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Elementary methods are used to obtain upper and lower bounds for the difference between
two renewal functions corresponding to two different life distributions and to obtain various
order relationships between them that follow from order relationships on the underlying life
distributions. The bounds are used to approximate the value of an unknown renewal function
by the value of a known renewal function and to bound the error of approximation by
expressions involving the difference between the two underlying life distributions. They are
useful mainly in the region where time is small compared with the means of the two distri-
butions, and they therefore supplement the information that can be obtained for large time
using the elementary renewal theorem. These results find major application in reliability

modeling of highly reliable systems.
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1. INTRODUCTION

In this article, elementary methods are used to
obtain easily computable upper and lower bounds
for the difference between two renewal functions cor-
responding to two different life distributions. I also
obtain various order and stochastic-order results for
the corresponding renewal-counting processes,
thereby making it possible to compare numbers of
renewals in terms of the hazard rates of the under-
lying life distributions. The bounds are used to ap-
proximate the value of an unknown or difficult-to-
compute renewal function by the value of a known
or easier-to-compute renewal function and to bound
the error of approximation by expressions involving
the difference between the two underlying life dis-
tributions.

A renewal process (Thompson 1981, sec. 3) is a
sequence {X,, X3, . . .} of mutually iid nonnegative
random variables. In reliability-modeling applica-
tions, these random variables represent the succes-
sive lifetimes of a unit or system that, upon failure,
is replaced by a new one or is overhauled to as-new
condition. The renewal process is frequently used as
a model for the reliability of a maintained system in
which repair restores the system to as-new condition
and repair times are negligible in comparison to op-
erating times. Reliability studies often are interested
in the number of failures of the unit over a given
time interval. To obtain this in the renewal model,
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the renewal counting process {N(t) : ¢t = 0} is intro-
duced. N(¢) is the number of failures that have oc-
curred by time ¢. In the notation introduced previ-
ously, N(t) = max{n : X; + - + X, = t}. The
renewal function M(t) = EN(¢) is the expected num-
ber of failures that have occurred by time ¢ and is an
important reliability figure of merit for maintained
systems in which the renewal model of repair is ap-
propriate.

The limiting behavior of the renewal function for
large time is well known, and I review this in Section
2.5. For highly reliable systems, however, it may be
that the system design life is quite short compared
with the time required for the limiting results to be-
come valid as approximations to the transient (near
time 0) values of the renewal function. Since renewal
functions are available in closed form only in a few
special cases, their transient behavior can be hard to
obtain. Thus there is interest in obtaining bounds
and approximations that would help pin down the
expected number of system failures even for highly
reliable systems and for small times.

I give such bounds in this article. They are tight
mainly in the region where time is small compared
to the means of the two distributions concerned, and
therefore they supplement information that can be
obtained for large time from the elementary renewal
theorem (see Sec. 2.5). Indeed, the bounds I give
are generally not very good for large time. In prac-
tical terms, this means that they are most useful for
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modeling highly reliable systems (in which the time
it takes for the system’s reliability process to reach
steady state, or become approximately stationary, is
large compared to the system design life) when it is
also important to have a good measure of the ex-
pected number of system failures because of, say,
great expense or inconvenience of repair. They are
also useful for analysis of warranties when the war-
ranty period may be considerably shorter than the
mean of the time to the first system failure. The
development of these results was motivated by the
reliability analysis of an intercontinental undersea
cable telecommunications system, in which use of
the large-time approximations afforded by the ele-
mentary renewal theorem led to large errors. Repair
on this system is accomplished by replacing a failed
repairable unit (a repeater) by a new one, an ex-
pensive, disruptive, and time-consuming process. A
renewal model was used for each repeater, because
the effect of a repair was to install a new repeater in
place of a failed one. Since a reliability objective for
the whole system included a requirement on the
number of system failures over its design life, a sys-
tem-reliability model was chosen in which the re-
newal function for each repeater was multiplied by
the number of repeaters in the system (all repeaters
were identical). The system’s individual components
were so highly reliable, however, that its design life
was comparable to the mean of the time to the first
system failure and was short compared to the time
it would take for the large-time limits to become
useful as reliability figures of merit. The large-time
limits from the elementary renewal theorem then led
to overly pessimistic values for the expected number
of repeater replacements over the system design life.

The bounds are useful in reliability computations
and comparisons for maintained systems or units
whose sequence of failures is modeled as a renewal
process. Renewal functions are known in closed form
only in a few special cases. In general, finding the
renewal function for a life distribution involves sum-
ming an infinite series of convolution integrals (Cler-
oux and McConalogue 1976; McConalogue 1981),
numerically solving the renewal integral equation
(Deligonul and Bilgen 1984; Soland 1969; Tortorella
1987), or numerically inverting a Laplace transform.
If hardware or software for performing these com-
plicated numerical computations is not available, or
if one simply wants to obtain an approximation for
the reliability of a system modeled by a renewal pro-
cess, one could replace the life distribution for the
system by a distribution having a closed-form re-
newal function, and use the bounds given here to
measure the error arising from this approximation
procedure.
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Closed forms are known for the renewal functions
of the shifted exponential and truncated exponential
distributions (Barlow and Proschan 1965, p. 57) and
of the distributions of phase type. A distribution is
of phase type if it is the distribution of time to ab-
sorption in a finite-state Markov chain having one
absorbing state and all other states transient. Dis-
tributions of phase type were introduced by Neuts
in 1975; all pertinent information can be found in
Neuts (1981). Since the phase-type distributions are
dense in the set of all continuous distributions in the
uniform norm, any continuous distribution can be
approximated by a phase-type distribution for which
the supremum of the absolute difference between the
two distributions is as small as desired (and specified
at the beginning of the procedure). One could then
choose to approximate the renewal function for the
original distribution, whose renewal function may
not be expressible in closed form, by the renewal
function for the approximating phase-type distribu-
tion (which is computable). The results in this article
can then be used to express the error of approxi-
mation for the renewal functions in terms of the error
of approximation for the distributions.

The familiar exponential and Erlang (gamma with
integer shape parameter) distributions are special cases
of phase-type distributions. The renewal function for
the exponential distribution 1 — exp(—4r) is well
known as simply Az. The renewal functions for the
Erlang distributions were given by Parzen (1962, chap.
5, eq. 2.30). For the general distribution of phase
type, the renewal function was given by Neuts (1981,
eq. 2.4.6), although computation of these renewal
functions can still be a formidable task, since one
needs to solve a (possibly large) system of ordinary
differential equations (Neuts 1981, eq. 2.4.8) to get
started. An algorithm for carrying out these com-
putations was given by Kao (1988). Thus the expo-
nential and Erlang distributions will be useful as com-
parison distributions when it is undesirable or
impossible to employ extensive numerical compu-
tational facilities. A possible drawback is that they
are underdispersed (coefficient of variation < 1), and
so probably would work best for systems whose life
distributions had the same property.

For overdispersed distributions, suitable compar-
ison distributions include mixtures of exponentials.
The renewal function for the mixture p(1 — e #) +
gl —e*,p+qg=11¢=0,and 4, x> 0, may
be shown by elementary Laplace transform methods
to be
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as long as g4 + pu > 0. Whitt (1982) gave a simple
procedure for matching a mixture of exponentials to
a given overdispersed distribution by using the first
two moments.

Renewal functions for some other distributions have
been tabulated for certain values of their parameters.
See Baxter, Scheuer, McConalogue, and Blischke
(1982) for a complete discussion. Life distributions
whose renewal functions have been tabulated can
also be used in the approximation procedure de-
scribed here.

The main results in this article are for two renewal
functions corresponding to two different life distri-
butions. I obtain upper and lower bounds for the
difference between the two renewal functions at each
time point. The lower bound at a given time point
is expressed in terms of a difference between the two
underlying life distributions at the same time point.
The upper bound is expressed in terms of the max-
imum difference between the two underlying life dis-
tributions over the time interval from 0 to the given
time point, as well as reciprocals of the two survival
functions. Moreover, 1 obtain an upper bound for
the difference between the reciprocals of the two
augmented renewal functions, again using the max-
imum difference of the two underlying life distribu-
tions over the same time interval. I show that the
renewal functions are ordered in the same way that
their life distributions (or their hazard rates) are.
This leads me naturally to consider what other or-
dering properties may obtain between two renewal
processes; I therefore discuss the conjecture that the
map that takes a renewal process onto its associated
renewal counting process reverses stochastic order
(if two renewal processes are stochastically ordered,
then their associated renewal counting processes are
stochastically ordered in the reverse sense).

A renewal counting process is, of course, more
comprehensively characterized by the distribution of
the number of renewals than it is by the renewal
function. It would, therefore, be useful to have bounds
for the difference between two distributions of num-
ber of renewals, similar to those I give for renewal
functions. To say that the development of such bounds
is outside the scope of the present article is in no
way to minimize the importance of being able to
compare the whole distributions of number of re-
newals instead of just the renewal functions (i.e.,
their expected values).

The remainder of this article is organized as fol-
lows. Section 2 contains the statements of the results
for the renewal function. Section 3 contains three
examples illustrating the application of the results in
Section 2. All mathematical details and proofs are
in the Appendix.

2. STATEMENT OF RESULTS
2.1 Definitions and Preliminaries

Let F and G be life distributions——that is, cumu-
lative distribution functions, continuous from the
right, with F(0°) = G(0~) = 0. Denote the re-
spective renewal functions (see Sec. 1) by My and
M. As notation for the Stieltjes convolution, let
F* G(¢) stand for f%- F(t — u) dG (u). For successive
convolutions, define F;, = Fand forn > 1, F,,, =
F, * F. F, represents the identity for Stieltjes con-
volution—namely, the unit step function with step
at 0. Then the renewal function My for F is given by

Mg(t) = ; F(1) 2.1

(Karlin and Taylor 1975, sec. 5.1). The augmented
renewal function includes a renewal at 0 and is given
by MO - FO + MF'

2.2 Upper Bounds

The goal is to express the difference between two
renewal functions, which may be impossible or in-
convenient to compute, in terms of the difference
between their underlying life distributions, which
should be easier to compute. In practice, we will have
arenewal process with interrenewal time distribution
F whose renewal function M is not known in closed
form or tabulated. We then choose a distribution G
that is uniformly close to F over the time interval of
interest and whose renewal function M can be com-
puted or is tabulated. We use M(¢) as an approxi-
mation to the unknown Mg(t). Expressions like (2.2),
(2.3), and (2.5) are then used to develop both a
bound on the approximation error and upper and
lower bounds for the unknown renewal-function
value. This procedure is illustrated in (3.5) of Ex-
ample 2 (Sec. 3).

The first upper bound expresses the difference be-
tween the two renewal functions, even if both are
unknown, in terms of quantities that can be com-
puted as long as F and G are known.

Proposition 1. For every T > 0 satisfying F(T)
<1, G(T) <1,

|Me(t) — Mg(2)]
=(1 - F@®))'(1 = GO)) UF = Gllur,
0=t=T, (2.2)
where ||[F — Gllr = supo=i=r |F(t) — G(1).

In practice, if one had a value s at which this ap-
proximation was desired, then one would use (2.2)
witht = T = s, because | F — G|, ris nondecreasing
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in 7. In this first result, the difference between the
life distributions is the supremum of their absolute
difference over the time interval of interest. Both the
supremum and the reciprocal survival-function terms
control how small the right side of (2.2) can be so
that if 7'is too large, the bound may be less effective.
If more information about F and G is available, the
bound can be improved to involve only the absolute
difference between the two life distributions at each
point. This is the content of the next result.

Corollary 1. If |F(t) — G(t)| is nondecreasing on
an interval [0, T] with F(T) < 1, G(T) < 1, then

|ME(t) — Ms(t)|
=1 - F@) ' - GW)'F®) - G@),
O0=st=T (23

To obtain some increased precision for small val-
ues of ¢, we have traded away the generality of FFand
G that held in (2.2). Statement (2.3) holds only as
long as the absolute difference between Fand G does
not decrease. In practice, this may be easiest to show
when F and G are two members of the same para-
metric family of distributions (see Ex. 1, Sec. 3, for
an illustration).

The final upper bound given is for the difference
of the reciprocals of the augmented renewal func-
tions for F and G. This result is of more theoretical
than practical interest, because it has to be cast in
the form (2.2) or (2.3) before it is good for obtaining
an estimate of the difference between the renewal
functions (without the reciprocals). Its proof (see the
Appendix) shows, however, that this is the result
from which all of the others derive.

Theorem 1. For every T > 0,
M)~ = M)~ = IF = Glar,
0=t=T. (24
2.3 Lower Bound

I offer only one simple lower bound for the dif-
ference between the two renewal functions. There is
some more discussion in the Appendix about how
this lower bound can be modified when more infor-
mation is available.

Proposition2.  Suppose that there is a T for which
G(t) = F(t) for all t € [0, T]. Then
Me(t) — Ms(t) = F(t) — G(2), 0=t=T

(2.5)
2.4 Ordering

The lower bound (2.5) leads to two order results,
the second of which has become somewhat of a folk-
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lore result of reliability theory; it is that one can
obtain a conservative approximation to the number
of failures of a renewable system by applying the
same model to a distribution function having an
everywhere larger hazard rate. The formulation given
here provides a simple analytic proof.

Theorem 2. 1f F(t) = G(¢) for allt € [0, T], then
Mi(t) = M(t) (0=t = T),

Corollary 2. Let hy and hg denote the hazard-
rate functions for F and G, respectively. Suppose
that he(t) = hg(t) for all £ € [0, T]. Then My(t) =
M) (0=t=T).

2.5 Review of Large-Time Asymptotic Results

Large-time limit theorems abound in renewal the-
ory. Indeed, the subject can be said to be extensively
concerned with what happens to systems modeled by
renewal processes after initial transients have died
out. It is the “early-time” transient behavior that is
important for reliability modeling of highly reliable
systems, however, because for these systems steady
state may not be reached until long after the system’s
service life is over. To give a more complete picture
of how to compare two renewal processes, I will
review some large-time asymptotic results that com-
plement the bounds given in Sections 2.2 and 2.3.

Let ur and u¢ denote the first moments of F and
G, respectively, and let o and o7 denote their sec-
ond central moments. Assume that these are all finite
and that F and G are nonlattice or nonarithmetic [a
distribution is arithmetic, or lattice, if it is concen-
trated only on multiples of a single positive number,
called its span (see Feller 1971, p. 360)]. For large
values of ¢, the elementary renewal theorem allows
us to assert that Mp(t) — Ms(t) ~ (ur' — pg'ht, as
long as yr # pg. The renewal theorem also gives the
second term in the asymptotic expansion
lim (M,(0) ~ Mo(0) — (" ~ 1))

= (oF — up)/2ut — (0% — ue)/2ue (2.6)
(Karlin and Taylor 1975, sec. 5.6b). This enables us
to see what is happening when gy = gc = u. In that
case, we have M(r) — M(¢) converging to (6} —
6%)/2u%. We can also see that a necessary and suf-
ficient condition for M(t) — Ms(t) to converge to
0 is that F and G have equal means and equal vari-
ances.

For lattice distributions, the conclusions of the el-
ementary renewal theorem only hold on the lattice
points. Therefore, to be precise, these distributions
have to be singled out for annoying, but unenlighten-
ing, special treatment. If F is lattice with span « and
G is lattice with span f, then the left side of (2.6)
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has to be replaced by lim, .. [M(na) — M(nf) —
n(apr' — Bug)]. If only one of F or G is lattice with
span « and the other is not lattice, then the left side
of (2.6) has to be replaced by lim, ., [Mi(na) —
Ms(na) — na(ui' — ugt)]- These technicalities cause
additional bookkeeping in these special cases, but
because the renewal function is supported on the
same lattice that the distribution is, this has to be
taken into account in the conclusions one would reach
about the asymptotic behavior of the corresponding
renewal processes.

In particular, if you choose a life distribution with
a known renewal function for approximating another
with unknown renewal function by matching the dis-
tributions’ first two moments, the large-time behav-
ior of the approximation becomes M:(t) — Ms(t) =
o(1) as t — . If the means are equal, but the vari-
ances are not (this is the situation that prevails in
Ex. 2 of Sec. 4), we get My(¢) — Ms(¢) = O(Q1). If
the means are not equal, the two renewal functions
grow apart from each other like a constant times ¢.
In any case, these are better than (2.2) would give
for large ¢, reinforcing again the idea that the results
of this section are most useful for small ¢.

2.6 Stochastic-Order Relations Between
Renewal-Counting Processes

Finally, I discuss some results about stochastic or-
der (Kamae, Krengel, and O’Brien 1977). This sec-
tion does not help with the computation of bounds
or approximations, but it provides more qualitative
insight into the comparison of two renewal processes
and their associated renewal-counting processes.

If X has distribution F and Y has distribution G,
then we say that X is stochastically greater than Y
(X z,Y)if f a dF = [ a dG for every bounded
increasing real-valued function a. If X and Y are
processes, then X =, Yif [ a dF < [ a dG for all
the finite-dimensional distributions F of X and G of
Y.Let X = (X, X5, .. )and Y = (Y, Yo, . . )
be renewal processes having interrenewal time dis-
tributions F and G, respectively, and let {Nx(¢) : ¢
= 0} and {Ny(t) : ¢ = 0} be their respective renewal-
counting processes. If F(¢) = G(¢) for all t = 0, then
X; =, Y, for every i, and, by independence, X =, Y
as processes. Further, Pr{Nx(¢) = k} = F (1) = G(t)
= Pr{Ny(t) = k} for every ¢ (see the beginning of
the Appendix), so Nx(t) =, Ny(¢) as random vari-
ables for every ¢. In intuitive terms, if the interevent
intervals of the X process tend to be shorter than
those of the Y process, then the number of renewals
in the X process will tend to be greater than the
number of renewals in the Y process. Is it true, then,
that the map that takes a renewal process onto its
associated renewal-counting process always reverses

stochastic order (of processes)? If X and Y have
exponential interrenewal time distributions, then the
answer is yes for the homogeneous Poisson processes
{Nx(t)} and {N,(¢)}. This is false in general, however.
Using the dependence of Ny(#)) and Nx(8;) — Ny(t)),
examples can be constructed that show that the two-
dimensional distributions of Ny and Ny need not be
ordered even when X and Y are stochastically or-
dered.

3. EXAMPLES

This section contains three examples illustrating
the applicability of the results of Section 2. The first
is a simple one that illustrates the ideas without get-
ting bogged down in too many computational details.
The second is a more realistic example from a reli-
ability model, although the answer can still be ob-
tained in closed form for this example. The third
example is similar to the second, but it involves log-
normal distributions for which no closed-form solu-
tions are available.

Example 1. Let F(t) = 1 — e *and G(t) = 1
— e # and suppose that 4 > u. Then sup<,.. | F(¢)
— G(1)| is attained at T = (In 2 — In p)/(A — p).
Because of this, (2.3) holds for 0 =t = T, and we
thereby obtain (4 — p)t < e“*0ie # — e=4) = ¥
— e*for 0 = r = T. For the lower bound, we observe
that 4 > u implies that F(t) = G(¢) for all ¢, so
Proposition 4 yields (1 — )t = e * — e~*. Com-
bining these, we obtain

O0=r=T.
3.1

In fact, (3.1) holds over all of [0, «); this follows
from the intermediate-value theorem. The example
suggests, again, that (2.3) and (2.5) are not likely to
be very good for large ¢. As observed previously,
however, this is not the region of major interest for
these bounds.

The point of this example is not that we are learn-
ing something new from it about renewal functions
for exponential distributions but rather to illustrate
all of the approximation results obtained previously
in a case in which all of the relevant quantities can
be computed easily. In practical applications, of
course, one would compute the renewal function for
only one of F(¢) or G(r). One would then have three
known values [F(t), G(¢), and M(¢), say] in (2.2),
(2.3), or (2.5) with which to gain information about
the fourth, unknown, value [in this case, M(¢)]. This
is illustrated in Examples 2 and 3.

eH — e M= (A — )t =set — e

Example 2. In a recent undersea fiber optics ca-
ble communications system design, each repeater
contained equipment to enable two directions of
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transmission. This equipment consisted of three fi-
bers and associated regenerators that were otherwise
unrelated, two of which were active and the third of
which was operated in hot standby to improve overall
reliability. Each direction of transmission in each re-
peater, then, was modeled as a two-out-of-three hot
standby ensemble of identical, stochastically inde-
pendent units. We will begin this example with the
simple assumption that each regenerator has life dis-
tribution 1 — e¢~%; we will replace this with a more
realistic assumption in Example 3. In this design (dif-
ferent from the one described in Sec. 1) the least
replaceable unit is the ensemble; that is, all three
units are turned on at time 0, and at the time of the
second unit failure, the entire ensemble or system of
three units is instantaneously replaced with a new
one. In reality, of course, the time it takes to do this
replacement is nonzero, but it is short enough com-
pared with the expected ensemble life that the pure
renewal process model gives good results. Operation
continues in this way indefinitely. The reliability model
for this system is a renewal process, with the time
between renewals governed by the system life dis-
tribution. If the unit lifetimes are X, X,, X3, then
the system life is X,), the second-order statistic of
the three X’s. Then, ignoring possible switching de-
vice unreliability, the system life distribution is

F(t) = Pr{Xy <t} = 3(1 — e72¥) — 2(1 — e73%).
(3.2)

From this, the expected system life is 5/64, and the
variance of the system life is 13/364%. This distri-
bution is underdispersed, so we have a chance for
success if we choose an appropriate Erlang distri-
bution for comparison. The Erlang distribution of
order k, whose distribution function is

_ Qo )y
1 (1+,ut+ TR +(k—1)!e”’

has mean k/u and variance k/u?. The Erlang distri-
bution whose first two moments most closely match
those of F is that of order two—namely, G(¢) = 1
— (1 + wt)e #, with g = 124/5. Its mean matches
that of F exactly, and its variance is 25/7242, which
differs from the variance of F'by less than 4% relative
error. From Parzen [1962, chap. 5, eq. (2.28)], 1
obtain the renewal function for G as

64 1
Mg(r) = St

(1 — e~2415), (3.3)

Suppose now that the system design life, or service
life, is t, = 25 years (219,150 hours), that 1 is equal
to 2.3 failures per million hours (2,300 failures in 10°
hours), and that I want to estimate the expected num-
ber of system failures over the system design life.
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This latter quantity is M(zp). F(¢) — G(¢) is positive
and increasing over the interval [0, ¢,] (even though
it is only elementary calculus, this is where the great-
est amount of work needs to be done in establishing
the bounds). Thus by Proposition 2 and Corollary 1,
we may write

F(1) — G(1) = Mg(r) — Ms(2)
=1 - F@®)''d -~ G)[(F() - G() (3.4

for all ¢ between 0 and ¢5. In particular, (3.4) holds
for t = t,. Evaluating F(t;) = .34613 from (3.2),
G(tp) = .34088, and M(tp) = .37710 from (3.3),
we obtain from (3.4)

00525 < M(tp) — .37710 = .01218, (3.5)

or .38235 = M(tp) = .38928. The spread in this
bound is less than 2%, and it should, therefore, be
very useful in approximating M:(tp) for any practical
purpose.
The large time limit of M(¢)/tis 2.760 x 107°.

If we were to use this large time limit to approximate
Mg(tp), we would obtain Mg(tp) = .60485, which is
conservative but is 57% too big. In this example, the
components of the system are highly reliable, and
the system’s failure process does not reach a steady-
state condition until long after service life is over.

In this case, one can get the renewal function for
F from (1.1); it is

6L 6 .
Mi() = 50— 52 (1= e,

From this, we obtain My(tp) = .38416, which is
squarely between the two bounds obtained previ-
ously.

Example 3. Consider again the two-out-of-three
hot standby ensemble of regenerators described in
Example 2, except that now take the unit life distri-
bution L(¢) to be lognormal with mean 1/4 and vari-
ance 1/42 [this gives a median of 1/(AV2) and a
spread factor of (In 2)"2]. The lognormal distribution
often has been used to describe the reliability of var-
ious semiconductor devices, both discrete and inte-
grated (Peck and Zierdt 1974). Since the component
that dominates the reliability of the regenerator is
the semiconductor laser and its life has been modeled
with the lognormal distribution, we will take the re-
generator life distribution to be lognormal even though
the true regenerator life distribution may deviate
slightly from lognormal because of the effects of its
other components. Again the least replaceable unit
is the whole ensemble. Ignoring possible switching
device unreliability, the system life distribution is
F(t) = 3L(t)> — 2L(¢t)>. We want to find the value
of the renewal function M; for F at the end of the
service life f,, again taken as 219,150 hours. Using
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A™! = 434,782.61 hours, the same mean as in Ex-
ample 2, we obtain F(¢;) = .23217. The mean and
variance of F are unknown in this case, however, so
a certain amount of trial and error is needed. This
is facilitated by use of the S statistical programming
language to evaluate the lognormal distributions and
to draw appropriate graphs.

We will again use an Erlang distribution of order
two for the comparison distribution G. For values of
u that make G(fp) reasonably close to F(tp), F and
G cross somewhere between 0 and ¢, so we cannot
use (2.3) or (2.5). We will use (2.2) instead. Then
the strategy becomes to choose u so that |F —
G|-..., is as small as possible. It is reasonable here to
use 4 = 3.6 x 107°, yielding G(z,) = .18724 and
IF = Gl,, = .07851. From (2.2), we then obtain
IMe(tp) — .19607| < .07851, from which it follows
that .11756 < M(tp) = .27458. For the lower bound,
clearly we can do much better using the simple in-
equality My(tp) = F(tp), so finally we obtain .23217
= Mg(tp) = .27458. The spread in these bounds is
about 18%, which is not as good as we got in Ex-
ample 2. Here, however, we have to take into ac-
count the qualitative differences between F, an al-
gebraic combination of lognormal distributions, and
the comparison distribution, which we restricted to
be an Erlang of order two for comparison purposes
with Example 2. Perhaps a shifted exponential dis-
tribution would work better as the comparison dis-
tribution, because F does not get bigger than .001
until nearly 55,000 hours have passed. Intuitively,
the shifted exponential also has a better chance of
staying below F over [0, tp]. If so, (2.5) could be
used to obtain a lower bound.

4. SUMMARY AND CONCLUSIONS

We have obtained upper and lower bounds for the
difference between two renewal functions corre-
sponding to two different life distributions. These
results are used to examine various order relation-
ships that hold for the renewal functions based on
corresponding order relationships that hold for their
underlying life distributions. These also lead to a
simple proof of the intuitively satisfying fact that if
the hazard rate of F is never exceeded by that of G,
then the renewal function for F is never exceeded by
that for G. The results are also used to provide an
approximation procedure for an unknown or diffi-
cult-to-compute renewal function in terms of a known
or easier-to-compute renewal function. The proce-
dure also gives bounds on the error of approxima-
tion.
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APPENDIX: PROOFS OF THE RESULTS IN
SECTION 2

I begin by stating some simple properties of Stieltjes
convolution. First, it is commutative, associative, and
distributive over addition. Second, F * G(t) = F(£)G(¢).
This follows by F * G(t) = [i- F(t — u) dG (u) <
F(t) [i- dG (w) = F(t)G(¢). Third, if G(t) = F(¢)
for all t € {0, T], then G,(r) = F,(¢) for all ¢ € [0,
T]. To see this, note that G,(t) = G * G(f) = F =
G(t) = G* F(t) = F = F(t) = F,(¢) and proceed by
induction.

Since the proof of Proposition 2 follows almost
immediately from this, I will take the opportunity to
record it now, even though it is somewhat out of
sequential order.

Proof of Proposition 2. We have, for all appro-
priate ¢,

Mg(t) — Ms(1) = F() - G()

+ 2;,2 [F) — Gu(O] = F() = G(1), (A.1)

because the sum is nonnegative by the inequality
stated previously.

The same argument shows that, under the same
conditions,

Mi(t) — Mq(r) = ; [F(0) = G.(], k=1,

although this is somewhat less practical than (A.1)
as a simple computational tool when k > 1. Theorem
2 follows immediately from Proposition 2. Corollary
2 follows by noting that ordering of the hazard-rate
functions entails ordering of the corresponding life
distributions through the equality 1 - F(f) =
exp(— [ h(s) ds).

Theorem 1 is presented after Proposition 1 and
Corollary 1 in the text because it is less suited for
immediate computational use. I will give the proof
of Theorem 1 first, however, because Proposition 1
and Corollary 1 follow quickly from it.

Proof of Theorem 1. Begin by showing that

n-1

‘Fn(t) - Gn(t)| = ”F - G”wT; Fk * Gn—l*k(t)'
(A2)

Do this by induction. For n = 1, this follows from
the definition of the norm. Assume the induction
hypothesis for n. Then F,,,(t) — G,.,(¢) = (F -
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G) = F,(t) + (F, — G,) * G(t) by adding and sub-
tracting the needed term. Here is the induction step:

|F,i(t) = Guar(2)]
= f IFG - w) - Gt = wldF,(u)

+ [ 1RG0 - Gt = w] 4G @)

IA

IF = Gliwr Fo(t)

n—1t
+jHF—WwZR*@+w—uMGM
0~ k=0

n-1
IF = Gl..r <F,,(t) + D Fx Gnk(t))
k=0
= ||F = Gll.r Z F # G,_(1).
k=0

Now complete the demonstration of (2.4) as follows:

mewmmngm—@m

%

IF = Glr S S Fy * Gooy (1)

n=1 k=0

IA

% %

IF = Gll.r 2

k=1 n=

Fioy* Guy(t)
!

I

IF — Gl r 2 2 Fiov* Guoi(2)

k=1 n=1
= M} x MEOIF — Gl r,

from which (2.4) follows by observing that MY% *
MY(t) = MY(t)M%(¢) because MY and M¢ are non-
decreasing and then collecting terms.

Proposition 1 follows immediately from the ob-
servation that

0 %

MYty = X F() =2 Fly = (1 — F1)!

n=0 n=0

whenever F(f) < 1. Corollary 1 then follows by ob-

TECHNOMETRICS, AUGUST 1989, VOL. 31, NO. 3

serving that since [F(t) — G(¢)| is nondecreasing on
[0, T], supe=s |F(s) — G(s)] = [F(t) — G(1)] for
every t € [0, T].

[Received September 1986. Revised August 1958.]
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