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Estimation procedures are proposed for the means and variances of several normal 
distributions. They are valid in cases where the parameters of different distributions 
may be unequal but are thought a priori to be related in certain ways. A log-linear model 
is assumed for the variances, together with a linear model for the means. Some general 
Bayesian results are obtained, and some special cases are discussed including the impor- 
tant situation where parameters of different distributions are a priori exchangeable. 
The posterior estimates then adjust the standard estimates, by shrinking them towards 
central values based on collateral information. A numerical example concerns the simul- 
taneous estimation of the variances of the observed breaking strengths of six fabrics. 
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meansxl., ... , x,. towards a central value based on 
collateral information. There is therefore a partial 
pooling process where information about all the ei 
is used to improve the estimates for each individual 
ei . The estimates bear resemblances to those 
proposed by James and Stein [2], under a classical 
approach, in proving inadmissibility for m 2 3 of 
the standard estimates x,. , . . . , x,, with respect to 
a quadratic loss function. The results in [7] are 
generalised in [8] to situations where more general 
relationships are thought a priori to exist between 
the ei . 

1. DISCUSSION OF THE MODEL 

Attention is confined to the linear model with 
possibly unequal variances, where the observations 
xii are arranged in m populations and may be 
unequally replicated. Given Bi and & (i = 1, . . . , m) 
we take the xii to be independent and normally 
distributed, with 

and 

In [7] the situation is also discussed where the 4; , 
as well as the Bi , are a priori exchangeable. In 
constructing a suitable exchangeable distribution, a 
common inverse chi-squared distribution is assumed 
for the qji at the first-stage of a two-stage prior model. 
Owing to technical difficulties, this method does not 
appear to show promise of capability of generalisa- 
tion to situations where more complex relationships 
are thought to exist between the +i e.g. they may be 
thought to be related in an ordered fashion, or to 
depend upon some explanatory variables. 

var (xii 1 Bi , &) = C& (; = 1, . . * , m; j = 1, . . . , ni) 

where Bi and rpi respectively denote the mean and 
variance for the ith population. 

In [7] Lindley provides a method for the simul- 
taneous estimation of the population means Bi under 
the assumption that they are a priori exch.angeable i.e. 
the joint distribution of any subset of (f4 , . . . , 6,) 
is invariant under a permutation of the suffices. 
The resultant posterior estimates shrink the sample 

We will provide a solution to this problem under 
a general formulation which will permit such rela- 
tionships between the 4i . As a special case we will 
provide new results in the situation where the & 
are exchangeable. We make no claims of superiority 
of our own estimates in the simple exchangeable 
situation, although it is our personal opinion that 
the results are simpler and easier to interpret. 

In [S] the following linear model is assumed for 
the mean vector 8 = (t9, , . . . , 0,)‘: 
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where A is a full rank n X p matrix of known con- 
stants, and 0 is a p X 1 vector of unknown param- 
eters. The authors mainly restrict themselves to 
cases where the 4; are either assumed equal or 
considered separately. They mention that it is 
possible to use the ideas in [7] to generalise their 
results to situations where the & are unequal, but 
exchangeable. Under our approach it will be possible 
to permit the elements of Q, = (41 , * . . , &JT to be 
related in a general manner. 

In [8] a hierarchical prior structure is proposed 
for the vector @. This employs multivariate normal 
distributions at each stage of t,he hierarchy. If the 
precision matrices of these distributions are assumed 
known, then the distribution of @, obtained by 
combining the various stages in the prior model, is 
multivariate normal. We assume in general that, 
given la and H, , the distribution of Q is multi- 
variate normal, with mean vector pa , and precision 
matrix HP . When H, is of full rank, the inverse Ho-l 
provides the prior convariance matrix of 0. 

On p. 114 of [6], the conditional posterior distribu- 
t’ion of Q, given $I = (+1 , . . . , &)‘, pfl , and H, is 
shown to be multivariate normal, with mean vector 

Q = E’@ I x, $7 vs , HP) 

= (ATRA + HJ’(ATRZ + Havs) 

and precision matrix ATRA + HB where 

z = (2,. ) ... ) x,jT 

and 

(2) 

(3) 

R = diag (n,+,-‘, . * . , n,,,&,,-‘) (4) 

The expression in (2) adjusts the weighted least 
squares vector 

6 = (ATRA)-‘ATRZ (5) 

by taking into account the prior information about @, 
as represented by ps and HP . 

We would like to make assumptions about + of a 
similar nature to those previously made about 8, 
since these would enable us to take int,o account 
prior information about relationships bet’ween the +;. 
We are able to do this by considering the logarithmic 
transformations 

a* = log $Ji (i = 1, . . . , m) (6) 

and assuming a linear model for o! = ((Ye , . . . , a,) ‘. 
We suppose that 

a = By (7) 

where B is a full rank n X 4 matrix of known con- 
stants, and y is a q X 1 vector of unknown param- 
eters. 

We suppose that y is a priori independent of 8, 
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and that, given pr and H, , the distribution of y in 
the prior assessment is multivariate normal, with 
mean vector p? , and precision matrix H, . Under 
this formulation it is very easy to allow for prior 
information about relationships between the log- 
variances, and hence between the variances. Our 
assumptions are much more flexible than those made 
in [7] using inverse chi-squared priors for the 
variances. It will be possible to add a suitable 
second stage to the prior model in some cases, by 
assigning distributions to the elements of vr and H, , 
so that specific values need not be chosen for these 
elements. 

The general idea of seeking suitable transforma- 
tions of sets of the unknown parameters such that 
the new parameters may be considered to be a priori 
normally distributed is suggested by us in the 
discussion of [S]. In [3] we apply these ideas to the 
estimation of several binomial parameters, using 
logistic transformations, and the present paper 
provides another particular case. 

In the next section we discuss the estimation of 
y when Q is known, and will later generalise our 
analysis to the situation where both @ and y are 
unknown. 

2. POPULATION MEANS KNOWN 

The arguments in the present section are only 
intended to hold conditionally on B = A@ being 
known. It is now well-known that the sums of squares 

ni 
sod = C (x,~ - 0,)” (i = 1, .s. ,m) (8) ;=1 

comprise a set of jointly sufficient statistics for the 
& . These expressions may be rearranged in the 
forms 

where 

s,(e,) = S,” + n,(ei - xi.j2 (9) 

S;” = 2 (Xti - x,.)2 (10) i=l 

We note that the expression in (9) is never less 
than that in (10). We now state, without proof, two 
standard results about the sampling distributions of 
the x,(0,). These are 

6) Given the Bi and & , the quantities 

(ii) 

c61-‘sl(el), . . . , 4m-1sm(em) 
are mutually independent, and possess chi- 
squared distributions on n1 , . * . , n, degrees 
of freedom respectively. 
Consider the vector 1 = (Z1 , 1 . . , Z,)‘, and 
the matrix U, such that 

Zi = log (S,(e,)/n,l (i = 1, ... , m) (11) 

and 
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U = diag (in, , . . . , +n,) (12) 

Then unless any of the n, are small, the distribution 
of 1, conditional on 8 and (Y, is approximately multi- 
variate normal with mean vector (Y and precision 
matrix U. 

The second result follows from the first, together 
with the standard result that the log of a chi-squared 
variate on v degrees of freedom is approximately 
normally distributed with mean log v and variance 
2v-‘. Under our approximations, we notice that we 
may carry out the analysis for y, and (Y = By, 
conditionally on 6 being known, by analogy with 
the previous analysis for @, and 8 = A@, conditional 
on + being known. We merely have to replace 
6, k% 4 2, R, VP , and HB , by a, Y, B, 1, U, v7 , 
and H, respectively. 

The adequacy in the present Bayesian context of 
the above norma,l approximations to the distribu- 
tions of the logs of the chi-squared variates should 
in principle be considered by examining the accuracy 
of the resultant approximation to the posterior 
distribution in regions of the parameter space to 
which it assigns high probability. However in Ch. 7 
of an unpublished thesis [4] we indicate an exact 
approach for the resultant estimates, which is 
omitted here as it is rather complicated. Algebraic 
comparisons with the approximate estimates given 
below suggest to us that the latter should be adequate 
as long as they are not over-radically different from 
the maximum likelihood estimates i.e. very close to 
the prior means, in which case the corresponding 
exact estimates will be more conservative. We guess 
that for many choices of the prior distribution, these 
approximations may be reasonable whenever none 
of the ni are less than about 5, though they might 
sometimes be adequate when some of the ni are 
smaller. Further work would be necessary if we 
wished to examine the accuracy of the approximation 
to the whole posterior distribution. We of course 
prefer the approximations rather than the exact 
method, for reasons of simplicity. 

Whenever the above approximations hold, we 
have, by analogy with (2), and using the substitu- 
tions described above, that the conditional posterior 
mean vector of y, given 6, p!7 , and H, is approxi- 
mated by 

f= 

= 

where 1 has 

WY I x, 6, vr , H,) 

(BTUB + H,)-‘(BTU1 + HrpY) (13) 

element,s in (11) and U is given in (12). 
If some of the non-diagonal elements of H, are 

non-zero then our estimate for y will take account of 
prior relationships between the elements of y or (Y. 
We suggest estimating the vector + of variances by 

4 = @‘, . . . ) eyT (14) 

where & is the ith element of By. This is not the 
mean vector of +, but it should still provide us with 
reasonable estimates. 

3. POPULATION MEANS AND VARIANCES UNKNOWN 

When @ and y (and hence 8 and 9) are unknown it 
appears virtually impossible to obtain their un- 
conditional posterior mean vectors, since the joint 
posterior distribution of @ and y is rather compli- 
cated, and is not multivariate normal. Instead we 
propose an alternative method of estimation, which 
involves some simple iterations. We find approxi- 
mations to the joint posterior mode vectors of @ 
and y i.e. those vectors maximising the joint posterior 
distribution of @ and y. 

In [8] posterior modes are also employed, and we 
cite an important general result on page 12 of this 
paper, which enables us to obtain joint modes by 
considering the conditional modes. The result may 
be paraphrased to the present situation by saying 
that the joint posterior mode vectors of @ and y are 
given by vectors @ and 1 satisfying 

and 

@ = b(f) 

f = c(B) 

where b(y) is the conditional posterior mode vector 
of @ given y, and c(e) is the corresponding vector 
of y, given @. 

We use this in conjunction with the useful and 
commonly known result that for a multivariate 
normal distribution the mode vector is identical to 
the mean vector. 

Since the conditional posterior distribution of @, 
given y, is multivariate normal, the conditional 
posterior mode vector of 0, given y, may be obtained 
from the mean vector in (2) upon replacing the 4; 
in the expression for R in (4) by the exponentials 
of the corresponding elements of By. The conditional 
posterior mode vector of y, given 0, may be approx- 
imated by the mean vector in (13) upon replacing 
the Oi in the expressions for the elements of 1 in (11) 
by the corresponding elements of A@. 

As a consequence of the above-cited result in [S], 
we therefore have that the joint posterior mode 
vectors of Q and y are approximated by the solutions 
for 0 and f to the equations 

0 = (A%A + H,)-‘(A%2 + HBpB) (15) 

and 

f = (BUB + H,)-‘(BTUi + H,y,) (16) 

where 
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a = diag (n&-l, . . . , n,,&-‘) 

and the ith element of 1 is denoted by 

ii = log (X,(B,)/n,) 

where 

(17) 

(18) 

with 

&(J,) = Siw + ni(Gi - x;.)’ (19) 

and 

ii = (8, , ... , 0,)’ = A@ cm 

6, = e” (21) 

ii = (&, , ... ) &,)’ = By (22) 

where Z! S,“, and U are given in (3), (lo), and (12) 
respectively. 

A simple substitution procedure for the solution 
of the above equations is described as follows: 

(4 

(b) 

cc> 

Use the elements xi. of 2 as initial values for 
the corresponding elements of 5 and use them 
to calculate values for the Si(fi,) from (19), 
and hence for the & from (18), the elements 
of f from (16), and o! from (22). 
Use the latest values for the & to calculate 
values for the Q, from (Zl), R from (17), and 
hence for the elements of @ and i from (15) 
and (20) respectively. 
Return to (a), using the new values for the 
elements of 5 instead of the old values, and 
keep cycling until convergence. 

The above procedure is extremely simple and 
unless the matrices are of high dimension it will 
converge in a few seconds of computer time. We 
hope to publish an algorithm at a future date. 

4. EXCHANGEABILITY OF THE MEANS AND VARIANCES 

In [7] the situation is treated where the relation- 
ships between the ei are of a symmetric nature, so 
that these parameters are exchangeable. In this case 
there should be exactly the same prior information 
about each 0; , and also about all subsets of 
101, *.. , 0,) which are of the same size. This would 
for example be satisfied if the statistician were 
completely ignorant about the ei and the relation- 
ships between them, in which case he would possess 
a symmetric lack of knowledge about them. 

In [7] a two-stage prior model is used for the Bi . 
At the first stage the 8; are taken to possess the 
probability structure of a random sample from a 
normal distribution with mean us and variance ag2. 
Further distributions are then chosen for the first- 
stage parameters ug and CT@‘. In the special case 
where ag2 is known, the mean us is integrated out to 
show that the joint distribution of the 0, is given by 
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71(fJ 1 ue2) a exp { -&’ C (e, - e.)‘) (23) 

With some algebraic manipulation, it is straight- 
forward to show that this provides a special case of 
the formulation in section 1, but with A = I, , 
pB equal to the vector of zeros, and HB = as-“& - 
m-’ Jm). Here I, denotes the m X m identity matrix, 
and J,,, denot’es the m X m matrix, every element of 
which is unity. 

The distribution in (23) is used in [7] to show that 
the conditional posterior mean vector of 6, given + 
and go’, possesses elements 0, , . . . , e, satisfying 

-1 
fj, = n&*s* x + u,-“ii 

n,h + ue 
(i = 1, ... , m) (24) 

where 

with 

8. = C /le(‘)Xi,/C p,4(‘) 
1 1 (25) 

Pe(*’ = n,$i-l/(ni+i-’ + go-‘) (26) 

The expressions in (24) provide the elements of 
the vector in (‘2) which reduces to the posterior mean 
vector of 6, given I$ and ag2, in this special case. 
The expression for #i takes the form of a weighted 
average of the standard estimate 2;. and the central 
value 8, which we see from (25) to take the form of 
a weighted average of all the sample means. The 
standard estimates are therefore shrunk towards a 
value based on collateral information, and this will 
hopefully smooth out some of the random fluctuation 
in the data. 

It should be remarked that the estimates in (24) 
were proposed in [7] for the $xed efects situation. 
The assumption of exchangeability does not imply 
that the 0; constitute a random sample from a 
hyperpopulation of 8’s. Random effects models are 
discussed in [lo]. 

When the 4i , and hence the CY; , are also exchange- 
able, we employ the prior model for a which is 
described in section 1, but with B = I, , p7 equal to 
the vector of zeros, and H, = (T,-‘& - m-‘J,). 
The vector in (13) now provides an approximation to 
the conditional posterior mean vector of (Y, given B 
and CT,‘, and by analogy with (24)-(26) this has 
elements & , . . . , &, satisfying 

Lyi = $nili + CT,-‘&. 
+ni + ~7,~~ 

(i- 1, ... ,m) (27) 

with 
& = c Pa(‘)ZrlC Pa(‘) 

where 
&‘i’ = $n,/(& + gaT2) 

and Zi is given in (11). 

(‘2% 

(29) 
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We therefore have similar weighted average forms 
for the log-variances to those obtained in [7] for 
the means. The expression in (27) takes the form 
of a weighted average of li and & the weights being 
+ni and nom2 respectively. When the 8i are known 
the estimate Q< = eei for +i shrinks the maximum 
likelihood estimate 

4; = et’ = n,-‘&(&) = ni-’ g (Xii - 0” (30) 

towards the geometric mean 

e 8. = (n (5i)“a’ 
t 

This contrasts with the estimates in [7] where the 
shrinkages are towards the harmonic mean. 

When the Bi and C& are unknown we need to 
replace t,he $Q in (24) and (26) by the corresponding 
e”‘, and the li in (27) and (28) by the corresponding 
li in (18). The resultant equations may be solved 
using the iterative procedure described below, or as 
a special case of the procedure described towards 
the end of the previous section. 

When the 0; are unknown, then the maximum 
likelihood estimate of C#J; is instead given by 

ni 
cji = nielSiw = ni-’ C (xii - xi.)” (32) 

i=l 

We see from (9) that when Bi # zi. the expression 
in (30) is always greater than that in (32). Our prior 
assumptions about the 0; therefore have the effect 
of expanding the estimates of the 4, , as well as 
shrinking the estimates of the ei towards the expres- 
sion in (25). The expansion is greatest when og2 = 0, 
so that the @, are all equal, and hence equal to the 
quantity in (25) which reduces to 

8. = Z = C ni4i-‘Xi./ F nsP-’ 
i 

In this extreme situation, we have 

n;-‘Si(tJ.) 

= 7L-l g (xi j - 2)’ = niel&W + (xi, _ 32 

and these are the same as the maximum likelihood 
estimates obtained upon taking the ei to be equal. 
We see that the expansions may be quite consider- 
able in this case. 

The prior assumptions about the C#J; have the 
effect of shrinking the expanded estimates towards 
the geometric mean in (31), as well as affecting the 
estimates of the Bi . 

We now indicate how to generalise our results to 
the situation where the first-stage prior variances 
ogz and au2 of the e, and CG are unknown. We assume 
that Se = log ag2 is a priori normally distributed 

with mean (8 and variance TV’, and that y, = log aa2 
is a priori independent of se and possesses a similar 
distribution, but with parameters .$a a.nd 7,‘. 
Whenever there is strong prior information that the 
8, are close together the statistician should choose 
small values for et8 and T@‘. If there is information 
that the 0; are likely to be only slightly related a 
large value should instead be chosen for efe. If there 
is not much prior information about the strength 
of the symmetric relationship between the 8, , then 
a large value should be chosen for 702. Similar 
considerations apply to the choices of era and T,~. 

A convenient method of estimation is given in 
chapter 7 of the unpublished thesis [4], and we take 
the liberty of omitting the details from the present 
paper. We show that, unless m is small, the joint 
posterior modes of the Bi , CY~ , Se , and ga may be 
approximated using equations (24) and (27) for the 
0, and Gi respectively. We merely have to replace 
C#Q , ei , ag2, and aa in these equations by eEi, 0, , e”*, 
and eBa respectively, where 00 and Q0 denote the 
corresponding modes of ge and go , and satisfy 

ge = f%Je + (m - l)M(Gl 
ve+m-1 

and 

s = VaEn + (m - l)MG) 
a v,+m-1 

where v8 = 2~~ -2 , V, = 27, -2, and for 
vector E = (e, , . . . , E,,,)~ we have 

M(E) = log { C (E; - e.)“/(m - 
i 

(33) 

(34) 

any m X 1 

111 (35) 

The expression for Qe in (33) is a weighted average 
of the prior mean {e and the iterated contribution 
M(8), the weights being ve and m - 1 respectively. 
If ve >> 1, so that the prior variance 782 is small, the 
prior mean ie will pred0minat.e. If m - 1 >> ve , the 
iterated contribution predominates. Similar proper- 
ties are satisfied by the expression in (34). 

An iterative procedure for the solution of the 
resultant equations is described as follows: 

(i) Use the xi, as initial values for the corre- 
sponding J, , and use them to calculate values 
for the &‘,(e,) from (19), and hence for the ti 
from (18). Use these values for the l, as initial 
values for the corresponding & . 

(ii) Use the latest values for the 0, and &, to 
calculate values for the averages 

8, = m-’ c i?, and &, = m-’ c & 

(iii) Use the latest values for the 8, , &, , e., and G 
to calculate values for fie and Qa from (33j 
and (34) respectively. 

(iv) Use the latest values for the 0, to calculate 
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IKW values for the i, from (18). SubstiMe 
the latest values for thee”, 6. , ebe, ii , CY. , and 
e’. for the corresponding +% , J, , no’, 1, , &. , 
and gcl’ in the right hand sides of (24) and 
(27) and obtain new values for the 8, and & 
on the left hand sides. 

(v) Return to (ii) and keep cycling until con- 
vergence. 

We have always found the above procedure to 
converge in a few seconds of computer time. One 
advantage is that it does not involve the direct 
inversion of any matrices. 

In this section we have provided an alternative 
to the method in [7] which was the pioneer work on 
exchange-ability of variances. This method also in- 
volves some approximations, but it should be 
perfectly viable, and we leave it to the reader to 
decide which method he prefers in this special case. 
We of course feel that the principle advantage of our 
own method is that it general&es to estimations 
where more complex prior relationships exist between 
the variances. Professor Lindley has in fact been kind 
enough to inform us (personal communication) that 
there is no computer program prvoiding the solutions 
to his equations when the variances are unequal. He 
has concentrated on the case where the variances are 
equal, since the other case does not show promise of 
capability of generalisation. We are therefore unable 
to compare the alternative methods numerically, 
but in the next section we illustrate our own method 
before proceeding to discuss other applications of 
our general approach. 

5. NUMERICAL EXAMPLE 

We consider data previously analysed on p. 145 
of [I] and concerning the breaking strengths of six 
different fabrics. There are ni = 10 observations 
xi1 ) . . . ) xi10 on fabric no. i for i = 1, . . . , 6. We 

TAI~LI~ I-Estimates of the Fabric Variances (d” = 0.1) 

+2 $3 $4 

found that the maximum likelihood estimates of 
the theoretical breaking strengths 8, were not 
substantially affected by our particular prior 
assumptions in this case. We therefore restrict our 
descriptions to the estimation of the corresponding 
variances $Q . Their maximum likelihood estimates 
4% were calculated using (32) and are given in t,he 
first row of Table 1. 

In [l] it is shown that Bartlett’s test for the 
homogeneity of the variances fails for any sensible 
significance level. As a point of interest we note that 
this test is based upon the logs of the variances, thus 
employing similar transformations to our own. Our 
approach avoids the need for such tests since our 
estimates compromise between those obtained via 
classical methods upon assuming the variances 
unequal, and those obtained upon assuming them 
equal. 

The heterogeneity in the present case is primarily 
due to the high value of the estimated variance & 
for fabric no. 2. We are therefore particularly 
interested in the effect of our Bayesian assumptions 
on this estimate. 

It is reasonable to assume exchangeability of the 
C#Q if there is the required symmetry of prior infor- 
mation about the various fabrics. Exchangeability 
would be inappropriate if, for example, the fa,brics 
were known to have been produced in a particular 
order by the same machine. In this case the alterna- 
tive assumptions indicated at the end of section 6 
may be more reasonable, since the time-dependence 
destroys the symmetry. Exchangeability of the pi 
would be appropriate if there was no prior informa- 
tion about the fabrics, in which case it appears to be 
more plausible than independence. This is because 
information about a particular c$; would surely give 
us some idea about the values of the other C#P< , thus 
implying that the C#J~ are related. 

05 '6 

Maximum 
Likelihood 0*72 14.26 3.39 5-79 1*93 0.81 

va =o 0.91 10.61 3.24 5.07 2.04 l-O@ (0*91) 

V -1 l-04 8.83 3.15 4.65 2.11 1.33 (0*50) 
cl 

-g =3 1.30 6.57 3.01 4.04 2-22 1.39 (o-24) a 
V -5 1.46 5.67 2.94 3*77 2.28 1*53 (0.17) a 
V = 10 1.65 4-80 2.87 3.48 2.34 1.72 (O*ll) a 

TECHNOMETRICSO, VOL. 17, NO, 1, FEBRUARY 1975 



LINEAR MODEL WITH UNEQUAL VARIANCES 101 

We firstly assume that there is IN prior information 
to suggest IikeIy values for the first-stage prior 
variances aga, and aa2. The latter respectively 
measure the closeness to each other of the 8, , and of 
the a, = log 9, . In this case we set v0 = V, = 0 
which provides uninformative log-uniform priors for 
ag2 and (T,‘. As mentioned in [lo] we should strictly 
choose small positive values for ve and V, to keep 
the distributions of (rg2 and gn2 proper, but this 
would have a negligible effect on our numerical 
results. 

The corresponding Bayesian estimates for the C& 
are given in the second row of Table 1, and the value 
obtained for ca2 = eaa is given in brackets at the 
end of the row. The effects of our assumptions on the 
estimates are quite noticeable. For example, our 
estimate of 10.61 for & compares with & = 14.26. 
The prior assumptions about the Bi in fact cause & 
to be marginally increased to nz-lXz(&) = 14.43, 
where n,-‘S,(&) is given in (30). The prior assump- 
tions about the 4, then cause this value to be shrunk 
about one third of the way towards 2.62, which is 
the geometric mean of the 6; . Some of the other 
differences are also substantial e.g. the estimates of &, 
and 4,, are both increased by about 20%. 

We next examine the effect of prior information 
about IT,’ on our estimates, though we still keep 
Ve = 0. Such information may for example be based 
on genera1 experience, or on data from previous 
fabrics. 

For illustrative purposes we suppose hypotheti- 
cally that the prior information about the closeness 
to each other of the CY< suggests a value of 0.1 for ao2, 
and we therefore set e Ea = 0.1. We then examine our 
estimates of the c+~ and gaz for various choices of 

z 2T/. These estimates are given in the last 
Fiur rows of Table 1. 

As V, increases from zero, co2 decreases from 0.91, 
and in fact approaches the prior estimate of 0.1 
as v, --P ~0. The relationship is not simple, owing to 
the dependence of t’he expression for ga = log 5.a2 
in (34) upon the (Y; . As v, increases, the estimates 
for the & become closer together, and further from 
the corresponding maximum likelihood estimates. 

The estimat)es depend very much upon the prior 
information about gaZ which happens to be available. 
If it is not possible to ascertain this precisely, we 
recommend simply setting vu = 0, in which case the 
estimates do not depend upon any specific prior 
parameter values, but still differ from the maximum 
likelihood estimates. 

6. OTHER APPLICATIONS OF GENERAL RESULTS 

The results in sections 2 and 3 may be applied to 
a whole range of special cases, only a few of which 
are mentioned here. 

In [7], [lo], and [ll] the authors discuss regression 
models as special cases of their general model for 
the means. In some situations it may be appropriate 
to assume t’he variances, as well as the means, to 
depend upon explanatory variables. In such cases 
tjhe elemcntjs of the design mat’rix B in (1.7) may be 
chosen as suitable functions of the explanatory 
variables, and y may be taken to represent a vector 
of regression coefficients. The authors in particular 
discuss exchangeability between the coefficients of 
several normal regression lines, and also exchange- 
ability between the coefficients of one line in a 
multiple regression situation. Alternative assump- 
tions for the variances could well lead to quite 
different results. 

In [9] a two-way layout of normal observations is 
analysed. The means 8ii are taken to satisfy a 
relationship of the form 

e,, = p + x; + xi” + xii*” 

(i = 1, . *. ) 1’; j = 1, . . . ) 8) 

where the A;“, Xi” and X,i”” respectively denot’e the 
row, column, and interaction effects. The variances 
are either assumed equal, or unequal but exchange- 
able. We feel that it would sometimes be appropriate 
to assume a similar structure for the log-variances 
to that previously assumed for the means. In [9] 
certain assumptions of exchangeability arc made for 
the various effects, and the results are obtained as a 
special case of the analysis in [8]. It is possible to 
obtain similar results for the effects of the log- 
variances by using a special cast of the result in (13). 
We may alternatively proceed directly using a 
similar method to that employed by us in a forth- 
coming paper 011 contingency tables. This provides 
us with the following explicit approximations to the 
estimates suggested implicitly in [9] for the various 
effects: 

(36) 

and 

iijAB = w,,(:(.,,. - p - Xi” - Ai”) (39) 

where 

‘~0,; = ?l,j~ij-l/(n,i~~l~' + UAB~‘) (40) 

and b” and b’ are complicated expressions which 
ensure that L. A = iT. B = 0. Here we use the notation 
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x,~. , nii , and +ii to respectively denote the average 
observation, the number of observations, and the 
variance corresponding to the (i, j)th cell. Also 
Q’, ggZ, and aAB2 respectively represent the common 
variances of the ~~~~ the Xi*, and the Xii AB at the 
first stage of the exchangeable prior model. 

The estimates in (37), (38), and (39) roughly 
speaking shrink the corresponding maximum likeli- 
hood estimates towards zero. For a full discussion in 
the special case where all the nii and &i are equal 
we refer the reader to [S]. Analogous approximations 
for the effects of the log-variances may be obtained 
directly via the substitutions mentioned in section 2. 
In our forthcoming contingency table paper the xii. 

and nii-‘+,i in (37)-(40) will be replaced by the logs 
of the appropriate observed multinomial frequencies, 
and their reciprocals. The corresponding exact 
equations will provide a method for coping with zero 
frequencies. 

Our methods are also applicable to linear models 
in time series analysis. Consider for example the 
stationary first-order autoregressive process for the 
Bi where 

ei+’ = pee, + TJi (i = 1, * . . ) m - 1; l/Q1 < 1) (41) 

and the vi are uncorrelated normal errors 

with vi independent of 0, , Biml , . . 1 , 6 . As discussed 
in chapter 4 of [4] this in fact provides a special case 
of the formulation in section 1, but with A in (1) 
equal to t,he m X m identity matrix, the prior mean 
vector pe equal to the zero vector, and the (i, k)th 
element of the covariance matrix H,-’ equal to 

02P.9 ‘+“‘/(l - ps2) (42) 

If the corresponding log-variances cr, , . . . , (Y, 
are unequal it may very often be reasonable to 
assume ordered relationships of the 0~; are of a similar 
nature to that assumed in (41) for the Bi . We do not 
include the anaIysis here since it follows by analogy 
from a method in [Fj] for smoothing histograms, which 
also employs the covariance structure in (42). It is 
however possible to obtain simultaneous estimates 
for the ei and CY; , and also to estimate ag2, pe , and 
the corresponding parameters for the (Y; . Such a 
method might find application in quality control, 
and may be used to detect whether the mean and 

variance corresponding to a particular time stage 
fall outside a designated region of the parameter 
space. 
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