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JACKKNIFING IN UNBALANCED SITUATIONS

David V. Hinkley

Department of Applied Statistics
University of Minnesota
St. Paul, Minnesota 55108

Both the standard jackknife and a weighted jackknife are investigated in the general linear
model situation. Properties of bias reduction and standard error estimation are derived. and the
weighted jackknife shown to be superior for unbalanced data. There is a preliminary discussion
of robust regression fitting using jackknife pseudo-values.
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1. INTRODUCTION

During the two decades since Quenouille and Tu-
key introduced the jackknife technique for reducing
bias and estimating standard error, an extensive liter-
ature has grown up dealing with large-sample proper-
ties and empirical validations in common appli-
cations; these include estimation of variances,
correlations and ratios. With few exceptions, the
jackknife has been applied to balanced models. An
excellent review is given by Miller [6].

Miller [7] gives the first detailed account of jack-
knifing linear mode!l estimates, and shows that the
jackknife produces consistent results in large sam-
ples. The present paper examines the small-sample
properties of the standard jackknife in the general
linear model, and compares it to an alternative
weighted jackknife procedure. The general linear
model is a test case, the desired objective being a
suitable version of the jackknife for use with unbal-
anced, or non-symmetric, statistics. Properties of the
balanced and weighted jackknife procedures are de-
rived for the linear model in Sections 2.1 and 2.2, and
simple illustrative examples are given in Section 2.3.
The more important case of non-linear functions of
linear model parameters is discussed, and an example
given, in Section 3.

A second aspect of the jackknife is the use of
pseudo-values in robust data analysis; a detailed ac-
count in the case of correlation estimation has been
given by Hinkley [3]. In Section 4 we briefly discuss
the potential of the jackknife in obtaining robust

Received July 1976: revised April 1977

285

regression estimates. The essential idea is to scale
individual residuals according to the relative impor-
tance of corresponding design points.

The ideas are illustrated on a large data set in
Section 5.

Throughout this paper the following model is as-
sumed

Y =AB3 + e (1.0
where
YT:(Yls...ﬂYn)ﬂﬁTz(ﬁls.”*ﬁp)*
€T:(€1,"',€n)
and
Xn X1p x,7
4= - ’ (1.2)
Xni x'np x,;T

such that 4 is of rank p when any single row is
deleted. Unless otherwise stated, the e; are taken to
be i.i.d. with mean zero and constant variance o?.

If the model (1.1) includes a constant term, then we
take this to be 3, (not 8,) and hence define x,; = 1. It
is important not to replace x;, by x;; — X., (k = 2)
when x;; = 1, because all parameter values need to be
independent of the design: one can check that in-
correct jackknife results are obtained for a constant
term when the x;, are mean-adjusted.

Some standard statistical measures used in the se-
quel are the design matrix

Dy, = ATA,
the least-squares estimate
B =D, '4ATY
and the residual vector
R=Y — A8 = — AD, 'ATYY. (1.3
Another important set of quantities is
w, = "Dy, (=1, ,n) (1.4)
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which measure distances of single design points from
the center of the design. In a replicated 2* factorial all
w, are equal.

Many relevant calculations have been taken from
Miller [7] and Cook [2], which articles suggested
some of the ideas in this paper.

2. TWO JACKKNIFE PROCEDURES
2.1 The Balanced Jackknife

The basic components of the standard jackknife
procedure are parameter estimates obtained by suc-
cessively deleting single observations. For the linear
regression model (1.1) we take the complete data
estimator of 8 to be the least squares estimator

B = (ATA)'ATY;

we shall not be concerned directly with estimating ¢*.
The corresponding estimator obtained by deleting
(x;7, Y,) is easily seen to be

(AT (Y — x,")

67i - 6 1 - X,»T(ATA)_lxi
:B_M (l-zl’...,n)’
l_Wi

by definitions (1.3) and (1.4). Notice that R,/(1 — w))
is the difference between Y, and its least squares
predictor from all other observations.

To describe the standard jackknife procedure we
first define pseudovalues

Pr=nB—(mn—-1D3 (=1 -,n, 22

from which the jackknifed estimator is given by
B=n1Y P. 2.3)
Using (2.1) we obtain
Pi= B+ (n— 1) Dy xRi(1 — w) !
and
B=8+ (- Dn Dy Y (1 — w) 'R,
(2.4)

Quite generally the jackknifed estimator removes bias
of order n~'. Here, since 8 is unbiased, this property
is redundant. Clearly 8 is unbiased, since E(R;) = 0,
so the fact that 3 and § are generally different implies
that, together with the Gauss-Markov property of 8,

var (B) > var ();

the exceptions to this occur in balanced linear mod-
els, where w, is constant. A somewhat weaker prop-
erty of 8 is general consistency, which holds if n D,
converges to a positive definite matrix, this implying
max w; — 0; see Miller [7].

The exact variance of 8 is easy to compute. Recall
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that 8 and R” = (R,, - - -, R,)T are uncorrelated with
respective covariance matrices

var (8) = 0®Dy!, var (R) = o*(I — AD,"'A"),

so that from (2.4) we have immediately

var (3) = o? {Do" +<n— 1)2

n

Dy YDy — DlDo’lDl)Do'l} , (2.5)
where
Dk = Z (1 - Wj)ikx‘/x/r (k = O, 1, 2)

Supposing w; to be of order n~*, we may expand (1 —
w;)* in series and verify that var (8) — var (8) is of
order n2.

The second, and probably more important, feature
of the jackknife procedure is the distribution-free
estimate of variance for the parameter estimator. The

standard definition is
V= in(n — D} L (P - BYP — B, (2.6)

which may be used to estimate both var () and var
(8); for a simple account of the rationale for this in
the balanced case, see Hinkley [4]. It is not hard to
show, under mild conditions including nDy™ ! — Z >
0, that nV — nvar (8), i.e., that Vis an accurate large-
sample variance estimate; see Miller [7]. However V
is not unbiased, and straightforward calculations
show that

s = (5 o

ADy — n Dy — DDy D) Dy e?, (2.7)

as compared to 62D, = var (B). If we suppose the w;
are of order n~! and define

Dk* = E ijXJka (k = l, 2),

then expansion of (2.7) gives the approximation to
order n~?

Evy= =2 ; L Dyt + Dy 1Dy Dot + DaDy* Dy

(2.8)

To summarize these developments, we have found
that for an_exactly linear estimator (i) the jackknifed
estimator 8 is in general different from the original
estimator and (ii} the jackknife variance estimate V' is
biased in general. These failures are due to the bal-
anced form of the standard jackknife procedure, and
occur only in the unbalanced model. Two numerical
examples of these results are given in Section 2.3.

2.2 A Weighted Jackknife

The pseudo-values P, in (2.2) are defined symmetri-
cally with respect to the observations, whereas the
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model is generally unbalanced. The lack of balance is
reflected in the ““distances” w;. In the situation where
the x; are sampled from a multivariate normal popu-
lation, the estimated likelithood of the value x; is a
decreasing function of w;. In addition, tr {var (3 — 3
_»)} is an increasing function of w;. This suggests that
in the contribution of the ith observation to the jack-
knifed estimator, 8 — 8_; have a weight decreasing in
w;. A specific choice of weight is indicated by the fact
that

n(l — w)(B — B_) = nDy" xR, = [(8; x7, Y1) (2.9)

the estimated influence function of 8 at (x,7, t;); see
Appendix, Lemma 1. (Roughly speaking, the in-
fluence function at (x, y) is proportional to the in-
cremental change in 8 when a very small fraction of
the measurement population is moved to (x, y).)

We therefore propose the weighted pseudo-value
Q=B +n(l —w)B — B-)= B + nDy 'x;R:(2.10)
the weighted jackknife estimator

éw =n! E Qi = l@

and the variance estimate

Vi = tn(n — P 3 (01 — B)(Qi — B
= n(n = p)'Dy (X RAxX,IDy Y, 2.12)

where in each case the explicit form for the linear
model is given. The denominator # — p used in V,
reflects the degrees of freedom in the residual vector,
and makes V,, exactly unbiased in the balanced case
when w; = pn~'. The definition (2.10) is essentially
due to Quenouille [8].

The reproducing property (2.11) for linear esti-
mates corresponds to that for 8 in the balanced case.
This property may indicate superior performance of
8. in non-linear situations; see Section 2.4.

The general expectation of V,, is easily seen to be

E(Vy) = n(n — p) "4 (Do™" — Do 'Di*Dy™N)o?, (2.13)

which is biased in unbalanced cases. We compare this
with E(V) for two examples in Section 2.3.

In one useful respect the jackknife variance esti-
mate is superior to the usual estimate

V=(n—-p 'Y RD,",

in that V, (and V) are robust against non-
homogeneity of error variance. To see this, suppose
thatin (1.1) var (e) = diag (s, - - -, ,®) = A. Then

2.11)

2.14)

var (8) = D, *ATA AD, 1, (2.15)
Since E(R%) = o we have

E(V) = n ' tr (A)D,!

and
E(Vy) = Dyt Y o%,TDy™ = Dy PATAAD, Y

(2.16)
justification of these results is given in the Appendix,
Lemma 2. .
Thus V,, approximates the true variance (2.15) of 8
when error variances are unequal, whereas the usual
estimate does not. For the enlarger magnification
example in Section 5, the estimates of variance for the

least-squares slope estimate differ by a factor of 5
because of variance heterogeneity.

2.3 llustrative examples

To illustrate the preceding results we consider two
elementary linear examples. A non-linear example is
given in Section 3.

Example 2.1 Two-point design

Perhaps the simplest instance of the linear model is
that of simple linear regression with a two-point de-
sign. We suppose that

x“:l(i:],"',n); xtzzo(izl,...,no);
Xpg=1(@{=n+1,---,n)

with n = n, + n,. The model is thus EY, = 8, + Bax;2,
and the least-squares estimates are

BIZYO and /é'z:);x_fm
where
YOZHO‘IZYJ, );1‘:”171 Z Yj.
Jj=1 J=np+1
Further denote replicate sums of squares by

oy

SS, = Z (Yj - )70)2, SS, = Z (Yj - Yl)g'

i=1 J=ng+1

It is straightforward to verify that

i fl{‘
and thatB = [3,,, = B A
Consider the estimates of var (3,). From (2.6) and
(2.12) we obtain

V22:n—1{ SSo__ . _ SSi }

(i=1 -, n)
(i=n,+ 1, -, n

n (o — 1)¥  (n,~ 1p
s n SS, &)
Vasw = n—2 ( ny? + nt/)’

as compared to the usual mean-square estimate from
(2.14)

v, = <l_ n _1_> (SS0 + SSL> ‘
o My n—2
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If the error variances at x, = 0 and x, = | are ¢,% and
o,? respectively, then

2 2
R To g,
var (8;) = _’Z + '1—1 .

Thus if 6,2 # ¢,% both V,, and V,,, reflect this,

As a particular numerical example, let n = 10 and
a,2 = 20,2 Then as n, varies we obtain the values in
Table 2.1 for the ratios

E(Vx) _ E(Vuw) -

B0
var Bo) P = Var (B 24P T

var (8,)

TABLE 2.1—Comparison of variance estimates in Example 2.1

ng 2 3 4 5 6 7 8

p 1.54 1.21 1.13 1.13 1.17 1.30 1.54
Pw 0.78 0.94 1.00 1.00 0.96 0.88 0.61
[} 1.56 1.35 1.16 1.00 0.70 0.73 0.56

We emphasize that the example is purely illustra-
tive; in practice the possibility of different variances
would of course by explored.

Example 2.2 Simple linear regression

We take the design and data from Miller’s [7]
second numerical example. The model is simple
linear regression, i.e., p = 2 with x;,, = 1. Data and
related computations are given in Table 2.2 below.
The example is of interest because the x, values are
bunched at one end of the range, so that the w values
vary greatly. Our immediate concern is the estimate
of regression slope and the behavior of the two jack-
knife procedures. Estimates and estimated standard
errors are given at the foot of the table, from which
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the main impression is of poor standard error given
by the balanced jackknife.

Turning to average performance for this particular
design, we find, using (2.9),

N 0.676 —0.091
var (8) = < 0.014 )

N . 0.078 —0.010
var (8) = var (0) + ( 0.001).

Average properties of variance estimates, computed
from (2.7) and (2.13), are

1.007 —0.135
EV) = < 0.021 )

0.535 —0.071
E(Ve) = ( 0.012)

To be compared with var (8). Here the weighted
jackknife appears much better, but V,, has average
relative estimation error of about 20%.

The main effect of the weighted jackknife in this
design is to deemphasize observations at x, = 1 rela-
tive to the balanced jackknife.

3. NON-LINEAR STATISTICS

The principal motivation for the earlier discussion
is the need for an appropriate jackknife procedure
that will handle unbalanced statistics #((x,7, Y,), - -,
(x,7, Y,)). The linear estimator 3 discussed in Section
2 is a test case, where ideally exact properties of the
original estimator will be reproduced; this is true for
8. but not for V,,, although in the latter case we have
unexpected robustness against error variance hetero-
geneity. In general, a principal question is whether or
not a given jackknife procedure removes first-order
bias. Here we examine the simplest practical non-
linear case where the parameter of interest is a non-

TABLE 2.2—Jackknife analysis of artificial simple linear regression data (3, = 8, = ¢ = 1).

Xy 1 3 5 6 6
data
Y 0.91 4.24  6.59 8.22 7.53 7.
residual R ~0.99 0,24 0.50 1,08 0.39 -0
welght w 0,51 0.26 0.13 0.10 0.10 O.
balanced P1 -9.78 2.06 2.00 2.28 1.38 O,
pseudo= ?, 2.44 0,91 0.95 0.99 1.03 1.
values
weighted Qi ~4,94 1.8 1,97 2,28 1.37 0.
pseudo~- Q2 1.81 0.93 0.95 0.99 1.03 1
values
discrepancy c 5.01 0.16 0.32 1.20 0.16 0
Slope estimates: least squares 82 = 1.047;
. [ o = =
Estimated s.e.'s: /v22 0.100, /VW,zz 0
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73

02

73

.02

.09

8 8.5 9 10
10,13 9.25 8.92 11.35
0.90 -0,50 -1.36 0.03
0.14 0.17 0.20 0.29
0.39 1.37 3.00 0.78
1,27 0.88 0.47 1.06
0.41 1.33 2,76 0.79
1.26 0.89 0.53 1.06
1.12  0.42 3.69 0,00

balanced jackknife 82 = 1.101

.102; /v,, = 0.161
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linear scalar function of the linear model parameter
B.

Suppose again that observations are available on
model (1.1), and that § = f(8), where f has continuous
first and second derivatives V[ and V?f respectively.
The estimator for 8 is 8= (474) 'A”Y, and § = f(B).
If we assume #~'D, — $, then 8 — B_, is of order n?
and by Taylor expansion

B—0.,=0@-B-)VB
—3B = B-)"VHB) (B — B-) + 0p(n?) . (3.1)

For the weighted jackknife procedure pseudo-values
are defined as

Qi=0+n1 —w)d—-19_).

Substitution of (2.1) in (3.1) and evaluation of @,
gives the jackknifed estimator

B =n 3 00 = f(B)
— 33 (1 = w) %Dy VH(B)De KRS

It follows by Taylor expansion of f(3) and taking
expectations that, to order n™!,

E@.) =0 + 1 E(B - BTVB) B - B)
— 30 Y X, D VH(B)D, K, . (3.2)

This is exactly 8 since the last two terms both equal 4
o? tr {V(8)D,'}. Thus the leading bias term, as-
sumed order n7!, is removed.

Calculation of E(f,) to the next order of magni-
tude is generally complicated, and because here we
only have interest in the order, the case p = 1 is
satisfactory. For p = 1 we readily calculate

E@,) — 0 = —3EEf"(B) X x//(Z x/) . (3.3)

Note that this term is of order n72, and vanishes if
errors are symmetrically distributed or if f is quad-
ratic,

The corresponding development for the balanced
jackknife is very similar, the essential difference being
that for # (3.2) holds with final term replaced by

I (n—

) (—Tl‘>022(1 = w) X Do ' VE(B) Do 7K,
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Since max w; — 0 we may expand (1 — w;)"! and
conclude that

E(a) -0 = —50'2 tr {Do*lvzf(B)Do_l
S wxx+ 0@ %) (3.4)

That is, the n~! bias term is removed, but the remain-
ing bias is of higher order than that for 8, unless all w,
are of order »!, which is not automatic.

The last remark is not of purely theoretical interest.
From a practical viewpoint it suggests that when x
vectors have severe non-uniform dispersion in the
observed design, so that the w; are of different orders
of magnitude, then 8, is superior to 8.

Example 3.1 Ratio parameter in simple linear regres-
sion

We consider the problem in Example 2.2 with § =
B./8: as the parameter of interest. Required compu-
tations are given in Table 3.1. Theoretical approxi-
mations for bias and standard error of 8 = 3,/8, can
be obtained by the delta method: with 8, = 8, + 6, (i
=1, 2) write

B =(B:+8:) Bz + 85) ' =~ (B + 61)
M= 358))m
so that

E(@) — 0 ~ 48, var (62)/623

— cov (B, B2)/Bs* (3.5)

and

var (§) ~ LZ var (8:)

+ ﬁl—z var (8,)

_ 2cov By, B2)
B2* ? .

(3.6)

The approximate bias (3.5) is 0.1 in the example,
which makes 8, seem reasonable, as does the com-
parison of standard errors: (3.6) gives estimated
standard error of 0.93, quite close to /V,,.

For this same design we have obtained simulation

TABLE 3.1—Jackknife analysis«gf{il/ﬂzfrom regression data in Table 2.1.

%, 1 3 5

W U.5087 0.2603 0.1260
P -12.,368 2.055 1.975
Q - 6,381 1.833 1.941

~

1

balanced jackknife:

weighted jackknife: Qw

B, = 0.8546, 62

6 - 6 7 8 8.5 9 10
0.1017 0.1017 0,1060 0.1389 0.1660 0.2003 0.2903

2.215 1.327  0.719  0.184% 1.426 3.168 0.729

2.212  1.326 0.720 0.212 1.381% 2.906 0.747

= 1,047, 6 = 0.816, est. s.e. G)) = 0,93 (using delta method)
9 = 0.143, est. s.e. =/V = 1.417

= 0.690, est. s.e, = /Vw = 0,825
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results for f, § and 8, using 10,000 samples in which
the model was 8, = 1, 8, = 2, ¢ = 1. The errors were
pseudo-random normal. Table 3.2 contains a sum-
mary of the simulations, from which the superiority
of 8, and V,, is clear.

4. ROBUST REGRESSION USING PSEUDO-VALUES

In a recent article Hinkley [3] has shown that the
jackknife pseudo-values may be used to define robust
measures of correlation, essentially by treating
pseudo-values as observations on a location model.
For the linear model, Cook [2] has discussed the use
of 8 — 3_; in exhibiting important large residuals, the
implicit purpose being to isolate data points that
might be de-emphasized or omitted in a re-fit of the
model. These ideas clearly suggest possible methods
of robust regression based on the pseudo-values Q,.
Only a brief discussion will be given here.

By analogy with the classical location problem,
where robust estimators (Huber, [5]) are designed to

radhiice larage valiieg af the camnle infliience function
FCGUCC 1arge vaiucs O1 e 5ampic nmnuénce luu\,uuu,

we may propose regression estimates to replace n™!
> Q. that reduce the influence of extreme values of
Q.. Of course @, is a vector here, so that we have the
choice of working on coordinates separately or simul-
taneously. In the latter case we might work in terms
of the squared standardized residual

¢ = nil(Qz - B)TDO(Qt - 8)

=mwR? (=1, --,n, 41

extreme values indicating points to be trimmed from
the analysis: see Cook [2].

On the whole it seems best to define robust esti-
mates separately for each component. If we denote
components of @; by Q;; with corresponding order

statistics @y, (f = 1, -+, p; i =1, -+, n), then two
standard forms of robust estimates are
= Z hiQ_m‘x, hl = hn—l+17 Zhl = l (42)
i1
and
solution to Z WO, — B = 0, y(—u) = —y(u):
(4.3)

see Huber [5]. Either form of estimate is unbiased if
the Q, are symmetrically distributed, which is implied
by symmetrically distributed errors e;. Theoretical

TABLE 3.2—Simulation results for jackknife analysis of 0 = 3,/8, when 3, = 1,3, =

in Table 3.1; 10000 cases

~ ~ ~

Statistic 0 B ew
mean 0.526 0.486 0.501
variance 0.198 0.220 0.195
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study of such estimators is complicated by the corre-
lation between the Q,, but a similar situation has been
handled by Hinkley [3].

The estimators (4.2) and (4.3) differ from those
proposed by Huber [5], Andrews [1], and others in
that “*harmless’ large residuals are ignored: Q; will
not be extreme if w; is small. One possible modifica-
tion of (4.2) and (4.3) is to substitute 3,* for 3, in the
definition of @, making the estimation interative.
This procedure will be reported on elsewhere.

Example 4.1 Trimmed mean pseudo-value

A simple numerical illustration of the above ideas
may be obtained from the data of Example 2.1. Rele-
vant quantities are given in the last three rows of
Table 2.2. Note that the first and ninth observations
have large values of ¢; (see (4.1)): these observations
are very influential in the regression fit. The 10%
trimmed mean estimates ((4.2) with A, = h,, = 0, h2 =

- = hy :-)ofﬁlandﬁzareﬁl* = 1. 34c1ndB2 =

10N Carragmanding ralciilatinme a0
1.UZ, LOTIT Lb})UllUlllE pau.ulauuub 10T v 4arc EIVCII lll

Table 3.1, from which we obtain the 10% trimmed
mean estimate % = 1.29.

5. PHOTOGRAPHIC DATA EXAMPLE

An interesting real example with severe imbalance
is given by the data in Table 5.1, kindly provided by
Lincoln Moses. The data comes from measurements
of enlarger magnification m and object-to-image dis-
tance d for a lens of unknown focal length ¢. In fact
the distance d is measured from a point distant b
(unknown) from the image, so that we observe y = d
— b. Simple physics provides the relationship

y=at¢m+nt)y=g8 + B,

and our interest is primarily in 8, = ¢. For the
present purpose we assume x to have no error. The
unweighted least squares analysis is summarized as
follows:

By = —5.272. B, = 18.870, 3" r2 = 3.0729
X = 2.385, ) (x;, — X)? = 20.49, est. s.e. (B,) = 0.05 .

Individual residuals are given in the table, from
which it is clear that for x > 2.5 the residuals are
systematically large. If these are reflective of larger
variability, rather than lack of model fit, then the
usual estimated standard error for 3, will be too

2, 0% = . design as

v \Y
W
0.301 0.142
0.110 0.016
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small. This can be seen from the jackknife estimate
V., which gives estimated s.e. (3,) = 0.12.

Since the weights w are also large for x > 2.5, the
weighted residuals ¢ = nwr? are very large in that
range. The largest ten values are asterisked. Weighted
pseudo-value components for 8, defined by ¢; = Qy
— (3, are given in the final column of Table 5.1.

The robust estimation approach of Section 4 essen-
tially treats the second pseudo-value components g
as observations on a location model with mean 8,.
Trimming the five largest and five smallest com-
ponents (double asterisked in the table), we obtain
the trimmed ¢ mean value 0.06, corresponding to 3,*
= 18.935. The standard error computed from the
winsorized sample variance of the pseudo-values is
0.02.

In this particular example the estimates of 3, do
not differ much, but use of the jackknife and its
pseudovalues is definitely of value in assessing preci-
sion. The high variability of Q,, for x > 2.5 leads one
to believe that the trimmed mean estimate 3,* is more
precise than §,, as the estimated standard errors sug-
gest.

An alternative analysis is two-stage weighted least
squares in which the first ten observations (x > 2.5)
are assumed to have error variance «,* different from
the error variance ¢,2 for the last forty-six observa-
tions.

5. DISCUSSION

This paper really does little more than scratch the
surface of two problems: the suitable definition of a
jackknife procedure for unbalanced data, and the
application to robust estimation.

The balanced jackknife certainly looks inferior to
the proposal in Section 2.2, but the standard error
estimates provided by that proposal are not truly
satisfactory despite their robustness property.

The method of robust regression sketched out in
Section 4 is intuitively promising, in that residuals are
weighted by their real effect on the estimation. De-
tailed theoretical study will be of interest, but numer-
ical comparison with other recent methods is of more
importance.

An alternative to the weighted jackknife procedure
of Section 2.2 is to omit data in small groups, where
groups are chosen so as to equalize information con-
tent. Initial results for this are complicated, and in
any event grouping is likely to lose information; see
Hinkley [4].
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TABLE 5.1-—Regression analysis of photographic enlarger data

X y r w c
5.200 92.05 -.803 0.405 14.62

4,250 75.00 .073 188 06

3.851 67.51 113 123 09

3.633 63.50 .216 094 25

3.320 57.69 .313 L0611 33

3.072 53.50 .803 041 1.48

2.900 49.38 -.072 .031 .01 *
2.874 49.26 .299 .030 J15% 0.400
2.672 45.64 .491 022 .30% 0.385
2.634 45.05 618 021 45 0.421%*
2.485 41.78 .159 018 .03 0,044
2.392 39.81 -.056 018 .00 -0.001
2.368 39.38 -.033 ol1s .00 0.001
2,285 37.50 -, 347 .018 .12 0,094
2,249 37.13 ~.037 019 .00 0.014
2,225 36.56 -.154 019 .03 0.067
2,188 35.94 ~.076 020 .0L 0.041
2.166 35.50 101 .020 01 0.060
2,129 34.84 ~.063 021 00 0.044
2,118 34,55 -.145 021 03 0.106
2,109 34.49 .035 022 00 0.027
2.091 34.19 .004 022 .00 -0.003
2,083 34,06 025 022 00 -0.021
2.050 33.25 -.162 023 .03 0.148
2,040 33.13 -.093 024 01 0.088
2.028 32.78 -.217 024 .06 0.211
2,026 32.93 029 .024 00 0.029
2,022 32.91 .026 024 00 -0.026
2,011 32.66 -.016 025 .00 0.016
2,003 32.56 035 025 00 ~0,036
2.001 32,51 .023 025 00 ~0.024
2.000 32.61 142 .025 .03 -0,149%%
2.002 32.44 -.066 025 00 0.069
2,002 32.13 ~.376 025 20 0.393
2,009 32.57 ~.068 025 00 0.070
2,011 32.63 ~.046 025 .00 0.047
2.020 32,79 ~.056 024 .00 0.056
2,033 33.06 -.031 .024 .00 0.030
2,050 33.88 468 .023 . 29% -0.428%%
2,054 33.50 .013 .023 .00 -0.011
2.091 34.13 ~.056 .022 .00 0.045
2,100 34,38 245 .022 .00 -0.019
2.107 34 .44 ~.048 .022 .00 0,036
2.129 34.84 -.063 021 .00 0,044
2.140 35.00 -.110 .021 .01 0.074
2,150 35.25 ~.049 .021 .00 0.031
2.167 35.63 .010 .020 .00 ~0.006
2,195 36.11 -.038 .020 .00 0.020
2.213 36.63 142 .019 .02 =0,067%*%
2,256 37.00 ~.299 .019 .09 0.105
2.288 38.00 097 .018 .01 -0.026
2.318 38.26 -.209 018 .04 0.038
2.362 39.25 ~.050 .018 .00 0.003
2.391 39.88 .033 .018 .00 0.001
2,478 41.38 ~.108 .018 .01 -0.028
2.500 41.89 ~-.014 .019 .00 -0.004

* ten largest values of ¢
%% five smallest and five largest pseudo-values

7. APPENDIX: DETAILS OF MATHEMATICAL
RESULTS

Some results quoted in the text are given fuller
explanation here.

Lemma 1 ( Regression influence function)

Let the design point x and the response variable Y
have a joint distribution function G such that

(3 Joe = (% 7G)

and define 8(G) = ZY(G) ¥(G). The the influence
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function of 8 at (x7, p) is

16(8: x, y) = Z7' x(y — x"B).
Proof. follows by direct calculation, using the defini-
tion of influence function (first von Mises derivative)
for arbitrary S(G):
S{1 — )G + eU,} — S(G)

€

1(S;z) = lim
€0

where U, has mass | at the point z. Note that x may
have probability or design measure.

The sample influence function (2.9) is obtained by
substituting estimates 3 and £ = n=474.

A corallary result is that the influence function of 6

= f(B) is

I6(0: X, y) = (VBN 1(B: X, y)
which implies that in Section 3

Q=0+ [0:x, Y)+ 0O(nY);

the remainder term involves second von Mises de-
rivatives and may be used to obtain (3.3). See Hinkley

(3].
Lemma 2 ( Consistency of variance estimate)

For the model (1.1) with var (¢) = A = diag (¢ /%,
0. let R =Y — AB and L = diag (RR"). Then
if
ntATA Y pd,ntATA A - T pd. (n— @)
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and if E(e;*) is uniformly bounded,
(i) nvar (B) —» T2

n2
n—p
Proof. Part (i) follows by assumption, since var (8) =
(ATA) '"ATAA(ATA) . Part (ii) follows by using a
minor variation of the proof of Lemma 3.4 in Miller
[7] to establish #n='ATLA4 — T,
A corollary is that if A = ¢%/, then nV,, — ¢2Z-1.

(i) nV, =

(ATA) 'ATLA(ATA) ' — 3 TS~
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