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Restricted Maximum Likelihood (REML) Estimation
of Variance Components in the Mixed Model
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The maximum likelihood (ML) procedure of Hartley and Rao [2] is moditied by
adapting a transformation from Patterson and Thompson [7] which partitions the
likelihood under normality into two parts, one being free of the fixed effects. Maximizing
this part yields what are called restricted maximum likelihood (REML) estimators.
As well as retaining the property of invariance under translation that ML estimators
have, the REML estimators have the additional property of reducing to the analysis
variance (ANOVA) estimators for many, if not all, cases of balanced data (equal
subelass numbers).

A computing algorithm is developed, adapting a transformation from Hemmerle
and Hartley [6], which reduces computing requirements to dealing with matrices having
order equal to the dimension of the parameter space rather than that of the sample
space. These same matrices also occur in the asymplotic sampling variances of the

estimators.
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1. INTRODUCTION

The mixed model in the analysis of variance can
be represented for a vector of observations y as

y=ZXu+ Ug +e

where u is a vector of all the fixed cffects, 3 is a
vector of all the random effects, X and U are the
respective design matrices, and e is a vector of
residual error terms having variance ¢°. This and the
different variances of the clements of § arc the
variance components of the model. The maximum
likelihood procedure of Hartley and Rao [2] yields
simultaneous estimation of both the fixed effects and
the variance components by maximizing the likeli-
hood of y with respect to each element of w and with
respect to each of the varlance components.
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In contrast, we develop cstimators (and their
large sample variances) which are free of the fixed
effects in the sense that the likelihood does not
contain w; i.c., we maximize the likelihood over a
restricted parameter set. This is a generalization of
the procedure suggested by Thompson [9] who
considered the problem only for balanced data and
for the completely random model. The procedure
developed here is applicable to unbalanced data
generally (including, of course, balanced data which
are just a special case), and it is also applicable to
mixed models for any mix of fixed and random
effects. This is achieved by adapting a transformation
used by Patterson and Thompson [7] which leads to
a partitioning of the likelihood function into two
parts: onc part is entirely free of the fixed cffects,
and maximization of this provides what is called
restricted maximum likelihood (REML) estimators
of the variance components. Adaptation of a trans-
formation deseribed by Hemmerle and Hartley [6]
that simplifies computation of the Hartley-Rao
estimators greatly aids the computing of the REML
estimators and also simplifies derivation of their
large-sample variances. Finally, maximizing that
portion of the likelihood not used for the RIZML
estimators provides cstimation of the fixed cffects
based on the REML estimators.

The REML cstimators are not only invariant to
the fixed effects of the model but they arc also free
of the estimates of the fixed effects. Furthermore, in
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the several cases of balanced data (having equal
numbers of observations in the subelasses) that we
have investigated, the REML estimators are iden-
tical to the familiar analysis of variance (ANOVA)
estimators for such data. This is not a property
possessed by the maximum likelihood estimators of
Hartley and Rao [2], and it is a useful one because of
optimal properties of ANOVA estimators of variance
components from balanced data.

2, Tue MoDEL

2.1 The general case

The model for y, a vector of N observations, is
specified in terms that closely follow the notation of
Hartley and Rao [2], Hartley and Vaughan [3] and
Hemmerle and Hartley [6]. We take

!72X11+U1b1+"'+Ucbc+e (1)

where  y is a veetor of N observations,
u is a vector of k& unknown constants, the
fixed effects of the model,
X is an N X I incidence matrix, of full
column rank, corresponding to w and
with & < N,
U, is an N X m; design matrix associated
with the <th random factor, with
Zi:l” m; +k <N,
b, 1s a vector of m, random variables which
are i.i.d. N0, ¢.°), with the b,’s being
mutually independent,
and e 1s a vector of N random variables which are

i.1.d. N(0, ¢) and independent of the b,’s.
Hence y has a multivariate normal distribution with
mean and variance

i

E(y) = Xg and var(y) =V = Ho* (2)

where
H= Y+ UU'+L, for v =o/e’. (3
i=1

The symbol u for fixed effects emphasizes the
generality of the model insofar as fixed effects are
concerned. u is a vector of the maximum number of
linearly independent estimable functions of the fixed
effects. The simplest such veetor has as its elements
the population means of those of the sub-most cells
of the fixed effects factors that contain data. The
corresponding X of (1) then has a simple form.
Define y as being the observations ordered so that
alt those within each sub-most cell of the fixed effeets
factors follow one another scquentially. If there are k
such cells containing data, with the tth one having
n, # 0 observations, then
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where 1,, is a vector of n, ones and where ».°
represents a direct sum of matrices.

2.2 Example

Ilustration of this notation is given in terms of
the numerical example taken from Bowker and
Lieberman [1] as used by Hemmerle and Hartley [6].
It consists initially of 3 observations in each cell of
a 2-way cross-classification with 3 rows and 2
columns. The model for y,,, , the rth observation in
the pth row and g¢th column is

Yper = B T ap + B, + (aIB)T"I + €par

forp=1,2,3,¢=1,2and» = 1,2, 3 where uis a
general mean, «, is the cffect due to the pth row,
B, 1s that due to the gth column, («B),, is the inter-
action effect and e,,, is the error term. Hemmerle
and Hartley [6] amend the example to illustrate
unbalanced data by dropping two observations so
that the numbers of observations in the cells are as
shown in Table 1. Thenr = 1, ---  n,, forn,, = 2
or 3. In considering data of this nature as being from
a mixed model with row effects fixed, there are for
model (1) N = 16 observations, with ¢ = 2 random
factors, namely columns with m, = 2 levels and
interactions with m, = 6 levels. The variance
components ratios for these factors are respectively
vi = o5 /" and v, = 0.5°/c” in accord with (3).
The sub-most cells of the fixed cffects factors are the
rows, of which there are three, so that for X of (4),
k = 3 and the values of n, are n, = 5, n, = 6 and
ng = d.

3. THE EsTIMATORS
The logarithm of the likelihood for y~N (Xu, He")
of (2) is
A= —1iNlog2r — iN log ¢* — % log [H|
— 30y — XwH'(y — Xu)/d". (5
To partition this into two parts one of which is free

of u, Patterson and Thompson [7] suggest the

TasLe 1—Ezxample: number of observations

Column 1 Column 2 Total
Row 1 3 2 5
Row 2 3 3 6
Row 3 2 3 5
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singular transformation y'[S : H™'X] wherc

k
S=I-XXX)'X = 2L, —n""L), (6
t=1
is symmetric and idempotent, with J,, being an
n, X n, matrix with every element unity. Since SX
is null, Sy is distributed N (0, SHSs") independently
of X'H'y.

It is clear that the distribution of Sy is frce of the
fixed effects u. Its likelihood function therefore
forms the basis of our derivation of the estimators
of the variance components involved in Ho’. How-
ever, to avoid the singularity of SHS arising from
the form of S shown in (6), we use an alternative
to § derived from it by deleting its n;th, (n, + n,)th,
(n, + ny + ng)th, --- ,and (n, +n, + - - + nyth
rows. Such a matrix has order (N — k) X N, and
denoting it by T, we have

b+
T = Z [(I"t—l E Olnt—l) - nt—IJ("t—l)Xﬂe] (7)
t=1

k

Z +(I",_1 — nflLt_l "‘nz_lln;«1> (8)

t=1

where 01, is a veetor of zeros of order a, and J ., -1y xn

is a matrix of order (n, — 1) X n, whose every
element is unity. From X of (4) it is readily seen that
TX =0 9)
and by the nature of T itself, it is easy to show that
T/(TT)"'T = S. (10)
The transformation now used is
XH™! X'H 'y
with, in view of (9), its distribution being
’ 2

ZNN{ 0 ],THTU 0 J a2)

X'H 'Xu 0 X'H 'Xq’

This transformation is non-singular, because X’ and
T of (4) and (7) cach have full row rank, and from
(9) the rows of T are linearly independent of those
of X',

Now consider the log likelihood of z. It is, from
(11) and (12), the log likelihoods of Ty and of
X’-H™'y which we denote by A, and \; respectively:

M o= —3(N — k) log 27 — 3N — k) log o*
— 1log |THT'| — LyT/(THT) 'Ty/s* (13)

and

N = ~3klog 2r — ik log o”
— § log X'H'X| — 4@y — Xp)H™'
XX'H X)) 'X'H '(y — Xu)/o’. (14)

With A, not involving u the estimators of ¢ and the
v.’s, called restricted maximum likelihood (REML)
estimators are, following the method of Patterson
and Thompson [7], those values of ¢° and the v,’s
that maximize X\, . Differentiation of (13) gives

% = —LN — k)/d* + y'T/(THT') 'Ty/s* (15)
and

(’»\1 1 "y 7y 1

P —1tr [U/T/(THT') 'TU,]

+ y'T/(THT’) 'TUU/T/(THT') 'Ty/*s
for 7=1,2, -+ ,¢ (16)

where tr (Q) is the trace of a matrix Q.

Equating (15) and (16) to zero gives the REML
estimators. The resulting equations clearly have no
analytic solution and have to be solved numerically.
An iterative procedure is to first assign initial values
toy" = {y:, -+, v.} and then (i) solve

¢ = yT/(THT)) 'Ty/(N — k) (17)

based on (15), and (ii) use the y-values, and ¢° from
(17), to calculate new ~vy-values that make (16)
closer to zero. Repetition of (i) and (ii), ending at
(i), is continued until a desired degree of accuracy
is attained.

4. CoMPUTING PROCEDURES

Although Patterson and Thompson [7] give a
procedure based on Fisher’s iterative method for
¢ = 1 and suggest how to use it for ¢ > 1, the
Newton-Raphson technique is well suited to the
problem of finding successive values of ¥ that zeroize
(16), and has been effectively applied by Hemmerle
and Hartley [6] to similar equations of the Hartley
and Rao [2] maximum likelihood method. We use
their application here, first adapting a transforma-
tion they use, which simplifies notation and comput-
ing procedures.

4.1 The W-transformation

The Newton-Raphson technique for finding values
of the elements of ¥ that zeroize (16) utilizes the
second-order partial derivatives of A, with respect
to the v,’s. These are, using (16)

_82_>\1__ o 1 T n—1 e 71

5y, oy, = +tr [0/T/(THT)"'TU,U,/T/(THT') "TU ]
— y'T/(THT)"'TUU,/T/(THT")"'TU,U /T’
A(THT") 'Ty/s* for 4,j=1,2, - ,c. (18)

The matrix products in (16) and (18) are sub-
matrices of the following transformation to W
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suggested by Hemmerle and Hartley [6]:
W= {W,} for 7,5=1,2,--- ,¢c+1

= [I;:]T’(THT’)"T[U yl. (19

Thus for W, .., = w, (16) and (18) arc

z_:’_" = _% tr (Wm‘) + %wi’wi/a'z (20)
and
62)\1 1 ’ ’ 2
T = 3tr (Wiiwii ) - W Wl-,-W,r/U <21)
dy: Ov;
ford,j =1, ---, ¢, and (17) is

OA'L = ”fcu.cﬂ/(N - ]f)- (22)

The elements of W in (20)-(22) require, from (19),
computing (THT’)™!, of order N — % which is less
than N, the order of the matrix to be inverted for
maximum likelihood. For many data sets this will
be impossibly large computationally, but the inver-
sion can be reduced to that of a matrix of order
m, = Z{ﬂc m; , the total number of levels of all
random effects in the model. Although for some data
sets this will also be too large, it is always less than
N — k, frequently much less, and in many instances
will be such that the inversion can be computed. To
achieve this reduction note from (3) that

H=1I4UDU (23)
for

U=[U,0, - U] (24)
and

D = Z +7"Imi . (25)

Then (see appendix)
T/(THT)'T = S — SUM™'U’S (26)

for
M =D+ USU, oforderm. = y, m,. (27)
icl

Now define

W, = [U'JS[U yl = {Wf’” W‘] (28)
y’ wo' W,

which, because of (19) is W with H replaced by I
Then on using (26)—(28) in (19), W becomes

U/

W=W,— I:y,JSUM"IU’S[U vl 29)

— !jwoo - WooM—lwoo Wy — WOOM_IWOJ' (30)
w) —w/ M 'W,, w, —w,/M 'w,
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4.2 Implementation

Calculating W of (30) requires calculating (27)
and (28). First (28): from 8 of (6), the leading term
of (28) is

We = U'SU = U'U

— U'Xdiag {1/n, -+ 1/2,}X'U (31)
where U’U is the familiar “coefficient matrix”’ for
the random effects; (i.e., if w were null and the ran-
dom effects were in fact fixed, the normal equations

for them would be U'Ub” = U’y). In (31) a typical
sub-matrix of U’'X is

U/X = {n;.} forg =1, -+, m; and
t=1, -+ k and m; X k matrix
whose typical element n;;, , is the
number of observations in the jth
level of the ith random effects
factor and the fth sub-most cell
of the fixed effects factors. (32)

In the example of Table 1, the rows are considered
fixed, with & = 3 levels. The first random factor is
columns, with m, = 2 levels, and for (32)

U/X={nly,} for 5=1,2, and ¢=1,2,3
_ [3 3 2].
~ 1233

The sccond random factor is interactions, with
me = 6 levels and in (32)

U)X = {ny;,,,} forj=1,... ;6and t=1,2,3
300]
200
030
030
002
00 3

A second term in (28) is
w, = U'Sy = {U,/Sy}, m, X1, fori=1,--- ¢
From (6), Sy = x is the vector y with each observa-
tion replaced by its deviation from the cell mean of

the sub-most cell of the fixed effects factors in which
it occurs:

R
x=8y=y— (Z "nt‘lL.)y

t=1

=y — g1, }fort =1, .-, k]



RESTRICTED MLE OF VARIANCE COMPONENTS IN THE MIXED MODEL 35

Hence

w, = {U,/x} = {an m, X 1 vector of totals of
the o’s, totalled over each level
of the 4th random factor!

fori =1, --,c (33

To illustrate x from the example we use the familiar
dot and bar notation for totals and means; e.g.,
Y. = Zr:13 Yirr and Y. = ?/11./3~ Then x =
{Yper — T} forp =1,2 3¢ =1 2and r =
1, -+ -, n, in lexicon order and w, of (33) is

(Y1 — B, + 3G + 202
Yoo — 7. A+ 37 + 37s.)
Y. — 37...
w, = Yie. — 291 ,
Ya1. — 3.,
Ya2. — 3Fa..
Yar. — 20s..
Lyaz. — 3%s.. J
The final term for (28) is
w, = y'Sy = x’x = total sum of squares of
the x's

= within cell sum of squares of the 4’s for
the k& sub-most cells of the fixed effects
factors. (34)

and in the example this is

Npq

3 2
Wy = zl Zl z:l (ymr - gp--)Q‘
p=1 q¢=1 r=

Having calculated Wy, , w, and w, for W, of (28),
M~ required for W in (30) comes from (27) and (28)
as

M =D"4 Wy. (35)

Hence, as suggested by R. Thompson (personal
communication) the matrix and vector terms of W
are

WOO - W(l()M_IWOO D_l - D_]M_ID_1
and (36)
w, — WM 'w, = D"'M™'w, ,

Il

the scalar term, w, — w,'M ™ 'w, remaining as is.
As Thompson points out, the computational
advantages of the right-hand sides of (36) over the
left are those of multiplication of M™" by diagonal
rather than symmetric matrices.

With these expressions, implementation of the
iterative technique can be carried out exactly as
suggested by Hemmerle and Hartley [6]. First,

from the data, calculate Wy, using (31)-(34). Then
assign an initial set of valuesto they,’s,i =1, - - - | ¢,
and use them in D of (25), thence in M of (35), and
calculate M™'. Then use M™' in (36) and (30) to
obtain W. Elements of W are then used in (20), (21)
and (22) for obtaining, by the Newton-Raphson
procedure, solutions to equations formed by equating
(15) and (16) to zero. At each iteration, it is D of
(25) and, through (35), M that change, and hence
through (36) the terms of W.

5. EstimaTioN or Fixp EFrFEcTs

In the model described in (1) and (2), the maxi-
mum likelihood estimator of w on assuming H
known is

8 = (XH'X)"'X'H 'y, (37)
where from (23)
H'=1I+UDU)'=1-UD"'+ UU)'U.
On replacing the y; in D™' by their REML esti-

mators and denoting the corresponding value of H
by H, an estimator of u suggested by (37) is

v = (XH'X)'XA 'y (38)
Development of the covariance matrix of this
estimator would involve acknowledging that H is

only an estimator of H; ignoring this complexity
var (@i) is

var (f‘) — (X/ITI—IX)ﬂX/I:'I—1HIjI~1X(X/I"_’I—1X)—1a2

and on again using H and 5° in place of H and ¢” we
have an estimator of this variance as

var (@) = (X'H'X)7'¢.
No optimum properties are known for this estimator
or for its covariance matrix. It is known, as may be

readily observed, that § does maximize A, of (14),
for known H.

6. LARGE SAMPLE VARIANCES

6.1 Derivation

Searle [8] gives, for a model of y as described here
in (1), (2) and (3), an expression for the information
matrix I(¢°) of the vector of parameters

¢ = [0_12022 L. 17020'2]. (39)

The same procedure can be used for obtaining the
information matrix I(g) of

@ = [pipz * * @eri]l = [y'0] (40)
for
¥ = [y - v.] for v =0a7/d", (41)
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using Ty as the data vector. The result (see appendix)
is

1

I = 3 [{tr W, W)

{tr (W»}/«T
{tr (W“)}’/a2

N = k)/o’
i: j = 1, 2: e, C 642)

for W of (19); and, of course, the large-samplc
covariance matrix of the REML estimator ¢ of ¢
(i.e., of the maximum likelihood estimator of ¥’ and
o’ from Ty) is

var (g) = [I()]™". (43)

Should the large sample covariance matrix of the
REML estimator of ¢° be required we use the
relationship between the two information matrices
given in Zacks [10], namely

I() = B'I(¢")B, (44)

where B is the Jacobian matrix {ds,%/dp;} for
i, 7 =12 --- ¢ 4 1. In our case this reduces
(see appendix) to

v(6.") = v,"0(6%) + 20°y, cov (6°, %)

+ (7)),

cov (6.7, 6,°) = viy(6°) + o’v: cov (6%, 4,)
+ o’y cov (65, F.)  (45)

+ o' cov (7., 7,)
and

cov (6%, .°) = yu(@) + o cov (&, 7.),

fori,j =1, ---,c

6.2 Computing estimated variances

The use in (42) of W computed in the final round
of iteration for the REML estimate @ gives an
estimate I(p) of I{p). The occurrence of elements of
W in (42) makes this particularly easy to compute
because they are an integral part of computing
REML estimates. An estimate of var (@) of (43) is
then obtained as var () = [I(@)]™". Using the
elements of this matrix in place of those of var (3)
in (45) and also replacing ¢® and v by their REML
estimates yields a corresponding estimate vat (§°)
of var (&%).

7. A NumEeRIicaL ExXAMPLE

Estimates computed from the 2-way cross classi-
fication example described in Sections 2.2 and 4.2
are shown in Table 2. This is the example used by
Hemmerle and Hartley [6] who drop 2 observations
to exemplify unbalanced data in which they then
treat the rows as fixed effects, in order to also have a
mixed model. We here consider both the balanced

TECHNOMETRICSO, VOL. 18, NO. 1, FEBRUARY 1976

TasLe 2—Ezample: estimales from  different methods of
estimation

Method of Estimates of
o 2,2 _ 2.2 2
estimation Yy = GB/G Yy = GuB/U g
Balanced dats {all n__ = 3)
Pa

ANOVA 21.55 .32 €9.78
ML 10.81 0 69.51%
REML 21,55 .32 69.78

Unbalanced date (npq as in Table 1)
Fitting Constants 18.u42 .35 78.63
ML 9.33 0 TT.93%
REML 18.57 L 3h 8.8k

* See text.

data case and the unbalanced data for the mixed
model. The results for the balanced data prompts
three comments.

First, the REML and ANOVA estimates are
identical; this has been found true of four balanced
data cases we have considered analytically (the
1-way layout, the 2-way hierarchical and the 2-way
crossed classification with one factor treated as a
fixed effects factor, both with and without inter-
action). Numerical examples of other models are in
keeping with these results, suggesting that REML
and ANOVA estimators are identical for balanced
data gencrally.

Second, the ML estimate for v, is zero, meaning
that the estimate for the interaction variance
component o5 is also zero. This is a consequence of
the computing algorithm: when the computed value
of an ML estimate is negative that value is put equal
to zero. The consequence of this is important: it
implies not just that a variance component is going
to be estimated as zero but that the factor corre-
sponding to that component (in this case the inter-
action factor) is not to be in the model—and so the
model is changed to exclude it. From the changed
model the other variance components are then
estimated. This accounts for the ¢ estimate under
ML being different from that under ANOVA in the
balanced data case, and different from the fitting
constants estimator in the unbalanced data case. In
view of the fact that, for balanced data, ANOVA
estimators are known to have desirable minimum
variance properties, and since in these data the
ANOVA estimator of s.,° = .32(69.78) = 22.32,
which is far from being zecro, the change brought
about by ML estimation of eliminating the inter-
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action factor from the model therefore seems radical.
The same situation occurs with the unbalanced data,
although the fitting constants estimators there do
not have minimum variance propertics as do ANOVA
estimators in balanced data. Nevertheless, MIL
estimation from these data again deletes the inter-
action factor. In neither case does REML estimation.

A third feature of the results is that the ML
estimate of v, = o;°/¢” in both the balanced and
unbalanced data is very close to half that of the
REML and ANOVA or fitting constants estimator.
This is not just a consequence of the changed model
arising from the negative v, estimate already referred
to. It also oceurs in the with-interaction model itself.
In both cases, for balanced data, it results from
“degrees of freedom’ divisors in the solutions of
the ML equations being b instead of b — 1. The
effect of this is to change the estimator in approx-
imately the ratio (b — 1)/b which equals 3 in this
case, since b = 2, the number of columns. A similar
effect occurs with the unbalanced data. But it does
not occur with the REML estimates.

Estimated sampling variances of the estimates are
not shown in Table 2 because the basis for these is
large sample theory and the data of our example are
not a large sample. This position is exacerbated here
because estimated sampling variances are based upon
the parameter estimates obtained and these we have
scen in the case of v, differ greatly as between ML
and REML (and ANOVA). Thus in the balanced
data case the ML estimate is 4, = 10.81 with
(%) = 134.26 whercas the REMI, estimate is
¥, = 21.55 with #(§,) = 1024.72. Since there are no
simple relationships between estimates and their
estimated sampling variances, not even with
balanced data, let alone unbalanced data, it is quite
impractical to attempt drawing conclusions from
such as these.
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9. APPENDIX

A.1 Generalizations

The structure of T in (8) is appealing from the
point of view of familiar ANOVA designs, but it can
be generalized (Harville [4), [5]) as follows. Following
Patterson and Thompson [7], define the N X (N — k)
matrix A’ by

S =A'A and AA' =1 (A1)
The likelihcod associated with any (N — k) lincarly

independent combinations of the observations (error
contrasts), including that associated with Ty, is

necessarily proportional to the likelihood associated
with Ay. Denoting the probability density function
of the random veetor v = Ay by f, , then log f,(Ay)
is (13) with T replaced by A. For making this
replacement observe that by using (23)

AHA’ =1 4 AUDU’A’
and
(AHA')"' =1 — AU(D™' + U’SU) 'U'A’,
as may be verified by multiplication; and also
A'(AHA) 'A =S —SUMD '+ U'SU)'U'S (A2
and
[AHA’| = |I + AUDU’A’| = I + DU'ST|
= |D|{ D' 4 U'SU], (A3)

as may be seen by expanding the determinant of

( I AU }
U'A’ —D!

in two different ways. Even more generally, suppose
that H = R + UDU’', where R is symmetric
positive definite with L, of order N X N, defined
by R = LL’. Then

L'y =L 'Xy+ L'UB + L%

and the likelihood associated with any (N — k)
“error contrasts” in y is necessarily proportional to
the likelihood associated with any (N — k) error
contrasts in y* = L'y and is thus proportional to

(zraz)gm\'—k) lDI—% ID_I _|_ U/S*UI—%
cexp {—1y/[S* — S¥UD™! 4+ U'S*U)'U’'S*ly/c"}

where 8* = R™' — RT'X(X'RT'X)"'X'R™.

Note that for T of (8), used in the body of the
paper, (TT)™* = K'K for some non-singular K.
Then A = KT satisfies (A1), and (A2) yields (26).

The transformation from y to z in (11) has been
made, and the distribution of z in (12) has been
derived, for a particular T based on full column rank
and incidence properties of X. However, for any
Xixy" that spans the same space as any full column
rank matrix Xy, , there exists a matrix M such that
Xvrt = XvsiMix, . In general, T can then be
chosen such that TX = 0 and hence TX* = 0.
Thus the transformation (11) will then have the
distribution (12). Generalization of the REML
procedure then follows.

A.2 Large sample variances

The information matrix given in Searle (8] for
¢” of (39) based on

c+1

¥y~ NXy, V) with 3 0°U,U/
i=1
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as in (1), (2) and (3) is
I*(¢°) = Ltr (VT'U. UV U, U]
for 4,j=1,2 - ,c+ 1

Similarly, that for estimating ¢” based on Ty ~
N, TVT') with TX = 0, is
I(¢") = L{tr (TVT")'TU,U,/T(TVT)"'TU,U/T]}
,c+ 1. (A4)
Derivation of (42) and (45) is based on (A4) and
requires two uses of (44).

When var (6%) = [I(6%)]7" is needed in practice,
it is obtained from (45) by way of var (@) from I(e)
of (42). But to derive (42) we start with I(¢°) of (A4)

and use (44). In fact, with ¢’ of (40) and v’ of (41)
we have

for ¢,35=12,---

da’ ..
B =", ,j=1,2,--- ,c+1

do;
_ ["QI T} (A5)
0 1

and substitution of this and (A4) into (44) leads
directly, after some simplification, to (42). Then,
with I(p) of (42) we use (44) in reverse to derive
(45) as

var (8°) = [I(¢°)]"' = B[I(@)]'B’ = B var (¢)B’.

TECHNOMETRICS®, VOL. 18, NO. 1, FEBRUARY 1976

This, for B of (A5) and ¢ of (40), leads to the
results shown in (45).
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