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This paper presents a Bayesian analysis of shape, scale, and mean of the two-parameter
gamma distribution. Attention is given to conjugate and “non-informative” priors, to sim-
plifications of the numerical analysis of posterior distributions, and to comparison of Bayesian
and classical inferences.
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1. INTRODUCTION

The gamma distribution has found extensive ap-
plication in reliability and life testing (see Engelhardt
and Bain, 1977, Glaser, 1976, and Gross and Clark,
1975, for example) and in insurance (see Ammeter,
1970, and Seal, 1969). Maximum likelihood estima-
tion of the parameters of the gamma distribution is
discussed by Choi and Wette (1969), Gross and
Clark (1975), and Johnson and Kotz (1970), among
others. Hypothesis testing has been considered re-
cently by Cox and Hinkley (1974, p. 125), Engelhardt
and Bain (1977), Bain and Engelhardt (1975), and
Glaser (1976a, b). The testing results can be used to
construct confidence intervals for the parameters of
the gamma distribution.

Damsleth (1975) considers a Bayesian analysis of
the two-parameter gamma family, but the numerical
calculations involved in his approach are prohibitive.
In this paper I present an approach that requires rel-
atively little computing involving subroutines that
can be easily written and that in fact are already
available on most computers.

Increasingly, statistical techniques are being made
accessible to users via interaction with computer sys-
tems. Much of what formerly had to be looked up in
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tables (and often obtained by interpolation) is now
available at the touch of a button. The methods pre-
sented here can be easily incorporated into an inter-
active computer system. What is more, even though
the approach is Bayesian, classical inferences can be
obtained by choosing suitable “non-informative” pri-
ors.

2. THEORY

Let the population density have the gamma form

_ | & x ' exp(—x0)/T(@), x>0,a>0
g(xlev6) = { 0 , otherwise,

M

where « is a shape parameter and 4 is the reciprocal
of a scale parameter. Denote the population mean by
g = a/6. If X, - X, denotes a random sample of
fixed size n from the population, then given X, = x,
i=1, -, n, any likelihood function of a and @ is pro-
portional to the kernel

I g(xla, 6) = ~p' exp(—s6)/[T (@),  (2)

=1
where s = Y,.," x;and p = 7..," x..

Damsleth (1975) exhibits a conjugate class of dis-
tributions for o« and 6 which, however, can be ex-
tended and enriched according to the prescriptions in
sections 3.2.3 and 3.2.4 of Raiffa and Schlaifer
(1961). A very general conjugate class is defined by
the joint density

f(a,8) o< &' (p'y" exp(=s'O)/[F(@)]”  (3)

where a >0,0>0,n >0,v >0,5 >0, and p’ > 0,
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such that n' 3/p’/s’ < 1. The posterior joint density is
proportional to the product of the expressions in (2)
and (3), namely

&' @") " exp(=s"8)/[T ()] @

where v/ =v' +n,p" =p'p,s" =5 +s,andn’" =n" +
n. Thus the posterior conditional density of §, given &
= a, has the gamma form g(0|»"a,s”’), and the mar-
ginal posterior density of d is proportional to

PO a)(r/ny™ /[T (@] &)

where
r/;/n;/ _ VVPT/SN — (pl)l/(y’+n) (r/n)n/(v’+n)3ﬁ/(ﬂ+n)/(s’+s)_

The last expression shows that the marginal distribu-
tion of @ depends on both r and s (unless »’ = 0 and
s = 0). Thus Bayesian inferences about «a are not
based on the same statistics as are optimum unbiased
and optimum invariant hypothesis tests about a,
which are functions of r and n alone (Glaser, 19764,
p. 480).

The posterior marginal density of § can be found
by numerically integrating on « in expression (4) for
each desired value of 8 (as was done by Damsleth,
1975). But in practice such extensive calculation will
seldom be warranted, so a convenient approximation
must be sought. [ will suggest an approximation in
Section 3.

The Jeffreys (1961) invariant prior “density,”
which is proportional to the square root of the de-
terminant of the information matrix of the popu-
lation density (1), is proportional to {ay/(a) — 1]'?/8,
where Y{a) is the digamma function Y{a) = d 1nI'(a)/
da. This “density” implies the a priori “independ-
ence” of @ and § (in the sense that it factors). Jeffreys
suggested that when the parameters are assumed to
be “independent” and when they are restricted to
(0,00), the logarithms of the parameters should be as-
sumed to have uniform “densities”. Thus for gamma
parameters the prior “density” should be propor-
tional to 1/af. The two Jeffreys priors imply different
marginal “densities” for & The disagreement is sub-
stantial for small values of a and persists for large o
since [a/(@) — 1]'"* = 0(1/Ja) as a — oo (Abram-
owitz and Stegun, 1964, p. 260). Presumably, the
“density” 1/afl would be preferred in such circum-
stances.

An heuristic approach to a ‘“non-informative”
prior is to ask what form of the density in (3) will
have minimal impact on the posterior density. If we
choose v = n' =0, s =0, and p’ = 1, the posterior
parameters are functions of the data only, so in this
sense the impact of the prior is negligible. With the
above choice of prior parameters, the density in (3)
becomes the improper “density” f'(a,f) o< 1/86.
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3. NUMERICAL ANALYSIS OF POSTERIOR
DISTRIBUTIONS

The normalizing constant and moments of the
marginal density of & whose kernel is in expression
(5), can be found easily by numerical integration. I
constructed simple computer programs on both IBM
360 and UNIVAC 1110 machines using canned
Gaussian integration and gamma function subrou-
tines. (A brief discussion of the numerical techniques
involved appears in the Appendix). The calculations
are certainly no worse than those required by the
classical analysis described by Glaser (1976a). Once
the moments have been computed, trivial manipula-
tions yield the cumulants of 4.

The method of deriving the marginal density of §
suggested in Section 2 is rather expensive and results
in a tabular representation of the density. I devel-
oped an approximation technique that requires noth-
ing more than the first four cumulants of & and yields
an approximating curve. The idea is to compute the
first four moments of § and then fit a member of the
Pearson family of curves by the method of moments.
Methods for accomplishing the fit are discussed by
Elderton and Johnson (1969) and Pearson and Hart-
ley (1970).

Since the conditional distribution of 4, given d = «,
is gamma, it follows that the moments of the mar-
ginal distribution of § are

k
E’'(¢) = E'E"(#|a) = E” H @a+j— 1)/, (6)
J=1
and these moments are easily-found functions of the
moments of d& I found the formulas relating the
mean, variance, skewness, and kurtosis of § to the
cumulants of & a bit easier to work with, but this is a
matter of taste. The formulas I used are

E"(@) = (v"/5" (@) O
Var”(f) = 0"/ V[V k(0) + k())/v" (8)

_ (" ks(@) + 3v"kx(a) + 2x(a))
O @+ @rr @

BA0) — 3 =[(v")k(@) + 6(v")k5(a)
+ 117ky(a) + 6k, (a)]/ {V'[v ' Kkx() + Kk ()}, (10)

where x/(a), j = 1,2,3,4, are cumulants of &, and B,(6)
and B,(f) are the usual measures of skewness and
kurtosis of 4. It is easy to see that when either »” or
i:(a) is large, then B.(0) = JB.(a) and B, =
BaAe).

The same sort of approximation procedure could
in principle be used to find the moments of the popu-
lation mean i = &/§. This would involve calculating
expectations of ratios of polynomials in & by numeri-
cal integration. However such calculations would
rarely be worth the effort since a simple approxima-
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tion is at hand. The conditional mean, variance,
skewness, and kurtosis of ji, given & = a, are

E"(jije) = 8" a/(¢"'a — 1)

="V ) @ a= 1) =8/, (11)
Var(ila) = (" a)*/(¢"a — 1(+"a — 2)

= (V'a=2)"'[E"@a)], (12)

VB(@) =4 Va=2/("a — 3) (=0 as ¥’ — o0), (13)

and

L (a=2)(Va+5)
ﬁz(ﬂ) =3 (V”a . 3)(11”& _ 4)

(—>3asy’ ' — o0). (14)

The mode of the conditional density is s"a/(¥"a + 1)
= §’/v’ = E"(jila). Thus unless « is small its influ-
ence on these quantities will be slight, and it appears
that the marginal density of ji can usually be approxi-
mated by fitting a normal curve whose mean and
variance are the conditional mean and variance of [,
given an appropriate value of @, say the mode of &.
Miller and Hickman (1975) give some numerical il-
lustrations of the efficacy of this approximation.

4. NUMERICAL ILLUSTRATION

Gross and Clark (1975, p. 104) report n = 20 ran-
domly selected survival times (in weeks) of male
mice exposed to 240 rads of gamma radiation. Gross
and Clark obtained maximum likelihood estimates
& = 8.53 (st. err. = 2.72) and § = 0.075 (st. err. =
0.024). Their approximate 98% confidence intervals
for o and @ are [2.2, 14.86] and [0.018, 0.132] for 4.
The approximate method of Bain and Engelhardt
(1975) yields [3.46, 15.76] as a 98% confidence inter-
val for a. The estimated correlation coefficient be-
tween & and 4 is 0.98.

Table 1 shows some of the Bayesian posterior
analysis of the marginal distributions of & and § as-
suming the following three priors:

(1) improper o< 1/af

(2) improper o 1/8

(3) conjugate v = n’ = 3, s = 300, In p’ = 13.50.

The conjugate prior might have arisen as follows.
Interpret the prior information as having come from
a hypothetical experiment involving a sample of size
n’ =3, a mean s/n’ = 100, and a ratio of geometric
to arithmetic means ¥ = n’ /p’/s’ = .9. These specifi-
cations yield the parameters of prior (3). This prior
implies prior mean and standard deviation of 6.49
4.41 for & and 0.065 and 0.047 for §. In practice, if an
interactive computer program were available, one
could study the impact of variations in the prior pa-
rameters on tables like Table 1 (with double primes
replaced by single primes, of course) in order to find
a specification consistent with prior knowledge. All
the suggestions, caveats, and limitations of Raiffa

and Schiaifer (1961, pp. 58-69) apply to the above
discussion.

For all three priors in Table 1 the point (/8,( - ),
B:(-)) appears to fall near the Pearson Type III
(gamma) line in Table 43 of Pearson and Hartley
(1970), and the fact that 28,(-) — 3B8,(- ) — 6 = 0 sig-
nals a Pearson Type III according to Elderton and
Johnson (1969). (In another context Lindley (1969)
tried a gamma approximation to the posterior distri-
bution for & that is slightly different from mine.)
Table 42 of Pearson and Hartley (1970) or the more
complete table of Johnson, Nixon and Amos (1963)
can be used to obtain selected percentage points of
the posterior distributions. These tables were used to
calculate the 98% credible intervals in Table 1. They
are not highest density intervals since they place
equal areas in each tail of the posterior distribution.

Notice that the Jeffreys prior (prior (1)) leads to
98% credible intervals for « and 4 that are practically
the same as the intervals obtained in Bain and Engel-
hardt (1975) and (1977), and these intervals differ
considerably from those obtained by Gross and
Clark (1975) using asymptotic likelihood theory.
That the Jeffreys Bayesian and efficient classical in-
ferences agree is to be expected.

A feature of Bayesian analysis is its ability to ac-
commodate a variety of expressions of prior belief.
(Whether this be boon or bane is a matter of opin-
ion.) Prior (2) is an improper alternative to Jeffreys’
prior, and prior (3) is a relatively mild proper prior.
Of course the credible intervals based on the proper
prior are shorter than those based on the improper
priors.

It is interesting to note that in all cases in Table 1
the skewness and kurtosis measures of & and § are
equal to two decimal places, signaling that the condi-
tions stated below equation (14) are satisfied.

Table 2 displays the sensitivity to « of my sug-
gested normal approximation to the posterior distri-
bution of g for priors (1) and (3). The MLE’s of u
given by Gross and Clark and by Engelhardt and
Bain are 113.45 and 116.53, respectively.

5. CONCLUSIONS

If an investigator feels that his prior opinion will
have little effect on the information in the data, then
he may as well use the Jeffreys prior, which is essen-
tially equivalent to accepting the classical inference.
Once the relevant computer program has been writ-
ten, the Bayesian procedure can then be looked at as
a convenient way to get efficient classical inferences
about a, 8, and p.

The Bayesian framework allows us to study the
sensitivity of our inferences to variations in the speci-
fication of prior parameters. If an investigator is will-
ing to express prior knowledge in terms of the con-
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TABLE 1—Bayesian posterior analysis of & and § based on Gross and Clark data.

Analysis Based on

Prior (1 Prior (2) Prior (3}
E" (&) 8.39 9.24 8.19
A TG 2.66 2.80 2.32
W 0.65 0.62 0.58
B, (o) 3.63 3.57 3.50
28,(a)-38, (2)-6 0.92 x 107 0.56 x 107° -0.92 x 1072
98% credible
interval for & (3.50,15.81) (4.03,17.00) (3.80,14.55)
E"(8) 0.074 n.081 0.073
A B)Y 0.024 0.025 0.021
/E]“(E) 0.65 0.62 0.58
B,(8) 3.63 3.57 3.50
28,(6)-38, (6)-6 0.63 x 103 0.12 x 1072 20,92 x 1072
98% credible
interval for 8 (0.030.0.141) (0.035,0.150) (0.033,0.131)

TABLE 2—Sensitivity of a normal approximation to the posterior distribution of i (Gross and Clark’s
data).

Jeffreys' Prior

a E"(fila) Mode V' (fifa) + 2.326/N" (1 ]a)
4 114.89 112.05 169.22 + 30.26

8 114.16 112.75 82.49 + 21.13

12 113.92 112.98 54.53 + 17.18

Conjugate Prior

o E"(fila) Mode V' (fila) + 2.326/N" ([ [a)
4 112.92 110.49 141.68 + 27.69

8 112.31 111.09 69. 30 + 19.36
12 112.10 111.29 45.86 + 15.75
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jugate family of distributions, and to use the
approximations I have suggested, then the amount of
numerical integration is quite small. Thus even an
extensive sensitivity analysis can be both quick and
inexpensive, given the appropriate computer soft-
ware.

6. APPENDIX

The main numerical problem in my approach is
the integration of the kernel in (5). Let us denote it
by h(a). To get the normalizing constant and the
first four moments of the marginal posterior distribu-
tion of & we must evaluate [§ o’h(a)da for i =
.0,1,2,3,4. The integrands are “well-behaved” so that
straightforward Laguerre-Gauss quadrature can be
used (see Hildebrand, 1956, p. 325, and Abramowitz
and Stegun, 1964, p. 890). I used a 48-point formula.
To use the numerical integration subroutine, one
must supply another subroutine to calculate the in-
tegrand. I found it convenient first to compute

In[a’h(a)] = i Ina + InT'(»" ar)

+ v In(¥ /0’ — n”InT{a)
s T BRARS)

a2y / puty

and then exponentiate. This calculation involved
calling a canned subroutine that returned values of
InI'(x). The routine used double precision arithmetic.
For x = 8, it used the asymptotic expansion

InT(x) ~ (x — 1/2)lnx — x + (1/2)In(27)
+1/12x — 1/360x* + 1/1260x°
— 1/1680x7 + 1/1188x°.  (Al)

(See Abramowitz and Stegun, 1964, p. 257.) For val-
ues x < 8, the recursion I’(x + 1) = xI'(x) was ap-
plied repeatedly until (A1) could be used.
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