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Estimation procedures are proposed for the means and variances of several normal
distributions. They are valid in cases where the parameters of different distributions
may be unequal but are thought a priori to be related in certain ways. A log-linear model
is assumed for the variances, together with a linear model for the means. Some general
Bayesian results are obtained, and some special cases are discussed including the impor-
tant situation where parameters of different distributions are a priori exchangeable.
The posterior estimates then adjust the standard estimates, by shrinking them towards
central values based on collateral information. A numerical example concerns the simul-
taneous estimation of the variances of the observed breaking strengths of six fabrics.
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1. DiscUssSION OF THE MODEL

Attention is confined to the linear model with
possibly unequal variances, where the observations
z;; are arranged in m populations and may be
unequally replicated. Given 6, and ¢, i = 1, - - - , m)
we take the z,; to be independent and normally
distributed, with

E(x:;|0:,¢:) =0,
and

var (z:; [ 0:,¢:) =¢; (¢ =1, -~

where 8; and ¢, respectively denote the mean and
variance for the ¢th population.

In [7] Lindley provides a method for the simul-
taneous estimation of the population means 8; under
the assumption that they are a priori exchangeable i.e.
the joint distribution of any subset of {6, , - - - , 0.}
is invariant under a permutation of the suffices.
The resultant posterior estimates shrink the sample

ymij =1, ,m)
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means . , - - - , ZLn. towards a central value based on
collateral information. There is therefore a partial
pooling process where information about all the 6,
is used to improve the estimates for each individual
6; . The estimates bear resemblances to those
proposed by James and Stein [2], under a classical
approach, in proving inadmissibility for m > 3 of
the standard estimates z,. , - - , x,. with respect to
a quadratic loss function. The results in [7] are
generalised in [8] to situations where more general
relationships are thought a priori to exist between
the 0, .

In [7] the situation is also discussed where the ¢, ,
as well as the 6, , are a priori exchangeable. In
constructing a suitable exchangeable distribution, a
common inverse chi-squared distribution is assumed
for the ¢, at the first-stage of a two-stage prior model.
Owing to technical difficulties, this method does not
appear to show promise of capability of generalisa-
tion to situations where more complex relationships
are thought to exist between the ¢, e.g. they may be
thought to be related in an ordered fashion, or to
depend upon some explanatory variables.

We will provide a solution to this problem under
a general formulation which will permit such rela-
tionships between the ¢; . As a special case we will
provide new results in the situation where the ¢
are exchangeable. We make no claims of superiority
of our own estimates in the simple exchangeable
situation, although it is our personal opinion that
the results are simpler and easier to interpret.

In [8] the following linear model is assumed for
the mean vector 8 = (6, , --- , 8,)":

6= A 1
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where A is a full rank n X p matrix of known con-
stants, and §is a p X 1 vector of unknown param-
eters. The authors mainly restrict themselves to
cases where the ¢, are either assumed equal or
considered separately. They mention that it is
possible to use the ideas in [7] to generalise their
results to situations where the ¢, are unequal, but
exchangeable. Under our approach it will be possible
to permit the elements of ¢ = (¢, -+ , ¢.)” to be
related in a general manner,

In [8] a hierarchical prior structure is proposed
for the vector 3. This employs multivariate normal
distributions at each stage of the hierarchy. If the
precision matrices of these distributions are assumed
known, then the distribution of @, obtained by
combining the various stages in the prior model, is
multivariate normal. We assume in general that,
given wg and H, , the distribution of § is multi-
variate normal, with mean vector w, , and precision
matrix Hy . When Hy is of full rank, the inverse Hy ™"
provides the prior convariance matrix of .

On p. 114 of [6], the conditional posterior distribu-
tion of 8, given & = (¢, - , ¢m)”, us, and Hy is
shown to be multivariate normal, with mean vector

6 =E@|x,¢ u,Hy)
= (A"RA + Hp) (A'RZ + Heuy) )
and precision matrix A"RA + H; where
Z=(@., e ®3)
and

R = diag (nid, ™', * -, N ) 4)

The expression in (2) adjusts the weighted least
squares vector

8 = (A"RA)'A'RZ ®)

by taking into account the prior information about 8,
as represented by us and Hp .

We would like to make assumptions about ¢ of a
similar nature to those previously made about 6,
since these would enable us to take into account
prior information about relationships between the ¢.,.
We are able to do this by considering the logarithmic
transformations

a; = log ¢; =1 ---,m) (6)
and assuming a linear model for & = (o, -+ , @) "™
We suppose that

o« = By )

where B is a full rank n X ¢ matrix of known con-
stants, and vy is a ¢ X 1 vector of unknown param-
eters.

We suppose that ~ is a priori independent of 8,
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and that, given uw, and H, , the distribution of v in
the prior assessment is multivariate normal, with
mean vector u, , and precision matrix H, . Under
this formulation it is very easy to allow for prior
information about relationships between the log-
variances, and hence between the variances. Our
assumptions are much more flexible than those made
in [7] using inverse chi-squared priors for the
variances. [t will be possible to add a suitable
second stage to the prior model in some cases, by
assigning distributions to the elements of v, and H. |
so that specific values need not be chosen for these
elements.

The general idea of seeking suitable transforma-
tions of sets of the unknown parameters such that
the new parameters may be considered to be a priori
normally distributed is suggested by us in the
discussion of [8]. In {3] we apply these ideas to the
estimation of several binomial parameters, using
logistic transformations, and the present paper
provides another particular case.

In the next section we discuss the estimation of
vy when 8 is known, and will later generalise our
analysis to the situation where both 8 and v are
unknown.

2. PoruraTioN MEAaNs KNowN
The arguments in the present section are only

intended to hold conditionally on 6 = Ag being
known. It is now well-known that the sums of squares

S.(0)) = Zu —0) G=1,,m)  ®

comprise a set of jointly sufficient statistics for the
¢; . These expressions may be rearranged in the
forms

Si(ai) = 8" + ni(ei - 1'1‘.)2 (9)

where
S = Z‘ (xii - xi.)z (10)
i=1

We note that the expression in (9) is never less
than that in (10). We now state, without proof, two
standard results about the sampling distributions of
the S,(6:). These are

(1) Given the 6, and ¢, , the quantities
4)1‘181(01), T ¢m_1Srn(0m)
are mutually independent, and possess chi-

squared distributions on #. , - - - , n,, degrees
of freedom respectively.,

(i1) Consider the vector L = (I, , ---, )", and
the matrix U, such that
li = log {8:(8:)/mni} (@ =1, ---,m) (11)

and
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U = diag &n,, -, in,) (12)

Then unless any of the n; are small, the distribution
of 1, conditional on 8 and «, is approximately multi-
variate normal with mean vector « and precision
matrix U,

The second result follows from the first, together
with the standard result that the log of a chi-squared
variate on v degrees of freedom is approximately
normally distributed with mean log v and variance
2y"'. Under our approximations, we notice that we
may carry out the analysis for ¥, and « = Bx,
conditionally on 0 being known, by analogy with
the previous analysis for 3, and 6 = AQ, conditional
on ¢ being known. We merely have to replace
0,3 A/Z, R w,andH; ,by e, v,B, 1, U, g, ,
and H, respectively.

The adequacy in the present Bayesian context of
the above normal approximations to the distribu-
tions of the logs of the chi-squared variates should
in principle be considered by examining the accuracy
of the resultant approximation to the posterior
distribution in regions of the parameter space to
which it assigns high probability. However in Ch. 7
of an unpublished thesis [4] we indicate an exact
approach for the resultant estimates, which is
omitted here as it is rather complicated. Algebraic
comparisons with the approximate estimates given
below suggest to us that the latter should be adequate
as long as they are not over-radically different from
the maximum likelihood estimates i.e. very close to
the prior means, in which case the corresponding
exact estimates will be more conservative. We guess
that for many choices of the prior distribution, these
approximations may be reasonable whenever none
of the n; are less than about 5, though they might
sometimes be adequate when some of the n, are
smaller. Further work would be necessary if we
wished to examine the accuracy of the approximation
to the whole posterior distribution. We of course
prefer the approximations rather than the exact
method, for reasons of simplicity.

Whenever the above approximations hold, we
have, by analogy with (2), and using the substitu-
tions described above, that the conditional posterior
mean vector of ¥, given 8, g, , and H, is approxi-
mated by

¥ =E(Y’X, 0:97 rH'y)
= (BTUB -+ H«/)AI(BTUI + H*rvv) (13)

where 1 has elements in (11) and U is given in (12).

If some of the non-diagonal elements of H. are
non-zero then our estimate for y will take account of
prior relationships between the elements of y or e
We suggest estimating the vector ¢ of variances by

e (14)

where &; is the ¢th element of B4. This is not the
mean vector of ¢, but it should still provide us with
reasonable estimates.

3. PorurLaTION MEANS AND VARIANCES UNKNOWN

When 8 and ¥ (and hence 8 and ¢) are unknown it
appears virtually impossible to obtain their un-
conditional posterior mean vectors, since the joint
posterior distribution of g and v is rather compli-
cated, and is not multivariate normal. Instead we
propose an alternative method of estimation, which
involves some simple iterations. We find approxi-
mations to the joint posterior mode vectors of §
and v i.e. those vectors maximising the joint posterior
distribution of 8 and .

In [8] posterior modes are also employed, and we
cite an important general result on page 12 of this
paper, which enables us to obtain joint modes by
considering the conditional modes. The result may
be paraphrased to the present situation by saying
that the joint posterior mode vectors of 3 and ¥ are
given by vectors § and ¥ satisfying

B =b®)

and
¥ =@

where b(y) is the conditional posterior mode vector
of B given v, and c(B) is the corresponding vector
of v, given 8.

We use this in conjunction with the useful and
commonly known result that for a multivariate
normal distribution the mode vector is identical to
the mean vector.

Since the conditional posterior distribution of 3,
given v, is multivariate normal, the conditional
posterior mode vector of 8, given ¥, may be obtained
from the mean vector in (2) upon replacing the ¢;
in the expression for R in (4) by the exponentials
of the corresponding elements of By. The conditional
posterior mode vector of ¥, given 3, may be approx-
imated by the mean vector in (13) upon replacing
the 6, in the expressions for the elements of 1in (11)
by the corresponding elements of A.

As a consequence of the above-cited result in [8],
we therefore have that the joint posterior mode
vectors of § and v are approximated by the solutions
for § and # to the equations

6= (A"RA + Hy) '(A"RZ + Hay) (15
and

¥ = (B'UB + H,)'B'UI + H,u,)  (16)
where
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R = diag (n&,”", -+ , N ) (17)
and the 7th element of 1 is denoted by
1. = log {8:(6.)/n.} (18)
where
8:(0:) = 8" + ni(be — 2 )’ (19)
with
0=(4, ,8) =A} (20)
o =€ (1)
and
@a=(@, ,a)" = By (22)
where Z, 8.”, and U are given in (3), (10), and (12)
respectively.

A simple substitution procedure for the solution
of the above equations is described as follows:

(a) Use the elements z; of Z as initial values for

the corresponding elements of 8 and use them
to calculate values for the S;(4,) from (19),
and hence for the [; from (18), the elements
of # from (16), and & from (22).

(b) Use the latest values for the &; to calculate
values for the &, from (21), R from (17), and
hence for the elements of § and 8 from (15)
and (20) respectively.

(¢) Return to (a), using the new values for the
elements of @ instead of the old values, and
keep eycling until convergence.

The above procedure is extremely simple and
unless the matrices are of high dimension it will
converge in a few seconds of computer time. We
hope to publish an algorithm at a future date.

4, EXCHANGEABILITY OF THE MEANS AND VARIANCES

In [7] the situation is treated where the relation-
ships between the 6, are of a symmetric nature, so
that these parameters are exchangeable. In this case
there should be exactly the same prior information
about each 6;, and also about all subsets of
{6,, -, 0,} which are of the same size. This would
for example be satisfied if the statistician were
completely ignorant about the 6; and the relation-
ships between them, in which case he would possess
a symmetric lack of knowledge about them.

In [7] a two-stage prior model is used for the 6, .
At the first stage the 6; are taken to possess the
probability structure of a random sample from a
normal distribution with mean u, and variance o,".
Further distributions are then chosen for the first-
stage parameters u, and o,". In the special case
where o, is known, the mean u, is integrated out to
show that the joint distribution of the 6, is given by
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w(f | 0”) « exp {—30, " Z (6. — 6.)°) (23)

With some algebraic manipulation, it is straight-
forward to show that this provides a special case of
the formulation in section 1, but with A = 1, ,
us equal to the vector of zeros, and Hy = o, *(1,, —
m™'J,). Here I, denotes the m X m identity matrix,
and J,. denotes the m X m matrix, every element of
which is unity.

The distribution in (23) is used in [7] to show that
the conditional posterior mean vector of 8, given ¢
and ¢,°, possesses elements §, , --- , §, satisfying

5 ni¢i_1$i. + 0'0—25.
8, = -1 -2
np:,  + oy

where

(i=1,---,m (24

A
I

DINIREAND DI (25)
with
po' = mi /(i A 077 (26)

The expressions in (24) provide the elements of
the vector in (2) which reduces to the posterior mean
vector of 6, given ¢ and o,°, in this special case.
The expression for §; takes the form of a weighted
average of the standard estimate z; and the central
value § which we see from (25) to take the form of
a weighted average of all the sample means. The
standard estimates are therefore shrunk towards a
value based on collateral information, and this will
hopefully smooth out some of the random fluctuation
in the data.

It should be remarked that the estimates in (24)
were proposed in {7] for the fized effects situation.
The assumption of exchangeability does not imply
that the 6, constitute a random sample from a
hyperpopulation of ’s. Random effects models are
discussed in [10].

When the ¢, , and hence the «; , are also exchange-
able, we employ the prior model for « which is
described in section 1, but with B = I, , u, equal to
the vector of zeros, and H, = ¢, (I, — m 'J,).
The vector in (13) now provides an approximation to
the conditional posterior mean vector of «, given 0
and ¢,°, and by analogy with (24)-(26) this has
elements &, , - - - , &, satisfying

-2~

ool

n;

a=——%nL$-:_—:2i G=1,--,m) @D
with
& = 2 p."L/ 2 pa” (28)
where
p'" = tn/Gn + 0.7 (29)

and [; is given in (11).
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We therefore have similar weighted average forms
for the log-variances to those obtained in [7] for
the means. The expression in (27) takes the form
of a weighted average of [; and & the weights being
in; and o, ° respectively. When the 8; are known
the estimate ¢; = e** for ¢; shrinks the maximum
likelihood estimate

$: = e =n7'8:(8) = n D (@ — 0. (30)
i=1
towards the geometric mean
eﬂ. — (H 6,‘)1/"1 (31)

This contrasts with the estimates in [7] where the
shrinkages are towards the harmonic mean.

When the 6; and ¢; are unknown we need to
replace the ¢, in (24) and (26) by the corresponding
¢**, and the I, in (27) and (28) by the corresponding
I, in (18). The resultant equations may be solved
using the iterative procedure described below, or as
a special case of the procedure described towards
the end of the previous section.

When the 9; are unknown, then the maximum
likelihood estimate of ¢, is instead given by

é: =n.'8,Y =n"" 2 @i — ) (32)
i=1

We see from (9) that when 6; = z, the expression
in (30) is always greater than that in (32). Our prior
assumptions about the 8, therefore have the effect
of expanding the estimates of the ¢. , as well as
shrinking the estimates of the 8, towards the expres-
sion in (25). The expansion is greatest when o,” = 0,
so that the 8, are all equal, and hence equal to the
quantity in (25) which reduces to

§ =& = Zn@f‘x.-,/Zn.-qbf‘
In this extreme situation, we have
n,. ' S(8))
=n,"" ‘21 (xi; — & = 0,78 + (i, — &)°

and these are the same as the maximum likelihood
estimates obtained upon taking the 6, to be equal.
We see that the expansions may be quite consider-
able in this case.

The prior assumptions about the ¢. have the
effect of shrinking the expanded estimates towards
the geometric mean in (31), as well as affecting the
estimates of the 6, .

We now indicate how to generalise our results to
the situation where the first-stage prior variances
os and ¢.° of the 6, and «, are unknown. We assume
that g, = log o,° is a priori normally distributed

with mean £, and variance 7,°, and that g, = log o.”
is a priori independent of g, and possesses a similar
distribution, but with parameters ¢, and 7.°.
Whenever there is strong prior information that the
6, are close together the statistician should choose
small values for ¢ and r,°. If there is information
that the 6, are likely to be only slightly related a
large value should instead be chosen for e*’. If there
is not much prior information about the strength
of the symmetric relationship between the 6, , then
a large value should be chosen for 7,°. Similar
considerations apply to the choices of ef* and 7,°
A convenient method of estimation is given in
chapter 7 of the unpublished thesis [4], and we take
the liberty of omitting the details from the present
paper. We show that, unless m is small, the joint
posterior modes of the 6; , a; , go , and g, may be
approximated using equations (24) and (27) for the
8. and &; respectively. We merely have to replace
$:,0;,0s,and ¢,” in these equations by e*‘, §, , ”,
and e°® respectively, where §, and §, denote the
corresponding modes of g, and ¢, , and satisfy

Gy = vebs + (m — I)M(é)

Vg + m — 1 (3?))
and
ga —_ Vaga + (m - I)M(&) (34)

ve +m — 1

where vy = 275", vo = 27,7%, and for any m X 1
vectore = (e, -+ , €,)" we have

M(e) = log {Z (e —e)’/(m — D} (35)

The expression for §, in (33) is a weighted average
of the prior mean £, and the iterated contribution
M (8), the weights being v, and m — 1 respectively.
If v, >> 1, so that the prior variance 7, is small, the
prior mean £, will predominate. If m — 1 > », , the
iterated contribution predominates. Similar proper-
ties are satisfied by the expression in (34).

An iterative procedure for the solution of the
resultant equations is described as follows:

(i) Use the =z, as initial values for the corre-
sponding §; , and use them to calculate values
for the S;(6.) from (19), and hence for the I
from (18). Use these values for the /; as initial
values for the corresponding &, .

(ii) Use the latest values for the 8; and &; to
calculate values for the averages

6 =m™ E §,and @ = m™’ Z&.-

(iii) Use the latest values for the §; , ., 8., and a.
to calculate values for §, and §. from (33)
and (34) respectively.

(iv) Use the latest values for the §; to calculate
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new values for the I, from (18). Substitute
the latest values for the e, 8 ,¢”, I, , & ,and
¢’ for the corresponding ¢, , 8, o4°, I; , &, ,
and o, in the right hand sides of (24) and
(27) and obtain new values for the §, and &,
on the left hand sides.

(v) Return to (ii) and keep cycling until con-

vergence.

We have always found the above procedure to
converge in a few seconds of computer time. One
advantage is that it does not involve the direct
inversion of any matrices.

In this section we have provided an alternative
to the method in [7] which was the pioneer work on
exchange-ability of variances. This method also in-
volves some approximations, but it should be
perfectly viable, and we leave it to the reader to
decide which method he prefers in this special case.
We of course feel that the principle advantage of our
own method is that it generalises to estimations
where more complex prior relationships exist between
the variances. Professor Lindley has in fact been kind
enough to inform us (personal communication) that
there is no computer program prvoiding the solutions
to his equations when the variances are unequal. He
has concentrated on the case where the variances are
equal, since the other case does not show promise of
capability of generalisation. We are therefore unable
to compare the alternative methods numerically,
but in the next section we illustrate our own method
before proceeding to discuss other applications of
our general approach.

5. NUMERICAL EXAMPLE

We consider data previously analysed on p. 145
of [1] and concerning the breaking strengths of six
different fabrics. There are n, = 10 observations
Zi1, *+* , T on fabricno. i fori =1, --- | 6. We

TasLi I—Estimates of the Fabric Variances (¢ = 0-1)

4 ¢) 45 b,

found that the maximum likelihood estimates of
the theoretical breaking strengths 6, were not
substantially affected by our particular prior
assumptions in this case. We therefore restrict our
descriptions to the estimation of the corresponding
variances ¢; . Their maximum likelihood estimates
¢ were calculated using (32) and are given in the
first row of Table 1.

In [1] it is shown that Bartlett’s test for the
homogeneity of the variances fails for any sensible
significance level. As a point of interest we note that
this test is based upon the logs of the variances, thus
employing similar transformations to our own. Our
approach avoids the need for such tests since our
estimates compromise between those obtained via
clagsical methods upon assuming the variances
unequal, and those obtained upon assuming them
equal.

The heterogeneity in the present case is primarily
due to the high value of the estimated variance ¢,
for fabric no. 2. We are therefore particularly
interested in the effect of our Bayesian assumptions
on this estimate.

It is reasonable to assume exchangeability of the
¢ if there is the required symmetry of prior infor-
mation about the various fabrics. Exchangeability
would be inappropriate if, for example, the fabrics
were known to have been produced in a particular
order by the same machine. In this case the alterna-
tive assumptions indicated at the end of section 6
may be more reasonable, since the time-dependence
destroys the symmetry. Exchangeability of the ¢,
would be appropriate if there was no prior informa-
tion about the fabrics, in which case it appears to be
more plausible than independence. This is because
information about a particular ¢, would surely give
us some idea about the values of the other ¢, , thus
implying that the ¢, are related.

Maximum

Likelihood 072 14+26 339 579

vy =0 0.91 10.61 3424 5.07
Va =1 1.04 8.83 3.15 465
\’a =3 1.30 6457 3.01 4L«Qb
Vo =5 1.46 5467 2.94 377
Vo, = 10 1.65 4+80 287 348
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b5 b
1:93  0+81
2.04  1.00  (0+91)
Sl 1433 (0+50)
2022 1.39  (0+24)
228 1.53  (0+17)
23 1.72 (0+11)
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We firstly assume that there is no prior information
to suggest likely values for the first-stage prior
variances ¢,,, and ¢,”. The latter respectively
measure the closeness to each other of the 6, , and of
the a; = log ¢, . In this case we set vy = v, = 0
which provides uninformative log-uniform priors for
oo’ and o,°. As mentioned in [10] we should strictly
choose small positive values for », and », to keep
the distributions of ¢,° and ¢,” proper, but this
would have a negligible effect on our numerical
results,

The corresponding Bayesian estimates for the ¢,
are given in the second row of Table 1, and the value
obtained for 6.° = €’* is given in brackets at the
end of the row. The effects of our assumptions on the
estimates are quite noticeable. For example, our
estimate of 10.61 for ¢, compares with ¢, = 14.26,
The prior assumptions about the 6; in fact cause ¢,
to be marginally increased to n,”'S,(8,) = 14.43,
where n,”'S.(6,) is given in (30). The prior assump-
tions about the ¢; then cause this value to be shrunk
about one third of the way towards 2.62, which is
the geometric mean of the ¢, . Some of the other
differences are also substantial e.g. the estimates of ¢,,
and ¢, are both increased by about 209,.

We next examine the effect of prior information
about o,” on our estimates, though we still keep
vs = 0. Such information may for example be based
on general experience, or on data from previous
fabries.

For illustrative purposes we suppose hypotheti-
cally that the prior information about the closeness
to each other of the a; suggests a value of 0.1 for ¢,°,
and we therefore set ¢ = 0.1. We then examine our
estimates of the ¢; and ¢, for various choices of
v, = 2r.° % These estimates are given in the last
four rows of Table 1.

As v, increases from zero, ¢,° decreases from 0.91,
and in fact approaches the prior estimate of 0.1
as v, — . The relationship is not simple, owing to
the dependence of the expression for §. = log G
in (34) upon the «; . As v, increases, the estimates
for the ¢; become closer together, and further from
the corresponding maximum likelihood estimates.

The estimates depend very much upon the prior
information about ¢,” which happens to be available.
If it is not possible to ascertain this precisely, we
recommend simply setting », = 0, in which case the
estimates do not depend upon any specific prior
parameter values, but still differ from the maximum
likelihood estimates.

6. OTHER APPLICATIONS OF GENERAL RESULTS

The results in sections 2 and 3 may be applied to
a whole range of special cases, only a few of which
are mentioned here.

In [7], [10], and [11] the authors discuss regression
models as special cases of their general model for
the means. In some situations it may be appropriate
to assume the variances, as well as the means, to
depend upon explanatory variables. In such cases
the elements of the design matrix B in (1.7) may be
chosen as suitable functions of the explanatory
variables, and ¥ may be taken to represent a vector
of regression coeflicients. The authors in particular
discuss exchangeability between the coefficients of
several normal regression lines, and also exchange-
ability between the coefficients of one line in a
multiple regression situation. Alternative assump-
tions for the variances could well lead to quite
different results.

In [9] a two-way layout of normal observations is
analysed. The means 6,; are taken to satisfy a
relationship of the form

9”‘ :,U'}‘)\f,A '}‘)\jB“}‘)\n‘AB
(7:2 1; "':7‘;.7.= 1; ’8)

where the \;*, \;” and \,; " ” respectively denote the
row, column, and interaction effects. The variances
are either assumed equal, or unequal but exchange-
able. We feel that it would sometimes be appropriate
to assume a similar structure for the log-variances
to that previously assumed for the means. In [9]
certain assumptions of exchangeability are made for
the various effects, and the results are obtained as a
special case of the analysis in [8]. It is possible to
obtain similar results for the effects of the log-
variances by using a special case of the result in (13).
We may alternatively proceed directly using a
similar method to that employed by us in a forth-
coming paper on contingency tables. This provides
us with the following explicit approximations to the
estimates suggested implicitly in [9] for the various
effects:

ﬁ = ; u)kal‘kﬂ./lﬂzy: Wie (36)
~ il Tig. — bA
4 0457 2 J'E Wi (i )1 -
i S(TAB'Z + (TA— l Ewio J
_ (g, — bR
£ = Toap J’kz Wi, )1 (38)
i - —2 =) Bl
Toap + og 1 Z Wiy j
k
and
AP = v — B - XN =KD (39)
where

Wy = 7lii¢i:‘_l/(n’i:’¢ii7‘ + ‘TABﬂ) (40)

and b* and b” are complicated expressions which
ensure that X, * = & % = 0. Here we use the notation
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2, Nii, and ¢,; to respectively denote the average
observation, the number of observations, and the
variance corresponding to the (¢, j)th cell. Also
o4, o5°, and o5 respectively represent the common
variances of the \;*, the \;”, and the \;;*? at the
first stage of the exchangeable prior model.

The estimates in (37), (38), and (39) roughly
speaking shrink the corresponding maximum likeli-
hood estimates towards zero. For a full discussion in
the special case where all the n,; and ¢,; are equal
we refer the reader to [8). Analogous approximations
for the effects of the log-variances may be obtained
directly via the substitutions mentioned in section 2.

In our forthcsmmg contingency table paper the z;;

and n;; "¢,; in (37)—-(40) will be replaced by the logs
of the appropriate observed multinomial frequencies,
and their reciprocals. The corresponding exact
equations will provide a method for coping with zero
frequencies.

Our methods are also applicable to linear models
in time series analysis. Consider for example the
stationary first-order autoregressive process for the
6. where

| -~ 1

Gir = pobs + s (G =1, ,m ~ 1;]pe| < 1) (41)
and the 5, are uncorrelated normal errors
2
7. ~ N(O, ,°)

with 7, independent of 6, , 0,_,, - - - , 8, . As discussed
in chapter 4 of [4] this in fact provides a special case
of the formulation in section 1, but with A in (1)
equal to the m X m identity matrix, the prior mean
vector us equal to the zero vector, and the (s, k)th

element of the covariance matrix H;™' equal to
ToZPo“—H/(l - Poz) (42)
If the corresponding log-variances «, , *+* , an

are unequal it may very often be reasonable to
assume ordered relationships of the a; are of a similar
nature to that assumed in (41) for the 8, . We do not
include the analysis here since it follows by analogy
from a method in [5] for smoothing histograms, which
also employs the covariance structure in (42). It is
however possible to obtain simultaneous estimates
for the 6, and «; , and also to estimate o4, py , and
the corresponding parameters for the a; . Such a
method might find application in quality control,
and may be used to detect whether the mean and
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variance corresponding to a particular time stage
fall outside a designated region of the parameter
space.
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