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Both the standard jackknife and a weighted jackknife are investigated in the general linear 
model situation. Properties of bias reduction and standard error estimation are derived. and the 
w,eighted jackknife shown to be superior for unbalanced data. There is a preliminary discussion 
of robust regression fitting using jackknife pseudo-values. 
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I. INTRODUCTION 

During the two decades since Quenouille and Tu- 
key introduced the jackknife technique for reducing 
bias and estimating standard error, an extensive liter- 
ature has grown up dealing with large-sample proper- 
ties and empirical validations in common appli- 
cations: these include estimation of variances, 
correlations and ratios. With few exceptions, the 
jackknife has been applied to balanced models. An 
excellent review is given by Miller [6]. 

Miller [7] gives the first detailed account of jack- 
knifing linear model estimates, and shows that the 
jackknife produces consistent results in large sam- 
ples. The present paper examines the small-sample 
properties of the standard jackknife in the general 
linear model, and compares it to an alternative 
weighted jackknife procedure. The general linear 
model is a test case, the desired objective being a 
suitable version of the jackknife for use with unbal- 
anced, or non-symmetric, statistics. Properties of the 
balanced and weighted jackknife procedures are de- 
rived for the linear model in Sections 2.1 and 2.2, and 
simple illustrative examples are given in Section 2.3. 
The more important case of non-linear functions of 
linear model parameters is discussed, and an example 
given, in Section 3. 

A second aspect of the jackknife is the use of 
pseudo-values in robust data analysis; a detailed ac- 
count in the case of correlation estimation has been 
given by Hinkley [3]. In Section 4 we briefly discuss 
the potential of the jackknife in obtaining robust 
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regression estimates. The essential idea is to scale 
individual residuals according to the relative impor- 
tance of corresponding design points. 

The ideas are illustrated on a large data set in 
Section 5. 

Throughout this paper the following model is as- 
sumed 

Y=A@+e (1.1) 
where 

F = (Y,, ‘.. ( Y,), P“ = (P,, . . . io,). 
eT = (e,, . . , e,) 

and 
x1, .‘. Xl, Xl T 

A= : . ( (1.2) . = . 
x,, .** X,P 

'T 
&I 

such that A is of rank p when any single row is 
deleted. Unless otherwise stated, the e, are taken to 
be i.i.d. with mean zero and constant variance ~9. 

If the model (I. 1) includes a constant term. then we 
take this to be @I (not PO) and hence define xL1 = 1. It 
is important not to replace xik by xLk - .J?.~ (k 2 2) 
when xi1 = 1, because all parameter values need to be 
independent of the design: one can check that in- 
correct jackknife results are obtained for a constant 
term when the xlk are mean-adjusted. 

Some standard statistical measures used in the se- 
quel are the design matrix 

D, = ATA, 

the least-squares estimate 

j = D, ‘ATY 

and the residual vector 

R = Y - A/i = (I - ADom’AT)Y. (1.3) 

Another important set of quantities is 

HjL = xiTDom’x, (i = I, . , n) (1.4) 
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which measure distances of single design points from 
the center of the design. In a replicated 2k factorial all 
w, are equal. 

Many relevant calculations have been taken from 
Miller [7] and Cook [2], which articles suggested 
some of the ideas in this paper. 

2. TWO JACKKNIFE PROCEDURES 

2.1 The Balanced Jackknife 

The basic components of the standard jackknife 
procedure are parameter estimates obtained by suc- 
cessively deleting single observations. For the linear 
regression model (1.1) we take the complete data 
estimator of p to be the least squares estimator 

j = (ATA)-‘ATY; 

we shall not be concerned directly with estimating 19. 
The corresponding estimator obtained by deleting 
(x,~, Y,) is easily seen to be 

Pm = p _ (ATA)-%(K - XLT) 
I 1 - X,T(ATA)-lXi 

= p _ Do-WC 
1 - w, 

(i = 1, . . . . n) ) 

by definitions (1.3) and (1.4). Notice that R,/( 1 - w,) 
is the difference between Yi and its least squares 
predictor from all other observations. 

To describe the standard jackknife procedure we 
first define pseudovalues 

P, = nj - (n - I);-i (i = 1, . . . , fi), (2.2) 

from which the jackknifed estimator is given by 

6 = n-’ C Pi. (2.3) 

Using (2.1) we obtain 

P, = /? + (n - I) Do-‘XiRi(l - Wi)-’ 

and 

/? = /? + (n - l)nmlDo-l C (1 - Wi)mlXiRi. 

(2.4) 

Quite generally the jackknjfed estimator removes bias 
of order n-l. Here, sin_ce p is unbiased, this property 
is redundant. Clearly fl is unbiased, since E(R,) = 0, 
so the fact that a and 6 are generally different implies 
that, .together with the Gauss-Markov property of p, 

var (6) > var (p); 

the exceptions to this occur in balanced linear mod- 
els, whe_re w, is constant. A somewhat weaker prop- 
erty of p is general consistency, which holds if n--‘Do 
converges to a positive definite matrix, this implying 
max w, + 0; see Miller [T]. 

The exact variance of /3 is easy to compute. Recall 

that j and RT = (R,, . . . , R,)T are uncorrelated with 
respective covariance matrices 

var (p) = a’D,-‘, var (R) = (~‘(1 - AD,-‘AT), 

so that from (2.4) we have immediately 

var (p) = f~’ {Do/+(+’ 

.Dom’(D, - D,Dom’D,)D,-’ i , (2.5) 

where 

DR = c (1 - w,))~x,x,~ (k = 0, 1, 2). 

Supposing wi to be of order n-‘, we-may expand (1 - 
w~)~ in series and verify that var (/I) - var (0) is of 
order n-2. 

The second, and probably more important, feature 
of the jackknife procedure is the distribution-free 
estimate of variance for the parameter estimator. The 
standard definition is 

V = (n(n - l)}-’ c (P, - &(Pi - p)T, (2.6) 
^ 

w-hich may be used to estimate both var (0) and var 
@I); for a simple account of the rationale for this in 
the balanced case, see Hinkley [4]. It is not hard to 
show, under mild conditions including nDa-’ ----t c > 
0, that n V 4 n var (p), i.e., that V is an accurate large- 
sample variance estimate; see Miller [7]. However V 
is not unbiased, and straightforward calculations 
show that 

. (DI - nm’(D, - D,Dom’D,))D,-‘CT*, (2.7) 

^ as compared to a2Dom’ = var (p). If we suppose the wi 
are of order n-’ and define 

Dk* = C WjkX,XkT (k = 1, 2), 

then expansion of (2.7) gives the approximation to 
order nm2 

E(V) 2 P+ (Do-’ + Do-‘D,*D,-’ + D,D,*D,-I)‘. 
(2.8) 

To summarize these developments, we have found 
that for an-exactly linear estimator (i) the jackknifed 
estimator /3 is in general different from the original 
estimator and (ii] the jackknife variance estimate V is 
biased in general. These failures are due to the bal- 
anced form of the standard jackknife procedure, and 
occur only in the unbalanced model. Two numerical 
examples of these results are given in Section 2.3. 

2.2 A Weighted Jackknife 

The pseudo-values Pi in (2.2) are defined symmetri- 
cally with respect to the observations, whereas the 
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JACKKNIFING IN UNBALANCED SITUATIONS 287 

model is generally unbalanced. The lack of balance is 
reflected in the “distances” wi. In the situation where 
the x1 are sampled from a multivariate normal popu- 
lation, the estimated likelihood of the value xi is a 
decreasing function of wt. In addition, tr {var (8 - 4 
-,)) is an increasing function of Wi. This suggests that 
in the contributio? of ihe ith observation to the jack- 
knifed estimator, 0 - /%i have a weight decreasing in 
Wi. A specific choice of weight is indicated by the fact 
that 

n(l - Wl)(p - p-i) = nDo-‘XiRi = f(p; XiT, Yi) (2.9) 

the estimated influence function of /3 at (xtT, Y,); see 
Appendix, Lemma 1. (Roughly speaking, the in- 
fluence function at (x, y) is proportional to the in- 
cremental change in p when a very small fraction of 
the measurement population is moved to (x, y).) 

We therefore propose the weighted pseudo-value 

QL = i + n(1 - W,)@ - /F-i)= 6 + nD,-‘xiRi(2.10) 

the weighted jackknife estimator 

ju = n-‘z Qi = fi 

and the variance estimate 

(2.11) 

VW = W - PII-’ c (QL - ?L)(Ql - hT 

= n(n - p)-ID,-‘(c R,‘x,x,~)D~-‘, (2.12) 

where in each case the explicit form for the linear 
model is given. The denominator n - p used in VW 
reflects the degrees of freedom in the residual vector, 
and makes V, exactly unbiased in the balanced case 
when w, = pn ml. The definition (2.10) is essentially 
due to Quenouille [8]. 

The reproducing property (2.11) for linear esti- 
mates corresponds to that for /3 in the balanced case. 
This property may indicate superior performance of 
pw in non-linear situations; see Section 2.4. 

The general expectation of V, is easily seen to be 

E(v,) = n(n - p)-‘( .(Do-’ - D,m’D,*D,-‘)~2, (2.13) 

which is biased in unbalanced cases. We compare this 
with E(v) for two examples in Section 2.3. 

In one useful respect the jackknife variance esti- 
mate is superior to the usual estimate 

P = (n - p)-lc R;Dam’, (2.14) 

in that V, (and v) are robust against non- 
homogeneity of error variance. To see this, suppose 
that in (1.1) var (e) = diag (u12, . ., un2) = A. Then 

var (p) = D,-‘ATA AD,-‘. (2.15) 

Since E(Rj2) z uj2 we have 

E(V) z n-’ tr (A)DO-’ 

and 

E( I’,) z D,-’ c a,2X,XjTDo-’ = D,-‘ATAAD,m’; 

(2.16) 

justification of these results is given in the Appendix, 
Lemma 2. 

Thus V, approximates the true variance (2.15) of b 
when error variances are unequal, whereas the usual 
estimate does not. For the enlarger magnification 
example in Section 5, the estimates of variance for the 
least-squares slope estimate differ by a factor of 5 
because of variance heterogeneity. 

2.3 Illustrative examples 

To illustrate the preceding results we consider two 
elementary linear examples. A non-linear example is 
given in Section 3. 

Example 2.1 Two-point design 

Perhaps the simplest instance of the linear model is 
that of simple linear regression with a two-point de- 
sign. We suppose that 

Xl’ = 1 (i = 1, . .., n); xl2 = 0 (i = 1, . . ., no); 

x12 = 1 (i = no + 1, . . ..n) 

with n = n, + n,. The model is thus EYI = ,B, + pzxi2, 
and the least-squares estimates are 

81 = 9, and pz = 9, - YO, 

where 

I’, = no-’ fJ Y,, P, = n,-’ 
,=l ,$+, yj. 

Further denote replicate sums of squares by 

SS, = 2 (Yj - Fo)2, SSl = 2 (Yj - 91)“. 

j=l ,=no+l 

It is straightforward to verify that 

i 
no 

-1 

w, = 
(i = 1, ***, n,) 

4 -1 (i = n, + 1, .*., n) 

and that 5 = 5, = j. 
Consider the estimates of var (,I?‘~). From (2.6) and 

(2.12) we obtain 

v /-I 
22 n i (n0s21)2 + (nlssIl ) 1 

as compared to the usual mean-square estimate from 
(2.14) 

riz2= (i+$) (“y’). 
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If the error variances at x2 = 0 and xZ = 1 are uo2 and 
u12 respectively, then 

var (B2) = -z + 2 . 

Thus if uo2 j u12, both Vz2 and I’,,,, reflect this. 
As a particular numerical example, let n = 10 and 

al2 = 2~,,~. Then as n, varies we obtain the values in 
Table 2.1 for the ratios 

ECV22) E(V22.w) E(p22) 

’ = var (f12) “UJ = var (P2> 
andp* = ~ 

var (b2) 

TABLE 2.1-Comparison of variance estimates in Example 2.1 

nO 2 3 4 5 6 7 8 

P 1.54 1.21 1.13 1.13 1.17 1.30 1.54 

P 0.78 0.94 1.00 1.00 0.96 0.88 0.61 
w 
^p 1.56 1.35 1.16 1.00 0.70 0.73 0.56 

We emphasize that the example is purely illustra- 
tive; in practice the possibility of different variances 
would of course by explored. 

Example 2.2 Simple linear regression 

We take the design and data from Miller’s [7] 
second numerical example. The model is simple 
linear regression, i.e., p = 2 with x1, = 1. Data and 
related computations are given in Table 2.2 below. 
The example is of interest because the xZ values are 
bunched at one end of the range, so that the w values 
vary greatly. Our immediate concern is the estimate 
of regression slope and the behavior of the two jack- 
knife procedures. Estimates and estimated standard 
errors are given at the foot of the table, from which 

the main impression is of poor standard error given 
by the balanced jackknife. 

Turning to average performance for this particular 
design, we find, using (2.5), 

0.676 -0.091 
var (8) = 0.014 ) ’ 

var (8) = var (B) + 
0.078 -0.010 

0.001 > 

Average properties of variance estimates, computed 
from (2.7) and (2.13). are 

E(V) = 
1.007 -0.135 

0.021 > ’ 

E(Vw) = ( 
0.535 -0.071 

0.012 > 

To be compared with var @). Here the weighted 
jackknife appears much better, but Vu has average 
relative estimation error of about 20%. 

The main effect of the weighted jackknife in this 
design is to deemphasize observations at x2 = 1 rela- 
tive to the balanced jackknife. 

3. NON-LINEAR STATISTICS 

The principal motivation for the earlier discussion 
is the need for an appropriate jackknife procedure 
that will handle unbalanced statistics t((xIT, Yl), . . *, 
(x,~, Y,)). The linear estimator p discussed in Section 
2 is a test case, where ideally exact properties of the 
original estimator will be reproduced; this is true for 
8, but not for VW, although in the latter case we have 
unexpected robustness against error variance hetero- 
geneity. In general, a principal question is whether or 
not a given jackknife procedure removes first-order 
bias. Here we examine the simplest practical non- 
linear case where the parameter of interest is a non- 

TABLE 2.2-Jackknife analysis of artificial simple linear regression data (0, = & = o = I). 

"2 1 3 5 6 6 7 8 8.5 9 10 
data 

Y 0.91 4.24 6.59 a.22 7.53 7.89 10.13 9.25 8.92 11.35 

residual R -0.99 0.24 0.50 1.08 0.39 -0.29 0.90 -0.50 -1.36 0.03 

weight w 0.51 0.26 0.13 0.10 0.10 0.11 0.14 0.17 0.20 0.29 

balanced pl -9.78 2.06 2.00 2.28 1.38 0.73 0.39 1.37 3.00 0.78 

psrudo- p2 2.44 0.91 0.95 0.99 1.03 1.02 1.27 0.88 0.47 1.06 
Values 
weighted Qi -4.94 1.84 1.97 2.28 1.37 0.73 0.41 1.33 2.76 0.79 

pseudo- Q2 1.81 0.93 0.95 0.99 1.03 1.02 1.26 0.89 0.53 1.06 
YalUeS 
discrepancy c 5.01 0.16 0.32 1.20 0.16 0.09 1.12 0.42 3.69 0.00 

T. 
Slope estimates: least squares E2 = 1.047; balanced jackknife 82 = 1.101 

A 
Estimated s.e.'s: JV,, = 0.100, /VW 22 = 0.102; JV,, = 0.161 
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linear scalar function of the linear model parameter 
P. 

Suppose again that observations are available on 
model (I. l), and that /3 = f(p), where f has continuous 
first and second derivatives Of and Vzf respectively. 
The estimator for p is b= (ATA)-‘ATY, and 0 = f(B). 
If we assume n-ID, ---* S, then B - 8-L is of order n-l 
and by Taylor expansion 

a - 8-l = (B - L>‘WP, 

- d(B - B-i)‘V2f@) (la - P-J + o,(n-2) ., (3.1) 

For the weighted jackknife procedure pseudo-values 
are defined as 

QL = 8 + n(l - w,)(B - 8-J . 

Substitution of (2.1) in (3.1) and evaluation of Qi 
gives the jackknifed estimator 

k = n-’ c QL = f(8) 

- 1 c (I - w,)~~x,~D~~~V~~(&D~-~X,R,~ , 

It follows by Taylor expansion of f((8) and taking 
expectations that, to order n-l, 

EGLJ) = 0 + d El@ - P)rwm tB - PN 

- &T” c x,TDO-lVz~(~)DO-lx, . (3.2) 

This is exactly 0 since the last two terms both equal 4 
$ tr (Vzf(~)DO-l). Thus the leading bias term, as- 
sumed order n-l is removed. 

Calculation 0; E@,) to the next order of magni- 
tude is generally complicated, and because here we 
only have interest in the order, the case p = 1 is 
satisfactory. For p = I we readily calculate 

E(B,) - 19 = -&!Z(e3)f”‘(J3) C x,~/(TZ xj2)3 . (3.3) 

Note that this term is of order ne2, and vanishes if 
errors are symmetrically distributed or if f is quad- 
ratic. 

The corresponding development for the balanced 
jackknife is very similar, the essential difference being 
that for fl (3.2) holds with final term replaced by 

‘C (1 - wj)-1XjrD~~1V2f(p)Do~‘X,. 

Since max w, -t 0 
conclude that 

E(B) - 0 = -ia” tr 

289 

we may expand (1 - w,)-’ and 

W-‘V”f(P)Do-l 

C w,x,xjT} + O(nm2) (3.4) 

That is, the n-l bias term is removed, but the remain- 
ing bias is of higher order than that for 8, unless all w, 
are of order n-‘, which is not automatic. 

The last remark is not of purely theoretical interest. 
From a practical viewpoint it suggests that when x 
vectors have severe non-uniform dispersion in the 
observed design, so that the wi are of different orders 
of magnitude, then 8, is superior to 8. 

Example 3.1 Ratio parameter in simple linear regres- 
sion 

We consider the problem in Example 2.2 with 0 = 
pl/p2 as the parameter of interest. Required compu- 
tations are given in Table 3.1. Theoretical approxi- 
mations for bias and standard error of 8 = B,/fi, can 
be obtained by the delta method: with 8, = PI + a1 (i 
= 1, 2) write 

a = (01 + 6,) (82 + w1 = (Pl + 61) 

so that 

E(8) - 0 x lPl var (h)lPp3 

- WV (81, B2,1P2z (3.5) 

and 

var (8) = b var @J 
2 

+ g var &) - 2 COv$l. b) . 

2 2 

(3.6) 

The approximate bias (3.5) is 0.1 in the example, 
which makes 8, seem reasonable, as does the com- 
parison of standard errors: (3.6) gives estimated 
standard error of 0.93, quite close to 6. 

For this same design we have obtained simulation 

TABLE 3.I-Jackknqe analysisnqf/3,/i3, f mm regression data in Table 2.1. 

*2 1 3 5 6. 6 7 8 8.5 9 10 

w 0.5087 O.i603 il.1260 0.1017 0.1017 0.1060 0.1389 0.1660 0.2003 0.2903 

P -12.368 2.055 1.975 2.215 1.327 0.719 0.184 1.426 3.168 0.729 

Q - 6.381 1.833 1.941 2.212 1.326 0.720 0.212 1.381 2.906 0.747 

^R1 = 0.8546, i2 = ^ 
% 

1.047, e = 0.816, est. s.e. (0) = 0.93 (using delta method) 

balanced jackknife: 0 = 0.143, est. s.t?. = JV = 1.417 

weighted jackknife: Ow = 0.690, est. soeo =/VW = 0.625 
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results for 8, 8 and 8, using 10,000 samples in which 
the model was p1 = 1, fi2 = 2, g2 = I. The errors were 
pseudo-random normal. Table 3.2 contains a sum- 
mary of the simulations, from which the superiority 
of 8, and V, is clear. 

study of such estimators is complicated by the corre- 
lation between the Ql, but a similar situation has been 
handled by Hinkley [3]. 

4. ROBUST REGRESSION USING PSEUDO-VALUES 

In a recent article Hinkley [3] has shown that the 
jackknife pseudo-values may be used to define robust 
measures of correlation, essentially by treating 
pseudo-values as observations on a location model. 
For the linear model, Cook [2] has discussed the use 
of B - b-l in exhibiting important large residuals, the 
implicit purpose being to isolate data points that 
might be de-emphasized or omitted in a re-fit of the 
model. These ideas clearly suggest possible methods 
of robust regression based on the pseudo-values Qi. 
Only a brief discussion will be given here. 

The estimators (4.2) and (4.3) differ from those 
proposed by Hubei [5], Andrews [I], and others in 
that “harmless’ large residuals are ignored: Qi will 
not be extreme if w, is small. One possible modifica- 
tion of (4.2) and (4.3) is to substitute p,* for 8, in the 
definition of Ql, making the estimation interative. 
This procedure will be reported on elsewhere. 

Example 4.1 Trimmed mean pseudo-value 

By analogy with the classical location problem, 
where robust estimators (Huber, [5]) are designed to 
reduce large values of the sample influence function, 
we may propose regression estimates to replace n-l 
c Q1 that reduce the influence of extreme values of 
QI. Of course QI is a vector here, so that we have the 
choice of working on coordinates separately or simul- 
taneously. In the latter case we might work in terms 
of the squared standardized residual 

c, = n-l(QI - ~)“&(Q~ - ,& 

A simple numerical illustration of the above ideas 
may be obtained from the data of Example 2. I. Rele- 
vant quantities are given in the last three rows of 
Table 2.2. Note that the first and ninth observations 
have large values of cI (see (4.1)): these observations 
are very influential in the regression fit. The 10% 
trimmed mean estimates ((4.2) with h, = h,, = 0, h, = 
. . = h, = 4) of PI and pZ are pl* = 1.34 and p2* = 
1.02. Corresponding calculations for 0 are given in 
Table 3.1, from which we obtain the 10% trimmed 
mean estimate 8* = 1.29. 

= n,wJs,* (i = 1, . ..( n) , (4.1) 

extreme values indicating points to be trimmed from 
the analysis; see Cook [2]. 

On the whole it seems best to define robust esti- 
mates separately for each component. If we denote 
components of Q1 by Q,I with corresponding order 
statistics Q,,l, (j = I, . ., p; i = I, . . ., n), then two 
standard forms of robust estimates are 

An interesting real example with severe imbalance 
is given by the data in Table 5.1, kindly provided by 
Lincoln Moses. The data comes from measurements 
of enlarger magnification m and object-to-image dis- 
tance d for a lens of unknown focal length 4. In fact 
the distance d is measured from a point distant b 
(unknown) from the image, so that we observey = d 
- b. Simple physics provides the relationship 

(4.2) 

and our interest is primarily in pZ = 4. For the 
present purpose we assume x to have no error. The 
unweighted least squares analysis is summarized as 
follows: 

fll = -5.272, j!12 = 18.870, c rr2 = 3.0729 

X = 2.385, c (x, - 2)" = 20.49, est. s.e. (p,) = 0.05 

Individual residuals are given in the table, from 
which it is clear that for x > 2.5 the residuals are 
systematically large. If these are reflective of larger 
variability, rather than lack of model fit, then the 
usual estimated standard error for fi, will be too 

solution to 2 $(Q,, - B,*, = 0, l+b-u) = --#(u); 
1-l 

(4.3) 

see Huber [S]. Either form of estimate is unbiased if 
the Q1 are symmetrically distributed, which is implied 
by symmetrically distributed errors ej. Theoretical 

5. PHOTOGRAPHIC DATA EXAMPLE 

A I” 

Statistfc 8 0 0, V VW 

mean 0.526 0.486 0.501 0.301 0.142 

variance 0.198 0.220 0.195 0,110 0,016 
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small. This can be seen from the jackknife estimate 
I’,, which gives estimated s.e. (fl,) = 0.12. 

Since the weights w are also large for x > 2.5, the 
weighted residuals c = nw? are very large in that 
range. The largest ten values are asterisked. Weighted 
pseudo-value components for pZ defined by qi = Qzi 
- 8, are given in the final column of Table 5.1. 

The robust estimation approach of Section 4 essen- 
tially treats the second pseudo-value components qzi 
as observations on a location model with mean ,BZ. 
Trimming the five largest and five smallest com- 
ponents (double asterisked in the table), we obtain 
the trimmed q mean value 0.06, corresponding to &* 
= 18.935. The standard error computed from the 
winsorized sample variance of the pseudo-values is 
0.02. 

In this particular example the estimates of pZ do 
not differ much, but use of the jackknife and its 
pseudovalues is definitely of value in assessing preci- 
sion. The high variability of QZ1 for x > 2.5 leads one 
to believe that the trimmed mean estimate pz* is more 
precise than PZ, as the estimated standard errors sug- 
gest. 

An alternative analysis is two-stage weighted least 
squares in which the first ten observations (x > 2.5) 
are assumed to have error variance cl2 different from 
the error variance uZ2 for the last forty-six observa- 
tions. 

5. DISCUSSION 

This paper really does little more than scratch the 
surface of two problems: the suitable definition of a 
jackknife procedure for unbalanced data, and the 
application to robust estimation. 

The balanced jackknife certainly looks inferior to 
the proposal in Section 2.2, but the standard error 
estimates provided by that proposal are not truly 
satisfactory despite their robustness property. 

The method of robust regression sketched out in 
Section 4 is intuitively promising, in that residuals are 
weighted by their real effect on the estimation. De- 
tailed theoretical study will be of interest, but numer- 
ical comparison with other recent methods is of more 
importance. 

An alternative to the weighted jackknife procedure 
of Section 2.2 is to omit data in small groups, where 
groups are chosen so as to equalize information con- 
tent. Initial results for this are complicated, and in 
any event grouping is likely to lose information; see 
Hinkley [4]. 
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TABLE 5. I -Regression analysis oj phorographic enlarger data 

x Y r w c 

5.200 92.05 -.803 0.405 14.62;': 
4.250 75.00 .073 .188 .06 
3.851 67.51 .113 .123 .09 
3.633 63.50 .216 .094 . 2 5 7'; 
3.320 57.69 .313 .061 . 3 3 k 
3.072 53.50 .803 -041 1.48" 
2.900 49.38 -.072 .031 .Ol 
2.874 49.26 .299 .030 . 15" 
2.672 45.64 .491 .022 . 30;': 
2.634 45.05 .618 .021 *45" 
2.485 41.78 -159 .018 .03 
2.392 39.81 -.056 .018 .oo 
2.368 39.38 -.033 .018 .oo 
2,285 37.50 -.347 0018 . 12” 
2.249 37.13 -.037 -019 -00 
2.225 36.56 -.154 .019 .03 
2,188 35.94 -.076 .020 .Ol 
2.166 35.50 -.lOl .020 .Ol 
2.129 34.84 -.063 .021 .oo 
2.118 34.55 -.145 .021 .03 
2.109 34.49 -.035 .022 .oo 
2.091 34.19 .004 .022 -00 
2.083 34.06 .025 .022 .oo 
2.050 33.25 -.162 .023 .03 
2.040 33.13 -.093 .024 .Ol 
2.028 32.78 -.217 .024 .06 
2.026 32.93 -.029 .024 .oo 
2.022 32.91 .026 .024 .oo 
2.011 32.66 -.016 -025 .oo 
2.003 32.56 .035 .025 .oo 
2.001 32.51 -023 0025 .oo 
2.000 32.61 .142 -025 .03 
2.002 32.44 -.066 .025 .oo 
2.002 32.13 -.376 .025 . 2 o* 
2.009 32.57 -.068 .025 .oo 
2.011 32.63 -.046 .025 .oo 
2.020 32.79 -.056 .024 .oo 
2.033 33.06 -.031 .024 .oo 
2.050 33.88 .468 .023 . 2 g 3: 
2.054 33.50 .013 -023 .oo 
2.091 34.13 -.056 .022 .oo 
2.100 34.38 .245 .022 .oo 
2.107 34.44 -.048 .022 -00 
2.129 34.84 -.063 -021 .oo 
2.140 35.00 -.llO -021 .Ol 
2.150 35.25 -.049 .021 .oo 
2.167 35.63 .OlO .ozo -00 
2.195 36.11 -.038 .020 -00 
2.213 36.63 .142 .019 .02 
2.256 37.00 -.299 -019 .09 
2.288 38.00 .097 -018 .Ol 
2.318 38.26 -.209 .018 .04 
2.362 39.25 -.050 -018 .oo 
2.391 39,88 .033 .018 .oo 
2.478 41.38 -.108 .018 .Ol 
2.500 41.89 -.014 .019 .oo 

Q,-i: 
-6. 18O~kY< 
0.374 
0.452b: 
0.738"" 
0. 799"" 
1 o 508;:'; 

-0. 101"" 
0.400 
0.365 
0.421$;* 
0.044 

-0.001 
0.001 
0.094 
0.014 
0.067 
0.041 
0.060 
0.044 
0.106 
0.027 

-0.003 
-0.021 
0.148 
0.088 
0.211 
0.029 

-0.026 
0.016 

-0.036 
-0.024 
-0. 1&g*-" 
0.069 
0.393 
0.070 
0.047 
0.056 
0.030 

-0.428%~ 
-0.011 
0.045 

-0.019 
0.036 
0.044 
0.074 
0.031 

-0.006 
0.020 

-0 ~ 0 6 7 S-L 
0.105 

-0.026 
0.038 
0.003 
0.001 

-0.028 
-0.004 

-L ten largest values of c 
-h"-'- five smallest and five largest pseudo-values 

7. APPENDIX: DETAILS OF MATHEMATICAI 
RESULTS 

Some results quoted in the text are given fuller 
explanation here. 

Lemma I (Regression inj’hence function) 

Let the design point x and the response variable Y 
have a joint distribution function G such that 

Ec;{( x,)(x? Y))= (B(G) $;) 

and define /3(G) = Z-‘(G) y(G). The the influence 
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function of /3 at (xT, JI) is 

r&l; x, y) = 2-l x(y - XT@). 

Proof follows by direct calculation, using the defini- 
tion of influence function (first von Mises derivative) 
for arbitrary S(G): 

I(S; z) = lim S{( I - t)G + tc/J - S(G) 
t .o t 

where ZJ, has mass I at the point z. Note that x may 
have probability or design measure. 

The sample influence function (2.9) is obtained by 
substituting estimates B and 2 = n-‘ATA. 

A corallary result is that the influence function of 13 
= f(p) is 

IG(k x3 Y) = Wf(PN’ w; x, Y) 3 

which implies that in Section 3 

Qi = 8 + &I; x,, Y,) + O(n-1) ; 

the remainder term involves second von Mises de- 
rivatives and may be used to obtain (3.3). See Hinkley 
131. 
Lemma 2 (Consistency of’ variance estimate) 

For the model (1 .I) with var (e) = 11 = diag (a,‘, 
. , a,“), let R = Y - Afl and L = diag (RRT). Then 
if 

n-’ ATA + c p.d., n-’ ATA A - r p.d. (n ---* ~0) 

and if E(ei4) is uniformly bounded, 
(i) n var (8) + 8-‘1’X:-’ 

(ii) nV, = n~(A7A)~lATLA(AI~)~l- z'rz- 

ProoJ Part (i) follows by assumption, since var (& = 
(ATA)-lAThA(ATA)-l. Part (ii) follows by using a 
minor variation of the proof of Lemma 3.4 in Miller 
[7] to establish n-‘ATLA 4 P. 

A corollary is that if A = 0~1, then nV, + a*Z;-‘. 
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