, or Pareto 
distributions of the second kind. Although originally 
suggested by Pareto as one model for income distri- 
butions, the family does not seem to have been much 
in use this century. 

In considering possible tests, we note first that 
there is a natural condition of invariance that 
applies, in that the test should be independent of 
the measurement scale for X. Thus we impose the 
constraint that the test be invariant with respect 
to the group of transformations 

g&) = kx, k > 0. 

With respect to this group, a maximal invariant for 
the sample (x1 , x2 , . . . , 2,) is (~1 , YZ , 1 . . , ~~-1) 
where 

yi = X(i)/XC”) i = 1,2, *.. ,n - 1 

and the ordered sample is 

X(1) < X(2) -L . . . < XC”) . 

Equivalent y samples must obviously be derived 
from data which differ by no more than a scale 
factor, so any invariant test must be based on the 
y statistics. Application of routine transformation 
mechanics gives as the distribution of the y statistics 
under the null hypothesis, 

MY1 , Y2 , . * ’ , Yn 

where 
n--l 

w=1+cyi 
1 

n! (n - l)! 
,> = un 

= g Xi/%) , 

and the density is over the range 

0 < y1 < y2 < . . . < y,-1 < 1. 

Under the alternative hypothesis, a similar procedure 
yields the result 

f,(Yl , Yz , . . . , Yn-1) = n! (1 + b) 
m 

n--l 

I [ 
U 

0 
+& fj r+%](*b+l)‘b du, 

1 

over the same range. The expression, unfortunately, 
remains intractable even in the simplest of special 
cases. 

Without sacrificing the basic approach of the 
problem, we can simplify the mathematics con- 
siderably by the following device. If X does have 
the indicated Lomax distribution, then 

Z=X+A 

will have the more tractable Pareto distribution 

P(z) = 1 O<z_<A 

AK 
0 I 

A,K>O 
= - z>A z 

where, in terms of the previous notation, 

K = 1 + l/6 

and 

A = a/b. 

(Note that while the distribution exists for all 
K > 0, the mean exists only when K > 1.) 

A scale-invariant test can now be developed on the 
basis of the statistics z1 , 1 * . , z, . The price to be 
paid for the simplification of the mathematics is 
that it will be necessary to estimate the parameter A 
before the x-statistics can be used. The density 
function of Z is now 

f(z) = WA)W4K+1 (z > A). 

For a scale-invariant test, take A = 1 without loss 
of generality. Then, transform to the maximal 
invariant as before, with y/i = z(~)/z(,) : 

f(Y, t Y2 7 *. . 7 Y”-1) 

= (n - l)! K”‘(y,)“X( G l/J--, 

again over the range 

0 < y1 < y, < -. * < yn-1 < 1. 

Substituting for the y’s gives a likelihood function 
proportional to 

[km + A)lhn, + 41”” 

. 0 ((xc,, + A)lh, + A)J]-; [1 
this may be written 

where boa denotes the geometric mean modified 
by A, 

Dividing by the likelihood under the null hypothesis 
gives a likelihood ratio proportional to 
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Again it is evident that no uniformly best test can 
be found. However, the following procedure appears 
to be a reasonable one. First, select a convenient 
value of K for which the most-powerful test could 
be selected. Such a value would be K = 1, which 
represents the limiting case of distributions for 
which the mean exists, and as such is very heavy- 
tailed (tail behavior is the same as for the Cauchy 
distribution). Second, choose A so that the theoreti- 
cal cdf matches the empirical cdf at the point 
represented by the largest observation. This esti- 
mation procedure guarantees that the tail behavior 
will be modeled well, though possibly at the expense 
of other parts of the distribution. This constraint 
gives 

A = x(“)/(nl’K - I), 

or for the case K = 1, simply x,,,/(n - 1). After 
some simplification, the likelihood ratio is now 
proportional to 

> 
. 

T could be used as a test statistic except for one 
remaining problem. Under the assumption that X 
has an exponential distribution, X,,, will usually be 
small compared to x,,,/n - 1, but this will not 
necessarily be true if X has, say, a gamma distribu- 
tion with a large shape parameter. Accordingly the 
use of T might run the risk of rejecting the null 
hypothesis because of a large xcl) rather than 
because of a heavy tail. An example of this will be 
seen in section 4. It therefore seems desirable to 
use instead 

recognizing that this will differ very little from T 
when xcl) is small. (The constant (n - 1) is retained 
only to reduce the dependence of critical values 
on n.) The statistic T’ is proposed as a test statistic- 
the null hypothesis to be rejected when T’ is large- 
against the ICME alternative, and its USC will now 
be investigated. 

4. USE OF THE TEST STATISTIC 

To use the proposed test statistic T’, its critical 
values are needed under the hypothesis that X has 
an exponential distribution. By design, rejection of 
the null hypothesis will occur when the distribution 
is heavier-tailed than the exponential. Since the 
test is scale-invariant, it can be assumed that 
E(X) = 1 without loss of generality. 

The complicated form of &A makes it unlikely 
that the distribution of T’ can be found explicitly. 
Thus, critical values were estimated for the cases 
n = 10, 15, 20, 25, and 30, by generating 1,000 
values of T’ for each case on a Hewlett-Packard 
9810A programmable calculator. The lo%, 5oj,, 
and 1% critical values were then taken as the 90th, 
95th, and 99th percentiles of the generated distri- 
bution. Because of the randomness in the method, 
using a sample of size 1,000, we have with 95y0 
confidence: 

Quoted level (Y = 0.01 corresponds to actual 
0.004 < lx < 0.017 

Quoted level a! = 0.05 corresponds to actual 
0.036 < a < 0.064 

Quoted level (Y = 0.10 corresponds to actual 
0.08 < a < 0.120. 

With this understanding, critical values are as 
follows: 

(Y = 0.01 o( = 0.05 (Y = 0.10 

n = 10 .40 .369 .362 

n = 15 .39 .358 .331 

n = 20 .37 .334 .312 

n = 25 .36 .322 .298 

n = 30 .35 .295 .271 

Although there is some dependence of critical values 
on n, the table indicates sufficiently slow variation 
that interpolation can be used safely. 

In order to estimate the power of the test, the same 
kind of Monte Carlo simulation was performed 
against the Lomax distributions 

1+1/b 

for the values b = l/7, l/5, l/3, 1, and 3, and for 
sample sizes n = 10 and n = 20. Since 1000 runs 
were again used in the simulation, it should be 
understood from binomial distribution theory that 
power values may (at 95% confidence) be off by as 
much as k.032, with somewhat better accuracy at 
very high or very low power. For n = 10, estimated 
power values are as follows: 

b = l/7 b = l/5 --- --- b=1/3 b=l b=3 ~ -- 

a! = .Ol .051 .057 .097 .256 398 

a = .05 .127 .151 .203 .388 .523 

a = .lO .149 .181 .234 .407 .553 
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For n = 20, estimated powers are 

b = l/7 b = l/5 b = l/3 b = 1 b = 3 -- - ___ 

a = .Ol .061 .lOO .178 .393 .663 

a = .05 .147 .196 .308 .526 .768 

a = .lO .229 .281 .388 .627 .819 

These power functions are graphed in Figures 1 
and 2-as functions of l/b rather than b, for con- 
venience of reading the graph for small values of b 
while demonstrating the approach toward the 
exponential distribution at b = 0. Thus the abcissa 
is essentially the degree of the polynomial tail in 
the density function. It is interesting to note that 
even for a 7th degree tail, the power is still noticeably 
above its asymptotic value of (Y. 

(It should be noted that the same data run was 
used in each case to estimate the power at the three 
different cy levels. Thus, these power estimates are 
not independent. The estimates for different values 
of b and N are based on independent simulations, 
though.) 

To illustrate empirical applications, the statistic 
was applied to three sets of data. The first, from 
Mielke (1973), is a set of 30 l-day precipitation data 
collected at Climax, Colorado, by Mielke, Grant, 
and Chappell (1971) : 

.085 .030 .060 .080 .llO .lOO 

.495 .260 .085 .220 .390 .045 

.OlO .020 .035 .055 .190 .015 

.025 .065 .125 .OlO .125 .020 

.015 .OlO .005 .070 . 100 .030. 

These data were found by Mielke to be well fitted 
by a kappa distribution (v.s.). Applying the proposed 
test statistic to the data yields 

T’ = ,265, 

and the hypothesis is marginally acceptable (p A .15 
by extrapolation). Although there is an indication 
of heavy-tailedness here, it also appears that an 
exponential-tail hypothesis would not be badly out 
of line (as was found in the referenced work). 

The second set of data consists of 26 observations 
of precipitation in a Florida meteorological study 
by Simpson (1972): 

129.6 303.8 200.7 978.0 118.3 
31.4 119.0 274.7 198.6 255.0 

2745.6 4.1 274.7 703.4 115.3 
489.1 92.4 7.7 1697.8 242.5 
430.0 17.5 1656.0 334.1 32.7 

40.6 
With these data, 

T’ = .353, 

and the null hypothesis can be rejected at the 2% 
level, approximately (interpolating in the table of 
critical values). Thus there is somewhat stronger 
evidence of heavy-tailedness in this case. 

Finally, a set of data from Yevjevich (1972) 
presents annual flows of the Weldon River at 
Mill Grove, Missouri (1930-59) : 

108.0 472.0 143.0 441.0 244.0 132.0 
53.6 96.5 93.7 386.0 400.0 44.0 

585.0 217.0 398.0 567.0 245.0 72.5 
98.1 42.7 298.0 122.0 114.0 135.0 
40.6 208.0 248.0 151.0 659.0 635.0 
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For this set of data, 

T’ = .1309 

and the hypothesis cannot be rejected. This con- 

firms the result of Yevjevich which indicates a 
gamma distribution. It should be noted, however, 
that if we had instead used the unmodified statistic 
T from t’he previous section, we would have found 
T = .365, and (using result,s not given here for the 
distribution of T) the null hypothesis would have 
been rejected at about the 0.01 level. This phenom- 
enon results from the fact that for these data, xc1) 
is not small compared to x,,,/n - 1; in fact’, it is 
larger. It is this kind of data that argues for the 
ues of T’ rather than T. 

5. GRAPHICAL RIETHODS 

Often a graphical display is the fastest and 
clearest indication of the form of a distribution. 
However, for reasons already noted, the usual 
graphical techniques of a frequency histogram or 
an empirical cdf tend to be uninformative regarding 
tails of a distribution. 

For non-negative data of the type we have been 
concerned with, a convenient technique is to plot 
log P,(x) against I%, where Fe(s) is the complement 
of the empirical cdf. The technique is convenient, 
requiring only standard semilog paper; it serves the 
purpose of amplifying the tail of the dist’ribution; 
and it often provides an easy visual check for the 
ICME property. 

For the nxponential dist,ribution P(Z) = 
exp (-XX), a plot of log Z~(X) against x will be a 
straight line emanating downward from the origin. 
Likewise, the graph of a distribution with an 
exponential tail, such as the gamma will approach 
such linearity for large X. ICME distributions, then, 
will bc charactcrizcd by graphs that do not approach 
such linearity and which remain too high. Un- 
fortunately it is difficult to be more precise. This 
property means that the graph will tend to be 
concave (bending upward) for large IL‘, but it is 
possible to have temporary interruptions of the 
concavity without destroying the ICnIE property. 

It, is true, and easily verified, that for the ICXIE 
distributions the graph of log C;(X) will be concave, 
where 

G(x) = /- E;(t) cit. 
1 

However, G(X) is more often than not difficult to 
express in closed form or to calculate, and has little 
intuitive appeal. Thus its use appears less desirable 
in spite of this mathematical convenience. 

The utility of a graph of log F(X) can perhaps bc 
best shown by example. Figure 3 compares the 
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graphs of five distributions: 
A: Pareto distribution: 

f(x) = 2A2,/i2 for :c > A 

B: Kappa distribution (see Xiclke (1973)): 

f(x) = A,‘(A + :c)’ 

C: Exponential distribution: 

f(x) = A-’ exp (-r/A) 

D: Gamma distribution: 

f(x) = A-“.,: exp (-cc/A) 

E: One-sided normal distribution: 

f(x) = 2(&r A)-’ cxp (--:c”/%A*). 

In each case the scale parameter A has been selected 
to satisfy the condition 

El’(10) = .06, 

so that the five distributions can bc compared with 
respect to t,hcir tail behavior around the 95th 
percentile. 

For comparison, Figure 4 shows log I;‘,(X) for the 
Florida precipit’at’ion data presented in stction 4. 
Despite the small number of observations, a con- 
cavity can be seen that is suggestive of the kappa 
distribution in Figure 3. 
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6. ALTERNATIVE APPROACHES 

The analytical and graphical methods discussed 
here appear to be reasonable ways of testing for 
ICME, but in the absence of any uniformly most 
powerful test there are alternatives that should be 
investigated. One easy test would be based on the 
statistic 

T = xc,,/‘& 

the ratio of the largest observation to the sample 
mean. It was discussed by Bryson (1968) in con- 
nection with tests for deaeasing mean residual 
lifetime (or decreasing CRIE), and in fact provides 
a most powerful test of the exponential hypothesis 
against the altcrnat’ive of a uniform distribution. 
It is an easy statistic to calculate, is intuitively 
reasonable, and has a known distribution, being 
equivalent to a statistic given by Fisher (1950) for 
testing spectral density significance. 

Fercho and Ringer (1972) discuss several tests for 
exponentiality, of which one appears suitable for the 
prupose discussed here. This is a statistic proposed 
by Gnedenko, 

where X, = (n - i + l)(s(;, - z(,-~,) andz,,, = 0. 
This statistic has an F distribution with 2~ and 
2(n - 1.) degrees of freedom if X has an exponential 
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distribution. By choosing 7’ = n - 1 or n - 2, 
perhaps, the statistic could be made to depend 
sufficiently strongly on the tail observations to make 
it a desirable test statistic against the ICRlE 
alternative. 

A further subject for investigation should bc the 
behavior of the various tests under exponcntial- 
tailed, but non-cxponcntial distribut,ions such as the 
gamma. Since the gamma dist,ributions (with shape 
parameter exceeding 1) have decreasing CME, it 
seems reasonable that a test of the cxponcnt,ial 
distribution would bc a conservative test of gamma 
distribution; however, t,his should bc verified for 
any given test. 

A final question that could be investigated corl- 

terns the existence of the variance in a heavy-tailed 
distribution. Both the kappa and Pareto families 
have cases where the variance does and does not 
exist. As noted in the introduction, certain economic 
and hydrologic applications seem to call for infinitc- 
variance distributions. However, testing for infinite 
variance is intrinsically a difficult problem, in that 
there is no upper bound to finite variances and that 
sample variances arc always finite. Thcrc> may bc 
some convenient families of dist’ributions that could 
be investigated from the standpoint of testing for 
infinite variance, and this problem seems worthy of 
further study. 
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