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The design of an experiment involves much more than deciding on a matrix of experimental 
points. This is demonstrated by six recent experiments, dealing with such diverse subjects as 
evaluating the reaction of birds to different noises, comparing computer programming meth- 
ods, and optimizing a chemical reaction. These experiences and others are generalized in some 
basic guidelines for designing experiments. Some technical challenges and educational pro- 
grams are also discussed. 
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1. INTRODUCTION 

Many books and articles provide examples of de- 
signed experiments that usually are neatly packaged, 
contain well-defined program objectives and experi- 
mental variables, and have few practical constraints. 
All that is required of the statistician is to propose a 
matrix of experimental points and analyze the results. 
In most applications, however, selection of the formal 
test plan represents only the tip of the proverbial 
iceberg. This article is concerned principally with 
these other considerations. We describe recent experi- 
ences in planning experimental programs (Sec. 2), gen- 
eralize these and others to provide some basic guide- 
lines (Sec. 3), suggest some technical challenges (Sec. 
4), and comment on educational programs (Sec. 5). 
Many of our observations, or similar ones, have been 
made by others. For example, see the books by Cox 
(1958) Fisher (1935) and Youden (1951) and the 
papers by Bishop et al. (1982), Box (1954), Box and 
Wilson (1951), Box and Youle (1955) Marquardt 
(1979), Hooke (1980) Hunter (1981), Joiner (1977, 
1981) and Price (1982). 

2. EXAMPLES OF DESIGNING 
REAL-WORLD EXPERIMENTS 

The first three examples illustrate the statistician’s 
role in designing an experiment. The last three deal, 
more briefly, with experiments that were different in 
one way or another. 

2.1 An Experiment That Showed Statistics 
Is for the Birds 

A report dealing with airplane accidents resulting 
from the ingestion of birds in jet engines suggested 
that a contributing factor to such accidents might 

have been that the noise of the engine sounded like a 
distress call to some birds, thus attracting these birds 
to airplanes. To assess this claim a four-week experi- 
ment was to be conducted in a meadow populated by 
a “representative group” of birds. Recordings of 
engine noises and distress calls were to be played to 
the birds and the birds’ reactions noted. A team con- 
sisting of an acoustical engineer, an ornithologist (or 
“birdman”), and the author met to develop an experi- 
mental plan. At the team’s initial meeting, I raised the 
following questions : 

l Are the birds that live near the selected meadow a 
random sample from the population of those that live 
near airports? The ensuing discussion revealed that 
this had been a major consideration in selecting the 
test site. 

l Will the results be biased by the fact that airport 
birds have adapted to engine noise, whereas the birds 
in the experiment are hearing such noise for the first 
time? It was felt that the four-week test period would 
provide a sufficiently long “learning time,” and that 
the data could be analyzed to assess time trends. 

l Will the recordings of jet engine noise and of bird 
distress calls be a “random sample” of the noises 
about which conclusions are to be drawn? Recordings 
of four different engines and four different types of 
bird calls were carefully selected for this experiment. 
In addition, a “white noise” recording was to be used 
as a control. 

l Is there a seasonal effect? Does the fact that this 
experiment would run for only a one-month period 
(during the early summer) significantly limit the gener- 
ality of the findings? In the ornithologist’s opinion, 
the time period chosen was the one in which the birds 
would most likely be attracted to the engines. There- 
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fore, the assumption of nonexistence of a seasonal 
effect was conservative. 

l Does the fact that the experiment was limited to 
simulating sound sensations, ignoring sight and smell, 
seriously detract from the applicability of the find- 
ings? This would have to be one of the underlying 
assumptions of the experiment, but was not expected 
to be an important limitation. 

distance of the birds from the noise source. Logistic 
curves were fitted to the results of each run to obtain 
estimates of the noise levels at which 10% and 50% of 
the birds reacted to the noise by flying away or hover- 
ing above. These estimates were used to compare the 
birds’ reactions to the different noises. Analyses with 
covariates, such as the sequence of testing, the test 
day, and the wind speed, were also conducted. 

Each of these questions had been considered pre- 
viously. However, raising them at the meeting focused 
added attention on them. Moreover, the discussion 
led to an improved recognition of the assumptions to 
which the findings would be subject, irrespective of 
how good the experimental plan and analysis might 
be. 

The statistical analysis confirmed what was evident 
from an inspection and some simple plots of the data. 
The birds reacted differently to the different noises. 
They were attracted by the distress calls and, when 
sufficiently loud, scared away by the engine noise. 

The team then discussed questions related to the 
protocol of the experiment, including 

The major contribution of the statistical plan was 
to add discipline to the experiment and to help ensure 
that it would result in as valid conclusions as possible, 
subject to the constraints imposed by the testing situ- 
ation. 

l How can one simulate different distances of the 
birds’ locations from the noise source? This would be 
accomplished by a “step-stress” approach-the re- 
cordings were to be played on each test run at increas- 
ing noise levels during a two-minute period. 

2.2 An Experiment to Compare Computer 
Programming Methods 

l How can one obtain a realistic and consistent 
quantitative assessment of the birds’ “reactions”? Pro- 
visions were made to record, as accurately as possible, 
data on (a) the number of birds on site before, during, 
and at the conclusion of each run; and (b) the propor- 
tion of birds hovering over the noise source. In addi- 
tion, movies of the birds’ reactions to the recordings 
were to be taken for later review, if needed. 

An experiment was recently conducted at the Gen- 
eral Electric Research and Development Center to 
compare the merits of the following approaches to 
computer programming : 

0 Conventional one-person manual programming 
and checkout, to be referred to as the conventional 
method. 

l How much time should elapse between experi- 
mental runs to allow the birds to return to a stable 
situation? It was decided that it would be conserva- 
tive to run tests every hour. This would permit a series 
of nine runs for each nine-hour period. Test periods 
were to be started at different times of the day and 
night. 

Eventually, a randomized block design, with each 
nine-hour period representing a block, was proposed. 
The nine treatments within each block consisted of the 
nine different recordings. The sequencing of the runs, 
that is, of playing the recordings within each block, 
was randomized. 

l An automated dual programming approach, 
whereby two programmers independently develop the 
same program and then check it using an automatic 
test driver. The automatic test driver randomly gener- 
ates test cases from the program’s input domain and 
identifies cases in which the two programs give differ- 
ent results. The programmers are informed of all dif- 
ferences between their results, rework their programs, 
and again use the automatic test driver to compare 
the results. The process is continued until the same 
results are obtained by both programs on 10,000 test 
cases, at which point the programs are submitted. This 
approach is referred to as the dual method. 

The experiment was to be conducted in 26 blocks, 
preceded by some pilot runs. Various changes (e.g., the 
placement of the loudspeakers) were planned over the 
course of the experiment. Some other requirements, 
such as that there be a minimum number of birds on 
site for each run, were also included in the experi- 
mental protocol. Provisions were also made to record 
data on potentially significant covariates. 

l An automated one-person checkout, whereby the 
program is developed by a single programmer who 
may, however, access the automatic test driver. This 
approach is referred to as the solo random method. 

The data were reviewed each day. A formal analysis 
was conducted at the conclusion of the experiment. 
An effective noise figure was calculated by adjusting 
the actual noise by a factor related to the average 

An experiment was to be conducted to compare the 
results of using these three programming methods. 
Different programmers would be required to write a 
variety of programs using one of the three methods for 
each program. The major criterion for comparing the 
methods would be a comparison of the number of 
errors that remain in the final submitted program. 
These would be determined by comparing the answers 
obtained using the submitted test program with those 
obtained using a “correct” version that had previously 
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been checked over a large number of test cases gener- 
ated by the automatic test driver. A secondary cri- 
terion would be the required number of programming 
hours. These two criteria were to be combined to 
create a third one-the number of programming 
hours per error removed. 

Designation of the required matrix of test points 
was again only a small part of the total experimental 
design. The experiment had to provide a statistically 
valid, and reasonably efficient comparison of the three 
programming methods, in order to withstand attacks 
against the conclusions concerning the relative merits 
of the methods-no matter what these conclusions 
would be. This, in fact, is what led to the inclusion of 
the solo random method in the test program. Orig- 
inally, only the dual and conventional methods were 
to be compared. We pointed out, however, that if the 
dual method gave better results than the conventional 
method, it would not be clear to what extent this 
result is due to (a) the use of two programmers or (b) 
the use of the automated checkout. The solo random 
method was, therefore, included in the experiment to 
resolve this question. (A fourth method, involving two 
programmers and conventional checkout, was also 
proposed. This approach had, however, been studied 
previously by others, and the experimenter felt it was 
not of sufficient interest to warrant inclusion.) 

The following were also considered : 
1. Selection of Programmers. The experimenter 

was asked to define the population of programmers 
for which the results were to apply. For example, was 
the dual method meant only for relatively inexperi- 
enced programmers or for all programmers? (The 
answer was “for all programmers.“) In theory, one 
would like to select the programmers for this study at 
random from the defined population. In practice, 
however, this is not possible. After some discussion, 
the experimenter recruited a supposedly “repre- 
sentative” group of programmers from among his as- 
sociates, summer students working on MS degrees in 
computer science, and a second group of program- 
mers recently hired by a company component and 
awaiting security clearance. Obviously, this was not a 
random sample. For example, the sample tended to 
overrepresent programmers with extensive formal ed- 
ucation and to underrepresent those with appreciable 
work experience. It seemed, however, to be the best 
sample that could be obtained under the circum- 
stances and was probably a fairly reasonable selection 
for the desired evaluation. 

I urged that a relatively large sample of program- 
mers be selected, subject to the requirement that each 
use the three programming methods at least once. As 
a result, 24 programmers were chosen. Background 
information on each was obtained; this could be used 
as covariates in the data analysis. 

2. Selection of Computer Programs. Like pro- 
grammers, computer programs had to be chosen to 
provide a realistic (if not random) representation of 
the population of programs for which the program- 
ming methods were to be compared. I again recom- 
mended that a relatively large number of programs be 
used. The development and checkout of programs, 
however, was complex. Thus, the study was limited to 
four highly different programs that the experimenter 
felt were most representative of those encountered in 
practice (a line editor, parser, network database, and 
macrodefinition processor). 

3. General Test Protocol. Numerous further 
questions involving the implementation of the experi- 
ment were raised and resolved. For example, 

Under the dual method, how much communi- 
cation, if any, would be allowed between the two 
programmers? 
What instructions should the programmers be 
given about the importance of accuracy versus 
speed? 
For the solo random and the dual methods, 
should the programmers also be encouraged to 
submit their own test cases for checkout, in addi- 
tion to those randomly generated? 
What is the best way of measuring the number of 
independent remaining errors associated with a 
submitted program? 
How should the number of programming hours 
be measured and recorded? 

In such discussions, the statistician’s major func- 
tions are to help structure the problem, to identify 
important issues and practical constraints, and to in- 
dicate the effect of various compromises on the infer- 
ences that can be validly drawn from the experimental 
data. At this stage, the statistician serves as a logician 
and interacts with the experimenter in a manner 
somewhat similar to that of a psychologist who helps 
a patient cope more effectively with personal prob- 
lems. 

After the test protocol was developed and docu- 
mented, a pilot run of the experiment was conducted. 
A formal test plan, consisting of a series of six modi- 
fied Latin Squares, was proposed. These called for 
four programmers (different in each Latin Square) to 
write (the same) four programs using the conventional 
method once, the solo random method once, and the 
dual method twice with different partners each time. 
(The Latin Square modification was due to each pro- 
grammer’s use of the dual method twice.) The pairing 
of programmers and the testing sequence were ran- 
domized. 

The experiment was conducted in two stages, in- 
volving 12 programmers and two sets of three modi- 
fied Latin Squares each. With two minor exceptions 
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(involving the premature withdrawal of one of the 
programmers, and the fact that one run, involving the 
conventional method, could not be scored due to the 
programmer’s misunderstanding of the program’s 
basic objectives), everything went as planned in the 
first stage. The results were overwhelmingly in favor of 
the dual method. In particular, the total number of 
errors in the submitted programs was (a) 65 in 11 
programs using the conventional method, (b) 48 in 12 
programs using the solo random method, and (c) 2 in 
11 programs using the dual method. No sophisticated 
statistical analysis was required to demonstrate the 
superiority of the dual method in removing errors! A 
comprehensive tabulation and histogram of the data 
sufficed. However, to be responsi,ve to a request to 
formally establish “the statistical significance” of the 
results, we noted that for each of the 10 cases where 
direct comparison was possible, fewer errors were 
committed for the dual method than for the conven- 
tional method. The probability of this occurring 
purely by chance, if the conventional method were as 
good as or better than the dual method, was one in 
(3,‘” or one in 1,024. Thus, one can reject the null 
hypothesis that the conventional method is no worse 
than the dual method at the .l% significance level. A 
similar result was obtained in comparing the dual 
method with the solo random method. The statistical 
analysis, however, provided only the proverbial “icing 
on the cake” by fine-tuning conclusions, and giving 
more quantitative estimates. More generally, I have 
found that a formal statistical analysis of the data is 
often superfluous for a well-designed and well- 
executed experiment. 

precluded the frequent, relatively short meetings, in- 
terspersed with thinking periods, that characterized 
the planning of the experiment to compare program- 
ming methods. Prior to our first meeting, I asked the 
experimenter to prepare detailed documentation, de- 
scribed in the next section, about the nature and pur- 
pose of the experiment. This forewarned him about 
the type of information needed and set the stage for 
subsequent discussions. Since the meeting occurred in 
my office, I, unfortunately, had to forgo the op- 
portunity of seeing the experimental setup. 

From the discussions with the experimenter I deter- 
mined that 

In the second stage of the experiment, control was 
poorer and for several reasons the original experi- 
mental plan was not followed closely. Although the 
results appeared to be similar to those from the first 
stage, further analysis seemed prudent. Thus, a 
number of regression runs on the combined data from 
the two stages were conducted (using programming 
method, programs, and programmers as dummy vari- 
ables). These analyses, thus, verified the previous find- 
ings. (See Panzl 1981 for further discussion of this 
experiment and its results.) 

l The primary purpose of the experiment was to 
optimize the reaction within the current operating 
region and in an expanded region. (The expanded 
region would require equipment modifications on the 
production line.) Optimum performance was well de- 
fined on an individual variable basis, that is, increas- 
ing the yield and raising the quality level. However, 
the trade-off between quality and yield was not known 
and, in fact, depended upon production requirements. 
Thus, it was not clear how to combine the various 
criteria in seeking an overall optimum, and it was not 
possible to develop a general desirability function to 
be optimized, as suggested by Derringer and Suich 
(1980), or even to pursue a simultaneous optimization 
approach (See Khuri and Conlon 1981). Instead, it 
was agreed that the major objective would be the 
more basic one of estimating the relationships be- 
tween the process variables and each of the per- 
formance variables and drawing curves therefrom. A 
good knowledge of the relationships, however, was of 
greatest interest in regions where the process would 
give promising results. These objectives had to be 
understood in deciding whether the experimental 
strategy should concentrate on searching for an opti- 
mum or on representing the response surface over a 
broad region in the experimental space. It appeared 
that some of each was desired. 

l Some preliminary runs (a) verified that the lab- 
oratory experiment provided a reasonable simulation 
of the manufacturing process, and (b) demonstrated 
acceptable repeatability. 

2.3 An Experiment to Improve a Chemical 
Reaction 

l There were no serious practical impediments to 
randomization. 

This ‘experiment involved a laboratory scale-down 
of the manufacture of a plastic material. The objective 
was to evaluate the effect of certain process variables 
(operating temperature, pressure, water addition, and 
amount of catalyst) on process performance, as mea- 
sured by various yield and product quality character- 
istics. 

l A minimum of one day was required to conduct 
an experimental run, and it seemed desirable to in- 
clude an option for evaluating the data after approxi- 
mately every 10 to 12 runs to ensure that “things were 
going right.” 

The following three-stage experimental plan was 
eventually proposed : 

The laboratory in which the experiment was to be 
conducted is about 1,000 miles from my office. This 

Stage I. A half replicate of a four factor, two-level 
factorial plan, supplemented by two repeat runs at the 
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center condition (See Mendenhall 1968) and a further 
test at the current production-line operating con- 
ditions (total of 11 runs). 

Stage 2 (Tentative). Additional runs to convert 
the fractional factorial plan into a central composite 
design and further single repeat runs at the center 
condition and at the current production-line oper- 
ating condition (total of 10 runs). 

Stage 3 (Tentative). Additional runs to convert 
the half replicate fractional factorial base to a three- 
quarter replicate (see Diamond 1981) and further 
single repeat runs at the center condition and at the 
current production-line operating condition (total of 
six further runs). 

The experimenter reviewed the proposed plan with 
his technician and suggested some minor changes in 
the conditions of some of the variables. The experi- 
mental design was revised accordingly. 

We proposed at least an informal analysis of the 
results after the first stage of the experiment to ensure 
that the proposed subsequent stages still made sense. 
This seemed particularly appropriate in light of the 
interest in searching for a generally optimum region, 
and the fact that the selection of the levels of the 
variables had been somewhat arbitrary. 

The first stage involved a Resolution 4 design, that 
is, main effects could be estimated independently of 
two-factor interactions, but two-factor interactions 
were confounded with one another (see Box and 
Hunter 1961 and Daniel 1976). Also, curvilinear terms 
could not be estimated separately for each variable. 
Moreover, a comparison of the lack-of-fit term from 
the fitted model with the pure error term (based upon 
a single degree of freedom resulting from the two 
repeat runs at the center condition) suggested the 
model that could be fitted at this point to be inad- 
equate. Nevertheless, the supplemented fractional fac- 
torial plan provided a good spanning of the experi- 
mental region and, in light of the apparent good re- 
peatability, a scanning of the test results would, it was 
hoped, identify promising subregions. Indeed, a 
number of conditions were found to give better results 
than those at the current plant operating condition. 
Thus, inspection of the data was more informative, at 
this point, than the formal statistical analyses. In fact, 
it would seem that the information that can be gained 
from scanning the data is often a major justification 
for using saturated fractional factorial and Plackett 
and Burman (1946) designs. 

Inspection of the data from the first stage of the 
experiment, as well as the approximate model fit, indi- 
cated that parts of the experimental region did not 
merit further study. Thus, we decided against im- 
plementing the previously developed second and third 
stages and developed a revised second stage. In the 
revision it was decided to (a) change the range of 

variation for two of the process variables (temperature 
and percentage catalyst) to concentrate testing on 
what appeared to be the most desirable subregion of 
the experimental space; and (b) hold one of the pro- 
cess variables (water addition) constant for most of the 
runs at the condition that seemed to provide optimum 
results within the current operating region. 

A three-variable central composite design using a 
factorial base was proposed for the revised second 
stage. This was supplemented by two additional runs 
involving perturbation of the variable held constant 
for the other runs (water addition). These two runs 
were conducted at the center condition of the other 
variables. (This permitted some further assessment of 
water addition without making it a full-fledged vari- 
able.) Single repeat runs from the previous stage of the 
experiment were also performed at the current plant 
operating conditions and at the center point of the 
Stage 1 design. 

It turned out that a reaction could not be obtained 
at two of the conditions. Thus, these tests were rerun 
at nearby feasible conditions. At the conclusion of this 
stage, a second-order regression model and various 
reduced models were fitted based upon the data from 
the second stage only and the combined data from 
both stages. Since readings were obtained on each run 
at various times, separate analyses were performed 
using the results at selected single times only and all 
the data. Care had to be exercised in drawing statis- 
tical inferences in the second case because the readings 
on the same reaction at different times are not inde- 
pendent of one another. 

The analyses indicated 

l Contrary to expectations, there was a significant 
difference in results between the two stages. This was 
indicated by (a) the statistical significance of a dummy 
variable associated with stages in a regression analysis 
of the entire data and (b) a comparison of the results 
from the two pairs of runs that were conducted at the 
same condition in both stages. The experimenter 
ascribed the difference to the use of two different 
batches of material, although it could, of course, have 
been due to some other reason. In any case, sufficient 
precautions had apparently not been taken in plan- 
ning the experiment to eliminate between-stage differ- 
ences. 

l A specific condition at the boundary of the cur- 
rent plant operating region appeared to maximize 
yield within the currently feasible plant operating con- 
ditions, without a loss in quality. An inspection of the 
individual data points, similar to that conducted after 
the first stage, provided further confirmation. The 
overall optimum, however, appeared to be beyond the 
experimental region and current plant operating con- 
ditions. 
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This experiment, like many others, began as a non- 
statistical “vary one-factor-at-a-time” program. The 
experimenter contacted me at the recommendation of 
one of his associates. Recently, I asked him whether he 
felt a statistically planned experiment had been worth- 
while. (Since 1 was asking the questions, a biased 
response was likely.) He responded that the statistical 
approach was valuable because it allowed him to 
progress more rapidly than would otherwise have 
been possible. It also added discipline and quantifica- 
tion to the program. On the other hand, he indicated 
that this approach was “not as much fun” for him as a 
direct hands-on approach, where he could make all 
the decisions. 

exploratory work, since the experimenter is frequently 
searching for “ball-park” assessments rather than 
subtle evaluations. Broad decisions are often made 
after almost every run and the program is redirected 
accordingly. The researcher may not have the re- 
sources or the patience to pursue a disciplined, statis- 
tically based program. The results of such exploratory 
testing can, however, lay the groundwork for a later 
statistical design. 

2.5 A Big Bucks Experiment 

This last comment reflects the importance of involv- 
ing the experimenter in the planning of the program 
and the analysis of the results. In this case, we were 
able to interest him in expanding his formal back- 
ground in statistics and the design of experiments and 
he became the local “statistical expert.” 

2.4 An Experiment That Succeeded by Failing 

Sometimes, we are not asked to design an experi- 
ment because the out-of-pocket costs for our services 
represent too large a part of the total project budget. 
In other cases, however, the costs of designing the 
experiment represent only a proverbial “drop in the 
bucket.” This is often the case in studies involving 
heavy equipment, such as a jet engine or a turbine. 
Unfortunately, such experiments also are often 
characterized by severe practical constraints and, 
therefore, do not lend themselves to traditional statis- 
tical designs. 

Some time ago, we designed a multivariable experi- 
ment to identify manufacturing conditions that would 
be both operationally feasible and economically at- 
tractive for a proposed new product. Again, the exper- 
imental design had been a central composite plan with 
a fractional factorial base. We had conducted some 
regression analyses of the resulting data, discussed 
their results with the experimenter, and proposed 
some added tests, which were conducted. Then there 
was silence-nothing more was heard from the re- 
search scientist. Recently, I contacted him for an 
update. 

Recently, we were asked to develop a design for an 
experiment to be conducted in a combustion chamber 
which would compare the performance of different gas 
turbine fuels for various design configurations under 
different operating conditions. Because of the high 
cost of fuel, each run cost more than $10,000. In light 
of the high cost, such programs are frequently run 
piecemeal, using only a handful of tests to evaluate a 
particular design/fuel-type combination. In this case, 
however, a more comprehensive test program was 
planned. 

My call verified that the program had been aban- 
doned. The analysis of the data from the first stage 
and an inspection of the second-stage results clearly 
identified many UNECONOMICAL ways of making 
the product. Unfortunately, no practical conditions 
that would result in a desirable product were suggest- 
ed. This was as expected from previous nonstatistical 
testing. The statistical experiment had, in fact, been 
proposed as a last-ditch effort to obtain a useful prod- 
uct. Its inability to do so convinced all concerned that 
the current process would not give the desired results. 

Before a meaningful experimental plan could be 
developed, a significant learning effort was required. 
This included (a) A review of the purposes of the 
experiment and the previously prepared “proposed 
test point schedule”; (b) A visit to the combustion 
chamber while a similar test was in progress; (c) A 
review of previous data and the resulting fitted curves; 
and (d) Identification of the constraints associated 
with the program. In particular, 

The experimenter had earlier raised the question of 
whether a statistically designed experiment should 
have been used in the basic research as well as in the 
subsequent general development phase of the study. I 
responded that the fundamentals of sound experi- 
mental design (e.g., formal definition of the scope of 
the experiment, proper selection of material batches, 
definition of what is to be measured, focus on achiev- 
ing good repeatability, etc.) apply to all phases of 
experimentation, including basic research. Formal 
statistical designs, however, are often premature for 

l Change in the combustion system required exten- 
sive reassembly; change in fuel type necessitated 
cleaning out the chamber; and temperature could be 
readily increased, but not decreased. Thus, complete 
randomization would be impractical. 

l Only one batch of each fuel type could be ob- 
tained. 

l Certain combinations of test conditions were 
mandated. 

I will not describe the proposed experimental plan 
here. It resembled the engineer’s initially proposed 
test-point schedule more than it did any known statis- 
tical design and, at best, can be described as pseudo- 
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statistical. I did, however, propose (a) the addition of 
repeat runs to check for trends; (b) randomization at 
the lowest level of the testing hierarchy; (c) increased 
emphasis on the consequences of using only one batch 
for each fuel type, the assumed underlying model, and 
the methods to be used for analyzing the data. 

Jurisdiction over the program was moved before 
any testing could begin. My recommendations were 
used as a general guide but were not followed in detail. 
In fact, I have yet to be involved in any investigation 
of this type where my recommendations have been 
implemented. This kind of “messy experimentation” 
nevertheless deserves the attention of statisticians be- 
cause of the special challenges it poses and the high 
potential payoffs resulting from even relatively small 
gains. 

2.6 An On-Line Process Comparison 

This program, to be conducted directly on an ongo- 
ing manufacturing line, was to evaluate the effect of a 
process change on product quality. The change was to 
be introduced into production for a trial period, and 
the estimated rate of defective units after the change 
was to be compared with the rate prior to the change. 
I was called in to answer the question, How long need 
the new process be run to obtain “statistically signifi- 
cant” results? Inspection of the past data suggested 
trends in quality over time. 

Instead of answering the original question directly, 
I urged a radical change in the manner in which the 
investigation was to be conducted. I recommended 
that production be alternated between running the 
process with the change and without the change. Since 
the manufacturing line was shut down each night, it 
was convenient to make such changes daily. Each pair 
of days should include one randomly selected day 
using the old process and one using the new process. 
Recommendations about sample size requirements 
were made in this context, based upon an analysis of 
the past data (see Hahn 1982 for further details). 

3. SOME BASIC GUIDELINES 

Guidelines that I have found useful in designing 
experiments are described in this section. Many, but 
not all, of these concepts were illustrated by one or 
more of the examples. 

3.1 Advise the Experimenter Initially of the 
Needed Information and Urge 
Documentation 

Some experimenters think that the only infor- 
mation that a statistician needs to design an experi- 
ment is the number of experimental variables and the 
number of levels of each (e.g., please design an experi- 
ment for one variable at four levels, three variables at 
three levels, and two variables at two levels). This 

viewpoint has, perhaps, been encouraged by the avail- 
ability of easy-to-use catalogs of experimental designs 
(see Hahn and Shapiro 1966) and of user-oriented 
computer programs to design experiments. Olsson 
(1982) summarizes the problem by stating, “When 
consulting with engineers, it always seems that I want 
to learn about the engineering of the problem (or 
more about what’s going on with a proposed experi- 
ment), while they’re always asking questions about the 
statistics of the problem.” 

As suggested by each of the examples in the pre- 
vious section, to properly design an experiment, the 
statistician must also know 

l The objectives of the experiment. 
0 The details of the physical set-up. 
l The variables to be held constant and how this 

will be accomplished (as well as those that are to 
be varied). 

l The uncontrolled variables-what they are and 
which ones are measurable. 

l The response variables and how they will be mea- 
sured. 

l The procedures for running a test, including the 
ease with which each of the variables can be 
changed from one run to the next. 

l Past test data and, especially, any information 
about different types of repeatability. 

l Conditions within the experimental region where 
the expected outcome is known; the anticipated 
performance is expected to be inferior, especially 
for programs where an optimum is sought; and 
experimentation is impossible or unsafe. 

l The budgeted size of the experiment and the 
deadlines that must be met. 

l The desirability and opportunities for running 
the experiment in stages. 

l The anticipated complexity of the relationship 
between the experimental variables and the re- 
sponse variables and any anticipated interac- 
tions. 

l Other special considerations. 

The major mode of communication between the 
experimenter and the statistician should be face-to- 
face discussion. The experimenter should, however, 
also be encouraged to document as much of the above 
information as possible ahead of time. I advise my 
clients that such documentation is likely to reduce the 
amount of time I will be charging against the project 
and suggest a recent article (Hahn 1977a) as a guide. 
Documentation forces the experimenter to address 
fundamental questions early. It can also trigger com- 
munication between the experimenter and his or her 
colleagues and management. Hunter (198 1) describes 
a study in which his question “What is the objective of 
this investigation?’ triggered a lively discussion be- 
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tween the two principal project investigators. Docu- 
mentation also provides the statistician with a good 
overview of the problem and a reference point to 
return to as the discussion progresses. 

Not all experimenters are willing to prepare initial 
documentation, and time constraints sometimes make 
this impractical. In any case, such documentation rep- 
resents only a “first cut” that will be modified and 
expanded upon in the later discussions. 

the measurement of electrical line voltage in a pilot plant study. 
When this variable was included in our analysis of experimental 
data, we were surprised to find it was influential. On checking, 
we found that every morning, coincident with the startup of 
other units in the pilot plant, there was a line voltage drop. This 
reduced the flow of our constant speed pump, reducing the 
space velocity and providing better yield of product. Had this 
not been found, erroneous conclusions would have been drawn. 

Finally, the experimenter should be asked to pro- 
vide other pertinent, readily available information, 
such as past reports and correspondence, sales blurbs, 
and relevant articles from the literature. These often 
give useful background, even if not read in their en- 
tirety. 

In the “birds” experiment, data were maintained on 
weather conditions, and this was used in some of the 
subsequent analyses. 

3.3 See the Physical Setup and Become 
Actively Involved 

It is helpful to meet at the experimental site to 

3.2 Understand the True Model and Variables 

In some experiments the relationships are based 
upon known physical theory. This theory should be 
appreciated by the statistician and considered in the 
experimental design and analysis. If the relationship is 
known to have a particular nonlinear form, the design 
and analysis should accommodate that form and not 
try to approximate it by a polynomial (see, e.g., Box 
and Lucas 1959 and Hill and Hunter 1974). 
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Even if the form of the physical model is not known, 
the experimental variables should be expressed in a 
way that makes the most sense physically. In a partic- 
ular situation, one might have to decide whether cur- 
rent density and time should be the designated experi- 
mental variables or whether it is more reasonable, on 
physical grounds, to consider time and the product of 
current density with time as the variables that most 
directly impact performance. Judicious expression of 
the variables often reduces or eliminates interactions 
between variables, resulting in a simpler model. 

review the physical setup, especially if the equipment 
is operational. Such a review is most beneficial near 
the outset of the discussions-after obtaining a suf- 
ficiently detailed explanation of the experiment to 
appreciate significant points. Such visits were not fea- 
sible in the “birds” and chemical reaction experiments, 
but they were conducted in three of the other pro- 
grams. It is also useful to return on site to observe the 
actual implementation of the experiment. Often ad- 
ditional potential sources of variability, not noted by 
the experimenter, may be observed by the statistician 
and removed or factored into the analysis. 

In one recent chemical engineering experiment, I 
found it useful to ask the experimenters to identify 

The statistician should request and review past 
data, even though such data may not warrant exten- 
sive analysis. Such data can often provide a feel for 
experimental error and some useful insights. For ex- 
ample, the experimenter may suggest that some of the 
data be ignored on account of some special happen- 
ing(s). This raises the question of what can be done to 
minimize the likelihood of such happenings occurring 
again and spoiling future experiments. In the on-line 
process comparison, review of the past data made it 
clear that the approach suggested by the experimenter 
would not likely yield unambiguous results. 

1. The “true variables” that impact performance- 
even though they may not be controllable and/or 
measurable. These included the unknown temper- 
atures within two reactors. 

2. The variables that can be directly controlled. 
These included the inlet temperatures to the two reac- 
tors. 

3. The functions of the controllable variables that 
best reflect the effect of the true variables in the model. 
These included the inlet temperature to the first reac- 
tor and the difference in inlet temperatures between 
the first and second reactor. These were the variables 
that were eventually specified in the experimental 
design. 

In summary, the statistician should become actively 
involved in the investigation, obtain a good under- 
standing of the physical setup and constraints, and 
learn the experimenter’s terminology while mini- 
mizing the use of statistical jargon. Often the statis- 
tician plays an important role by raising fundamental 
questions and by serving as the devil’s advocate. As 
others have pointed out 

l “Clients are well served by statisticians who have 
a healthy curiosity about underlying mechanisms.” 
(Hunter 1981) 

l “Being willing to speak the customer’s language 
as much as possible is one aspect of a good consult- 
ant’s attitude.” (Hooke 1980) 

Also, provisions should be made for collecting data 
on other factors that might prove important. Wood 
(1982) gives as an example 

l “The statistician’s responsibility in the planning 
phase . . . is to . . . insure that the stated objectives are 
achieved, and that the results are defensible . . . . We 
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can serve as catalysts for progress in planning multidi- 
sciplinary studies.” (Price 1982) 

3.4 Obtain Measurements of Real 
Experimental Error 

Before embarking on any major test program, a 
measure of “the real experimental error” should be 
obtained. Real experimental error is the variability 
obtained in the results when the same experimental 
conditions are repeated independently at different 
times. (The total experimental error should, if possi- 
ble, be subdivided into individual components repre- 
senting repeat measurements, within lot variation, 
among lots variation, etc.) Repeat experiments were 
conducted initially in the chemical reaction experi- 
ment and were advocated in the “big bucks” experi- 
ment. 

Experimenters are often overly confident about the 
magnitude of real experimental error. Satisfactory re- 
peatability should be demonstrated before embarking 
on any large-scale program. Poor repeatability sug- 
gests that the wrong variables are being included in 
the experiment. 

In addition, at least a few (minimum of three) real 
repeat tests should be included in the experiment, 
rather than relying on assumed negligible higher- 
order interactions to estimate experimental error. 
Sometimes, it is desirable to have all repeat tests at the 
same condition; at other times, single repeat tests at 
several different conditions might be preferred. For 
example, in the chemical reaction experiment, repeat 
tests were conducted at both the center condition of 
the experimental design and at current operating con- 
ditions. 

3.5 Include “Baseline Conditions” 
in the Experimental Plan 

It is often useful to include baseline conditions in 
the experiment. For example, in the chemical reaction 
experiment, the current plant operating conditions 
were selected as the baseline conditions. In other situ- 
ations, the baseline conditions might be ones the ex- 
perimenter believes, prior to the experiment, will give 
the best results. 

Inclusion of the baseline conditions can 

1. Allow a comparison of experimental with ex- 
pected (or perhaps, desired) results and lead to an 
assessment of the validity of the test program. In the 
chemical reaction experiment, the results from the 
runs at the plant operating conditions supported the 
validity of the scaled-down laboratory model. 

2. Provide a benchmark against which the results 
at other experimental conditions can be compared. 

3. Result in improved precision in estimating the 
response in an experimental region that is likely to be 
of high interest. 
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The baseline condition might be one of the formal 
experimental points (such as the center point in a 
central composite plan) or an added point. Repeat 
tests at the baseline condition are also often helpful. 

3.6 Consider a Multistage Plan 

Statistically designed experiments have sometimes 
been criticized on the grounds that they discourage 
flexibility by requiring the experimenter to follow a 
rigid test plan. Management might be unhappy at 
having to wait too long for answers. Moreover, ex- 
perimentation often involves a learning process, and 
early results might suggest improvements in the plan 
for the later tests, as in the chemical reaction experi- 
ment. 

When feasible, it is often desirable to conduct an 
experiment in stages, and this was done in three of the 
experiments described in the preceding section. In the 
experiment to compare programming methods, the 
first-stage plan provided encouraging results and was, 
therefore, followed by a second stage, using a broader 
sample of programmers. In the chemical reaction ex- 
periment, and also in the experiment “that succeeded 
by failing,” the first-stage design involved a highly 
fractionated factorial plan. Later stages can involve 
building this into a less fractionated plan, a full fac- 
torial, or a central composite design. Often, the early 
stages identify the important variables and allow one 
to drop the less important ones. (Differences between 
stages can be estimated by building up the design in 
orthogonal blocks.) In addition, in the on-line process 
comparison, a sequential testing approach was pro- 
posed to permit termination of the experiment as soon 
as definitive results were obtained. Box, Hunter, and 
Hunter (1978) propose that “As a general rule, not 
more than one quarter of the experimental effort 
(budget) should be invested in a first design. . . . When 
the first part of an investigation has been completed, 
the experimenter will usually know considerably more 
than when he started and consequently will be able to 
plan a better second part, which in turn will lead to 
improved planning of a third part, and so on.” 

Multistage testing is not feasible when it takes a 
long time to obtain responses. This is often the case in 
agricultural experiments, in product life testing, and in 
dealing with some manufacturing processes such as 
making integrated circuits where the fabrication cycle 
may take as long as two months. In the “birds” experi- 
ment, the testing had to be conducted within one 
month and, therefore, it was not practical to plan a 
multistage program. However, the results were care- 
fully monitored to assure that changes in the experi- 
mental plan were not needed. 
3.7 Keep It Simple 

The experimental plan should be kept as simple as 
possible and amply justified to the experimenter. The 
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plan will not be implemented if the experimenter does 
not agree with it, or if the responsible technician does 
not understand the instructions. Simplicity is es- 
pecially important for investigations involving manu- 
facturing processes, such as the on-line comparison. 

3.8 Ask the Experimenter to Review the 
Proposed Experimental Design and to 
Predict the Expected Outcomes 

The experimenter should be asked to review a draft 
of the proposed experimental plan. This provides an- 
other opportunity to identify unfeasible or uninterest- 
ing runs and to check that a judicious choice of the 
ranges for each variable was made. Sometimes it is 
useful to submit two or more alternative designs, ex- 
plain the differences between them, and ask the experi- 
menter to pick one. Wood (1982) and others recom- 
mend that 

the experimenter be asked to state (preferably in writing) what 
results are expected. Often the benefit of experimental design is 
to find the unexpected, that which can not be seen intuitively, 
either because of interactions, or because of the inability to 
separate main effects from random noise. Because of faulty 
memories, there always seems to be someone in management 
who will say “we knew it all the time”. Such records will keep 
the record straight. 

It is the rule, rather than the exception, that the 
implemented experiment differs in one way or another 
from the design. Runs are omitted for various reasons 
and, sometimes, new ones are added. In the program- 
ming experiment, runs were omitted because a few of 
the programmers had to leave the experiment early. In 
the chemical reaction experiment, some runs were 
found not to be feasible and somewhat different ones 
were run in their place. When the actual experimental 
conditions differ from the aimed-at ones, the actual 
conditions should be recorded so they can be used in 
the statistical analysis. (This, in fact, is one of the 
reasons that regression analysis is employed more 
often than the analysis of variance in analyzing the 
results of industrial experiments.) 

Other circumstances also affect the results and need 
to be carefully noted. For example, sometimes the 
performance variable is censored, requiring special 
analyses (see Hahn, Morgan, and Schmee 1981 for an 
example). 

4. SOME TECHNICAL CHALLENGES 

4.1 Response Surface Experiments With a Mix 
of Qualitative and Quantitative Variables 

Also, it is worthwhile to consider Feder’s (1982) 
recommendation to submit to the experimenter 

randomly generated sets of data as part of the design process; 
that is, generate one or more sets of data, incorporating the 
assumption, variability estimates, and the anticipated form of 
the response function. This provides an idea of the anticipated 
expected precision of the resulting estimates and demonstrates 
how the data will be analyzed. 

3.9 Document the Experimental Plan and 

Situations requiring response surface exploration 
involving qualitative, as well as quantitative, process 
variables are frequently encountered. For example, in 
a recent experiment to learn the relationship between 
three quantitative variables (temperature, application 
pressure, and material thickness), one two-level quali- 
tative variable (varnish application method), and time 
to failure for an insulation material, a central com- 
posite design with the following modifications was 
proposed : 

Protocol 

Detailed documentation of the experimental plan 
avoids misunderstandings. The documentation should 
include not only the recommended test points (and the 
proposed sequence for running them), but also the 
experimental protocol (prepared, perhaps, by the ex- 
perimenter). Such documentation was prepared for 
each of the programs described previously. 

l Run the “prong points” for the qualitative vari- 
able on the surface of the hypercube; that is, conduct 
these two tests at the two levels of the qualitative 
variable and the center condition of the three quanti- 
tative variables. 

l Run the prong points for each of the quantitative 
variables of the design twice-once at each of the two 
levels of the qualitative variable. 

3.10 Be Prepared for Changes 

Things do not always work out as planned. Dead- 
lines change; new information becomes available; 
conditions expected to be feasible turn out not to be. 
The statistician should be prepared to modify the 
experimental design, as required by the changes in 
circumstances. 

The resulting plan involved a total of 30 (instead of 
the usual 25) points, prior to the inclusion of repeat 
points. A dummy variable was used for the qualitative 
variable in the subsequent data analysis. 

Sometimes, a long period elapses between the time 
the experiment was designed and when it is to be 
modified or analyzed. In such situations, the statis- 
tician will especially appreciate having maintained 
good formal and informal records. 

The preceding scheme can be readily generalized for 
two or more qualitative variables by running the 
prong points of the quantitative variables at all com- 
binations of the qualitative variables. However, be- 
cause this may lead to an unduly large experiment, 
one might decide to run these prong points only at a 
fraction of all possible combinations or at the con- 
ditions of the qualitative variables of greatest interest. 
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The statistical consequences, such as the degree of 
confounding among the resulting estimates of the 
model parameters, can be assessed by using, for exam- 
ple, the EXPLOR computer program (see Meeker, 
Hahn, and Feder 1975), and the plan can be compared 
with alternatives, such as a (fractional) factorial 
scheme with all quantitative variables at three levels. 

4.2 Considerations in Randomization 

Randomization is introduced to neutralize the effect 
of variables that cannot be, or are not, handled other- 
wise, such as by direct inclusion in the experiment, 
blocking, holding constant, and so on. Frequently, 
such potentially contaminating variables are not even 
specifically identified. Randomization thus provides 
some insurance against drawing invalid conclusions 
from the experimental results because of the effect of 
confounding variables. 

Frequently, randomization needs to be considered 
at various levels, for example, the sequence of pre- 
paring the experimental units, the assignment of treat- 
ments to the units, the sequence of performing the test 
runs, and the sequence of taking measurements. This 
was the case in the chemical reaction experiment. 

Unfortunately, all variables are not created equal. 
Often some can be varied more easily than others. For 
example, a change in pressure may be implemented by 
a simple dial adjustment. It might, however, take a 
long time to reach stability after a change in temper- 
ature. Thus, complete randomization is often 
impractical-as was seen in the “big bucks” experi- 
ment. On the other hand, following the experimenter’s 
impulse to perform all the tests at a particular temper- 
ature at one time might confound the temperature 
effect with that of other variables that are changing 
simultaneously. 

The statistician should aim to achieve a practical 
compromise between the desirability for randomiza- 
tion and the operational constraints of the test pro- 
gram. This requires a good understanding of the me- 
chanics of testing. For example, the experiment might 
be shut down overnight; at start-up each morning it 
makes little difference which temperature is used, as 
long as that temperature is maintained throughout 
the day. With this type of information the statistician 
and the experimenter can decide the amount of insur- 
ance, in the form of randomization, that is warranted 
and can be reasonably achieved (see Daniel 1976; 
Hahn 1977b and 1978; and Joiner and Campbell 1976 
for further discussion). 

4.3 Many Experimental Programs Have 
Split-Plot Features 

Many experimental programs involve split-plot 
considerations. In some situations this is due to the 
nature of the experimental variables. Some time ago 

we planned an experiment to help Alaskan Indians 
learn how to best grow vegetables indoors. Some vari- 
ables, such as type and amount of fertilizer, could be 
readily varied within the experimental chambers. 
Others, such as temperature and humidity, had to be 
varied between chamber runs. The chemical reaction 
experiment involved “a split-plot in time” as a result 
of the previously mentioned readings at different times 
for the same reaction. 

Occasionally, split-plotting also is appropriate be- 
cause it allows one to obtain more precise information 
about the within-plot variables. In an experiment to 
evaluate the effect of alloy composition, heat treat- 
ment, and varnish coat on tensile strength, master 
alloys were first prepared using different compo- 
sitions. Each alloy was split into a number of segments 
to be subjected to different heat treatments. The treat- 
ed segments were further divided into subsamples for 
the application of different coatings. Tensile strength 
measurements were then obtained on all coated sub- 
samples. The further “down” one went in this hier- 
archy, the more precise were the comparisons that 
could be made. 

4.4 Test Point(s) That Cannot 
(or Should Not) Be Run 

In some experiments, especially those involving 
chemical reactions, there are regions in the experi- 
mental space where it is not possible to obtain results, 
or where it might be dangerous to do so. There are 
other, less extreme, situations where it is known ahead 
of time that certain conditions would result in poor or, 
at best, uninteresting results. Such conditions should 
generally be avoided in the experimental plan- 
especially if the purpose is to search for an 
optimum-even though such omission might result in 
some loss in orthogonality. Sometimes improved defi- 
nition of the variables or a change in the definition of 
the experimental region can eliminate this problem. 

5. EDUCATIONAL PROGRAMS 

The statistical training of engineers and scientists 
has improved appreciably in recent years, and many 
have now taken at least one statistics course. Such 
courses generally discuss elementary techniques and 
concepts but generally provide little guidance on how 
to obtain valid data. Some universities offer courses in 
experimental design as part of their statistics se- 
quences. Unfortunately, many of these require pre- 
vious training in statistics. Students, however, are 
often reluctant to take further courses in statistics 
after having survived the typical elementary course. 
Moreover, as pointed out by Snee (1982), “many uni- 
versities do not teach experimental design as a separ- 
ate course. Some claim it is covered as part of ‘linear 
models’ courses. The result is a course on analysis of 
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experiments, rather than design.” As a result, many 
still think of a statistician as somebody to call in after 
the data have been obtained. 

tician as a full-fledged team member and be prepared 
to “tell all.” 

Fortunately, a number of books (such as those by 
Box, Hunter, and Hunter 1978; Cox 1958; and 
Youden 1951) are directed at practitioners with limit- 
ed or no previous statistical training. Hahn (1980) 
provides an annotated bibliography of books on ex- 
perimental design; this includes a summary of the 
technical level, the applications emphasis, and the 
subject coverage of available texts. Also, various arti- 
cles in engineering journals provide an introduction to 
the concepts of experimental design (see, e.g., Feller 
1983; Hahn 1977a; Hendrix 1979; and Mueller and 
Olsson 1971). 

Specifying the matrix of experimental points is, 
thus, often only a small part of planning the experi- 
ment. The final design must be carefully tailored to fit 
the real problem-not the other way around. 
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