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Conditional tests on the scale parameter of the gamma distribution with an unknown
nuisance shape parameter are considered. Such tests, based upon the conditional distribution
of the sample mean % (or equivalently W, = %/X) given the geometric mean X, are uniformly
most powerful unbiased tests. Percentage points of the conditional distribution are tabulated
for small sample sizes and an asymptotic normal approximation is also obtained.
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1. INTRODUCTION

The gamma distribution, as defined by the density
function

Sx) = x* texp(~x/B)/B"T (k),
x>0,k>0,8>0

has been useful in many areas of statistics. The pa-
rameters k and § are respectively shape and scale
parameters. In the areas of life-testing and reliability,
the parameter § = 1/8 is also of interest. In the
exponential case (kK = 1), f is the constant failure rate
of the distribution. In the general case (k > 0), € is the
asymptotic value of the failure rate function as x —
(see Barlow and Proschan {2}, p. 14).

Let x,, ---, x, denote a random sample of size n
from a gamma distributed population with both 6
and k& unknown. The gamma distribution is a mem-
ber of the exponential family, and it follows that the
arithmetic mean, X = Ei=1" x;/n, and the geometric
mean, ¥ = (II,_,* x,)!/", are joint complete sufficient
statistics.

Based on the statistic W, = x/X, it is possible to
construct tests with optimum properties for k with 8
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an unknown nuisance parameter. References con-
cerning such tests are included in papers by Bain and
Engelhardt [1] or Glaser [8]. It would be desirable to
also have tests for 6 (or 8) with k an unknown nui-
sance parameter. As noted by Mann et al. ([13], p.
263), no general method for drawing inferences con-
cerning f with k unknown has been developed. The
usual approach is to attempt to determine a statistic,
preferably a function of the sufficient statistics, whose
distribution is independent of the nuisance parame-
ter. This may be difficult if the nuisance parameter is
not related to a location or scale parameter. For the
gamma distribution it is helpful to consider condi-
tional tests. In this case the conditional density of X
given X is also a member of the exponential family,
and is independent of k. It also follows from Leh-
mann ([11], p. 136) that conditional tests for § with &
unknown can be constructed, and that these are
uniformly most powerful unbiased (UMPU) tests.
Thus, theoretically a solution to our problem exists.
Practical implementation requires percentage points
of the conditional distribution, which is extremely
complicated. Both small sample and asymptotic per-
centage points have been tabulated and their use in
inference procedures is discussed in the next section.
The asymptotic derivations and computation of the
percentage points are then discussed further in later
sections.

2. UMPU TESTS FOR § WITH &k UNKNOWN

Let W, = X/X and G, = 60X and consider the
conditional distribution function of W, given G, = g,
written Fw,(w | g). The advantage of considering
these variables is that the distribution depends on the
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two quantities w and g, and not separately on x, X
and 6. It is also helpful to have the variable stand-
ardized relative to n and to g. This allows asymptotic
values to be included in Table 1, and also regularizes
the values to improve interpolation accuracy. Thus,
Table 1 provides percentage points uy(g) such that
P(/n g[W, — EW, | 9)] < (2) | g} = v, for vari-
ous values of n, g and v. Values of E(W, | g) are
also included in Table 1. For large g, it can be shown
that EOV, | g) — 1 and us(g) — uy(®) = \/nlx+3(n —
1)/2n — (1 — 1/n)/2], where xy%(n — 1) denotes the

TABLE | —Values E(W, | g} and uy(g) such that P\\/n g[W, — E(W,

chi-square percentage point for n — 1 degrees of
freedom. For large n, an asymptotic normal approxi-
mation is provided, which results in the asymptotic
critical values uy(g) = /¢, zy, where zy denotes the
normal percentage point and m, and ¢, denote as-
ymptotic approximations for E(W, | g) and ng?
Var(W, | g). Values of m, and ¢, are provided in
Table 2.

These asymptotic results were used to provide the
limiting values for large g and large #» which permits
interpolation on 1/n or 1/g for large values of g or n.

lgll<ur (@ lg =~

-
n g E(Wn[g) .01 .025 .05 .10 .50 .90 .95 975 .99

5 0.5 1.691 -.716 -.680 -.637 -.570 -.129 .736 1.073 1.400 1.816

0.7 1.510 -.740 -.703 -.658 -.588 ~-.,131 .758 1.104%4 1.438 1.866

1.0 1.367 -.761 -.722 -.676 -.60% -.13% .778 1.131 1.472 1.908

2.0 1.191 -.791 -.751 -.703 -.627 -.138 .807 1.171 1.523 1.973

5.0 1.078 -.812 -.771 -.721 ~-.644% -.141 .827 1.200 1.560 2.016

20.0 1.020 -.822 -.780 -.730 -.651 -.14%41 .840 1.218 1.581 2.039

© 1.000 -.828 -.786 -.736 -.657 -.14u4 .845 1.227 1.597 2.074

10 0.5 1.777 -.946 -.863 -.779 -.664% -,093 .783 1.092 1.383 1.7u4yu

0.7 1.575 -.979 -.893 -.805 -.686 -.095 .808 1.128 1.428 1.803

1.0 .41y -1.008 -.919 -.828 -.705 ~-.097 .829 1.156 1l.464 1.8u47

2.0 1.215 -1.046 -.954 -.859 =-.,732 -.098 .860 1.198 1.516 1.91%

5.0 1.088 -1.072 -.977 -.880 -.749 -.101 .882 1.228 1.554% 1.959

20.0 1.022 -1.087 -.990 -.892 -.,759 -.103 .894% 1,245 1,573 1.982

© 1.000 -1.093 -.996 -.897 -.764 -.104 .899 1.252 1.585 2.003

20 0.5 1.819 -1.100 -.977 -.860 -.712 -.065 .785 1.078 1.337 1.651

0.7 1.607 -1.140 -1.013 -.892 -~.738 -.067 .825 1.121 1.393 1.725

1.0 1.438 -1.173 -1.042 -.917 -.759 -.06% .847 1.151 1.430 1.771

2.0 1.228 -1.218 -1.082 -.952 -.788 -.072 .878 1.193 1.482 1.834

5.0 1.083 -1.250 -1.110 -.977 -.809 -.074 .899 1.221 1.516 1.876

20.0 1.024 -1l.264% -1.123 -.988 -.817 -.074 .913 1.239 1.539 1.906

S 1.000 -1.271 -1.128 -.993 ~-.822 -.,074 .S817 1.246 1.548 1l.922

30 0.5 1.833 -1.163 -1.022 -.891 -.728 -.052 .785 1.066 1.311 1.606

0.7 1.618 -1.208 -1.061 -.926 -.757 -.055 .828 1.112 1.371 1.68Y4

1.0 1.446 -1.243 -1.092 -.952 -.,778¢ -.057 .851 1.144 1.410 1.734

2.0 1.232 -1.290 -1.133 -.988 -.808 -.058 .883 1.186 1.463 1.798

5.0 1.095 -1.323 -1.162 -1.013 -.828 -.059 .905 1.216 1.u488 1.84l

20.0 1.024 -1.340 -1.177 -1.026 -.839 -.,060 .917 1.231 1.518 1.865

% 1.600 -1.346 -1.182 -1.031 -.843 -.060 .921 1.238 1.527 1.878

40 0.5 1.840 -1.200 -1.048 -.909 -.,738 -.045 ,785 1.059 1.297 1.583

0.7 1.623 -1.247 -1.090 -.945 -.768 -.048 ,828 1.106 1.357 1.660

1.0 1.450 -1l.284 -1.121 -.972 -,790 ~-.049 ,852 1,138 1.396 1.708

2.0 1.23% -1.331 -1.164 -1.008 -,820 -.051 .883 1.179 1.447 1.771

5.0 1.096 -1.364% -1.192 -1.033 -.83%9 ~-.051 .906 1.209 1.483 1.815

20.0 1.024 -1.382 -1.207 -1.047 -,850 -.052 .917 1.225 1.502 1.837

© 1.000 -1.389 -1.213 -1.0562 -.854 -.053 .,922 1.231 1.512 1.852

© 0.5 1.866 -l.442 -1.215 -1.020 -,795 .000 .785 1.020 1.215 1.442

0.7 1.640 -1.483 -1.250 -1.049 -.818 .000 .818 1.049 1.250 1..483

1.0 1.462 -1.522 -1.283 -1.076 ~-.839 .000 .839 1.076 1.283 1.522

2.0 1.240 -1.%578 -1.330 -1.116 -.870 .000 .870 1.1i16 1.330 1.578

5.0 1.098 -1.617 -1.363 -1.144%4 -,891 .000 .891 1.144 1.363 1.617

20.0 1.025 -1.638 -1.380 -1.158 -.903 .000 .3803 1.158 1.380 1.638

& 1.000 -1l.645 -1.386 -1.163 -.907 .000 .807 1.163 1.386 1.645
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The above results now make it possible to con-
struct tests or confidence limits for § with k unknown.
For example, a UMPU size a test of Hy:0 < 6,
against H,:0 > 0, is to reject H, if

\/Ego[x/f - E(W, ' go)] < ua(go),

where g, = 0,%.

The associated confidence limits can also be ob-
tained, although they are less convenient than the
testing situation.

To determine a 1 — a lower confidence limit 6,
first determine the value g, which satisfies

Vn g [%/% — E(W, | gu)] = ua(gr) D

then 8, = g./X.

The right hand side of equation (1) is nearly con-
stant, and the left hand side increases with g, so a
solution for g, can be obtained readily by trial and
error.

The methods will be illustrated by application to
some numerical examples.

Gross and Clark [9] considered the following ran-
dom sample of 20 survival times (in weeks) of male
mice exposed to 240 rads of gamma radiation.

152, 152, 115, 109, 137, 88, 94, 77, 160, 165, 125, 40,
128, 123, 136, 101, 62, 153, 83, 69.

For this sample x = 113.5, ¥ = 107.1 and w = x/X
= 1.06. The maximum likelihood estimates (MLE’s)
are k = 8.74 and § = .075. Suppose we wish to test
H,:0 < .05 against H,:6 > .05 at the .01 significance
level. Then g, = 0, = .05(107.1) = 5.36. By inter-
polation on 1/g in Table 1, we have E(W,, | 5.36) =
1.09 and u,(5.36) = —1.25. Since /n g[x/% —
E(W, | g)] = v/20(5.36)(1.06 — 1.09) = —.72, H,
cannot be rejected at the .01 level. Now suppose a .99
lower confidence limit for 8 is desired. Consider equa-

TABLE 2—Asympiotic Values m, and ¢, = ng*v,

F

= =2 H O O O o O O O o O

o= W = =

10.

. . N
o O O o O O O W o Vs w D H O W oo 1 0w N

- °g
4,3859 0.2770
2.9078 0.3203
2.3523 0.3483
2.0541 0.3686
1.8660 0.3841
1.7360 0.3965
1.6404 0.4067
1.5670 0.4151
1.5089 0.4222
1.4616 0.4282
1.4225 0.4335
1.3895 0.4380
1.3613 0.4420
1.3369 0.4455
1.3156 0.4487
1.2398 0.4603
1.1934 0.4677
1.1621 0.4729
1.1224 0.4794
1.0983 0.4835
1.0496 0.4917
1.0249 0.4958
1.0125 0.4979
1.0062 0.4990
1.0000 0.5000
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tion (1) after dividing by v/n. For an initial value of g
= 058 = 5, u,(5)/v/20 = —.280. Values of g, [X/X —
E(W, | g)] for g, = 5, 4, 3 are respectively, —.165,
—.222, —.279. Recomputing the right hand side gives
u.1(3)/,/20 = —0.276. This is probably as accurate as
the data, but additional trials give g = 3.04 and 6, =
3.04/107.1 = .028.

EXAMPLE ?

Choi and Wette [7] provide the results of a simu-
lated sample of size 200. The data, which was gener-
ated from a gamma distribution with @ = 1 and k = 3,
yield ¥ = 2.905 and X = 2.455. Suppose it is desired to
test the hypothesis H,:f = .9 against the alternative
H,.0 > 9. Since g, = (.9)(2.455) = 2.10 we obtain by
interpolation in Table 1, E(Wyy | 2.10) = 1.228 and
u05(2.10) = —1.10. Since \/n g,[¥/X — E(W,, | g)] =
+/200(2.10)[1.183 — 1.228] = —1.34, H, can be re-
jected at the .05 level. Suppose it is desired to con-
struct a 95% confidence interval for 6. Following the
approach outlined in Example I, upper and lower
97.5% limits can be obtained. The resulting con-
fidence interval would be (.86, 1.29). An alternate
approach for large sample sizes would be to use the
asymptotic normal approximation from Section 4 di-
rectly. For example, in the confidence interval prob-
lem, limits for an asymptotic level 1 — o« confidence
interval can be obtained as 6, = g,/xX and 8, = gu/X
with g = gy, and g = g, the respective solutions to £
2,2 = /1 glX/% — my)/\/ ¢, where X and X are
observed values. A convenient initial value for the
asymptotic method is g, = 1/2(x/X — 1). For the
numerical example, g, = 1/2(1.183 — 1) = 2.7, and
the solutions to + 1.960 = /200 g[1.183 — m,]/\/cg
obtained by interpolation in Table 2 are gy = 3.18
and g, = 2.11. Thus, (2.11/2.455, 3.18/2.455) = (.86,
1.30) is an asymptotic 95% confidence interval for 6.
It appears that the asymptotic normal approximation
would have been adequate in this case.

It is also interesting to compare to the confidence
interval based upon the asymptotic normal distribu-
tion of # with the variance estimated. Since k = 3.133,
9 = 1.079 and Var(@) = .0306, the resulting con-
fidence interval for 6 is (.74, 1.42), which is wider than
the confidence interval based on the optimal ap-
proach.

3. SMALL-SAMPLE RESULTS

It is possible to derive explicit expressions for the
small-sample conditional distribution and moments
of W, given G, = g, although the numerical eval-
uation of these expressions is quite involved. Since,
for any specified &, X is a complete sufficient statistic
for # and L = X/x is distributed independently of 8, it
follows from the results of Basu (1955) that X and L
are independent statistics. The statistic X is gamma
distributed with mean k/6 and variance k/6%1 and the
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density function p(/) of L was derived by Nair (1938).
By a change of variables, the joint density function of
W, = 1/L and G, can be derived and the resulting
conditional density function of W, given G, = g is
Swaw | g) = w % exp (—ngwp(1/w)/I(g, n, k),
where I(g, n, k) = [, t"*~2exp (—ngt)p(1/)dt. It was
shown by Nair that p(/) = F\(\)F,({) where Fy(/) = ¢(n,
k)**-1 and Fy(l) does not depend on k. Hence,
Swaw | &) = (1/w) exp (—ngw)F(1/w)/ (g, 1), w > 1,
where I(g, n) = [, (1/t)exp(—ngt)F,(1/t)dt. The con-
ditional distribution function Fy, (w | g) could then
be obtained by numerically integrating fu.(w | g).
The major difficulty involves the numerical eval-
uation of the function Fy(/). Nair obtained a series
solution, whose complexity increases with the sample
size. Hartley (1940) used a chi-square series to eval-
uate the distribution of the variable —2nk In L. Of
course, with a change of variables, this would also
provide a series evaluation of p(/). A solution with a
similar form was also obtained by Glaser [8] by a
different approach. Box [6] proposed a generalization
of Hartley’s chi-square series which provides an ex-
cellent method of evaluating p(/) with a relatively
small amount of computation. The small-sample re-
sults in Table 1 were based on this method.

The limiting results for large g were obtained as
follows: The conditional mean can be expressed as

©

E(W,|¢) = j: wexp (—ngw)w £, (W) dw/ flm

exp (—ngw)w 'Fy(w 1) dw.

After the substitution + = ng(w — 1) and sim-
plification we have E(W, | g) = | + (1/ng) Qi(ng)/
Qo(ng) where

0.z) = /m 1 exp (=1) (=) (1 + t/2)"'F,
({1 + /21 Y dr.

It can be shown that

0.(:) ~ fm (exp (—1) (1/z)" 2 dr =

7324 [n— 1]/2) as z — o,

Thus, for any fixed n, ng[E(W, | g) — 1] ~T(l + [n
= 11/2)/T([n — 11/2) = (n — 1)/2 as g — . It follows
that lim, ... E(W, | g) = 1. By a similar argument we
can show that uy(®) = lim, .o ty(g) = Vn[xyi(n —
1)/2n — (1 — 1/n)/2]. The limiting values for large g
in Table | were based on these results.

4, ASYMPTOTIC RESULTS

Following the notation of Section 2, let G, = 6%
and W, = x/%. Furthermore, define m, = ¢! (In
g)/g for each g > 0, where ¥ ! denotes the inverse of
the digamma function y(z) = I''(z)/I'(z), and let ¥, =
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VW, — mg,] = /W, — ¢ n G,)/G,]. If {a,}
and {b,} are numerical sequences, the notation a, ~
b. will have the usual meaning that lim,_.. {(a,/b,) =
1.

Theorem: Let Fy,(y) denote the distribution func-
tion of Y, and define F(y | g) = ®(yg/[¢ '(In g) —
LAV H(In g))]'"?) where ®(z) denotes the standard
normal distribution function. Then, for each real
number y,

E,[Fir | G ~ Fr,(») 2

Furthermore, F(y | g) is a distribution function in the
variable y, a continuous function of g, independent of
k and n, and the only such function which satisfies
property (2).

Proof: By relating W, and G, to the MLE’s we can
find the limiting distribution of Y,. It is well known
that the MLE’s k and § have an asymptotic bivariate
normal distribution with asymptotic means k and 6
respectively. The asymptotic variances and co-
variance, as given by Choi and Wette (1969), are Var
(k) = k/D, Var(8) = 620’ (k)/D, and Cov(K, §) = 8/D
where D = n[ky'(k) — 1]. It is easily verified that W, =
k exp [-¥(k)] and G, = (6/6) exp [¢(k)]. In the
Lemma of Rao (1952, p.207)let T, = k, T, = 6/6 and
M, 1) = [ — 8 @) — In B)] exp [—¥()]. It
follows that the limiting distribution of Y, is normal
with mean 0 and variance [k — 1/¢'(k)] exp [—2¢(k)],
so that lim, .. Fy,(y) = F(») = ®(y exp YN/ [k —
1/¢'(k)]''?). Now, since G, is asymptotically normal
it converges stochastically to the asymptotic mean
exp [¥(k)]. Furthermore, since F(y | g) is a bounded,
continuous function of g, it follows from the Helly-
Bray Theorem (see Loeve, [12], p. 182) that lim,_..
Ea,lFv | G)] = Fv | exp (K] = F(). Since
E;, [F(y | Go)] and Fy,(v) have the same finite, non-
zero limit, this verifies property (2). Suppose H(y | g)
is another distribution function in the variable y
which is continuous in g, independent of k& and n,
which satisfies (2). Since H(y | g) is a bounded con-
tinuous function of g, it follows by the Helly-Bray
Theorem and property (2) that lim, ... Eq,[H( | G»)]
= H(y | exp [¥(k)]) for any k > 0. This implies that
H(y | g) = F(y | g) for any g > 0. The fact that
F(v | g) is a distribution function in the variable y
and a continuous function of g follows easily from
basic properties of the functions involved. This com-
pletes the proof.

Let Fy,(y | g) denote the conditional distribution
function of Y, given G, = g. An important property
relating the functions Fy, () and Fy,(y | g) is that

Eg,[Fy,(v | Gn)] = Fy,(») &)

In fact, by completeness the function Fy,(y | g) is
determined by this relationship. The derivation of
Fy,(y | ) as a solution of (3) is not tractable. How-
ever, if we view expression (2) as an asymptotic
analog of (3), then the Theorem provides us with an
asymptotic solution, namely F(y | g). In this sense,
the asymptotic conditional distribution of W, given
G, = g could be regarded as normal with mean m, =
Y ~!(In g)/g and variance v, = n~}[y '(Ing) — 1 /Y (Y}
(In g))1/8* = (1/ng*c,. The asymptotic quantities m,
and ¢, are provided in Table 2. These results have
also been used to provide the asymptotic values of m,
and u,(g) = z/cq.
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