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The maximlml likelihood (ML) procedLue of Hartley aud Itao [‘I is modified by 
adapting a transformation from Pattersou and Thompson [7] which partitions the 
likelihood render normality into two parts, one being free of the fixed effects. Maximizing 
this part yields what are called restricted maximrlm likelihood (REML) estimators. 
As well as retaining the property of invariance under translation that XIL estimators 
have, the ILE1lL estimators have the additional property of reducing to the analysis 
variance (ANOVA) estimators for many, if not all, cases of balanced data (equal 
subclass numbers). 

A computing algorithm is developed, adapting a t,ransformation from Hemmerle 
and Hartley [6], which reduces computing requirements to dealing with matrices having 
order equal to the dimension of the parameter space rather than that of the sample 
space. These same matrices also occur iu the asymptot,ic sampling variances of the 
estimators. 

Variance Components 
RIixed Model 
Restricted ~Iaxirnum Likelihood 
I2Iaximrnn Likelihood 
W-lransformatior~ 

I. INTHODTJCTION 

The mixed model in the analysis of variance can 
be represented for a vector of observations y as 

y=Xp+Up+e 

where p is a vector of all the fixed effects, @ is a 
vector of all the random effects, X and U are the 
respective design matrices, and e is a vector of 
residual error terms having variance a2. This and the 
different variances of the elements of @ arc the 
variance components of the model. The maximum 
likelihood procedure of Hartley and Rao [2] yields 
simultaneous estimation of both the fixed effects and 
the variance components by maximizing the likeli- 
hood of y with respect to each element of I and with 
respect to each of the variance components. 
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In contrast, we develop estimators (and their 
large sample variances) which are free of the fixed 
effects in the sense that the likelihood does not 
contain p; i.e., we maximize the likelihood over a 
restricted parameter set. This is a generalization of 
the procedure suggested by Thompson [9] who 
considered the problem only for balanced data and 
for the completely random model. The procedure 
developed hrrc is applicable to unbalanced data 
generally (including, of course, balanced data which 
arc just a special case), and itI is also applicable to 
mixed models for any mix of fixed and random 
effects. This is achieved by adapting a transformation 
used by Patt,rrson and Thompson [7] which leads to 
a partitioning of the likelihood function into two 
parts: one part is entirely free of the fixed rffccts, 
and maximization of this provides what is called 
restricted maximum likelihood (REJIL) estimators 
of the variance components. Adaptation of a trans- 
formation described by Hemmerle and Hartley [6] 
that simplifies computation of the Hartley-Rao 
estimators greatly aids the computing of the REJIL 
estimators and also simplifies derivation of their 
large-sample variances. Finally, maximizing that 
portion of the likelihood not used for the REML 
estimators provides estimation of the fixed effects 
based on the REI\IL estimators. 

The RERIL estimators are not only invariant to 
the fised effects of the model but they arc also free 
of the estimates of the fixed effects. Furthermore, in 
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the scvcrnl casts of ba!anced data (having qua1 
number? of observations in the subclnsscs) that w-e 
have invcstigatc,d, the REML estimators arc iden- 
tical to the familiar analysis of variance (ANOVA) 
estimators for such data. This is not a propert’y 
possessed by the maximum likelihood estimators of 
Hartlcy and Rao [a], and it is a useful one bccausc of 
optimal properties of AXOVA estimators of variance 
components from balanced data. 

2. THE ~IOUEI, 

2.1 The yened case 

The model for y, a vector of N observations, is 
specified in terms that closely follow the notation of 
Hartley and Rao [2], Hartley and Vaughan [3] and 
Hemmerle and Hartley [6]. We take 

!r = XV + U,b, + . . + U,b, + e (1) 

whew y is a vector of N observations, 
p is a vector of Ic unknown constants, the 

fixed effects of the model, 
X is an N X Ic incidence mat’rix, of full 

column rank, corresponding to p and 
with 1; < N, 

U, is an N X nl, design matrix associated 
with the ith random factor, with 
~A m, + 1c < N, 

b, is a vector of m, random variables which 
are i.i.d. N(0, gZ”), n-it11 the b,‘s being 
mutually indepcndcnt, 

and le is a vector of N random variables which are 
i.i.d. N(0, a”) and indeprndcnt of the b,‘s. 

Hence y has a multivariatc normal distribution with 
mean and variance 

I<(y) = Xv and var (y) = V = Hlr’ (2) 

where 

H = 2 r,U,U,’ + I, for yt = g,‘/,‘. (3) z-1 

Thcl symbol ~1 for fixed effects emphasizes the 
generality of the model insofar as fixed effects are 
concerned. p is a vector of the maximum number of 
linearly independent estimable functions of the fixed 
effects. The simplest such vector has as its elcmcnts 
the population means of those of the sub-most cells 
of the: fiwd cffccts factors that contain data. The 
corresponding X of (1) tli(>n has a simple form. 
Dofinc~ y as being the observations ordewd so that 
all thaw within each sub-most ccl1 of the fixed eff(lcts 
factors follow one another squcntially. If there arc k 
such wlls: containing data, \vith the tth 011~ having 
n, # 0 observations, then 
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r 1 nl 0 ... 0 .- 

x = 0 1% . . . 0 = 2 ‘I,, (4) t=, 

Lo ... LA 

n-here l,, is a vector of n, ones and where c’ 
represents a direct sum of matrices. 

2.2 Bxample 

Illustration of this notation is given in terms of 
the numerical example taken from Booker and 
Lieberman [l] as used by Hcmmerle and Hartley 161. 
It consists initially of 3 observations in each cell of 
a 2-way cross-classification with 3 rows and 2 
columns. The model for yp,, , the >th observation in 
the pth row and pth column is 

YPW = P + a, + P, + bPLq + epor 

for p = I, 2, 3, q = 1 ,:!andy = 1,2,3wherepisa 
general mean, CY, is the effect due to the pth row, 
fi, is that due to the qth column, (a~)~~ is the inter- 
action effect and epn, is the error term. Hcmmerle 
and Hartley [6] amend the example to illustrate 
unbalanced data by dropping two observations so 
that the numbers of observations in the cells are as 
shown in Table 1. Then ‘Y - 1, . . . , nDR for n,, = 2 
or 3. In considering data of this nature as being from 
a mixed model with row effects fixed, there are for 
model (1) N = 16 observations, with c = 2 random 
factors, namely rolumns Jvith ?n, = 2 levels and 
interactions with 7~1,~ = 6 levels. The variance 
components ratios for these factors are respectively 
-/I = aga/~’ and y2 = ~,~‘/g’ in accord with (3). 
The sub-most cells of the fixed effects factors arr the 
rows, of which there are three, so that for X of (4), 
k = 3 and the values of n, are n, = 5, n2 = 6 and 
rh = 5. 

3. THE ESTIMATORS 

The logarithm of the likelihood for y-N(Xp, Ha”) 
of (2) is 
x = -;Nlog2a - +Nlogcr’ - $ log jH( 

-1 2(y - Xp)‘H-‘(y - X&‘u’. (5) 

To partition this into two parts one of which is free 
of p, Patterson and Thompson [7] suggest the 

TAESLK 1-Eran~plc: number of observations 

ColLlmn 1 Column 2 Total 
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singular transformation y’[S : H-IX] where 

S = I - X(X’X)-‘X’ = c+(Int - n,-’ J,t,), (6) t=l 

is symmetric and idempotent, with J,Z1 being an 
n, X n, matrix with every clement unity. Since SX 
is null, Sy is distributed N(O, SHSC”) independently 
of X’H-‘y. 

It, is clear that the distribution of Sy is free of the 
fixed effects p. Its likelihood function therefore 
forms the basis of our derivation of the estimators 
of the variance components involved in Ha’. How- 
ever, to avoid the singularity of SHS arising from 
the form of S shown in (6), we use an alternative 
to S derived from it by deleting its n,th, (n, + n,)th, 
(n, + nz + n,)th, . . . , and (n, + nz + . . + n,)th 
rows. Such a matrix has order (N - 1~) X N, and 
denoting it by T, we have 

T = F [(In,-1 : Ol,,-,) - n,-‘Jcnt-nxntl (7) ‘=I 

= g +(In,-1 - n,-‘Jn,-, : -n,-‘L-,> (8) 

where 01, is a vector of zeros of order a, and JCnl -,)Xnt 
is a matrix of order (n, - 1) X n, whose every 
element is unity. From X of (4) it is readily seen that 

TX = 0 (9) 

and by the nature of T itself, it is easy to show that 

T’(TT’)-‘T = S. 

The transformation now used is 

with, in view of (9), its distribution being 

This transformation is non-singular, because X’ and 

(10) 

(11) 

(12) 

T of (4) and (7) each have full row rank, and from 
(9) the rows of T are linearly independent of those 
of X’. 

Kow consider the log likelihood of z. It is, from 
(11) and (12), the log likelihoods of Ty and of 
X’-H-‘y which we denote by hl and X, respectively: 

x1 = - $(N - k) log 2n - i(N - k) log fJ2 

- 3 log JTHT’/ - +y’T’(THT’)-‘Ty/g’ (13) 

and 

x, = -pc log 2a - +lC log CT2 

- $ log /X’H-‘XI - $(y - Xcl)‘H-’ 

.X(X’H-‘X)-‘X’H-‘(y - XV)/c”. (14) 

With X, not involving p the estimators of (T’ and the 
y%‘s, called restricted maximum likelihood (REML) 
estimators are, following the method of Patterson 
and Thompson [7], those values of g2 and the 7;‘s 
that maximize x1 . Differentiation of (13) gives 

ax, 
au2 - 

-+(A\’ - li:)/‘~” + $y’T’(THT’)-‘Ty/a4 (15) 

and 

ax,- 
ayi 

- - 3 tr [U,‘T’(THT’)-‘TU,] 

+ +y’T’(THT’)-‘TU,U,‘T’(THT’)-‘Ty/’~r 

for i=l,2,...,c (16) 

where tr (Q) is the trace of a matrix Q. 
Equating (15) and (16) to zero gives the REML 

estimators. The resulting equations clearly have no 
analytic solution and have to be solved numerically. 
An iterative procedure is to first assign initial values 
to y’ = (y1 ) . . . , yC ) and then (i) solve 

A2 u = y’T’(THT’)-‘Ty/(N - Ic) (17) 

based on (15), and (ii) use the y-values, and 8’ from 
(17), to calculate new y-values that make (16) 
closer to zero. Repetition of (i) and (ii), ending at 
(i), is continued until a desired degree of accuracy 
is attained. 

4. COMPUTING PROCEDTJRES 

Although Patterson and Thompson [7] give a 
procedure based on Fisher’s iterative method for 
c = 1 and suggest how to use it for c > 1, the 
Newton-Raphson tcchniquc is well suited to the 
problem of finding successive values of y that zeroize 
(16), and has been effectively applied by Hemmerle 
and Hartley [6] to similar equations of the Hartley 
and Rao [2] maximum likelihood method. We use 
their application here, first adapting a transforma- 
tion they use, which simplifies notation and comput- 
ing procedures. 

4.1 The W-t?,ansformation 

The Newton-Raphson technique for finding values 
of the elements of y that zeroize (16) utilizes the 
second-order partial derivatives of x1 with respect 
to the yi’s. These are, using (16) 

a? -L = 3 tr [U,‘T’(THT’)-‘TU,U,‘T’(THT’)-‘TU,] 
a-f; a-vi 

- y’T’(THT’)-‘TU,U,‘T’(THT’)-‘TU;U,’T’ 

. (THT’)-‘Ty/cr’ for i, j = 1, 2, 1 + . , c. (18) 

The matrix products in (16) and (18) are sub- 
matrices of the following transformation to W 

TECHNOMETRICSO, VOL. 18, NO. 1, FEBRUARY 1976 



34 R. R. CORBEIL AND S. R. SEARLE 

suggested by Hcmmerle and Hartley [G]: 

w = {w,i] for i, j = 1, 2, . . . ) c + 1 

= [I ;; T’(THT’)-‘T[U y]. (19) 

Thus for W ,.<+I = w, (16) and (1s) arc 

ah -= 
d-ii 

-3 tr (W,,) + +w,‘w,/d 

and 

(20) 

a? --L = 
a-Y7 hi 

3 tr (wl,w?i’) - w,‘W*,w,/(T2 (21) 

for i, j = 1, . . . , c, and (17) is 
.a u = II’ P+~.C+~I(N - 1;). (22) 

The elements of W in (20)-(22) require, from (19), 
computing (THT’)-‘, of order N - li which is less 
than M, the order of the matrix to be inverted for 
maximum likelihood. For many data sets this n-ill 
be impossibly large computationally, but the inver- 
sion can be rcdured to that of a matrix of order 
771. = Cq=lc 772, , the total number of levels of all 
random effects in the model. Although for some data 
sets this will also bc too large, it is always less than 
N - k, frequently much less, and in many instances 
\vill be such that the inversion can bc computed. To 
achieve this reduction note from (3) that 

H=I+UDU’ 

for 

and 

u = [U, u, . . . U,] 

D = c +rL, + 
,=I 

Then (see appendix) 

T’(THT’)-‘T = S - SUM-‘U’S (26) 

for 

M = D-’ + U’SU, of order 172. = 2 112, 
?=I 

Non- define 

(27) 

which, because of (19) is W with H replaced by I. 

(2% 

Then on using (26)-(2s) in (19), W becomes 

w=wo- [I ;; SUM-‘U’S[U y] (29) 

= W,], - W,,M-‘W,,j wo - W,,M-Iwo 

F I 
. (30) 

WO’ - wo’M-‘W,,, 2~0 - wo’M-Iwu 
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(23) 

(24) 

(25) 

4.2 Ilnplenzentation 

Calculating W of (30) requires ralculating (27) 
and (2s). First (28): from S of (B), the leading term 
of (2s) is 

W”, = U’SU = U’U 

- U’X diag ( l/n1 . . l,/nkl X’U (31) 

where U’U is the familiar “coeficicnt matrix” for 
the random effects; (i.e., if p were null and the ran- 
dom effects were in fact fixed, the normal equations 
for them would be U’Ub” = U’y). In (31) a typical 
sub-matrix of U’ X is 

U,‘X = (n,,,,,,) for 4 = 1, .. . , m; and 
t = 1, . . . , k, and m, X k matrix 
whose typical element ni( iJ ,t is the 
number of observations in the jth 
level of the ith random effects 
factor and the tth sub-most cell 
of the fixed effects factors. (32) 

In the example of Table 1, the rows are considered 
fixed, with k = 3 levels. The first random factor is 
columns, with nzl = 2 levels, and for (32) 

U,‘X = {YJ(~,,~) for j = 1, 2, and t = 1, 2, 3 

332 [ 1 = 233’ 

The second random factor is interactions, with 
m2 = 6 levels and in (32) 

U,‘X = fhj,,l 

3 0 o- 

200 

030 = 

030 

002 

-0 0 3. --I 

for j = 1, ... , 6 and t = 1, 2, 3 

A second term in (2s) is 

Wo=U’Sy= {U,‘Sy), m,Xl, fori=l,...,c. 

From (6), Sy = x is the vector y with each observa- 
tion replaced by its deviation from the cell mean of 
the sub-most cell of the fixed effects factors in which 
it occurs: 

x = sy = y - 
( 

2 +n,-'J,, y 
1=1 ) 

= y - [(Qt.l,, 1 for t = 1, . . . , k]. 
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Hence 

W” = { U,‘x) = {an 711, x 1 vector of totals of 
the Z’S, totalled over each level 
of the ith random factor! 

for i = 1, . ! c. (33) 

To illustrate x from the exam@ we use the familiar 
dot and bar notation for totals and means; e.g., 
yll. = cTZ1’ 2/11r and gl,. = y,,,/3. Then x = 
lYzJ,r - &..] for p = 1, 2, 3, q = 1, 2 and r = 
1, . . . 1 n&m in lexicon order and w,, of (33) is 

W” = 

Y.l. - (3%.. + 3&.. + a&.) 

Y.2. - (2%.. + 3%. + 3&J 

Yll. - 3d,.. 

YIP. - 2z7,.. 
, 

Y21. - 3g,,, 

Y22. - 3ZYi2.. 

y31. - 2g3.. 

.y32. - 3&.. 1 

The final term for (2s) is 

w,, = y’Sy = x’x = total sum of squares of 
the Z’S 
= within cell sum of squares of the y’s for 
the 1~ sub-most cells of the fixed effects 
factors. (34) 

and in the example this is 

‘11’ 0 = 2 2 E (Y,,, - g,..)“. 
p=1 u=l r-1 

Having cnlculntcd W,” , w0 and zcO for W, of (2S), 
M-’ rcquircld for W in (30) comes from (27) and (2s) 
as 

M = D-’ + Wo, . (33) 

Hrnce, as suggested by R. Thompson (personal 
communication) the matrix and vector terms of W 
are 

W,, - W,,,,M-‘W,,, = D-’ - D-‘M-ID-’ 

an d (36) 

WO - W,,,M-‘w” = D-‘M-‘w, , 

the scalar term, zcO - wo’M-‘w. remaining as is. 
As Thompson points out, the computational 
advantagw of the right-hand sides of (36) over the 
left are thaw of multiplication of M-’ by diagonal 
rather than symmetric matrices. 

With these cxprcssions, implementation of the 
iterative technique can be carried out exactly as 
suggested by Hcmmcrle and Hartley [t;]. First, 

from the data, calculate W,, using (31)-(34). Then 
assign an initial set of values to the y?‘s, i = 1, . . . , c, 
and use them in D of (25), thence in M of (3>), and 
calculate M-l. Then USC M-’ in (36) and (30) to 
obtain W. Elements of W are then used in (20), (21) 
and (22) for obtaining, by the Sewton-Raphson 
procedure, solutions to equations formed by equating 
(15) and (16) to zero. At each iteration, it is D of 
(25) and, through (35), M that change, and hence 
through (36) the terms of W. 

5. ESTIUATION OF FIXD EFFECTS 

In the model described in (1) and (2), the maxi- 
mum likelihood estimator of g on assuming H 
known is 

3 = (X’H-‘X)-‘X’H-‘y, (37) 

where from (23) 

H-’ = (I + UDU’)-’ = I - U(D-’ + U’U)-‘U’. 

On replacing the yi in D-’ by their REJIL est’i- 
mators and denoting the corresponding value of H 
by B, an estimator of p suggested by (37) is 

p = (xqy'x)-'x@'y. (38) 

Development of the covariancc matrix of this 
estimator would invo!ve acknowledging that fi is 
only an estimator of H; ignoring this complexity 
var (@) is 

vap (E) = (X~~-‘X)-‘X’~-‘H~-‘X(X’~-‘X)~‘a” 

and on again using ii and a” in place of H and (r2 we 
have an estimator of this variance as 

Giii (Q) = ( X’lTIX)-‘$. 

No optimum properties are known for this estimator 
or for its covariance matrix. It is known, as may be 
readily observed, that Q does maximize Xp of (14), 
for known H. 

6. T,ARGE SAMPLE VARIANCES 

6.1 Derivwtion 

Searle [S] gives, for a model of y as described here 
in (I), (2) and (3), an expression for the information 
matrix I(8) of the vector of parameters 

6”’ = [&$ . . . g,“fl*]. (39) 

The same procedure can bc used for obtaining the 
information matrix I(q) of 

q?’ = [(PI@ . . . G&+,1 = [y’u21 (40) 

for 

y’ = [-YlY2 . . ’ -yc] for y; = (r,*/g”, (41) 

TECHNOMETRICSO, VOL. 18, NO. 1, FEBRUARY 1976 



36 R. R. CORBEIL AND S. R. SEARLE 

using Ty as the data vector. The result (see appendix) 
is 

br WtiWi,‘)l br WiJl/u’ 

I (X - k)/a’ 

TABLE 2-Examplr: estimates from cliffwent methods of 
estimation 

Method of Estimates of 

estimation y1 = .;/n2 2 Jo2 o2 y2 = OaB 

i,j = 1,2, ... ,c (42) Balanced data (all n = 3) 
P9 

for W of (19); and, of course, the large-sample 
covariance matrix of t,he REXL estimator G of 9 
(i.e., of the maximum likelihood estimator of y’ and 
(T’ from Ty) is 

var (G) = [I(Q)]-‘. (43) 

Should the large sample covariance matrix of the 
REML estimator of d2 be required we use the 
relationship bet’ween the two information matrices 
given in Zacks [lo], namely 

I(g) = B’I(d*)B, (44) 

where B is the Jacobian matrix (&;2/d~pil for 
i, j = 1, 2, ... , c + 1. In our case this reduces 
(see appendix) to 

v(cFt’) = y,%(a2) + 2r72yt cov (2, y*) 

+ a?*), 

cov (c;“, 6,‘) = y,ylv(cT2) + &i cov (c’, Ti) 

+ U'rj COV (~", ~*) (45) 

+ u4 cov (Tt , Ti) 
and 

cov (2, a,*> = y,v(a2) + u2 cov (2, -yJ, 

for i, j = 1, . . , c. 

6.2 Computing estimated eariances 

The use in (42) of W computed in the final round 
of iteration for the REML estimate G gives an 
estimate P(Q) of I(Q). The occurrence of elements of 
W in (42) makes this particularly easy to compute 
because they are an integral part of computing 
REML estimates. An estimate of var (G) of (43) is 
then obtained as var ((e) = [?(e)]-‘. Using the 
elements of this matrix in place of those of var (G) 
in (45) and also replacing r2 and y by their REAIL 
estimates yields a corresponding estimate G (6”) 
of var (a”). 

7. A NUMERICAL &XA~PLE 

Estimates computed from the 2-way cross classi- 
fication example described in Sections 2.2 and 4.2 
are shown in Tahlc 2. This is the example used by 

Hemmcrle and Hartley [G] who drop 2 observations 
to exemplify unbalanced data in which they then 
treat the row-s as fixed effects, in order to also have a 
mixed model. WC here consider both the balanced 

ANOVA 21.55 .32 69.78 

ML 10.81 0 69.51' 

REML 21.55 .32 69.78 

Unbalanced date (nD4 as in Table 1) 

Fitting Constants 18.42 .35 78.63 

ML 9.33 0 77.531 

Rrn 18.57 .34 78.84 

* See text,. 

data case and the unbalanced data for the mixed 
model. The results for the balanced data prompts 
three comments. 

First, the REML and ANOVA estimates are 
identical; this has been found true of four balanced 
data cases we have considered analytically (the 
l-way layout, the 2-way hierarchical and the 2-way 
crossed classification with one factor treated as a 
fixed effects factor, both with and without inter- 
action). Numerical examples of other models are in 
keeping with these results, suggesting that’ REML 
and ASOVA estimators are identical for balanced 
data generally. 

Second, the ML estimate for yZ is zero, meaning 
that the estimate for the interaction variance 
component cn8’ is also zero. This is a consequrnce of 
the computing algorithm: when the computed value 
of an i\lL estimate is negative that value is put equal 
to zero. The consequence of this is important: it 
implies not just that a variance component is going 
to be estimated as zero but that the factor corre- 
sponding to that component (in this case the inter- 
action factor) is not to be in the model-and so the 
model is changed to exclude it. From the changed 
model the other variance components are then 
estimated. This accounts for the g2 estimate under 
fi2L being different from that under ANOVA in the 
balanced data case, and different from the fitting 
constants estimat,or in the unbalanced data case. In 
view of the fact that, for balanced data, ANOVA 
estimators are known to have desirable minimum 
variance properties, and since in these data the 
ANOVA estimator of cuBs = .32(69.78) = 22.32, 
which is far from being zero, the change brought 
about by ML estimation of eliminating the inter- 
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action factor from the model therefore seems radical. 
The same situation occurs with the unbalanced data, 
although the fitting constants estimators there do 
not have minimum variance propertics as do AXOVA 
estimators in balanced data. ~evcrthelcss, AlI, 
estimation from these data again deletes t’hc inter- 
action factor. In neither cast dots REML estimation. 

A third feature of the results is that the hlL 
estimate of y1 = ua ‘/g’ in both the balanced and 
unbalanced data is very close to half that of the 
RELIL and ANOVA or fitting constants estimator. 
This is not just a consequence of the changed model 
arising from the negative yZ estimate already referred 
to. It also occurs in the with-interaction model itself. 
In both cases, for balanced data,, it results from 
“degrees of freedom” divisors in the solutions of 
the ML equations being b instead of b - 1. The 
effect of this is to change the estimator in approx- 
imately the ratio (b - 1)/b which equals 3 in this 
case, since b = 2, the number of columns. A similar 
effect occurs with the unbalanced data. But it does 
not occur with the REML estimates. 

Estimated sampling variances of the estimates are 
not shown in Table 2 because the basis for these is 
large sample theory and the data of our example arc 
not a large sample. This position is cxacerbatcd here 
because estimated sampling variances are based up011 

the parameter estimates obtained and these we have 
sem in the case of y1 differ greatly as between ML 
and REJIL (and ASOVA). Thus in the balanced 
data case the ML estimate is yl = lO.Sl with 
fi(Tl) = 134.263 whereas the RE111, estimate is 
7, = 21.55 with B(?,) = 1024.72. Since there are 110 

simple relationships bct,ncen estimates and their 
estimated sampling variances, not even with 
balanced data, let alone unbalanced data, it is quite 
impractical to attempt drawing conclusions from 
such as these. 
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9. APPENDIX 

A.1 Generalizations 

The structure of T in (8) is appealing from the 
point of view of familiar AIYOVA designs, but it can 
be generalized (Hnrvillc [4], [5]) as follow. Z’ollowing 
Patterson and Thompson [7], define the N X (N - k) 
matrix A’ by 

S = A’A and AA’ = I. (Al) 

The likelihood associated with any (N - 1;) lin(:arly 

independent combinations of the observations (error 
contrasts), including that associated with Ty, is 

necessarily proportional to the likelihood associated 
with Ay. Denoting the probability density function 
of the random vector v = Ay by f,, , then log j,,(Ay) 
is (13) with T replaced by A. For making this 
replacement observe that by using (23) 

AHA’ = I + AUDU’A’ 

and 

(AHA’)-” = I - AU(D-’ + U’SU)-‘U’A’, 

as may be vcrificd by multiplication; and also 

A’(AHA’)-‘A = S - SU(D-’ + U’SU)-‘U’S (A2) 

and 

[AHA’] = ]I + AUDU’A’J = ]I + DU’SU] 

= ID/ ID-’ + U’SU] , (A3) 

as may be seen by expanding the determinant of 

in two different ways. Even more generally, suppose 
that H = R + UDU’, where R is symmet’ric 
positive definite with L, of order N X N, defined 
by R = LL’. Then 

L-‘y = L-‘Xy + L-‘TJB + L-‘e 

and the likelihood associated xv-it11 any (N - k) 
“error contrasts” in y is necessarily proportional to 
the likelihood associated with any (N - k) error 
contrasts in y” = L-‘y and is thus proportional to 
(Z*u2):‘S-k’ ID/-* ID-’ + U’S*U/-+ 

. exp ( -+y’[S* - S*U(D-’ + U’S*U)-‘U’S*]y/g’) 

where S* = R-’ - R-‘X(X’R-IX)-‘X’R-‘. 
n’ote that for T of (S), used in the body of the 

paper, (TT’)-’ = K’K for some non-singular K. 
Then A = KT satisfies (Al), and (A2) yields (26). 

The transformation from y to z in (11) has been 
made, and the distribution of z in (12) has been 
derived, for a particular T based on full column rank 
and incidence properties of X. However, for any 
X,,,* that. spans the same space as any full column 
rank matrix X,,, , there exists a matrix M such that 
X VXP * = X.wM,<xn . In general, T can then be 
chosen such that TX = 0 and hence TX* = 0. 
Thus the transformation (11) will then have the 
distribution (12). Generalization of the RESIL 
procedure then follows. 

A 2 Large sample variances 

The information matrix given in Searle [S] for 
d2 of (39) based on 
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as in (l), (2) and (3) is 

I*(d’) = 3 (tr (V’U,U,‘V’UiUi’)) 

for i, j = 1, 2, . . . , c + 1. 

Similarly, that for estimating da based on Ty - 
N(0, TVT’) with TX = 0, is 

I(8) = +{tr [(TVT’))‘TUjU,‘T’(TVT’)-‘TU,U,‘T’]} 

for i, j = 1, 2, . . . , c + 1. (A4) 

Derivation of (42) and (45) is based on (A4) and 
requires two uses of (44). 

When var (a”) = [I(a’ is needed in practice, 
it is obtained from (45) by way of var (G) from I(g) 
of (42). But to derive (42) we start with I(dZ) of (A4) 
and use (44). In fact, with 9’ of (40) and r’ of (41) 
WC have 

i, j = 1,2, . . . ) c + 1 

= (A5) 

and substitution of this and (A4) into (44) leads 
directly, after some simplification, to (42). Then, 
with I(q) of (42) we use (44) in reverse to derive 
(45) as 

var (8”) = [I(&-’ = B[I(q)]-‘B’ = B var (G)B’. 

This, for B of (A5) and 9 of (40), leads t’o the 
results shown in (45). 

PI 
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