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This paper presents a Bayesian analysis of shape, scale, and mean of the two-parameter 
gamma distribution. Attention is given to conjugate and “non-informative” priors, to sim- 
plifications of the numerical analysis of posterior distributions, and to comparison of Bayesian 
and classical inferences. 
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1. INTRODUCTION 

The gamma distribution has found extensive ap- 
plication in reliability and life testing (see Engelhardt 
and Bain, 1977, Glaser, 1976, and Gross and Clark, 
1975, for example) and in insurance (see Ammeter, 
1970, and Seal, 1969). Maximum likelihood estima- 
tion of the parameters of the gamma distribution is 
discussed by Choi and Wette (1969), Gross and 
Clark (1975), and Johnson and Kotz (1970), among 
others. Hypothesis testing has been considered re- 
cently by Cox and Hinkley (1974, p. 125), Engelhardt 
and Bain (1977), Bain and Engelhardt (1975), and 
Glaser (1976a, b). The testing results can be used to 
construct confidence intervals for the parameters of 
the gamma distribution. 

Damsleth (1975) considers a Bayesian analysis of 
the two-parameter gamma family, but the numerical 
calculations involved in his approach are prohibitive. 
In this paper I present an approach that requires rel- 
atively little computing involving subroutines that 
can be easily written and that in fact are already 
available on most computers. 

Increasingly, statistical techniques are being made 
accessible to users via interaction with computer sys- 
tems. Much of what formerly had to be looked up in 
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tables (and often obtained by interpolation) is now 
available at the touch of a button. The methods pre- 
sented here can be easily incorporated into an inter- 
active computer system. What is more, even though 
the approach is Bayesian, classical inferences can be 
obtained by choosing suitable “non-informative” pri- 
ors. 

2. THEORY 

Let the population density have 

g(xl4) = I Rx”- exp(-x8)/r(a), 
0 3 

the gamma form 

x>o,a>o 
otherwise, 

(1) 

where (Y is a shape parameter and 0 is the reciprocal 
of a scale parameter. Denote the population mean by 
p = a/e. If R,, .** x’, denotes a random sample of 
tied size n from the population, then given fi = x, 
i = 1, 0-e , n, any likelihood function of (Y and 0 is pro- 
portional to the kernel 

fi g(xiJa, 0) = Pp”-’ exp(-sQ/[r(cu)J”, (2) 
i-l 

where s = xi-,” xi andp = rim,” xi. 
Damsleth (1975) exhibits a conjugate class of dis- 

tributions for cx and 8 which, however, can be ex- 
tended and enriched according to the prescriptions in 
sections 3.2.3 and 3.2.4 of Raiffa and Schlaifer 
(1961). A very general conjugate class is defined by 
the joint density 

f’(a,O) a P-‘@I)o--l exp(--s’O)/[I@)]n’ (3) 

wherea>0,8>O,n’>O,v’>O,s’>O,andp’>O, 
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such that n’ n@/s’ < 1. The posterior joint density is 
proportional to the product of the expressions in (2) 
and (3), namely 

3. NUMERICAL ANALYSIS OF 

DISTRIBUTIONS 

The normalizing constant and 
Wyp’yI exp(-dxJ)/[r(~)]~” (4) 

where Y” = v’ + n, p” = p’p, s” = s’ + s, and n” = n’ + 
n. Thus the posterior conditional density of 8, given a? 
= (Y, has the gamma form g(0ly”&‘), and the mar- 
ginal posterior density of 6 is proportional to 

where 

(5) 

marginal density of a?, whose kernel is in expression 
(5), can be found easily by numerical integration. I 
constructed simple computer programs on both IBM 
360 and UNIVAC 1110 machines using canned 
Gaussian integration and gamma function subrou- 
tines. (A brief discussion of the numerical techniques 
involved appears in the Appendix). The calculations 
are certainly no worse than those required by the 
classical analysis described by Glaser (1976~). Once 
the moments have been computed, trivial manipula- 
tions yield the cumulants of ti. 

The last expression shows that the marginal distribu- 
tion of a? depends on both r and s (unless n’ = 0 and 
s’ = 0). Thus Bayesian inferences about (Y are not 
based on the same statistics as are optimum unbiased 
and optimum invariant hypothesis tests about (Y, 
which are functions of r and n alone (Glaser, 1976a, 
p. 480). 

The posterior marginal density of fl can be found 
by numerically integrating on (Y in expression (4) for 
each desired value of B (as was done by Damsleth, 
1975). But in practice such extensive calculation will 
seldom be warranted, so a convenient approximation 
must be sought. I will suggest an approximation in 
Section 3. 

The method of deriving the marginal density of 0 
suggested in Section 2 is rather expensive and results 
in a tabular representation of the density. I devel- 
oped an approximation technique that requires noth- 
ing more than the first four cumulants of CE and yields 
an approximating curve. The idea is to compute the 
first four moments of 0 and then fit a member of the 
Pearson family of curves by the method of moments. 
Methods for accomplishing the fit are discussed by 
Elderton and Johnson (1969) and Pearson and Hart- 
ley (1970). 

The Jeffreys (196 1) invariant prior “density,” 
which is proportional to the square root of the de- 
terminant of the information matrix of the popu- 
lation density (l), is proportional to [&‘(a) - 1]“2/0, 
where J/(a) is the digamma function J/(a) = d l&(a)/ 
da. This “density” implies the a priori “independ- 
ence” of al and br (in the sense that it factors). Jeffreys 
suggested that when the parameters are assumed to 
be “independent” and when they are restricted to 
(O,oo), the logarithms of the parameters should be as- 
sumed to have uniform “densities”. Thus for gamma 
parameters the prior “density” should be propor- 
tional to l/a@. The two Jeffreys priors imply different 
marginal “densities” for &. The disagreement is sub- 
stantial for small values of (Y and persists for large (Y 
since [cqY(a) - l]“* = 0(1/,/a) as OL --, CO (Abram- 
owitz and Stegun, 1964, p. 260). Presumably, the 
“density” l/&J would be preferred in such circum- 
stances. 

Since the conditional distribution of e, given a7 = (Y, 
is gamma, it follows that the moments of the mar- 
ginal distribution of fl are 

E”(p) = E”E”(@+i) = E” fi @“al + j - l)/(s”)‘, (6) 
j-l 

and these moments are easily-found functions of the 
moments of a?. I found the formulas relating the 
mean, variance, skewness, and kurtosis of fl to the 
cumulants of a7 a bit easier to work with, but this is a 
matter of taste. The formulas I used are 

Kq = &“‘)2K&) + 3Y”‘h(a) + 2Kd41 
JV”[Z”‘K&-N) + K&X)]“” 

c9j 

p*(e) - 3 = [(v”)~K&) + 6(1f’)~K&) 

An heuristic approach to a “non-informative” 
prior is to ask what form of the density in (3) will 
have minimal impact on the posterior density. If we 
choose v’ = n’ = 0, s’ = 0, and p’ = 1, the posterior 
parameters are functions of the data only, so in this 
sense the impact of the prior is negligible. With the 
above choice of prior parameters, the density in (3) 
becomes the improper “density” f’(&) a l/e. 

+ 1 IY”K~((Y) + OK,]/ {Y”[Y”K~(cx) + K,(cx)]*}, (10) 

where K,(a), j = 1,2,3,4, are cumulants of 6, and p,(e) 
and p,(e) are the usual measures of skewness and 
kurtosis of #. It is easy to see that when either Y” or 
K&Y) is large, then &?,(e) = ,/&(ol) and p,(e) = 
P*W 

The same sort of approximation procedure could 
in principle be used to find the moments of the popu- 
lation mean fi = &/#. This would involve calculating 
expectations of ratios of polynomials in a7 by numeri- 
cal integration. However such calculations would 
rarely be worth the effort since a simple approxima- 

POSTERIOR 

moments of the 

E”(g) = (Z”‘/S”)K,((Y) 

Var”(4 = (Y”/~)2[Y”K2(LX) + K,(Cf)]/V” 

(7) 

63) 
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tion is at hand. The conditional mean, variance, 
skewness, and kurtosis of b, given O? = (Y, are 

E"(J$Y)= s"a/(dla - 1) 

= (d’/Y”)(Y”(Y) (zf’a - l)-’ =: S”/V”) (11) 

Var”GJa) = (s”~)~/(Y”cY - ~)*(Y”(Y - 2) 

= (/'a - 2)-'[E"(~i~a)]*, (12) 

m=4Xl=/( ~“a - 3)(-+0 as v” + co), (13) 

and 

The mode of the conditional density is s”(~/(v”a + 1) 
=: sf’/v’) = E”(J$Y). Thus unless (Y is small its influ- 
ence on these quantities will be slight, and it appears 
that the marginal density of fi can usually be approxi- 
mated by fitting a normal curve whose mean and 
variance are the conditional mean and variance of fi, 
given an appropriate value of (Y, say the mode of & 
Miller and Hickman (1975) give some numerical il- 
lustrations of the efficacy of this approximation. 

4. NUMERICAL ILLUSTRATION 

Gross and Clark (1975, p. 104) report n = 20 ran- 
domly selected survival times (in weeks) of male 
mice exposed to 240 rads of gamma radiation. Gross 
and Clark obtained maximum likelihood estimates 
ai = 8.53 (9. err. = 2.72) and 4 = 0.075 (st. err. = 
0.024). Their approximate 98% confidence intervals 
for (Y and 8 are [2.2, 14.861 and [0.018, 0.1321 for 8. 
The approximate method of Bain and Engelhardt 
(1975) yields [3.46, 15.761 as a 98% confidence inter- 
val for (Y. The estimated correlation coefficient be- 
tween ai and 4 is 0.98. 

Table 1 shows some of the Bayesian posterior 
analysis of the marginal distributions of & and fl as- 
suming the following three priors: 

(1) improper a 1 he 
(2) improper cc l/e 
(3) conjugate v’ = n’ = 3, s’ = 300, lnp’ = 13.50. 
The conjugate prior might have arisen as follows. 

Interpret the prior information as having come from 
a hypothetical experiment involving a sample of size 
n’ = 3, a mean s’/n’ = 100, and a ratio of geometric 
to arithmetic means f = n’ w/s’ = .9. These specifi- 
cations yield the parameters of prior (3). This prior 
implies prior mean and standard deviation of 6.49 
4.41 for a7 and 0.065 and 0.047 for 8r. In practice, if an 
interactive computer program were available, one 
could study the impact of variations in the prior pa- 
rameters on tables like Table 1 (with double primes 
replaced by single primes, of course) in order to find 
a specification consistent with prior knowledge. All 
the suggestions, caveats, and limitations of Raiffa 

and Schlaifer (1961, pp. 58-69) apply to the above 
discussion. 

For all three priors in Table 1 the point (J,8,< . ), 

&(. )) appears to fall near the Pearson Type III 
(gamma) line in Table 43 of Pearson and Hartley 
(1970), and the fact that 2&( . ) - 3p,( . ) - 6 =: 0 sig- 
nals a Pearson Type III according to Elderton and 
Johnson (1969). (In another context Lindley (1969) 
tried a gamma approximation to the posterior distri- 
bution for Cr that is slightly different from mine.) 
Table 42 of Pearson and Hartley (1970) or the more 
complete table of Johnson, Nixon and Amos (1963) 
can be used to obtain selected percentage points of 
the posterior distributions. These tables were used to 
calculate the 98% credible intervals in Table 1. They 
are not highest density intervals since they place 
equal areas in each tail of the posterior distribution. 

Notice that the Jeffreys prior (prior (1)) leads to 
98% credible intervals for (Y and 8 that are practically 
the same as the intervals obtained in Bain and Engel- 
hardt (1975) and (1977) and these intervals differ 
considerably from those obtained by Gross and 
Clark (1975) using asymptotic likelihood theory. 
That the Jeffreys Bayesian and efficient classical in- 
ferences agree is to be expected. 

A feature of Bayesian analysis is its ability to ac- 
commodate a variety of expressions of prior belief. 
(Whether this be boon or bane is a matter of opin- 
ion.) Prior (2) is an improper alternative to Jeffreys’ 
prior, and prior (3) is a relatively mild proper prior. 
Of course the credible intervals based on the proper 
prior are shorter than those based on the improper 
priors. 

It is interesting to note that in all cases in Table 1 
the skewness and kurtosis measures of a7 and t? are 
equal to two decimal places, signaling that the condi- 
tions stated below equation (14) are satisfied. 

Table 2 displays the sensitivity to (Y of my sug- 
gested normal approximation to the posterior distri- 
bution of & for priors (1) and (3). The MLE’s of ~1 
given by Gross and Clark and by Engelhardt and 
Bain are 113.45 and 116.53, respectively. 

5. CONCLUSIONS 

If an investigator feels that his prior opinion will 
have little effect on the information in the data, then 
he may as well use the Jeffreys prior, which is essen- 
tially equivalent to accepting the classical inference. 
Once the relevant computer program has been writ- 
ten, the Bayesian procedure can then be looked at as 
a convenient way to get efficient classical inferences 
about a, 8, and p. 

The Bayesian framework allows us to study the 
sensitivity of our inferences to variations in the speci- 
fication of prior parameters. If an investigator is will- 
ing to express prior knowledge in terms of the con- 
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TABLE I-Bayesian posterior analysis of & and 0 based on Gross and Clark data. 

E"(G) 

m 

Jalo 

R*bj 

2~2(cxj-3B,(~j-6 

Prior (1) 

8.39 

2.66 

0.65 

3.63 

0.92 x 1o-3 

98% credible 
interval for G (3.50,15.81) 

E"(G) 0.074 

dF-$y 0.024 

V$-E) 0.65 

R&e) 3.63 

282(e)-38,(e)-6 0.63 x 1O-3 

98% credible 

interval for g (0.030.0.141) 

Analysis Based on 

Prior (2) Prior (3) 

9.24 8.19 

2.80 2.32 

0.62 0.58 

3.57 3.50 

0.56 x 1O-3 -0.92 x 10 
-2 

(4.03,17.00) 

0.081 

0.025 

0.62 

3.57 

0.12 x 10 -3 

(0.035,0.150) 

(3.80,14.55) 

0.073 

0.021 

0.58 

3.50 

-0.92 x 10 -2 

(0.033,0.131) 

TABLE 2-Sensitivity of a normal approximation to the posterior distribution of b (Gross and Clark’s 
data). 

Jeffreys' Prior 

0, Mode 2 2.326h'"(plcx) - E"(iila) V'(jzila) 

4 114.89 112.05 169.22 f 30.26 

8 114.16 112.75 82.49 + 21.13 

12 113.92 112.98 54.53 A 17.18 

Conjugate Prior 

a - E"(cla) Mode V'(Cla) + 2.326&"(~lcx) 

4 112.92 110.49 141.68 ?r 27.69 

8 112.31 111.09 69.30 it 19.36 

12 112.10 111.29 45.86 2 15.75 
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jugate family of distributions, and to use the 
approximations I have suggested, then the amount of 
numerical integration is quite small. Thus even an 
extensive sensitivity analysis can be both quick and 
inexpensive, given the appropriate computer soft- 
ware. 

6. APPENDIX 

The main numerical problem in my approach is 
the integration of the kernel in (5). Let us denote it 
by h(a). To get the normalizing constant and the 
first four moments of the marginal posterior distribu- 
tion of a? we must evaluate Jr a’h(cw)da for i = 
s0,1,2,3,4. The integrands are “well-behaved” so that 
straightforward Laguerre-Gauss quadrature can be 
used (see Hildebrand, 1956, p. 325, and Abramowitz 
and Stegun, 1964, p. 890). I used a 48-point formula. 
To use the numerical integration subroutine, one 
must supply another subroutine to calculate the in- 
tegrand. I found it convenient first to compute 

ln[a’h(a)] = i lna + lnr(v”a) 

+ d’a ln(J’/n”) - d’lqa), 

and then exponentiate. This calculation involved 
calling a canned subroutine that returned values of 
m(x). The routine used double precision arithmetic. 
For x 2 8, it used the asymptotic expansion 

lrqx) - (x - 1/2)lnx - x + (1/2)ln(27r) 

+ 1/12x - 1/360x3 + 1/1260x’ 

- 1/1680x7 + l/l 188x9. (Al) 

(See Abramowitz and Stegun, 1964, p. 257.) For val- 
ues x < 8, the recursion I’(x + 1) = xr(x) was ap- 
plied repeatedly until (Al) could be used. 
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