Prediction of sth Ordered Observation for the Two-Parameter Exponential Distribution

J. Likeš
Praha, Czechoslovakia
Prague School of Economics

This paper deals with obtaining a prediction interval on a future observation X_s, in an ordered sample of size n from a two-parameter exponential distribution for the situation where some or all the first r observations $X_1 < X_2 < \cdots < X_r$, $1 \leq r < s \leq n$, have been observed. The intervals are based on the statistic $Z = (X_s - X_r) / S_r$, where S_r is a function of the observations $X_1 = A < X_2 < \cdots < X_r$, such that $X_r - X_s$, and S_r are independent variables and $2S_r/\sigma$ has the distribution $\chi^2(2\nu)$. The expressions for the quantiles z_p are given and some problems of numerical determination of z_p's are discussed. The results can be also applied to related distributions.

1. INTRODUCTION

Consider an ordered random sample $X_1 < X_2 < \cdots < X_n$ of size n from the two-parameter exponential distribution

$$f(x; A, \sigma) = \frac{1}{\sigma} \exp \left[-\frac{(x - A)}{\sigma}\right], \quad x > A, \quad \sigma > 0. \quad (1)$$

We shall find a prediction interval on sth ordered observation X_s, for the situation where some or all first r observations $X_1 < \cdots < X_r$, $1 < r < s < n$, in the same sample are available. This is a contrast to the frequently encountered situation of obtaining a prediction interval on a future and different sample.

For example, if in life testing n items are put on test simultaneously and if the first r failure times $X_1 < \cdots < X_r$ are observed, we wish to predict the sth failure time, $r < s \leq n$, assuming that the time to failure follows a two-parameter exponential distribution.

J. F. Lawless [2] solves the problem of predicting X_s in the case of a one-parameter exponential distribution (i.e. distribution (1) with $A = 0$) and assumes that each of first r values were observed. Hence the present paper can be thought of as extensions of paper [2]. In addition, the present paper indicates the calculations for a prediction interval on the nth (i.e. last ordered) observation and extends the results to some other distributions.

2. PREDICTION INTERVALS FOR X_s

Consider for given r and s, $1 \leq r < s \leq n$, the statistic

$$Z = Z(r, s; n, \nu) = (X_s - X_r) / S_r, \quad (2)$$

where S_r is a function of $X_1 = A, X_1, \cdots, X_r$, such that $X_s - X_r$, and S_r are independent variables and $2S_r/\sigma$ has the distribution $\chi^2(2\nu)$.

Let $z_p = z_p(r, s; n, \nu)$ be the Pth quantile of the statistic (2). Then

$$\Pr (Z < z_{1-\alpha}) = \Pr (X_s < X_r + z_{1-\alpha}S_r) = 1 - \alpha$$

and from this it follows that

$$X_s < X_r < X_r + z_{1-\alpha}S_r, \quad (3)$$

is a one-sided 100(1 - α)% prediction interval for the sth ordered observation X_s based on the first r observations X_1, X_2, \cdots, X_r.

Note here that in the life testing context $z_{1-\alpha}S_r$ provides an upper bound on the elapsed time from the last observed failure to the sth observed failure.

We may also consider a second one-sided 100(1 - α)% prediction interval

$$X_r > X_s + z_{1-\alpha}S_r, \quad (4)$$

or a two-sided 100(1 - α)% prediction interval

$$X_r + z_{\alpha_2}S_r < X_s < X_r + z_{1-\alpha}S_r, \quad (5)$$

for X_s, where $0 < \alpha_1 < \alpha$ and $\alpha_2 = \alpha - \alpha_1$.

3. RELATIONS FOR z_p

Let

$$Y = Y(r, s; n, \nu) = (X_s - X_r) / (\nu S_r),$$

$$0 \leq r < s \leq n. \quad (6)$$

Received Aug. 1972; revised April 1973.
where \(X_s - X_r \) and \(S \) are defined as in Section 2. Then the probability \(\Pr(Y > y) \) equals (see relations (10) in [3])

\[
\Pr(Y > y) = \frac{1}{B(n - s + 1, s - r)} \cdot \sum_{i=1}^{s-1} \left(
\begin{array}{c}
\frac{s - r - 1}{n - i + 1} \\
\end{array}
\right)
\cdot [1 + (n - i + 1)y]^{-s}, \quad y \geq 0. \tag{7}
\]

Consider now the following

Lemma: For the distribution (1), the variable \(X_s - X_r \) in a sample of size \(n \) has the same distribution as the variable \(X_{s+a} - X_{r+a} \) in a sample of size \(n + a \), where \(a \) is an integer such that \(-r \leq a \leq n - s\).

The proof is very simple: The variable \(X_s - X_r \) can be expressed as

\[
X_s - X_r = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{n - i + 1} X_i^2
\]

where \(X_i^2 = 2(n - i + 1)(X_i - X_{i-1})/\sigma \), \(i = 1, 2, \ldots, n \) and \(X_i^{(2)} = X_i^{(2)} \).

Since the variables \(X_i^2, \ldots, X_n^2 \) are [1] independent all having the distribution \(\chi^2(2) \), then the variable \(X_s - X_r \) in a sample of size \(n \) has the same distribution as the last expression in (8); but this last expression represents the variable \(X_{s+a} - X_{r+a} \) in a sample of size \(n + a \).

Further, since the variables \(X_s - X_r \) and \(S \), in (6) and (2) are independent, then the statistic \(Y(r; s; n, \nu) \) has the same distribution as the statistic \(Y(\nu; s + a; n + a, \nu) \) and the statistic \(Z(r; s; n, \nu) \) has the same distribution as the statistic \(Z(\nu; s + a; n + a, \nu) \), \(-r \leq a \leq n - s\). From this follow the relations for the quantiles \(z_p \):

\[
z_p(r, s; n, \nu) = z_p(r + a, s + a; n + a, \nu) \tag{9}
\]

for \(-r \leq a \leq n - s\) and for every \(P, 0 < P < 1 \) and \(\nu \).

Specifically, for \(a = -r \) we obtain

\[
z_p(r, s; n, \nu) = z_p(0, s - r; n - r, \nu) \tag{10}
\]

whence only the determination of the quantiles \(z_{p}(0, k; N, \nu) \) of the variables \(Z(0, k; N, \nu) = (X_k - A)/S \) is required for given \(k, N \) \((k = s - r, N = n - r)\), \(1 \leq k \leq N \) and \(\nu \) is sufficient.

Putting \(j = k - i \) or \(l = j + 1 \), we obtain from (7) the relation

\[
\frac{1}{B(N - k + 1, k)} \sum_{i=0}^{k-1} (-1)^{k-1-j} \left(\begin{array}{c} k - 1 \\ j \end{array} \right) \frac{1}{N - k + j + 1} [1 + (N - k + j + 1)z_{p}]^{-s} = 1 - P \tag{11}
\]

for \(z_{p} = z_{p}(0, k; N, \nu) \).

Specifically, for the next observation, i.e. \(k = 1 \), one obtains the simple result

\[
z_{p}(0, 1; N, \nu) = \frac{\nu}{N} [1 - (1 - P)^{-1/c} - 1] = \frac{1}{N} F_{p}(2, 2\nu) \tag{12}
\]

where \(F_{p}(v_1, v_2) \) denotes the \(P \)th quantile of the \(F \)-distribution \(F(v_1, v_2) \).

Consider now the case \(s = n \), which is the one of most frequent interest. In [4] \(P \)th quantiles \(q_{p}(n, \nu) \) of the standardized range \(Q = Q(n, \nu) = (X_s - X_1)/S \) are tabulated for \(P = 0.90, 0.95, 0.99, n = 1(1)20, \nu = 1(1)20, 24, 30, 40, 60, 120, \infty \). Here \(X_s \) and \(X_s \) is the smallest and the largest observation respectively in a sample of size \(n \) from the distribution (1) and \(S \) is a statistic independent of \(X_s - X_1 \) such that \(2\nu S/\sigma \) has the distribution \(\chi^2(2\nu) \).

From the above Lemma it follows that the statistic \(Z(r, s; n, \nu) = (X_s - X_r)/S \) has the same distribution as the statistic \(Z(\nu; r + a; n + a, \nu) \), \(-r \leq a \leq n - s\), i.e. the same as the statistic \(Q(\nu; n - r + 1; n - r + 1, \nu) \), \(-r \leq a \leq n - s\). Hence

\[
z_{p}(r, s; n, \nu) = q_{p}(n - r + 1, \nu) \tag{13}
\]

When the parameter \(\sigma \) is known, we consider the variable

\[
Z = Z(r, s; n, \infty) = (X_s - X_r)/\sigma,
\]

\[
0 \leq r < s \leq n, \tag{14}
\]

which has the same distribution as the variable \(Z(\nu; r + a; n + a, \infty) \), \(-r \leq a \leq n - s\). The \(P \)th quantile \(z_{p}(0, k; N, \nu) \) is given by the relation (following from (11) for \(\nu \rightarrow \infty \))

\[
\frac{1}{B(N - k + 1, k)} \sum_{i=0}^{k-1} (-1)^{k-1-j} \left(\begin{array}{c} k - 1 \\ j \end{array} \right) \frac{1}{N - k + j + 1} \exp[-(N - k + j + 1)z_{p}] = 1 - P. \tag{15}
\]

\(z_{p}(0, k; N, \nu) \) can also be obtained from the tables of the incomplete beta function by means of relations

\[
I_{c}(N - k + 1, k) = 1 - I_{1-c}(k, N - k + 1)
\]

\[
= 1 - P, \quad z_{p}(0, k; N, \nu) = -\ln c \tag{15'}
\]

or by the relation

\[
\text{TECHNOMETRICS®, VOL. 16, NO. 2, MAY 1974}
\]

J. LIKES
TWO-PARAMETER EXPONENTIAL DISTRIBUTION

\[z_p(0, k; N, \infty) = \ln \left[1 + \frac{k}{N - k + 1} F_p(2k, 2(N - k + 1)) \right] \]

Note yet that for \(k = 1 \) we obtain from (15)

\[z_p(0, 1; N, \infty) = -\frac{1}{N} \ln (1 - P) = \frac{1}{N} x_p^2(2). \]

For \(\sigma \) known, 100(1 - \(\alpha \))% prediction intervals for \(X \), based on \(X_r \), 0 \(\leq \) \(r \) \(\leq \) \(s \) \(\leq \) \(n \), are given by (3)-(5) with \(S_r \) and with \(z_p = z_p(0, s - r; n - r, \infty) \) for \(P = 1 - \alpha \), \(P = \alpha \), and \(P = \alpha_1, 1 - \alpha \) respectively.

4. CHOICE OF \(S_r \)

From the properties of the variables \(x_i^2 = 2(n - i + 1)(X_i - X_{i-1})/\sigma^2 \), \(i = 1, 2, \ldots, n \), it follows that the random variable \(2vS_r/\sigma = \sum_{i=1}^{r-1} c_ix_i^2 \) with \(c_i = 0 \) or \(c_i = 1, i = 1, 2, \ldots, r \), \(\sum_{i=1}^{r-1} c_i \geq 1 \), has the distribution \(x^2(2\sigma) \) with \(r - 1 \) degrees of freedom and \(X_r - X_1 = (\sigma/2) \sum_{i=1}^{r-1} c_i x_i \) with \(c_i \)'s, fulfill the assumptions for the statistic \(S_r \) in (2) with \(\nu = \sum_{i=1}^{r-1} c_i \).

J. Lawless [2] considers the case \(A = 0 \) and \(Y(r, s; n, r) = (X_r - X_1)/r\sigma \), where \(rS_r = c_i \sum_{i=1}^{r-1} X_i + (n - r)X_1 \), i.e. \(rS_r \) is the statistic (17) with \(c_i = c_2 = \cdots = c_r = 1 \) (note that in [2] \(Y \) = \(\mu \), \(r = k \) and \(s = r \)).

For \(A \) unknown we may consider in (2) \(S_{r-1} = \sum_{i=1}^{r-1} (n - i + 1)(X_i - X_{i-1})/(r - 1) = \sum_{i=1}^{r-1} X_i + (n - r)X_1 - (n - 1)X_0/(r - 1) \). This assumes that all \(r \) observations \(X_1, X_2, \ldots, X_r \) are available. When some of these observations are missing, \(S_r \) can be easily found from the remaining observations by means of (17). For example, when \(X_0, X_1, \ldots, X_5 \), 0 \(\leq \) \(b \) \(\leq \) \(r \), are missing, we have \(S_{r-b} = \sum_{i=b+1}^{r-1} (n - i + 1)(X_i - X_{i-1})/(r - b) = \sum_{i=1}^{r-1} X_i + (n - r)X_1 - (n - b)X_0/(r - b) \).

Similarly, if \(r \geq 5 \) and \(X_2, X_3 \) are missing (i.e. \(A \) is unknown and \(X_0 \) is missing), we consider \(S_{r-2} = \sum_{i=b+2}^{r-1} (n - i + 1)(X_i - X_{i-1})/(r - 3) = \sum_{i=1}^{r-1} X_i + (n - r)X_1 + (n - 4)X_0/(r - 3) \) and so on.

Example. Suppose that \(n = 8 \) items are put on test simultaneously and that the first \(r = 4 \) items have the lifetimes 62, 84, 106 and 144 hours. Let the lifetimes of all \(n \) items be distributed according to the exponential distribution (1) with the same parameters \(A \) and \(\sigma \).

We wish to find a 95% prediction interval of the type (3) for \(X_8 \). In this case \(S_3 = (\sum_{i=1}^{3} X_i + 4X_4 - 7X_3)/3 \) and \(z_p(4, 8; 8, 3) = q_p(5, 3) \).

From Table 1b in [4] we find \(q_{0.95}(3, 3) = 8.879 \). Since \(S_3 = 476/3 \), we obtain the 95% prediction interval \(144 < X_8 < 144 + (8.879) 476/3 \), i.e. \(144 < X_8 < 1408.8 \). We can be 95% confident that the total elapsed time will not exceed 1409 hours.

5. APPLICATIONS TO SOME RELATED DISTRIBUTIONS

The above results can be also applied to the prediction of the \(s \)th ordered observation in samples from other distributions:

(i) Let \(T \) be a continuous random variable such that the variable \(X = \phi(T) \) has the distribution (1); where \(\phi(T) \) is a strictly increasing function of \(T \). Let \(T_1 < T_2 < \cdots < T_r \) be an ordered random sample of size \(n \) from such a distribution. Then

\[Z = Z(r, s; n, v) = [\phi(T_r) - \phi(T_s)]/S, \]

with

\[S = \sum_{i=1}^{r-1} c_i(n - i + 1)[(X_i - X_{i-1})]/v, \]

\[v = \sum_{i=1}^{r-1} c_i, \]

\(c_i = 0 \) or \(c_i = 1, i = 1, 2, \ldots, r, r = \sum_{i=1}^{r-1} c_i \geq 1 \), has the same distribution as the variable (2). Hence

\[\phi^{-1}[\phi(T_r) + z_{1-\alpha}S] < \phi(T_s) < \phi^{-1}[\phi(T_r) + z_{1-\alpha}S] \]

is a 100(1 - \(\alpha \))% prediction interval for \(\phi(T) \) (for \(v = \infty \), we set \(S = \sigma \) in (19) and (20)). From this we obtain a 100(1 - \(\alpha \))% prediction interval for \(T_r \)

\[\phi^{-1}[\phi(T_r) + z_{1-\alpha}S] < T_r < \phi^{-1}[\phi(T_r) + z_{1-\alpha}S] \]

where \(\phi^{-1}(X) \) is the inverse function to the function \(\phi(T) \).

For example, for the Rayleigh distribution

\[h(t) = (t/\theta) \exp (-t^2/2\theta), \theta > 0, \]

we have \(\phi(T) = T^2/2 \) and \(\phi^{-1}(X) = \sqrt{2X} \). Similarly, for the Pareto distribution

\[h(t) = \theta^\beta t^{\beta-1} \]

we have \(\phi(T) = \ln T \) and \(\phi^{-1}(X) = \exp(X) \).
nential distribution, i.e. the distribution (1) with \(A = 0, \sigma = 1 \).

Let \(T_1 < T_2 < \cdots < T_n \) be an ordered random sample of size \(n \) from such a distribution. Then a 100(1 - \(\alpha \))% prediction interval for \(-\ln [1 - H(T_i)] \) is given by (20) with \(\varphi(T_i) = -\ln [1 - H(T_i)] \), \(i = 1, 2, \ldots, r, s \). From here it follows that

\[
1 - [1 - H(T_i)] \exp (-z_{1-\alpha} S_i) < H(T_i) < 1 - [1 - H(T_i)] \exp (-z_{1-\alpha} S_i)
\]

is a 100(1 - \(\alpha \))% prediction interval for \(H(T_i) \) (for \(\nu = \infty \), we set \(S_i = 1 \) in (22)).

6. Acknowledgment

I should like to thank the referees for suggesting improvements in the presentation of this paper.

References

TECHNOMETRICS©, VOL. 16, NO. 2, MAY 1974