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The Nelder-Mead Simplex Procedure for Function Minimization 
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The Nelder-Mead simplex method for function minimization is a “direct” method 
requiring no derivatives. The objective function is evaluated at the vertices of a simplex, 
and movement is away from the poorest value. The process is adaptive, causing the 
simplexes to be continually revised to best conform to the nature of the response surface. 
The generality of the met,hod is illust’rated by using it. to solve six problems appearing 
in the May 1973 issue of Technometrics. 
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1. INTRODUCTION 

The subject of function minimization is both 
important and ubiquitous in the physical sciences. 
This is easily demonstrated by noting that it is 
involved in a very wide variety of areas ranging from 
finding roots of polynomials and solving simultan- 
eous equations to estimating the parameters of 
non-linear functions. 

Although no exhaustive investigation was carried 
out, we were struck by the fact that, for the last 
eight years, every issue of Technometrics contains at 
least one paper in which a general minimization 
program was either needed or could have been used 
to avoid a time-consuming algebraic solution. The 
May 1973 issue stands out in that seven of its 
articles make use of function minimization. In some 
of these, one or more special modifications had to be 
made in a “standard” procedure to solve the given 
problem. 

In consequence of our two-year experience with 
the Nelder-Mead simplex procedure [17], and our 
continuing investigation into its benefits, limitations 
and potential for improvement, we applied this 
procedure to six of the problems in the May 1973 
issue (no data were given in one of the articles). The 
simplicity of application, lack of special require- 
ments, and accuracy with which this procedure was 
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able to reproduce (or improve) the answers to these 
six problems prompted us to prepare this report. 

The article by Nelder and Mead [17] is almost 
ten years old, yet their procedure has only fairly 
recently been called to the attention of physical 
scientists in Analytical Chemistry [5], Industrial and 
Engineering Chemistry, Process Design and Develop- 
ment [la], the Review of ScientiJic Instruments [6], 
and Applied Statistics [20]. 

Garfield [7] published a list of the 78 books and 
papers most heavily cited in pure mathematics from 
1961 to 1972. Of the 22 papers listed, the Nelder 
and Mead paper stands 15th; a fact made somewhat 
curious by the totally applied nature of the work. 
Even more curious is its absence from a similar list 
of citations in applied mathematics [8]. 

The main objective of this paper is to call atten- 
tion to and lend support for the growing enthusiasm 
for the Nelder-Mead procedure by (1) demonstrating 
with worked examples its wide applicability for 
general function minimization, and (2) indicating 
the existence of both a coding of the procedure in 
FORTRAN IV [19], and a BASIC program on the 
General Electric time-share system [9]. To increase 
the universality of ayjpeal, three of the examples 
are worked using the FORTRAN IV version; the 
other three were solved using the BASIC program. 

After describing the rationale of the method 
(Section 2)) the six problems are solved and discussed 
(Section 3). This is followed by a summary and 
discussion of limitations (Section 4). No criticism of 
the material in any of the six Technometrics articles 
furnishing the examples is intended. Our sole con- 
sideration is the demonstration of an alternative 
method of solution. 

2. TECHNICAL PRELIMINARIES 

Detailed accounts of how the simplex procedure 
operates have been given in a number of papers, 
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e.g. [17, 18, 191. Only a very brief review will be 
given here to provide enough information for the 
reader unfamiliar with the procedure to appreciate 
its main ideas and observe its simplicity. 

Although Spendley, et al. [23] presented the idea of 
optimizing either physical processes or mathe- 
matical functions by the application of simplexes, 
Nelder and Mead [17] supplied the idea essential to 
making the procedure broadly applicable, namely, 
the adaptive feature. This enables the simplex (see 
Figure 1 for an example in two dimensions) to 
reflect, extend, contract, or shrink so as to conform 
to the characteristics of the response surface. These 
actions are based on the conditions set forth in 
Table 1 and are applied repeatedly until a termina- 
tion criterion is reached. For the particular case 
illustrated in Figure 1, reflection of point A (corre- 
sponding to the highest result) through the centroid 
of the opposite side locates point E. In this instance, 
an extension would then follow making the next 
simplex BCF. 

The simplex procedure derives its name from the 
geometric figure which is moved along the response 
surface in search of the minimum. It is a so-called 
“direct” procedure in that no derivatives of the 
objective function are required. For this reason it is 
readily applicable to situations which are analyti- 
cally difficult, such as minimization of the maximum 
absolute deviation. 

In contrast to other minimization procedures, the 
simplex procedure approaches the minimum by 
moving away from high values of the objective 

FIGURE 1-A Two-Dimensional Simplex ABC with Possible 
Subsequent Points (see Table 1). 

TABLE l-conditions Governing the Formation of Subsequent 
Simplexes [f(A) means the value of the objective function at 

point A] 

Condition 

f(C) I f(E) I f(B) 
f(E) < f(C) 
f(A) < f(E) 
f(B) < f(E) 5 f(A) 
f(A) 5 f(G) or f(E) < f(H) 

* Refer to Figure 1. 

Action New Simplex* 

Reflect BCE 
Extend BCF 
Contract BCG 
Contract BCH 
Shrink A’B’C 

function rather than by trying to move in a line 
toward the minimum. A casual investigation of 
modifying the procedure to permit more than one 
extension, based on a gambler’s rule: “don’t quit 
while you’re winning”, gave no indication that this 
would be generally beneficial. Disappointment in 
the behavior of a number of such modifications was 
expressed by Nelder [lS]. The robustness of the 
procedure and its excellence relative to other general 
minimization techniques has been reported in some 
detail [16, 181. 

3. WORKED EXAMPLES AND DISCUSSION 

Example 3.1. Direct Maximization of a Likelihood 
Function 

Boardman [12] addresses the problem of obtaining 
maximum likelihood estimates of the parameters 
of a compound exponential distribution when the 
data are grouped. The application of the Nelder- 
Mead simplex procedure directly to the natural 
logarithm of the likelihood function obviated the 
necessity of considering an approximation to its 
solution. Boardman’s iterative approximate solution 
appears to be an excellent one, usually requiring 
fewer than half a dozen trials (in contrast to the 
48 trials used in the simplex method). However, its 
development required, in part, skill in applying an 
expansion of a hyperbolic cotangent function. This 
first example is especially appropriate because 
maximization of likelihood functions was the 
principal motivation for Nelder and Mead’s develop- 
ment of the simplex procedure. 

The objective function (equation (5) in [a]) to be 
maximized was 

In L = C + 2 [Tag + rzi] In [exp (-ti-JA) 
i=1 

- exp (- t,/A)] - (n - r)T/X + r, In (X/X,) 

Maximization was accomplished by minimizing the 
negative of the funct*ion F = In (L) - C. Data 
consisted of 325 observations grouped into 13 
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classes. See Table 2 for a coding of an appropriate function, and expresses the objective function to be 
subroutine in FORTRAN IV, which was used with minimized. Decisions on the mechanics of the 
the program given in [19]. This subroutine contains method are never needed; the required subroutine 
the data, assigns values to the constants in the is purely descriptive of the problem. Operational 

TABLE 2-Computer Subroutines Used in the Examples 

EXAMPLE 3.1 EXAMPLE 3.4 

13.5D2,4.D2.4.~D2~5.D2,5.5U2.6.ll2~6.3DZ/ 
YLAMl!A=XLAMll~~XLAM~7~/rXLPh~~~tYLAMI?)~ 
RI=Z.lHD2 
R2=i.n7D2 
N=3.2502 
T:6.3D2 
XN=3.6UD2 
SuM=O.DO 
DD 1On J=2.14 
Exl=UEXPr-TCRPr J-I J/YLAFIDA) 
EkP=DEXPr-TGHPrJ)/XLAM~A) 
TEkMl-EXl-EXP 
~~IM=~IIHtfAlLr.I-1~i:DLoGrT~R"'l~ 

IDfl CONTlNLlt 
TEH~~P:-IXN-R)(T/XLAMDA 
XL"Gl=DLOG(YIAMDA/XLAMrl)) 
XL@G2=~~Ll~GrXCA~DA/xLA~~Z~~ 
TEAN3’Rl ~XI.flGI*R7~XL OF2 
fN=-rSUMtTERM2+TEPMJ) 
RETllRN 
END 

EXAMPLE 3.2 

500 DATP 92.13, 107.87,129.47,138.50,125.71 
510 FfiR 111 TO 5 
520 REFiD X(I) 
533 NEXT I 
1000 Fl =FZ-0 
1010 M-O.053 
152G FM9 Irl T0 5 
to30 Vr5*1+5 
I!)40 C-(I/V)-M 
IO50 DzPXP(d(I)-B(2)*C) 
1050 Ez9rD/X(I) 
1070 FI-Fl+9-E 
IO;0 r‘2zFZ+:*:F 
1090 NEXr I 
IlOO S=ABS(FI)+RBS(F;:) 

EXAMPLE 3.3 

n011li1 t rI(cCis~lik fIhcTlfin fork) 
DOcltiLE Pl!FCI';I'IN rf3),YSI,YS2,~~,3,YP1,Y11?,YP3, 

IYS,vi'.ROUEIU 
B~,ulrI,.US~ATrx:ll~~r~~tx~2~~~r2~~ 
If~Bnl~NLI .GT. l.Ull) GO TV llln 
YS~.~.217D1-1.~L1lIb~XrI~-&.611~I15X~2~ 
YS2=I.IDO~Xrl~~xr1~-B.ltDO.XoLX(Z~ 
YS3:-7.2~~U~Xr1)~Y(2, 
vb~YSI'IS;*vS~~ 
Y~'lc5.360D11/.76n~~Yrl)-l.~3.~~~l~Xr2) 
YP2=7.7~~~fl~~rl)c~(l)t(~.4~~~U~Xr2)~Xr~~ 
vP~-l.lThDl'XrI)"*r2) 
YP=YPl+YPZ+YP3 
FN=-YP*DAES(YS-B7.nDD) 
PETURN 

1OU FN=l.DJA 
RETURN 
E IdD 

EXAMPLE 3.5 

0 i)d'JJLE ~I~E~~'I~IMV 
500 liFTA 0.2~,0.i0,1.0~~,1.70,2.C0,4.00 
501 DGTR O.Z5,0.4O,C.6U,O.58,0.54,0.~7 
510 FmA Irl ifi G 
5'3 HEAD X(I) 
530 NEXT I 
540 FBF: 1~1 T0 .; 
550 EEA!) Y(I) 
56i' NEXT I 
ioac szo 
ICI0 F0? I=I rpr 6 
IC:?O H~~(I)*E"P(A(I)-~'(I))+B(~)*E~~'(D(~)*X(I)) 
IOJO R-Y(I )-H 
1040 S-s+x*FI 
1051) NEXT I 

EXAMPLE 3.6 

%O ‘>I!1 X(18) 
$01 i.lIM Y(l8) 
502 D4TA 1,7.70;;5,2,6.S433,3,6.5913,4,4,6.3~~3 
503 :JAlfi ~,~.2~~0,6,6.16~1,7,5.0342,R,6.0410 
504 ml-,fl 9,5.~9~~,10,5.9644,12,5.9117,15,5.357d 
505 L)AIA 2c,5.50:?5,%4,5.7744,J3,5.7459,4o,5.7170 
505 3CTA GC,5.6S78,12O,~.6581 
~10 r‘0.i 1-I T0 IS 
,;a y"flz / L X(1) Y(I) 
5SG :.rEYT J ' 
InuO ;'lo 
In10 T-O 
IO:?0 F01 1~1 T0 IY 
1030 R~Aa.S(Y(I!-(X(I)+n(l,,/to(2)*X(I)+9(3))) 
IO40 IF R<T Tr(E'J IO60 
IO50 T:R 
1063 NE;'1 J 
lO7(' SIT 
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details are not given here since they appear in [19], 
and [9] has self-contained instructions. 

In the following comparison, starting values and 
initial step sizes (. , .) for the Nelder-Mead simplex 
procedure were X1 = (500,lO) and Xz = (1000,lO). 
The starting values were obtained from a plot of 
the data. Forty-eight trials were used. 

Method x1 x2 -F 

Boardman 451.90 920.82 1120.5245 
Nelder-Mead 451.84 920.94 1120.5245 

To show the insensitivity (in this problem) to 
different starting values and initial step sizes, the 
combinations X, = (300,25), Xz = (500,25) and 
X1 = (250,50), Xz = (630,50) were tried. In 57 and 51 
trials, respectively both combinations gave -F = 
1120.524. The estimates obtained were A1 = 451.85, 
1, = 920.79 and k, = 451.73, AZ = 920.68, respec- 
tively. 

Example 3.2. Non-Linear Simultaneous Equations 

Singpurwalla [22] derives expressions for the 
maximum likelihood estimators for the parameters 
of a “slightly amended” Arrhenius reaction rate 
model. The resulting equations, given as equations 
(3.1) and (3.2) in [21], are 

$ ri - $ (ri/Xj) exp (A - B(Vi-’ - 7)) = 0 

$ (ri/Xi)(Vi-’ - V) exp (A - B(V,-’ - 7)) = 0 

These were solved numerically using the Newton- 
Raphson method, which gave the required estimates 
in “a few iterations”. 

For the simplex method of solution, the objective 
function was taken to be the sum of the absolute 
values of the two equations. This was to be driven 
toward zero. After 248 trials, with quite arbitrary 
starting values of 10 and initial step sizes of 2, the 
objective function was less than 0.000002 and the 
estimates shown below were changing in no less than 
the eighth significant figure. 

Method A B 

Newton-Raphson 4.728 4.168 
Nelder-Mead 4.7283 4.1680 

Two important points need to be made at this 
time. (1) When the Newton-Raphson procedure is 
applicable (and considerable experience may be 
required in making this judgment), it always 
requires far fewer trials than any ‘[direct” procedure; 
however (2) for this problem, the central processing 
cost of running the Nelder-Mead simplex procedure 
on the General Electric time-share system was 
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approximately one dollar. Even in Example 3.6, the 
most expensive, the central processing time cost less 
than two dollars. The advantage of a general, and 
hence sometimes inefficient, program derives from the 
relatively low cost of modern computing. 

Example 3.3. Maximization Subject to Constraints 

Myers and Carter [15] give an algorithm for 
maximizing a primary quadratic response subject to 
a constraint based on a secondary quadratic response 
in the same variables. We consider the problem given 
in Section 5 of their article. The two responses were 

9, = 53.69 + 7.262, - 10.332, + 7.222,’ 

+ 6.43~2~ + 11.36x,x, 

8. = 82.17 - 1.012, - 8.61~ + 1.40~~~ 

- 8.762,’ - 7.20212, 

The authors pose the problem: find conditions which 
maximize & , subject to Q. = 87.8 and x,~ + x2’ < 1. 
One way to accomodate the specific-value constraint 
on Q. is to incorporate it into the objective function 
as follows. 

Obj. func. = -$, + ABS(Q. - 87.8) 

The inequality constraint on the x’s was handled by 
setting the objective function equal to 1O38 whenever 
the inequality was violated. This so-called “penalty 
function” approach keeps the search in the required 
region. 
These were the approaches taken (cf. Table 2). 
Starting values of zero and initial step sizes of 0.50 
were used for both variables. After 122 trials, the 
objective function was changing only beyond the 
sixth decimal place. The comparison is shown below. 

Method Xl x2 Q. !A 

Myers and Carter 0.85 -0.6 87.8 67 
Nelder-Mead 0.811 -0.585 87.8 67.1 

Myers and Carter’s approach requires the con- 
struction of three graphs from which the estimates, 
subject to the required constraints, can be read. 
In view of the graphical precision obtainable, the 
agreement is satisfactory. 

A simple and effective way of handling bounded 
variables is given by Atwood and Foster [I]. They 
suggest transformation of the bounded space into an 
unbounded one by the following equations. Let the 
X-space have a lower bound L and an upper bound 
U. An unbounded Z-space is obtained from 

Zi = In [(Xi - L)/(U - X,)] 

the inverse of which is 

Xi = [L + U exp (Zdl/[l + exp (ZJI. 
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For unbounded lower and upper cases, one can than the eighth significant figure. The comparison is 
use shown below. 

and 

Zi = -In (U - Xi) 

Xi = U - exp (-2,) Method a, a2 

Resid- 
ual 
SS 

Guttman et al. 1.645 -1.685 -0.443 -1.258 0.001 
Nelder-Mead 1.801 -1.842 -0.463 -1.205 0.0009 

Zi = In (Xi - L) 

Xi = L + exp (Zi). 

Further, it is possible to let L and U be functions 
rather than constants, thereby allowing the treat- 
ment of nonlinear constraints. 

There are a number of combinations of parameter 
values that yield a residual sum of squares of about 
0.001. The response surface associated with a model 
containing a single exponential term is pictured 
by Lawton and Sylvestre (Figure 1 of [13]) to be a 
steep-sided valley. The present model, being the sum 
of two exponential terms, undoubtedly has an 
analogous terrain in four-space. Such response 
surfaces are usually associated with both sensitivity 
to starting values and slow convergence. Even so, 
when the final values found by Guttman et al. [lo] 
were used as starting values in the Nelder-Mead 
simplex procedure, together with initial step sizes 
of 0.00001 for each, the estimates moved to those 
shown above for the Nelder-Mead method. 

Example 3.4. Linear Least-Squares with Errors in 
Both Variables 

Britt and Luecke [3] give an algorithm, using 
Lagrange multipliers, for finding maximum likeli- 
hood estimators of the parameters of nonlinear 
algebraic models. They state, “our algorithm is 
similar in structure to the Gauss-Newton method 
for the standard parameter estimation problem, and 
may be subject to similar convergence problems”. 
Their first example involved finding the least- 
squares estimate of the slope of a straight line when 
equal variances were assumed for both variates. 
This amounts to finding the slope of the line which 
minimizes the perpendicular distances from the 
observed points to the line (with equal scaling for 
the two axes). The simplex procedure produced the 
correct answer in 65 trials using starting values of 6.0 
and -0.625 for the intercept and slope, respectively, 
and initial step sizes of 0.2 and 0.1. The comparison 
of slopes shows exact agreement. 

Method Intercept est. Slope est. 

Britt and Luecke 
Nelder-Mead 

not given -0.54556 
5.7840 -0.54556 

The same remarks given at the end of Example 3.2 
apply with equal force here. 

Example 3.5. Non-Linear Least-Squares 

Guttman, Pereyra, and Scolnik [lo] report on a 
new method for determining least-squares estimators 
for certain classes of non-linear models. They em- 
ployed “a relaxed form of the Gauss-Newton 
procedure”. In the first problem, the model 7 = 
aled’* + a,e”’ ’ was fitted to six data points. 

In applying the Nelder-Mead simplex method, 
we used the same initial guesses as in [lo] for (Y, 
and a2 , namely, -0.5 and -2.5, respectively. Our 
other starting values were a, = az = 1. Initial step 
sizes were 0.1 for all variables. After 460 trials, the 
program terminated because the objective function 
(the residual sum of squares) was changing in no less 

Of course, the estimation effort can generally be 
reduced, as Guttman et al. [lo] point out, by 
iterating on the estimates of the exponent coefficients 
CY, and a2 , and treating the estimation of a, and a, 
as a problem in linear regression. This same point 
was made earlier by Lawton and Sylvestre [13], who 
also specifically discuss the present model. Since 
the Nelder-Mead method was successful in this 
problem without such a partial linearization, it 
should prove useful in similar problems to those who 
either do not know of this device or do not wish to 
take the time to use it. However, it is not difficult 
to incorporate such a partial linearization into a 
subroutine for the Nelder-Mead method, thereby 
using the simplex procedure only for the non-linear 
portion. In complex models, some such device might 
prove necessary. 

Example 3.6. Fitting Tabular Data 

Johnson [ll] fits a number of hyperbolic equations 
to obtain approximations to tabulated values of the 
F-distribution. His criterion was least-squares, and 
his procedure was the “iterative linearization 
technique”. Although the author does not describe, 
or state the source of, the tabular values he used, we 
have presumed that the most accurate available [14] 
were used. 

When fitting approximations to tabled functions, 
the quantity to be minimized is generally taken to be 
the maximum absolute deviation. In the following 
list, we compare Johnson’s results (line 1) for his 
Group IV model: F0.95.,1.4 = (fl + A)/(Bf, + C), 
with the Nelder-Mead simplex method applied to 
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both the least-squares and minimax criteria. The 
maximum absolute deviations for the first two 
solutions were 20.7 X 10m4 and 11.4 X lo-*, some- 
what larger than the 8.2 X 10e4 given by the 
minimax procedure, shown in Table 2. Starting 
values were the least-squares estimates rounded to 
four decimal places. Initial step sizes were all 0.001. 

Obj. 
Method Criterion A^ B CT Func. 

Iter. Lin. Least Sq. 1.349 0.1776 0.1271 23.1” 
Nelder- 

Mead Least. Sq. 1.36295 0.177641 0.128913 .5.$ 
Nelder- 

Mead Minimax 1.36252 0.177645 0.128867 8.2” 

(1 Residual sum of squares; multiply by 1O-6 
* Maximum absolute deviation; mldt,iply by 10m4 

Johnson’s ultimate evaluation of his approxima- 
tion was based on the maximum absolute percent 
deviation from the tabular significance level. In 
principle, this would have been the appropriate 
criterion for him to use in the minimization proce- 
dure. However, the results he obtained are un- 
doubtedly adequate for most practical purposes. 

4. SUMMARY 

We have shown the straightforward application 
of the Nelder-Mead simplex minimization method 
to six problems taken from the May 1973 issue of 
Technometrics. These included direct maximization 
of the logarithm of a likelihood function, solution of 
simultaneous equations, maximization of a quadratic 
function subject to a quadratic constraint, fitting a 
line by minimizing the sum of squares of perpen- 
dicular distances, non-linear least-squares, and 
fitting approximations to tabular data. 

The main points of this demonstration are the 
generality of the Nelder-Mead simplex method, 
its accuracy, and the simplicity of the information 
required for the computer input statements. Addi- 
tional applications of this method, given to show 
other kinds of problems it can solve and to compare 
it with alternative methods are contained in 117, 181. 

Our experience with this procedure, extending 
over two years, has given convincing evidence of its 
capability to handle a wide variety of optimization 
problems, without requiring any modifications 
specialized to the problem at hand. However, in 
spite of this, it would be unreasonable to imply that 
the Nelder-Mead method cannot be defeated. Given 
an ext’remely sharp ridge, produced by high inter- 
dependency among the variables, the method can 
become inefficient to the point of failure. Similarly, 
when violation of a bound is treated by assigning a 
very large value to the objective function, constraints 
can lead to unwarranted shrinkage followed by 
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stopping when further movement along a bound is 
needed. 

Therefore, we are led to recommend this method 
for solving the kinds of problems illustrated here. 
The more the problem tends to be large, with many 
constraints, the less desirable is the Nelder-Mead 
simplex procedure. However, for the usual problems 
encountered in applied statistics, involving no more 
than (say) half a dozen parameters, this method can 
be expected to perform very well. 

To quote Luecke and Britt [3] again, ‘(No param- 
eter estimation scheme is complete if it does not 
furnish some information on the distribution of the 
estimation error”. Although such a statement is 
usually made as an introduction to a section in which 
standard errors are derived, we certainly agree with 
the thought. In its presently available forms [9, 191, 
the Nelder-Mead simplex procedure does not give 
information on the errors associated with statistical 
estimates. The subject is, however, discussed in [17] 
where it is pointed out that such errors can be 
evaluated by adding a few selected points and 
generating the Hessian matrix. An alternative 
approach which might prove fruitful is described in 
detail by Sill& [al] and by Christian [4]. The addi- 
tion of a feature which would supply estimates of 
standard errors, where these are required, would be 
a welcome addition to the present program. 
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