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Elementary methods are used to obtain upper and lower bounds for the difference between 
two renewal functions corresponding to two different life distributions and to obtain various 
order relationships between them that follow from order relationships on the underlying life 
distributions. The bounds are used to approximate the value of an unknown renewal function 
by the value of a known renewal function and to bound the error of approximation by 
expressions involving the difference between the two underlying life distributions. They are 
useful mainly in the region where time is small compared with the means of the two distri- 
butions, and they therefore supplement the information that can be obtained for large time 
using the elementary renewal theorem. These results find major application in reliability 
modeling of highly reliable systems. 
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1. INTRODUCTION 

In this article, elementary methods are used to 
obtain easily computable upper and lower bounds 
for the difference between two renewal functions cor- 
responding to two different life distributions. I also 
obtain various order and stochastic-order results for 
the corresponding renewal-counting processes, 
thereby making it possible to compare numbers of 
renewals in terms of the hazard rates of the under- 
lying life distributions. The bounds are used to ap- 
proximate the value of an unknown or difficult-to- 
compute renewal function by the value of a known 
or easier-to-compute renewal function and to bound 
the error of approximation by expressions involving 
the difference between the two underlying life dis- 
tributions. 

A renewal process (Thompson 1981, sec. 3) is a 
sequence {X, , X2, . . .} of mutually iid nonnegative 
random variables. In reliability-modeling applica- 
tions, these random variables represent the succes- 
sive lifetimes of a unit or system that, upon failure, 
is replaced by a new one or is overhauled to as-new 
condition. The renewal process is frequently used as 
a model for the reliability of a maintained system in 
which repair restores the system to as-new condition 
and repair times are negligible in comparison to op- 
erating times. Reliability studies often are interested 
in the number of failures of the unit over a given 
time interval. To obtain this in the renewal model, 

the renewal counting process {N(t) : t 2 0} is intro- 
duced. N(t) is the number of failures that have oc- 
curred by time t. In the notation introduced previ- 
ously, N(t) = max{n : Xi + ... + X, 5 t}. The 
renewal function M(t) = EN(t) is the expected num- 
ber of failures that have occurred by time t and is an 
important reliability figure of merit for maintained 
systems in which the renewal model of repair is ap- 
propriate. 

The limiting behavior of the renewal function for 
large time is well known, and I review this in Section 
2.5. For highly reliable systems, however, it may be 
that the system design life is quite short compared 
with the time required for the limiting results to be- 
come valid as approximations to the transient (near 
time 0) values of the renewal function. Since renewal 
functions are available in closed form only in a few 
special cases, their transient behavior can be hard to 
obtain. Thus there is interest in obtaining bounds 
and approximations that would help pin down the 
expected number of system failures even for highly 
reliable systems and for small times. 

I give such bounds in this article. They are tight 
mainly in the region where time is small compared 
to the means of the two distributions concerned, and 
therefore they supplement information that can be 
obtained for large time from the elementary renewal 
theorem (see Sec. 2.5). Indeed, the bounds I give 
are generally not very good for large time. In prac- 
tical terms, this means that they are most useful for 
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modeling highly reliable systems (in which the time 
it takes for the system’s reliability process to reach 
steady state, or become approximately stationary, is 
large compared to the system design life) when it is 
also important to have a good measure of the ex- 
pected number of system failures because of, say, 
great expense or inconvenience of repair. They are 
also useful for analysis of warranties when the war- 
ranty period may be considerably shorter than the 
mean of the time to the first system failure. The 
development of these results was motivated by the 
reliability analysis of an intercontinental undersea 
cable telecommunications system, in which use of 
the large-time approximations afforded by the ele- 
mentary renewal theorem led to large errors. Repair 
on this system is accomplished by replacing a failed 
repairable unit (a repeater) by a new one, an ex- 
pensive, disruptive, and time-consuming process. A 
renewal model was used for each repeater, because 
the effect of a repair was to install a new repeater in 
place of a failed one. Since a reliability objective for 
the whole system included a requirement on the 
number of system failures over its design life, a sys- 
tem-reliability model was chosen in which the re- 
newal function for each repeater was multiplied by 
the number of repeaters in the system (all repeaters 
were identical), The system’s individual components 
were so highly reliable, however, that its design life 
was comparable to the mean of the time to the first 
system failure and was short compared to the time 
it would take for the large-time limits to become 
useful as reliability figures of merit. The large-time 
limits from the elementary renewal theorem then led 
to overly pessimistic values for the expected number 
of repeater replacements over the system design life. 

The bounds are useful in reliability computations 
and comparisons for maintained systems or units 
whose sequence of failures is modeled as a renewal 
process. Renewal functions are known in closed form 
only in a few special cases. In general, finding the 
renewal function for a life distribution involves sum- 
ming an infinite series of convolution integrals (Cler- 
oux and McConalogue 1976; McConalogue 1981), 
numerically solving the renewal integral equation 
(Deligonul and Bilgen 1984; Soland 1969; Tortorella 
1987), or numerically inverting a Laplace transform. 
If hardware or software for performing these com- 
plicated numerical computations is not available, or 
if one simply wants to obtain an approximation for 
the reliability of a system modeled by a renewal pro- 
cess, one could replace the life distribution for the 
system by a distribution having a closed-form re- 
newal function, and use the bounds given here to 
measure the error arising from this approximation 
procedure. 
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Closed forms are known for the renewal functions 
of the shifted exponential and truncated exponential 
distributions (Barlow and Proschan 1965, p. 57) and 
of the distributions of phase type. A distribution is 
of phase type if it is the distribution of time to ab- 
sorption in a finite-state Markov chain having one 
absorbing state and all other states transient. Dis- 
tributions of phase type were introduced by Neuts 
in 1975; all pertinent information can be found in 
Neuts (1981). Since the phase-type distributions are 
dense in the set of all continuous distributions in the 
uniform norm, any continuous distribution can be 
approximated by a phase-type distribution for which 
the supremum of the absolute difference between the 
two distributions is as small as desired (and specified 
at the beginning of the procedure). One could then 
choose to approximate the renewal function for the 
original distribution, whose renewal function may 
not be expressible in closed form, by the renewal 
function for the approximating phase-type distribu- 
tion (which is computable). The results in this article 
can then be used to express the error of approxi- 
mation for the renewal functions in terms of the error 
of approximation for the distributions. 

The familiar exponential and Erlang (gamma with 
integer shape parameter) distributions are special cases 
of phase-type distributions. The renewal function for 
the exponential distribution 1 - exp( - At) is well 
known as simply At. The renewal functions for the 
Erlang distributions were given by Parzen (1962, chap. 
5, eq. 2.30). For the general distribution of phase 
type, the renewal function was given by Neuts (1981, 
eq. 2.4.6), although computation of these renewal 
functions can still be a formidable task, since one 
needs to solve a (possibly large) system of ordinary 
differential equations (Neuts 1981, eq. 2.4.8) to get 
started. An algorithm for carrying out these com- 
putations was given by Kao (1988). Thus the expo- 
nential and Erlang distributions will be useful as com- 
parison distributions when it is undesirable or 
impossible to employ extensive numerical compu- 
tational facilities. A possible drawback is that they 
are underdispersed (coefficient of variation 5 l), and 
so probably would work best for systems whose life 
distributions had the same property. 

For overdispersed distributions, suitable compar- 
ison distributions include mixtures of exponentials. 
The renewal function for the mixture p( 1 - e- Af) + 
q(l - e-p’), p + q = 1, t 2 0, and 2, p > 0, may 
be shown by elementary Laplace transform methods 
to be 
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as long as qA + pp > 0. Whitt (1982) gave a simple 
procedure for matching a mixture of exponentials to 
a given overdispersed distribution by using the first 
two moments. 

Renewal functions for some other distributions have 
been tabulated for certain values of their parameters. 
See Baxter, Scheuer, McConalogue, and Blischke 
(1982) for a complete discussion. Life distributions 
whose renewal functions have been tabulated can 
also be used in the approximation procedure de- 
scribed here. 

The main results in this article are for two renewal 
functions corresponding to two different life distri- 
butions. I obtain upper and lower bounds for the 
difference between the two renewal functions at each 
time point. The lower bound at a given time point 
is expressed in terms of a difference between the two 
underlying life distributions at the same time point. 
The upper bound is expressed in terms of the max- 
imum difference between the two underlying life dis- 
tributions over the time interval from 0 to the given 
time point, as well as reciprocals of the two survival 
functions. Moreover, I obtain an upper bound for 
the difference between the reciprocals of the two 
augmented renewal functions, again using the max- 
imum difference of the two underlying life distribu- 
tions over the same time interval. I show that the 
renewal functions are ordered in the same way that 
their life distributions (or their hazard rates) are. 
This leads me naturally to consider what other or- 
dering properties may obtain between two renewal 
processes; I therefore discuss the conjecture that the 
map that takes a renewal process onto its associated 
renewal counting process reverses stochastic order 
(if two renewal processes are stochastically ordered, 
then their associated renewal counting processes are 
stochastically ordered in the reverse sense). 

A renewal counting process is, of course, more 
comprehensively characterized by the distribution of 
the number of renewals than it is by the renewal 
function. It would, therefore, be useful to have bounds 
for the difference between two distributions of num- 
ber of renewals, similar to those I give for renewal 
functions. To say that the development of such bounds 
is outside the scope of the present article is in no 
way to minimize the importance of being able to 
compare the whole distributions of number of re- 
newals instead of just the renewal functions (i.e., 
their expected values). 

The remainder of this article is organized as fol- 
lows. Section 2 contains the statements of the results 
for the renewal function. Section 3 contains three 
examples illustrating the application of the results in 
Section 2. All mathematical details and proofs are 
in the Appendix. 

2. STATEMENT OF RESULTS 

2.1 Definitions and Preliminaries 

Let F and G be life distributions-that is, cumu- 
lative distribution functions, continuous from the 
right, with F(O-) = G(O-) = 0. Denote the re- 
spective renewal functions (see Sec. 1) by MF and 
MG. As notation for the Stieltjes convolution, let 
F * G(t) stand for & F(t - u) dG (u). For successive 
convolutions, define Fl = F and for n > 1, F,,, 1 = 
F,, * F. F0 represents the identity for Stieltjes con- 
volution-namely, the unit step function with step 
at 0. Then the renewal function MF for F is given by 

M,(t) = i F,(t) (2.1) 
n=l 

(Karlin and Taylor 1975, sec. 5.1). The augmented 
renewal function includes a renewal at 0 and is given 
by IV; = F,, + MF. 

2.2 Upper Bounds 

The goal is to express the difference between two 
renewal functions, which may be impossible or in- 
convenient to compute, in terms of the difference 
between their underlying life distributions, which 
should be easier to compute. In practice, we will have 
a renewal process with interrenewal time distribution 
F whose renewal function MF is not known in closed 
form or tabulated. We then choose a distribution G 
that is uniformly close to F over the time interval of 
interest and whose renewal function MG can be com- 
puted or is tabulated. We use M&t) as an approxi- 
mation to the unknown MF(t). Expressions like (2.2), 
(2.3), and (2.5) are then used to develop both a 
bound on the approximation error and upper and 
lower bounds for the unknown renewal-function 
value. This procedure is illustrated in (3.5) of Ex- 
ample 2 (Sec. 3). 

The first upper bound expresses the difference be- 
tween the two renewal functions, even if both are 
unknown, in terms of quantities that can be com- 
puted as long as F and G are known. 

Proposition 1. For every T > 0 satisfying F(T) 
< 1, G(T) < 1, 

IM&) - M&)1 
5 (1 - F(t))-‘(1 - G(t))-‘[IF - GIIm.T, 

0 5 t 5 T, (2.2) 

where IIF - GIIY,r = sup,maT IF(t) - G(t)l. 

In practice, if one had a value s at which this ap- 
proximation was desired, then one would use (2.2) 
with t = T = s, because (JF - Gllr,ris nondecreasing 
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in T. In this first result, the difference between the 
life distributions is the supremum of their absolute 
difference over the time interval of interest. Both the 
supremum and the reciprocal survival-function terms 
control how small the right side of (2.2) can be so 
that if T is too large, the bound may be less effective. 
If more information about F and G is available, the 
bound can be improved to involve only the absolute 
difference between the two life distributions at each 
point. This is the content of the next result. 

Corollary 1. If 1 F(t) - G(t)1 is nondecreasing on 
an interval [0, T] with F(T) < 1, G(T) < 1, then 

PM) - M&)l 
1. (1 - F(t))-‘(1 - G(t))-‘IF(t) - G(t)l, 

0 5 t 5 T. (2.3) 

To obtain some increased precision for small val- 
ues of t, we have traded away the generality of F and 
G that held in (2.2). Statement (2.3) holds only as 
long as the absolute difference between F and G does 
not decrease. In practice, this may be easiest to show 
when F and G are two members of the same para- 
metric family of distributions (see Ex. 1, Sec. 3, for 
an illustration). 

The final upper bound given is for the difference 
of the reciprocals of the augmented renewal func- 
tions for F and G. This result is of more theoretical 
than practical interest, because it has to be cast in 
the form (2.2) or (2.3) before it is good for obtaining 
an estimate of the difference between the renewal 
functions (without the reciprocals). Its proof (see the 
Appendix) shows, however, that this is the result 
from which all of the others derive. 

Theorem 1. For every T > 0, 

IMO,(t)-’ - MO,(t)-‘I 5 IIF - GIIm.r, 

0 IS t 5 T. (2.4) 

2.3 Lower Bound 

I offer only one simple lower bound for the dif- 
ference between the two renewal functions. There is 
some more discussion in the Appendix about how 
this lower bound can be modified when more infor- 
mation is available. 

Proposition 2. Suppose that there is a Tfor which 
G(t) 5 F(t) for all t E [0, T]. Then 

MF(t) - M&t> 2 F(t) - G(t), OstsT. 

(2.5) 

2.4 Ordering 

The lower bound (2.5) leads to two order results, 
the second of which has become somewhat of a folk- 
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lore result of reliability theory; it is that one can 
obtain a conservative approximation to the number 
of failures of a renewable system by applying the 
same model to a distribution function having an 
everywhere larger hazard rate. The formulation given 
here provides a simple analytic proof. 

Theorem 2. If F(t) 2 G(t) for all t E [0, T], then 
MF(t) 2 M&t) (0 % t I T). 

Corollary 2. Let hF and hc denote the hazard- 
rate functions for F and G, respectively. Suppose 
that hF(t) 2 h,(t) for all t E [0, T]. Then MF(t) 2 
MG(t) (0 5 t I T). 

2.5 Review of Large-Time Asymptotic Results 

Large-time limit theorems abound in renewal the- 
ory. Indeed, the subject can be said to be extensively 
concerned with what happens to systems modeled by 
renewal processes after initial transients have died 
out. It is the “early-time” transient behavior that is 
important for reliability modeling of highly reliable 
systems, however, because for these systems steady 
state may not be reached until long after the system’s 
service life is over. To give a more complete picture 
of how to compare two renewal processes, I will 
review some large-time asymptotic results that com- 
plement the bounds given in Sections 2.2 and 2.3. 

Let pF and pLG denote the first moments of F and 
G, respectively, and let a; and 0: denote their sec- 
ond central moments. Assume that these are all finite 
and that F and G are nonlattice or nonarithmetic [a 
distribution is arithmetic, or lattice, if it is concen- 
trated only on multiples of a single positive number, 
called its span (see Feller 1971, p. 360)]. For large 
values of t, the elementary renewal theorem allows 
us to assert that MF(t) - MG(t) - (pi1 - ,uc’)t, as 
long as ,D~ # ,uc. The renewal theorem also gives the 
second term in the asymptotic expansion 

fit [M&l - M&t) - t(&’ - PE~)I 

= (a; - /+)/2& - (o”G - ,&)/2& (2.6) 

(Karlin and Taylor 1975, sec. 5.6b). This enables us 
to see what is happening when PF = pc = ,u. In that 
case, we have MF(t) - MG(t) converging to (of- - 
&)/2p2. We can also see that a necessary and suf- 
ficient condition for MF(t) - MG(t) to converge to 
0 is that F and G have equal means and equal vari- 
antes . 

For lattice distributions, the conclusions of the el- 
ementary renewal theorem only hold on the lattice 
points. Therefore, to be precise, these distributions 
have to be singled out for annoying, but unenlighten- 
ing, special treatment. If F is lattice with span (Y and 
G is lattice with span p, then the left side of (2.6) 
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t;;,tobereplaced by lim,,, [M,(na) - M,(Q) - 
/$A; I)]. If only 0 ne of For G is lattice with 

span (Y and the other is not lattice, then the left side 
of (2.6) has to be replaced by lim,,, (M,(na) - 
M,(w) - ncu(,uCc;’ - pal)]. These technicalities cause 
additional bookkeeping in these special cases, but 
because the renewal function is supported on the 
same lattice that the distribution is, this has to be 
taken into account in the conclusions one would reach 
about the asymptotic behavior of the corresponding 
renewal processes. 

In particular, if you choose a life distribution with 
a known renewal function for approximating another 
with unknown renewal function by matching the dis- 
tributions’ first two moments, the large-time behav- 
ior of the approximation becomes MF(t) - MG(t) = 
o(1) as t -+ a. If the means are equal, but the vari- 
ances are not (this is the situation that prevails in 
Ex. 2 of Sec. 4), we get MF(t) - MG(t) = O(1). If 
the means are not equal, the two renewal functions 
grow apart from each other like a constant times t. 
In any case, these are better than (2.2) would give 
for large t, reinforcing again the idea that the results 
of this section are most useful for small t. 

2.6 Stochastic-Order Relations Between 
Renewal-Counting Processes 

Finally, I discuss some results about stochastic or- 
der (Kamae, Krengel, and O’Brien 1977). This sec- 
tion does not help with the computation of bounds 
or approximations, but it provides more qualitative 
insight into the comparison of two renewal processes 
and their associated renewal-counting processes. 

If X has distribution F and Y has distribution G, 
then we say that X is stochastically greater than Y 
(X +, Y) if s a dF I s a dG for every bounded 
increasing real-valued function a. If X and Y are 
processes, then X zsr Y if s a dF 5 s a dG for all 
the finite-dimensional distributions F of X and G of 
Y. Let X = (X,, X,, . . .) and Y = (Y,, Y,, . . .) 
be renewal processes having interrenewal time dis- 
tributions F and G, respectively, and let {N,(t) : t 
2 0} and {NY(t) : t 2 0) be their respective renewal- 
counting processes. If F(t) Z- G(t) for all t Z- 0, then 
X, ssl Y, for every i, and, by independence, X ss, Y 
as processes. Further, Pr{N,(t) 2 k} = Fk(t) 2 Gk(t) 
= Pr{N,(t) L k} f or every t (see the beginning of 
the Appendix), so N,(t) zs, NY(t) as random vari- 
ables for every t. In intuitive terms, if the interevent 
intervals of the X process tend to be shorter than 
those of the Y process, then the number of renewals 
in the X process will tend to be greater than the 
number of renewals in the Y process. Is it true, then, 
that the map that takes a renewal process onto its 
associated renewal-counting process always reverses 

stochastic order (of processes)? If X and Y have 
exponential interrenewal time distributions, then the 
answer is yes for the homogeneous Poisson processes 
{N,(t)} and {NY(t)}. This is false in general, however. 
Using the dependence of N,(t,) and N,(t,) - N,(t,), 
examples can be constructed that show that the two- 
dimensional distributions of Nx and N, need not be 
ordered even when X and Y are stochastically or- 
dered. 

3. EXAMPLES 

This section contains three examples illustrating 
the applicability of the results of Section 2. The first 
is a simple one that illustrates the ideas without get- 
ting bogged down in too many computational details. 
The second is a more realistic example from a reli- 
ability model, although the answer can still be ob- 
tained in closed form for this example. The third 
example is similar to the second, but it involves log- 
normal distributions for which no closed-form solu- 
tions are available. 

Example I. Let F(t) = 1 - emAr and G(t) = 1 
- e-l”, and suppose that Jb > ,D. Then SUP~,~,<~ I F(t) 
- G(t)1 is attained at T = (In 1 - In p)/(J. - p). 
Because of this, (2.3) holds for 0 % t 5 T, and we 
thereby obtain (A - ,u)t 5 e(;+Lf)‘(e-pr - e-I’) = eAr 
- @‘for 0 5 t 5 T. For the lower bound, we observe 
that A > ,D implies that F(t) 2 G(t) for all t, so 
Proposition 4 yields (J. - ,u)t 2 e-1” - e-“‘. Com- 
bining these, we obtain 

In fact, (3.1) holds over all of [0, m); this follows 
from the intermediate-value theorem. The example 
suggests, again, that (2.3) and (2.5) are not likely to 
be very good for large t. As observed previously, 
however, this is not the region of major interest for 
these bounds. 

The point of this example is not that we are learn- 
ing something new from it about renewal functions 
for exponential distributions but rather to illustrate 
all of the approximation results obtained previously 
in a case in which all of the relevant quantities can 
be computed easily. In practical applications, of 
course, one would compute the renewal function for 
only one of F(t) or G(t). One would then have three 
known values [F(t), G(t), and MG(t), say] in (2.2), 
(2.3), or (2.5) with which to gain information about 
the fourth, unknown, value [in this case, MF(t)]. This 
is illustrated in Examples 2 and 3. 

Example 2. In a recent undersea fiber optics ca- 
ble communications system design, each repeater 
contained equipment to enable two directions of 
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transmission. This equipment consisted of three fi- 
bers and associated regenerators that were otherwise 
unrelated, two of which were active and the third of 
which was operated in hot standby to improve overall 
reliability. Each direction of transmission in each re- 
peater, then, was modeled as a two-out-of-three hot 
standby ensemble of identical, stochastically inde- 
pendent units. We will begin this example with the 
simple assumption that each regenerator has life dis- 
tribution 1 - e-“I; we will replace this with a more 
realistic assumption in Example 3. In this design (dif- 
ferent from the one described in Sec. 1) the least 
replaceable unit is the ensemble; that is, all three 
units are turned on at time 0, and at the time of the 
second unit failure, the entire ensemble or system of 
three units is instantaneously replaced with a new 
one. In reality, of course, the time it takes to do this 
replacement is nonzero, but it is short enough com- 
pared with the expected ensemble life that the pure 
renewal process model gives good results. Operation 
continues in this way indefinitely. The reliability model 
for this system is a renewal process, with the time 
between renewals governed by the system life dis- 
tribution. If the unit lifetimes are X1, X,, X,, then 
the system life is Xc2,, the second-order statistic of 
the three X’s. Then, ignoring possible switching de- 
vice unreliability, the system life distribution is 

F(t) = Pr{X,,, I t} = 3(1 - eezit) - 2(I - e-31t). 

(3.2) 
From this, the expected system life is 5/61, and the 
variance of the system life is 13/36L2. This distri- 
bution is underdispersed, so we have a chance for 
success if we choose an appropriate Erlang distri- 
bution for comparison. The Erlang distribution of 
order k, whose distribution function is 

has mean kl,u and variance kl,u*. The Erlang distri- 
bution whose first two moments most closely match 
those of F is that of order two-namely, G(t) = 1 
- (1 + ,ut)e-fl’, with ,u = 121/5. Its mean matches 
that of F exactly, and its variance is 25/72/22, which 
differs from the variance of F by less than 4% relative 
error. From Parzen [1962, chap. 5, eq. (2.28)], I 
obtain the renewal function for G as 

MG(t) = y t - $ (1 - e-241r’5). (3.3) 

Suppose now that the system design life, or service 
life, is to = 25 years (219,150 hours), that 1 is equal 
to 2.3 failures per million hours (2,300 failures in lo9 
hours), and that I want to estimate the expected num- 
ber of system failures over the system design life. 

This latter quantity is MF(tD). F(t) - G(t) is positive 
and increasing over the interval [0, tD] (even though 
it is only elementary calculus, this is where the great- 
est amount of work needs to be done in establishing 
the bounds). Thus by Proposition 2 and Corollary 1, 
we may write 

F(t) - G(t) 5 M&) - M&) 

I (1 - F(t))-‘(1 - G(t))-‘(F(t) - G(t)) (3.4) 

for all t between 0 and tD. In particular, (3.4) holds 
for t = to. Evaluating F(t,) = .34613 from (3.2), 
G(t,) = .34088, and M&t,) = .37710 from (3.3), 
we obtain from (3.4) 

.00525 5 MF(tD) - .37710 5 .01218, (3.5) 

or .38235 % MF(tD) 5 .38928. The spread in this 
bound is less than 2%, and it should, therefore, be 
very useful in approximating MF(tD) for any practical 
purpose. 

The large time limit of M,(t)lt is 2.760 x 10e6. 
If we were to use this large time limit to approximate 
MF(tD), we would obtam MF(tD) = .60485, which is 
conservative but is 57% too big. In this example, the 
components of the system are highly reliable, and 
the system’s failure process does not reach a steady- 
state condition until long after service life is over. 

In this case, one can get the renewal function for 
F from (1.1); it is 

MF(t) = y t - & (1 - eesl’). 

From this, we obtain MF(tD) = .38416, which is 
squarely between the two bounds obtained previ- 
ously. 

Example 3. Consider again the two-out-of-three 
hot standby ensemble of regenerators described in 
Example 2, except that now take the unit life distri- 
bution L(t) to be lognormal with mean l/L and vari- 
ance l/A2 [this gives a median of ll(,?t/2) and a 
spread factor of (In 2)“*]. The lognormal distribution 
often has been used to describe the reliability of var- 
ious semiconductor devices, both discrete and inte- 
grated (Peck and Zierdt 1974). Since the component 
that dominates the reliability of the regenerator is 
the semiconductor laser and its life has been modeled 
with the lognormal distribution, we will take the re- 
generator life distribution to be lognormal even though 
the true regenerator life distribution may deviate 
slightly from lognormal because of the effects of its 
other components. Again the least replaceable unit 
is the whole ensemble. Ignoring possible switching 
device unreliability, the system life distribution is 
F(t) = 3L(t)2 - 2L(t)3. We want to find the value 
of the renewal function MF for F at the end of the 
service life to, again taken as 219,150 hours. Using 
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2-l = 434,782.61 hours, the same mean as in Ex- 
ample 2, we obtain F(t,) = .23217. The mean and 
variance of F are unknown in this case, however, so 
a certain amount of trial and error is needed. This 
is facilitated by use of the S statistical programming 
language to evaluate the lognormal distributions and 
to draw appropriate graphs. 

We will again use an Erlang distribution of order 
two for the comparison distribution G. For values of 
I( that make G(t,) reasonably close to F(t,), F and 
G cross somewhere between 0 and tD, so we cannot 
use (2.3) or (2.5). We will use (2.2) instead. Then 
the strategy becomes to choose p so that IIF - 
Gil I,fn is as small as possible. It is reasonable here to 
use p = 3.6 x 10m6, yielding G(t,) = .18724 and 
IIF - GIL,, = .07851. From (2.2), we then obtain 
]MF(tD) - .196071 I .07851, from which it follows 
that .11756 5 MF(fD) 5 .27458. For the lower bound, 
clearly we can do much better using the simple in- 
equality MF(tD) 2 F(t,), so finally we obtain .23217 
I MF(tD) I .27458. The spread in these bounds is 
about 18%, which is not as good as we got in Ex- 
ample 2. Here, however, we have to take into ac- 
count the qualitative differences between F, an al- 
gebraic combination of lognormal distributions, and 
the comparison distribution, which we restricted to 
be an Erlang of order two for comparison purposes 
with Example 2. Perhaps a shifted exponential dis- 
tribution would work better as the comparison dis- 
tribution, because F does not get bigger than .OOl 
until nearly 55,000 hours have passed. Intuitively, 
the shifted exponential also has a better chance of 
staying below F over [0, to]. If so, (2.5) could be 
used to obtain a lower bound. 

4. SUMMARY AND CONCLUSIONS 

We have obtained upper and lower bounds for the 
difference between two renewal functions corre- 
sponding to two different life distributions. These 
results are used to examine various order relation- 
ships that hold for the renewal functions based on 
corresponding order relationships that hold for their 
underlying life distributions. These also lead to a 
simple proof of the intuitively satisfying fact that if 
the hazard rate of F is never exceeded by that of G, 
then the renewal function for F is never exceeded by 
that for G. The results are also used to provide an 
approximation procedure for an unknown or diffi- 
cult-to-compute renewal function in terms of a known 
or easier-to-compute renewal function. The proce- 
dure also gives bounds on the error of approxima- 
tion. 
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APPENDIX: PROOFS OF THE RESULTS IN 
SECTION 2 

I begin by stating some simple properties of Stieltjes 
convolution. First, it is commutative, associative, and 
distributive over addition. Second, F * G(t) I F(t)G(t). 
This follows by F * G(t) = j$ F(t - u) dG (u) 5 
F(t) & dG (u) I F(t)G(t). Third, if G(t) 5 F(t) 
for all t E [0, T], then G,(t) I F,(t) for all t E [0, 
T]. To see this, note that G2(t) = G * G(t) I F * 
G(t) = G * F(t) 5 F * F(t) = F2(t) and proceed by 
induction. 

Since the proof of Proposition 2 follows almost 
immediately from this, I will take the opportunity to 
record it now, even though it is somewhat out of 
sequential order. 

Proof of Proposition 2. We have, for all appro- 
priate t, 

MF(f) - MO(t) = F(t) - G(t) 
m 

+ nT2 [F,(t) - G,,(t)] 2 F(t) - G(t), (A.l) 

because the sum is nonnegative by the inequality 
stated previously. 

The same argument shows that, under the same 
conditions, 

k&(r) - &(t) 2 i [F,(t) - G,(t)], k 2 1, 
n=l 

although this is somewhat less practical than (A.l) 
as a simple computational tool when k > 1. Theorem 
2 follows immediately from Proposition 2. Corollary 
2 follows by noting that ordering of the hazard-rate 
functions entails ordering of the corresponding life 
distributions through the equality 1 - F(f) = 
exp( - ./b MS) 4. 

Theorem 1 is presented after Proposition 1 and 
Corollary 1 in the text because it is less suited for 
immediate computational use. I will give the proof 
of Theorem 1 first, however, because Proposition 1 
and Corollary 1 follow quickly from it. 

Proof of Theorem 1. Begin by showing that 
n-1 

IF,(t) - G,(t)] 5 IIF - Gllx.7 c Fk * Gnm,~(f). 
k=O 

(A4 

Do this by induction. For n = 1, this follows from 
the definition of the norm. Assume the induction 
hypothesis for n. Then F,+,(t) - G,+,(t) = (F - 
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G) * F,(t) + (F, - G,) * G(t) by adding and sub- 
tracting the needed term. Here is the induction step: 

P,+,W - G+,(t)1 

I 
r 5 IF(t - u) - G(t - u)ldF,(u) 
0- 

+ 
I ’ IF,@ - u) - G,(t - u)l dG (u) 
(1~ 

+ 
I 

’ IIF - GIi,,,ni Fk * Gnm,-& - u) dG (CL) 
0- k=” 

i 

“-1 
= IIF - GILT F,(t) + 2 Fk * Gndf) 

k=” 1 

= IIF - GILT go 6 * G-&J. 

Now complete the demonstration of (2.4) as follows: 

I&(f) - JMf>l 5 i: kz(t) - G,(t)1 
n=I 

= IIF - Gllx,r fj i: Fk-1 * G+,(t) 
k=l n=k 

= IIF - Gllu,~ c i: Fk-1 * G-I(~) 
k=l n=l 

= W * Mi(t)llF - Gllm,~, 
from which (2.4) follows by observing that M! * 
M:(t) 5 M$(t)MO,(t) because M$ and MO, are non- 
decreasing and then collecting terms. 

Proposition 1 follows immediately from the ob- 
servation that 

M;(t) = i F,(t) 5 c F(t)” = (1 - F(t))-’ 
n=o n=O 

whenever F(t) < 1. Corollary 1 then follows by ob- 

serving that since IF(t) - G(t)/ is nondecreasing on 
[0, T], ~up~~~~, IF(s) - G(s)] = /F(t) - G(t)1 for 
every t E [0, T]. 
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