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Conditional tests on the scale parameter of the gamma distribution with an unknown 
nuisance shape parameter are considered. Such tests, based upon the conditional distribution 
of the sample mean X (or equivalently W, = X/J) given the geometric mean .?. are uniformly 
most powerful unbiased tests. Percentage points of the conditional distribution are tabulated 
for small sample sizes and an asymptotic normal approximation is also obtained. 
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I. INTRODUCTION 

The gamma distribution, as defined by the density 
function 

f(x) = xk- l exp(--dP)lPr(k), 

x > 0, k > 0, P > 0 

has been useful in many areas of statistics. The pa- 
rameters k and P are respectively shape and scale 
parameters. In the areas of life-testing and reliability, 
the parameter 8 = l/P is also of interest, In the 
exponential case (k = l), 0 is the constant failure rate 
of the distribution. In the general case (k > 0), 0 is the 
asymptotic value of the failure rate function as x --* 00 
(see Barlow and Proschan [2], p. 14). 

Let x1, ... , x, denote a random sample of size n 
from a gamma distributed population with both 0 
and k unknown. The gamma distribution is a mem- 
ber of the exponential family, and it follows that the 
arithmetic mean, .f = c1Z1” x,/n, and the geometric 
mean, ,? = (II,=,n xL)lln, are joint complete sufficient 
statistics. 

Based on the statistic IV, = 13/x’, it is possible to 
construct tests with optimum properties for k with 0 
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an unknown nuisance parameter. References con- 
cerning such tests are included in papers by Bain and 
Engelhardt [l] or Glaser [8]. It would be desirable to 
also have tests for 6’ (or 0) with k an unknown nui- 
sance parameter. As noted by Mann et al. ([13], p. 
263) no general method for drawing inferences con- 
cerning 0 with k unknown has been developed. The 
usual approach is to attempt to determine a statistic, 
preferably a function of the sufficient statistics, whose 
distribution is independent of the nuisance parame- 
ter. This may be difficult if the nuisance parameter is 
not related to a location or scale parameter. For the 
gamma distribution it is helpful to consider condi- 
tional tests. In this case the conditional density of 2 
given x’ is also a member of the exponential family, 
and is independent of k. It also follows from Leh- 
mann ([I 11, p. 136) that conditional tests for 0 with k 
unknown can be constructed, and that these are 
uniformly most powerful unbiased (UMPU) tests. 
Thus, theoretically a solution to our problem exists. 
Practical implementation requires percentage points 
of the conditional distribution, which is extremely 
complicated. Both small sample and asymptotic per- 
centage points have been tabulated and their use in 
inference procedures is discussed in the next section. 
The asymptotic derivations and computation of the 
percentage points are then discussed further in later 
sections. 

2. UMPU TESTS FOR 0 WITH I\ UNKNOWN 

Let W,, = X/f and G, = 8.f and consider the 
conditional distribution function of W, given G, = g, 
written FW,(w 1 g). The advantage of considering 
these variables is that the distribution depends on the 
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two quantities w and g, and not separately on f, x’ 
and 8. It is also helpful to have the variable stand- 
ardized relative to n and to g. This allows asymptotic 
values to be included in Table 1, and also regularizes 
the values to improve interpolation accuracy. Thus, 
Table 1 provides percentage points u?(g) such that 
Qfi g[ W, - E( W, / g)] I u?(g) I g} = 7, for vari- 
ous values of n, g and y. Values of E( W, 1 g) are 
also included in Table 1. For large g, it can be shown 
that E( W, 1 g) 4 1 and u,(g) + +(a) = &&“(n - 
1)/2n - (1 - l/n)/2], where xr2(n - 1) denotes the 

chi-square percentage point for n - 1 degrees of 
freedom. For large n, an asymptotic normal approxi- 
mation is provided, which results in the asymptotic 
critical values ur(g) = fi zy, where z-, denotes the 
normal percentage point and mg and cg denote as- 
ymptotic approximations for E( W, / g) and ng’ 
Var( W, / g). Values of mg and cg are provided in 
Table 2. 

These asymptotic results were used to provide the 
limiting values for large g and large n which permits 
interpolation on 1 /n or 1 /g for large values of g or n. 

TABLE I-V&es E(W, ( gi and u?(g) such that P{fig[W, - Ef W, / gi] S uy (g) / g) = y 

Y 

n g E(W# .Ol .025 .05 .lO .50 .90 .95 .975 .99 

5 0.5 
0.7 
1.0 
2.0 
5.0 

20.0 
00 

10 0.5 
0.7 
1.0 
2.0 
5.0 

20.0 
m 

20 0.5 
0.7 
1.0 
2.0 
5.0 

20.0 
m 

30 0.5 
0.7 
1.0 
2.0 
5.0 

20.0 
00 

40 0.5 
0.7 
1.0 
2.0 
5.0 

20.0 
m 

m 0.5 
0.7 
1.0 
2.0 
5.0 

20.0 
m 

1.691 -.716 -.680 -.637 -.570 -.129 
1.510 -.740 -.703 -.658 -a588 -.131 
1.367 -.761 -.722 -.676 -.604 -.134 
1.191 -.791 -.751 -.703 -.627 -.138 
1.078 -.812 -.771 -.721 -a644 -.141 
1.020 -.822 -.780 -.730 -.651 -.141 
1.000 -.828 -.786 -.736 -.657 -.144 

1.777 -.946 -.863 -.779 -.664 -.093 
1.575 -.979 -.893 -.805 -.686 -.095 
1.414 -1.008 -.919 -.828 -.705 -.097 
1.215 -1.046 -.954 -.859 -.732 -.098 
1.088 -1.072 -.977 -.880 -.749 -.lOl 
1.022 -1.087 -.990 -.892 -.759 -.103 
1.000 -1.093 -.996 -.897 -.764 -.104 

1.819 -1.100 -.977 -.860 -.712 -.065 
1.607 -1.140 -1.013 -.892 -.738 -.067 
1.438 -1.173 -1.042 -.917 -.759 -a069 
1.228 -1.218 -1.082 -.952 -.788 -.072 
1.093 -1.250 -1.110 -.977 -.809 -.074 
1.024 -1.264 -1.123 -.988 -.817 -.074 
1.000 -1.271 -1.128 -.993 -.822 -.074 

1.833 -1.163 -1.022 -.891 -.729 -.052 
1.618 -1.208 -1.061 -.926 -.757 -.055 
1.446 -1.243 -1.092 -.952 -.779 -.057 
1.232 -1.290 -1.133 -.988 -.808 -.058 
1.095 -1.323 -1.162 -1.013 -.828 -.059 
1.024 -1.340 -1.177 -1.026 -.839 -.060 
1.000 -1.346 -1.182 -1.031 -.843 -.060 

1.840 
1.623 
1.450 
1.234 
1.096 
1.024 
1.000 

-1.200 -1.048 
-1.247 -1.090 
-1.284 -1.121 
-1.331 -1.164 
-1.364 -1.192 
-1.382 -1.207 
-1.389 -1.213 

-1.442 -1.215 
-1.483 -1.250 
-1.522 -1.283 
-1.578 -1.330 
-1.617 -1.363 
-1.638 -1.380 
-1.645 -1.386 

-.909 -.738 -.045 
-.945 -.768 -.048 
-.972 -.790 -.049 

-1.009 -.820 -.051 
-1.033 -.839 -.051 
-1.047 -.850 -.052 
-1.052 -.854 -.053 

1.866 
1.640 
1.462 
1.240 
1.098 
1.025 
1.000 

-1.020 -.795 .ooo 
-1.049 -.818 .ooo 
-1.076 -.839 .ooo 
-1.116 -.870 .ooo 
-1.144 -.891 .ooo 
-1.158 -.903 .ooo 
-1.163 -.907 .ooo 

736 
1758 
. 778 

807 
1827 

840 
:845 

1.073 1.400 1.816 
1.104 1.438 1.866 
1.131 1.472 1.908 
1.171 1.523 1.973 
1.200 1.560 2.016 
1.218 1.581 2.039 
1.227 1.597 2.074 

.783 

.808 
829 

:sso 
882 

:894 
. 899 

1.092 1.383 1.744 
1.128 1.428 1.803 
1.156 1.464 1.847 
1.198 1.516 1.914 
1.228 1.554 1.959 
1.245 1.573 1.982 
1.252 1.585 2.003 

795 
:825 
847 

:878 
. 899 

913 
:917 

1.078 1.337 1.651 
1.121 1.393 1.725 
1.151 1.430 1.771 
1.193 1.482 1.834 
1.221 1.516 1.876 
1.239 1.539 1.906 
1.246 1.549 1.922 

795 
:828 

851 
:883 
. 905 
.917 
. 921 

1.066 1.311 1.606 
1.112 1.371 1.684 
1.144 1.410 1.734 
1.186 1.463 1.798 
1.216 1.498 1.841 
1.231 1.518 1.865 
1.238 1.527 1.879 

795 
:828 
.852 
. 883 

906 
:917 
. 922 

. 795 

. 818 
839 

:870 
. 891 
. 903 
. 907 

1.059 1.297 1.583 
1.106 1.357 1.660 
1.138 1.396 1.708 
1.179 1.447 1.771 
1.209 1.483 1.815 
1.225 1.502 1.837 
1.231 1.512 1.852 

1.020 1.215 1.442 
1.049 1.250 1.483 
1.076 1.283 1.522 
1.116 1.330 1.578 
1.144 1.363 1.617 
1.158 1.380 1.638 
1.163 1.386 1.645 
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The above results now make it possible to con- 
struct tests or confidence limits for 6’ with k unknown. 
For example, a UMPU size (Y test of H,:0 I B0 
against H, :19 > B,, is to reject H, if 

fi gowx’ - E(W, I &)I < ua(k5l), 
where go = 0,x’. 

The associated confidence limits can also be ob- 
tained, although they are less convenient than the 
testing situation. 

To determine a 1 - cy lower confidence limit dL, 
first determine the value gI. which satisfies 

J;; g,[f/l - -qWn I &)I = a(g,) (1) 
then BI. = g,/T. 

The right hand side of equation (1) is nearly con- 
stant, and the left hand side increases with gL so a 
solution for g, can be obtained readily by trial and 
error. 

The methods will be illustrated by application to 
some numerical examples. 

EXAMPLE 1 

Gross and Clark [9] considered the following ran- 
dom sample of 20 survival times (in weeks) of male 
mice exposed to 240 rads of gamma radiation. 
152, 152, 115, 109, 137, 88, 94, 77, 160, 165, 125, 40, 
128, 123, 136, 101, 62, 153, 83, 69. 

For this sample X = 113.5, x’ = 107.1 and w = X/Z 
= 1.06. The maximum likelihood estimates (MLE’s) 
are i = 8.74 and i = .075. Suppose we wish to test 
H,: 0 I .05 against H,:fI > .05 at the .Ol significance 
level. Then g, = 8s = .05(107.1) = 5.36. By inter- 
polation on 1 /g in Table 1, we have E( IV,, / 5.36) A 
1.09 and u.,,(5.36) = -1.25. Since fi g,[X/f - 
E( Vi’, / g,)] = fl(5.36)(1.06 - 1.09) = -.72, H, 
cannot be rejected at the .Ol level. Now suppose a .99 
lower confidence limit for 0 is desired. Consider equa- 

R --L..- CR 

0.1 4.3859 0.2770 

0.2 2.9078 0.3203 

0.3 2.3523 0.3483 

0.4 2.0541 0.3686 

0.5 1.8660 0.3841 

0.6 1.7360 0.3965 

0.7 1.6404 0.4067 

0.8 1.5670 0.4151 

0.9 1.5089 0.4222 

1.0 1.4616 0.4282 

1.1 1.4225 0.4335 
1.2 1.3895 0.4380 

i.3 1.3613 0.4420 

1.4 1.3369 0.4455 

1.5 1.3156 0.4487 

2.0 1.2398 0.4603 

2.5 1.1934 0.4677 

3.0 1.1621 0.4729 

4.0 1.1224 0.4794 

5.0 1.0983 0.4835 

10.0 1.0496 0.4917 

20.0 1.0249 0.4958 

40.0 1.0125 0.4979 

80.0 1.0062 0.4990 

m 1.0000 0.5000 
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tion (1) after dividing by fi. For an initial value of g 
= .05x’ G 5, u,,,(5)/0 = -.280. Values ofgL[i/.Z - 
E(W, 1 gL)] for gL = 5, 4, 3 are respectively, -.165, 
- ,222, - .279. Recomputing the right hand side gives 
u.,,(3)/fl = -0.276. This is probably as accurate as 
the data, but additional trials give g = 3.04 and BL = 
3.04/107.1 = ,028. 

EXAMPLE 2 

Choi and Wette [7] provide the results of a simu- 
lated sample of size 200. The data, which was gener- 
ated from a gamma distribution with 6’ = I and k = 3, 
yield X = 2.905 and x’ = 2.455. Suppose it is desired to 
test the hypothesis Ho:0 = .9 against the alternative 
H,:O > .9. Sinceg, = (.9)(2.455) = 2.10 we obtain by 
interpolation in Table I, E( W,,, 1 2.10) = 1.228 and 
u,,(2.10) = -1.10. Sincefig,[1S/.? - E(W, 1 g,)] = 
~/200(2.10)[1.183 - I.2281 = -1.34, H, can be re- 
jected at the .05 level. Suppose it is desired to con- 
struct a 95% confidence interval for 8. Following the 
approach outlined in Example 1, upper and lower 
97.5% limits can be obtained. The resulting con- 
fidence interval would be (.86, 1.29). An alternate 
approach for large sample sizes would be to use the 
asymptotic normal approximation from Section 4 di- 
rectly. For example, in the confidence interval prob- 
lem, limits for an asymptotic level 1 - (Y confidence 
interval can be obtained as 19~ = g,/l and 0” = g,/x’ 
with g = g[, and g = g, the respective solutions to k 
h/z = \/;; g[Z/,? - m,]/fi, where i and x’ are 
observed values. A convenient initial value for the 
asymptotic method is go = l/2(2/.? - I). For the 
numerical example, go = l/2(1.183 - 1) = 2.7, and 
the solutions to k 1.960 = a g[1.183 - m,]/& 
obtained by interpolation in Table 2 are gu = 3.18 
and g, = 2.11. Thus, (2.1 l/2.455, 3.18/2.455) = (.86, 
1.30) is an asymptotic 95% confidence interval for 0. 
It appears that the asymptotic normal approximation 
would have been adequate in this case. 

It is also interesting to compare to the confidence 
interval based upon the asymptotic normal distribu- 
tion of 8 with the variance estimated. Since k = 3.133, 
6 = 1.079 and Var(& A .0306, the resulting con- 
fidence interval for fI is (.74, I .42), which is wider than 
the confidence interval based on the optimal ap- 
proach. 

3. SMALL-SAMPLE RESULTS 

It is possible to derive explicit expressions for the 
small-sample conditional distribution and moments 
of W, given G, = g, although the numerical eval- 
uation of these expressions is quite involved. Since, 
for any specified k, X is a complete sufficient statistic 
for 0 and L = f/X is distributed independently of 0, it 
follows from the results of Basu (1955) that j and L 
are independent statistics. The statistic X is gamma 
distributed with mean k/B and variance k/8% and the 
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density function p(l) of L was derived by Nair (1938). 
By a change of variables, the joint density function of 
W, = l/L and G, can be derived and the resulting 
conditional density function of W, given G, = g is 
fW”(W I g) = wnkm2 exp (-ngw)p(l/w)/l(g, n, k), 
where Z(g, n, k) = II” tnk-’ exp (-ngt)p( l/t)dt. It was 
shown by Nair that p(l) = F,(I)F,(I) where F,(/) = c(n, 
k)lnk+l and F2(1) does not depend on k. Hence, 
fi,(w I g) = (l/w) exp (-ngw)F,( I /w)/l(g, n), w > I, 
where I(g, n) = II” (l/t)exp(-ngt)F,( l/t)dt. The con- 
ditional distribution function F,, (w ( g) could then 
be obtained by numerically integrating &,(w I g). 
The major difficulty involves the numerical eval- 
uation of the function F,(I). Nair obtained a series 
solution, whose complexity increases with the sample 
size. Hartley (1940) used a chi-square series to eval- 
uate the distribution of the variable -2nk In L. Of 
course, with a change of variables, this would also 
provide a series evaluation of p(l). A solution with a 
similar form was also obtained by Glaser [8] by a 
different approach. Box [6] proposed a generalization 
of Hartley’s chi-square series which provides an ex- 
cellent method of evaluating p(l) with a relatively 
small amount of computation. The small-sample re- 
sults in Table I were based on this method. 

The limiting results for large g were obtained as 
follows: The conditional mean can be expressed as 

E(WnIg)= m 
s 

a M’ exp (-ngi+a)w ‘F2 (II’-‘) dw, 
1 /.I 1 

exp (-ngw)w-‘F,(u ‘) dn’. 

After the substitution t = ng(w - 1) and sim- 
phfication we have E( W,, I g) = I + (I/ng) Q@g)/ 
Qo(ns> where 

Ql(Z) = lrn I’ exp (-t) (--1) (1 + t/z)-IF, 

([I + t/‘zlml) dt. 

It can be shown that 

Q,(i) m I’;‘ t’ exp (-t) (t/z) nm3”2 dt = 

i -‘=“T(i + [n - 1]/2) as .Z + 03. 

Thus, for any fixed n, ng[E( W, I g) - I] - I?( 1 + [n 
- 1]/2)/r([n - 1]/2) = (n - I)/2 asg + a. It follows 
that lim,,, E( W,, I g) = 1. By a similar argument we 
can show that u?(a) = lim,,, u-,(g) = fi[xr”(n - 
l)/2n - (1 - l/n)/2]. The limiting values for large g 
in Table I were based on these results. 

4. ASYMPTOTIC RESULTS 

Following the notation of Section 2, let G, = 02 
and W, = X/f. Furthermore, define mg = @’ (In 
g)/g for each g > 0, where @’ denotes the inverse of 
the digamma function $(z) = I”(z)/I’(z), and let Y, = 
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fi[W, - m,;,] = &[W, - il/-‘(ln G,)/G,]. If {a,} 
and {b,) are numerical sequences, the notation a, - 
6, will have the usual meaning that lim,,, (an/h,) = 
1. 

Theorem: Let Fyn~) denote the distribution func- 
tion of Y, and define F(J ( g) = @bg/[$-‘(ln g) - 
I/$‘(+ -‘(In g))]““) where a(z) denotes the standard 
normal distribution function. Then, for each real 
number J, 

-%,[%~ / &)I - FYJJJ) (2) 

Furthermore, F(1’ 1 g) is a distribution function in the 
variable y, a continuous function of g, independent of 
k and n, and the only such function which satisfies 
property (2). 

Proof: By relating W,, and G, to the MLE’s we can 
find the limiting distribution of Y,. It is well known 
that the MLE’s li and 8 have an asymptotic bivariate 
normal distribution with asymptotic means k and 0 
respectively. The asymptotic variances and co- 
variance, as given by Choi and Wette (1969), are Var 
(k) = k/D, Var(& = PrF/‘(k)/D, and Cov(k, 8) = 19/o 
where D = n[k$‘(k) - 11. It is easily verified that W,, = 
k exp [-g(k)] and G, = (0/d) exp [q(R)]. In the 
Lemma of Rao (1952, p. 207) let T, = k, Tz = al8 and 
fltl, h) = [I1 - tzrCi ‘Wd - ln 41 exp [-Wdl. It 
follows that the limiting distribution of Y, is normal 
with mean 0 and variance [k - l/+‘(k)] exp [-2$(k)], 
so that lim n-mFy,(v> = Rv) = WV exp W(k))ll[k - 
1/$7(k)]“‘). Now, since G, is asymptotically normal 
it converges stochastically to the asymptotic mean 
exp [G(k)]. Furthermore, since FO, / g) is a bounded, 
continuous function of g, it follows from the Helly- 
Bray Theorem (see Loeve, [12], p. 182) that lim,,, 
E,;,[F@ / G,J] = FO, / exp [q(k)]) = F(y). Since 
E,;,[F@ ( G,J] and FY,,~) have the same finite, non- 
zero limit, this verifies property (2). Suppose HO, 1 g) 
is another distribution function in the variable y 
which is continuous in g, independent of k and n, 
which satisfies (2). Since HO, 1 g) is a bounded con- 
tinuous function of g, it follows by the Helly-Bray 
Theorem and property (2) that lim,,, EC;,, [HO, 1 G,)] 
= H(v ( exp [G(k)]) for any k > 0. This implies that 
H@ ( g) = F(j / g) for any g > 0. The fact that 
Fb ( g) is a distribution function in the variable y 
and a continuous function of g follows easily from 
basic properties of the functions involved. This com- 
pletes the proof. 

Let FY,,~ ( g) denote the conditional distribution 
function of Y, given G, = g. An important property 
relating the functions Fy,@) and FYn~ ) g) is that 

&;,[FY,O! I GA1 = F,,tv) (3) 
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In fact, by completeness the function FY,,@ 1 g) is 
determined by this relationship. The derivation of 
FYnfj ) g) as a solution of (3) is not tractable. How- 
ever, if we view expression (2) as an asymptotic 
analog of (3), then the Theorem provides us with an 
asymptotic solution, namely F(J I g). In this sense, 
the asymptotic conditional distribution of W, given 
G, = g could be regarded as normal with mean mg = 
$-‘(ln g)/g and variance ug = n- ‘[@‘(ln g) - 1/$‘(1+-~ 
(In g))l/g” = (llng’)c,. The asymptotic quantities m, 
and cg are provided in Table 2. These results have 
also been used to provide the asymptotic values of m, 
and u,(g) = z,dc,. 
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