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Roberts (1959) first introduced the exponentially weighted moving average (EWMA) control 
scheme. Using simulation to evaluate its properties, he showed that the EWMA is useful for 
detecting small shifts in the mean of a process. The recognition that an EWMA control 
scheme can be represented as a Markov chain allows its properties to be evaluated more 
easily and completely than has previously been done. In this article, we evaluate the properties 
of an EWMA control scheme used to monitor the mean of a normally distributed process 
that may experience shifts away from the target value. A design procedure for EWMA control 
schemes is given. Parameter values not commonly used in the literature are shown to be 
useful for detecting small shifts in a process. In addition, several enhancements to EWMA 
control schemes are considered. These include a fast initial response feature that makes the 
EWMA control scheme more sensitive to start-up problems, a combined Shewhart EWMA 
that provides protection against both large and small shifts in a process, and a robust EWMA 
that provides protection against occasional outliers in the data that might otherwise cause an 
out-of-control signal. An extensive comparison reveals that EWMA control schemes have 
average run length properties similar to those for cumulative sum control schemes. 

KEY WORDS: Average run length; CUSUM; Fast initial response; Geometric moving 
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1. INTRODUCTION 

Since Walter Shewhart introduced the control- 
chart technique in 1924, control schemes have found 
widespread application in improving the quality of 
manufacturing processes. Although the exponen- 
tially weighted moving average (EWMA) is known 
to have optimal properties in some forecasting and 
control applications (Box, Jenkins, and MacGregor 
1974; Muth 1960), it has been largely neglected as a 
tool by quality-control analysts. Only recently has 
the EWMA control scheme been exploited and its 
properties evaluated analytically (Crowder 1987; 
Hunter 1986; Lucas and Saccucci 1987; Montgomery, 
Gardiner, and Pizzano 1987; Robinson and Ho 1978; 
Waldmann 1986). 

Like Shewhart and cumulative sum (CUSUM) 

control schemes, an EWMA control scheme is easy 
to implement and interpret. It is based on the statistic 

Zj = 3.Y, + (1 - E.)Zi-l, 0 < 2 5 1, (1.1) 

together with upper control limits (UCL’s) and lower 
control limits (LCL’s). The starting value Zo, which 
we shall discuss in more detail later, is often taken 
to be the target value. The sequentially recorded 
observations, Y,, can be individually observed values 
from the process, although they are often sample 
averages obtained from a designated sampling plan. 
The process is considered out of control and action 
should be taken whenever Z, falls outside the range 
of the control limits. 

An EWMA has alternatively been referred to as 
a geometric moving average because Z, can be equiv- 
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alently written as a moving average of the current 
and past observations: 

1-l 
2, = E. C (1 - /.)‘Y;-j + (1 - E.)‘ZO, (1.2) 

,=(I 

where the weights of the past observations fall off 
exponentially as in a geometric series. In addition, 
many of the properties of EWMA’s can be obtained 
from the formula for the sum of a geometric series. 

When the Y, are iid with common variance, a$, 
the variance of the control statistic is given by 

d(Z,) = [{l - (1 - E.)?‘}E.l(2 - %)]o$. 

Unless E. is small, the effect of the starting value soon 
dissipates and the variance quickly converges to 
its asymptotic value, o$ = {I./(2 - ).)}a$. The con- 
trol limits are usually based on the asymptotic stan- 
dard deviation of the control statistic as LCL = 
Target - Llaz and UCL = Target + Lzoz, respec- 
tively. In general, the control limits are chosen sym- 
metrically about the process target value so that L 
= L, = Lz. For a discussion of one-sided EWMA 
control schemes, see Robinson and Ho (1978). 

Roberts (1959) first described the use of EWMA 
control schemes. Using simulation, he developed 
nomograms of average run lengths (ARL’s) for the 
case of normally distributed observations. In a sub- 
sequent article, Roberts (1966) compared their per- 
formance to other procedures, including CUSUM 
and Shewhart control schemes. More recently, 
Robinson and Ho (1978) numerically evaluated 
the ARL’s of EWMA control schemes using an 
Edgeworth series expansion. Although they consid- 
ered a wider range of parameter values than did Rob- 
erts, their results are inaccurate for small values 
of 1.. Crowder (1987) evaluated the properties of 
EWMA’s by formulating and solving a system of 
integral equations. Tables of the first and second mo- 
ments of the run-length distribution are given in his 
article. 

In this article, we evaluate the run-length prop- 
erties of EWMA control schemes by representing 
the EWMA statistic as a continuous-state Markov 
chain. Its properties can be approximated by a finite- 
state Markov chain following a procedure similar to 
that of Brook and Evans (1972). This allows the 
properties of EWMA’s to be evaluated more easily 
and completely than has previously been done (Lucas 
and Saccucci 1986; Yashchin 1987). A detailed dis- 
cussion of the Markov-chain approach is given in 
Appendix A. 

In Section 2, we give an example of an EWMA 
control scheme. In Section 3, we discuss the ARL 
tables that were obtained using the Markov-chain 
approach, and in Section 4, we give a design pro- 
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cedure based on these tables. Although ARL’s can 
be evaluated for iid observations from any distri- 
bution, the ARL’s provided here are evaluated for 
normally distributed observations. In Section 5, we 
evaluate and discuss the properties of several en- 
hancements for EWMA’s. These include a fast initial 
response (FIR) feature, a combined Shewhart 
EWMA, and a robust EWMA. Lucas and Crosier 
(1982a,b) and Lucas (1982) evaluated these enhance- 
ments for CUSUM control schemes. In Section 6, 
we compare EWMA and CUSUM control schemes. 
EWMA control schemes are shown to have ARL 
properties similar to those of CUSUM control 
schemes. 

2. EXAMPLE 

To illustrate an EWMA control scheme, we use a 
set of simulated observations taken from Lucas and 
Crosier (1982a). The data, together with the corre- 
sponding EWMA values, are shown in Table 1. The 
target value is taken to be 0, so the process is in 
control for the first 10 observations. The mean level 
was shifted upward by approximately one standard 
deviation for the last nine observations. 

The parameters of the EWMA are chosen to be 
% = .25 and L = 3.0, giving control limits of k1.134 
(+L[E.l(2 - J.)]“%J~) when oy = 1. For normally 
distributed observations, the in-control ARL is equal 
to 500. 

The third column of Table 1 contains the values 

Tab/e 7. Example of an EWMA Control Scheme Using Data 
From a Process Initially in Control 

Observed 
i value E WMA” 

0 - .O 
1 1.0 .250 
2 -.5 ,063 
3 .O ,047 
4 -.8 -.I65 
5 -.8 -.324 
6 -1.2 -.543 
7 1.5 -.032 
8 -.6 -.I74 
9 1.0 ,119 

10 -.9 -.I35 
11 1.2 .I98 
12 .5 .274 
13 2.6 .855 
14 .7 .817 
15 1.1 .887 
16 2.0 I.1666 
17 1.4 l.224b 
18 1.9 1 .393b 
19 .8 l.245b 

8; = 25; L = 3.00; CL = 11.134. 
bOut-of-control signal. 

FIR EWMA” 
( 50% HS) 

Zi G 

.567 .567 
-.175 ,675 
-.256 .381 
-.I92 .286 
-.344 ,015 
-.458 -.I89 
-.644 -.442 
-.I08 ,044 
-.231 -.I17 

,077 .I62 
-.I67 -.I03 

.I75 .222 
,256 ,292 
.842 .869 
.806 ,827 
,880 .895 

1.160 1.171b 
1.220 1.228" 
1.390 1 .396b 
1.242 l.247b 
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Figure 1. EWMA Control Scheme. 

of the EWMA control statistic, Zi = .25Yj + 
.75Z,- ,. This statistic remains close to the target 
value for the first 10 observations but then grows in 
size after the shift in the process occurs. Like the 
CUSUM control scheme that was originally used 
with this data, the EWMA gives an out-of-control 
signal at the 16th observation. A Shewhart control 
scheme with the same in-control ARL has control 
limits of k3.09. The Shewhart control scheme does 

Tab/e 2. Example of an EWMA Control Scheme Using Data 
From a Process initially Out of Control 

FIR EWMA” 
(50% HS) 

Observed 
i value EWMA” Zi ZCT 

0 - .O -.567 .567 
1 1.2 .300 -.I25 ,725 
2 .5 ,350 .031 ,669 
3 2.6 ,913 ,673 1.152" 
4 .7 .859 .680 1.039" 
5 1.1 ,920 .785 1.054" 
6 2.0 1.190b 1.089 1.291b 
7 1.4 1.242b 1.167 1.318b 
8 1.9 1.407b 1.350 1.463" 
9 .8 1.255" 1.212 1.298b 

a, = 25; L = 3.00; CL = 21.134. 
bOut-of-control signal. 
CObservatlons after an out-of-control signal can drop the EWMA statistic below 

the control limits. 

not give an out-of-control signal within the first 19 
observations. In fact, for a one-standard deviation 
shift in the process mean, the EWMA control scheme 
will give an out-of-control signal in an average of 
10.9 observations, whereas the Shewhart control 
scheme will give an out-of-control signal in an av- 
erage of 54.6 observations. 

In quality-control applications, it is often useful to 
graphically display control schemes. Figure 1 is a plot 
of the EWMA control statistic, together with the 
original data given in Table 1. The solid line connects 
the EWMA values, and the individual observations 
are represented by X’s. Roberts (1959) provided a 
manual plotting procedure that does not require eval- 
uation of the EWMA values. Hunter (1986) sug- 
gested writing the current EWMA as the previous 
EWMA plus a fraction of the difference between the 
current observation and the previous EWMA, Z, = 
Z;-, + i.(Y! - Z,-,). In this form, the EWMA can 
be considered a one-step-ahead forecast for the pro- 
cess so that Z, should be plotted at the (i + 1)st 
sequential position. Table 2 illustrates the use of an 
EWMA control scheme for a process with a mean 
level that is initially off target. It will be discussed in 
more detail in Section 4. 

3. THE RUN-LENGTH DISTRIBUTION 

Figure 2 illustrates the run-length distribution for 
an EWMA control scheme with L = 2.414 and E. = 
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Figure 2. Run-Length Distribution for an In-Control EWMA. 

.25. This control scheme has an in-control zero-state 
ARL equal to 100. Zero-state run lengths refer to 
the run lengths of control schemes initialized at the 
target value. Figure 2 also illustrates the run-length 
distribution for a geometric random variable with an 
ARL equal to 100 and an EWMA control scheme 
with a FIR feature. The FIR feature is discussed in 
detail in Section 5. 

The run-length distribution for the EWMA control 
scheme was obtained using the Markov-chain ap- 
proach given in Appendix A. The run-length distri- 
bution for the FIR EWMA was obtained by 
simulation. Examination of Figure 2 shows that, ex- 
cept for small run lengths, the in-control run-length 
distribution is nearly geometric. Hence, for an in- 
control process, the run-length distribution of an 
EWMA can be adequately characterized by its ARL. 

Figure 3 illustrates the run-length distributions for 
a process that is off aim by two (TV. The EWMA’s in 
Figure 3 have the same parameter values [L, 1.) and 
HS (head start)] as those in Figure 2, and the geo- 
metric distribution was chosen to match the ARL of 
the zero-state EWMA. Although the run-length dis- 
tributions for the EWMA’s are clearly not geometric, 
they are closely centered about their average values 
of 2.81 and 1.93, respectively. Hence the ARL also 

0.5 

0.4 

Figure 3. Run-Length Distribution for an EWMA When the 
Process /-/as Shifted Two Standard Deviations. 

characterizes the run-length distribution for an out- 
of-control process. 

Using the Markov-chain approach described in 
Appendix A, we have calculated zero-state and cycli- 
cal steady-state ARL’s for a wide range of parame- 
ters. Steady-state run lengths refer to the run lengths 
of control schemes evaluated after the control sta- 
tistic has reached steady state. A control statistic is 
in steady state if the process has been in control long 
enough for the effect of the starting value to become 
negligible. See Appendix A for a detailed discussion 
of steady-state run lengths. 

With the exception of those of Ho (1978), ARL 
tables are usually given for fixed values of 1. and L. 
We feel that it is convenient to have tables with fixed 
values of j. and in-control ARL’s. Table 3 gives ARL 
values for EWMA control schemes with 3. equal to 
1.00, .75, .50, .40, .30, .25, .20, .lO, .05, and .03. 
More detail is given for values of 1. less than .5 be- 
cause small values of 1. are useful for detecting small 
shifts in a process. The corresponding values of L 
were obtained so that the in-control zero-state ARL’s 
are equal to 500. The same values of 2 and L were 
used for both zero-state and steady-state ARL’s so 
that a direct comparison is possible. 

Lucas and Saccucci (1987) also provided tables for 
in-control ARL’s of 100, 300, 1,000, 2,000, and 
5,000. The complete set of tables indicates that the 
differences between zero-state and steady-state 
ARL’s depend on both i. and the in-control ARL. 
For large values of E., there is essentially no difference 
in ARL’s. For small values of /1, however, the per- 
centage of difference increases as the in-control ARL 
decreases. Within the range of parameters consid- 
ered, the difference between zero-state and steady- 
state ARL’s ranges from less than 2% for an EWMA 
control scheme with an in-control ARL of 5,000 to 
approximately 10% for an EWMA control scheme 
with an in-control ARL of 100. For most practical 
purposes, the difference between zero-state and 
steady-state ARL’s is unimportant and either one 
suffices. For subtle comparisons, such as those be- 
tween EWMA and CUSUM control schemes given 
later, however, it is helpful to have both sets of ARL 
values. 

4. DESIGN PROCEDURE 

In addition to characterizing the run-length distri- 
bution of an EWMA control scheme, the ARL is 
also proportional to the amount of production from 
a process. Hence design procedures are usually based 
on the ARL properties of control schemes. The ARL 
should be long when the process is operating near 
its target value and short when the process shifts to 
an unacceptable level. Depending on the particular 
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Tab/e 3. Average Run Lengths for an EWMA Control Scheme 

L= 3.090 3.087 3.071 3.054 3.023 2.998 2.962 2.814 2.615 2.437 
Shift Twe i = 1.00 .75 .50 .40 .30 .25 .20 .I0 .05 .03 

.oo Zero state 500 500 500 500 500 
Steady state 500 500 499 498 497 

.25 Zero state 374 321 255 224 189 
Steady state 374 321 254 223 188 

.50 Zero state 201 140 88.8 71.2 55.4 
Steady state 201 140 88.4 70.7 54.9 

.75 Zero state 103 62.5 35.9 28.4 22.5 
Steady state 103 62.4 35.7 28.1 22.2 

1 .oo Zero state 54.6 30.6 17.5 14.3 12.0 
Steady state 54.6 30.5 17.3 14.1 11.8 

1.50 Zero state 17.9 9.90 6.53 5.88 5.53 
Steady state 17.9 9.86 6.44 5.79 5.43 

2.00 Zero state 7.26 4.54 3.63 3.52 3.54 
Steady state 7.26 4.52 3.58 3.47 3.49 

2.50 Zero state 3.60 2.69 2.50 2.54 2.65 
Steady state 3.60 2.67 2.47 2.50 2.61 

3.00 Zero state 2.15 1.88 1.93 2.02 2.16 
Steady state 2.15 1.87 1.91 1.99 2.12 

3.50 Zero state 1.52 1.46 1.58 1.69 1.85 
Steady state 1.52 1.46 1.58 1.68 1.82 

4.00 Zero state 1.22 1.22 1.34 1.44 1.61 
Steady state 1.22 1.23 1.36 1.46 1.60 

5.00 Zero state 1.03 1.04 1.07 1.12 1.22 
Steady state 1.03 1.04 1.10 1.17 1.29 

500 
496 

170 
169 

48.2 
47.7 

20.1 
19.8 

11.1 
10.9 

5.46 
5.37 

3.61 
3.56 

2.74 
2.71 

2.26 
2.22 

1.95 
1.91 

1.73 
1.69 

1.32 
1.38 

500 
496 

150 
149 

41.8 
41.2 

18.2 
17.8 

10.5 
10.3 

5.50 
5.40 

3.74 
3.69 

2.88 
2.84 

2.38 
2.35 

2.07 
2.03 

1.86 
1.80 

1.48 
1.49 

500 
492 

106 
104 

31.3 
30.6 

15.9 
15.5 

10.3 
10.1 

6.09 
5.99 

4.36 
4.31 

3.44 
3.41 

2.87 
2.85 

2.47 
2.47 

2.19 
2.20 

1.94 
1.83 

500 
487 

84.1 
81.7 

500 
480 

76.7 
74.1 

28.8 29.3 
28.0 25.6 

16.4 17.6 
16.0 17.3 

11.4 12.6 
11.2 12.5 

7.12 8.08 
7.03 8.00 

5.23 5.99 
5.18 5.95 

4.17 4.80 
4.14 4.78 

3.50 4.03 
3.48 4.02 

3.04 3.49 
3.02 3.49 

2.69 3.11 
2.68 3.09 

2.16 2.55 
2.22 2.55 

NOTE: L values are based on zero-state in-control ARL = 500. 

needs of the analyst, control schemes can be evalu- 
ated using zero-state and/or steady-state ARL’s. 

To facilitate the design of EWMA control 
schemes, Table 4 contains a list of “optimal” param- 
eters. For a specified in-control ARL and shift in the 
process, these parameters will give an EWMA con- 
trol scheme having the minimum ARL at the spec- 
ified shift. Whenever the minimum ARL’s were 
nearly equivalent over a range of ,I values, the entire 
range of Iti was given. An EWMA control scheme 
designed with the smallest valus of 3. in this range 
will provide more protection against small shifts in 
the process, but an EWMA control scheme designed 
with the largest value of E. will provide more protec- 
tion against large shifts in the process. 

Examination of Table 4 illustrates that, for a fixed 
in-control ARL, the optimal value of 1. increases as 
the shift in the process increases. Lucas (1973) 
proved that a Shewhart control scheme, an EWMA 
with 2 equal to 1, is optimal for detecting large shifts. 
Consequently, if 0: = &ln and there is no restric- 
tion on choosing n, there is little need to consider 
control schemes other than standard Shewhart con- 
trol schemes. Shewhart control schemes can be op- 
timized for detecting a given size shift by increasing 

the number of samples included in each observation. 
On the other hand, it is often appropriate to consider 
more complicated error structures. For many chem- 
ical processes, the error structure can be approxi- 
mated as a$ = oietween + a~,,hi,ln. In this situation, 
only short-term variation is reduced when multiple 
samples are taken, and the EWMA control scheme 
is useful for detecting small shifts in the process. For 
a further discussion of this point, see Goel (1968) or 
Lucas (1976). 

To design an EWMA control scheme, we recom- 
mend the following procedure. First, specify the de- 
sired in-control ARL and the shift in the process that 
is to be detected quickly. Using Table 4, obtain the 
EWMA parameters that will result in the minimum 
ARL for the specified shift in the process. Finally, 
the entire ARL profile for this EWMA should be 
evaluated to determine whether it provides sufficient 
protection against other shifts. The ARL profile can 
be obtained from the ARL tables given by Lucas and 
Saccucci (1987). 

Note that the values of 1. recommended for de- 
tecting one-cY shifts in the process are small relative 
to the values between .25 and SO that have often 
been suggested in the literature. Table 4 indicates 
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Shift 100 

Table 4. Optimal EWMA Control Schemes 

In-control average run length 

300 500 1,000 2,000 5,000 

.5 
.07-.06 .06-.05 .05 .04 .04-.03 .03 

2.015-1.954 2.462-2.399 2.616 2.817 3.069-2.989 3.299 
17.3 24.9 28.7 34.3 40.1 47.7 ARL,, 

1.0 
.lS-.I6 .15-.14 .15-.12 .13-.lO .12-.I0 .os 

2.346-2.298 2.723-2.707 2.907-2.858 3.113-3.05s 3.317-3.283 3.538 
6.97 9.14 10.2 11.7 13.2 15.2 

L 
AR’-,,,, 

2.0 
.52-.47 .42-.38 .37-.36 .35-.31 .32-.28 .29-.26 

2.538-2.526 2.895-2.885 3.047-3.044 3.253-3.241 3.445-3.433 3.686-3.677 
2.62 3.23 3.51 3.90 4.29 4.81 

L 
ARL, 

3.0 
.81-.77 .74-.71 .70-.66 .66-.59 .61-.53 .53-.47 

2.572-2.569 2.931-2.930 3.086-3.084 3.286-3.283 3.477-3.473 3.714-3.711 
1.45 1.72 1.86 2.06 2.26 2.51 ARLrmn 

4.0 
l.OO-.85 .97-.84 .95-.82 .Sl-.80 .Sl-.75 .84-.72 

2.576-2.573 2.935-2.934 3.090-3.089 3.290-3.289 3.480-3.480 3.719-3.718 
1.08 1.16 1.21 1.29 1.39 1.53 ARLm,n 

NOTE: The In-control average run length is based on zero-state average run lengths 

that this range is optimal for detecting two-a, shifts. 
Furthermore, our design suggestions differ from 
those of Hunter (1986). He suggested choosing E. to 
minimize the one-step-ahead forecast error by using 
the past history of the data. Although past history 
provides guidance, we feel that it is important to 
design the EWMA to guard against possible future 
shifts in the process mean. 

5. ENHANCEMENTS 

5.1 FIR Feature 

Lucas and Crosier (1982a) showed that a FIR fea- 
ture is useful for CUSUM control schemes because 
processes are more likely to be away from the target 
value when a control scheme is initiated due to start- 
up problems or because of ineffective control action 
after the previous out-of-control signal. A FIR fea- 
ture is especially useful for EWMA control schemes 
designed with small values of 1.. When 1. is small, the 
variance of the control statistic converges slowly to 
its asymptotic value so that control schemes based 
on the asymptotic standard deviation tend to be in- 
sensitive at start-up. 

A FIR feature for an EWMA control scheme can 
be obtained by simultaneously implementing two 
one-sided EWMA’s, each with a head start (HS). 
One EWMA has an HS, or starting value, above the 
target value and the other EWMA has an HS below 
the target value. If the process is off aim at start-up, 
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the EWMA with the appropriate HS will tend to give 
an out-of-control signal more quickly. On the other 
hand, if the process is initially in control, the two 
EWMA’s will tend to converge. In practice, one of 
the control schemes can be discontinued when they 
are sufficiently close-for example, whenever they 
differ by less than .l oz. 

Table 1 gives an example of the FIR feature for a 
process that is initially in control. The two simulta- 
neous EWMA control statistics are represented by 
Z’ and Z-. For purposes of illustration, the starting 
values are taken halfway between the process target 
value and the control limits (i.e., 50% HS). Since 
the process is initially in control, both EWMA’s re- 
main well within the control limits as they converge 
toward each other. By the 12th observation, both 
schemes are within .1 CT~ and Z- could be discontin- 
ued. Although the HS value never completely dis- 
appears, the performances of the EWMA and the 
FIR EWMA are similar after the first seven obser- 
vations. 

To illustrate the advantage of the FIR feature 
when the process is initially out of control, Table 2 
contains the last nine observations from Table 1. Al- 
though both EWMA’s immediately start to increase, 
the FIR EWMA with a 50% HS gives an out-of- 
control signal at the 3rd observation, whereas the 
EWMA does not signal until the 6th observation. 

Appendix B describes the method used to evaluate 
the properties of the FIR feature. Table 5 gives FIR 
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Table 5. FIR Average Run Lengths for an EWMA Control Scheme 

L= 3.090 3.087 3.071 3.054 3.023 2.998 2.962 2.874 2.615 2.437 
Shift %HS i = 1.00 .75 .50 .40 .30 .25 .20 .lO .05 .03 

.oo 

.50 

1 .oo 

2.00 

3.00 

5.00 

0 500 
25 500 
50 500 
75 500 

0 201 
25 201 
50 201 
75 201 

0 54.6 
25 54.6 
50 54.6 
75 54.6 

0 7.26 
25 7.26 
50 7.26 
75 7.26 

0 2.15 
25 2.15 
50 2.15 
75 2.15 

0 1.03 
25 1.03 
50 1.03 
75 1.03 

500 500 500 500 500 500 500 500 500 
498 497 497 495 491 491 487 470 465 
496 487 487 485 483 475 468 434 406 
495 478 471 456 444 429 382 312 258 

140 88.8 71.2 55.4 48.2 41.8 31.3 28.8 29.3 
140 87.8 70.0 53.9 46.5 39.7 28.3 24.7 24.3 
139 86.1 67.8 51.2 43.6 36.6 24.2 19.5 18.4 
138 82.7 63.5 46.2 38.2 30.8 17.9 12.9 11.4 

30.6 17.5 14.3 12.0 11.1 10.5 10.3 11.4 12.6 
30.2 16.9 13.5 11.1 10.1 9.40 8.75 9.30 10.1 
29.7 15.9 12.4 9.82 8.79 7.93 6.87 6.93 7.36 
29.1 14.5 10.8 7.99 6.86 5.91 4.56 4.28 4.37 

4.54 3.63 3.52 3.54 3.61 3.74 4.36 5.23 5.99 
4.33 3.29 3.13 3.08 3.11 3.17 3.57 4.19 4.74 
4.09 2.87 2.64 2.52 2.50 2.51 2.72 3.08 3.43 
3.81 2.41 2.11 1 .so 1.82 1.76 1.76 1.90 2.07 

1.88 1.93 
1.75 1.69 
1.63 1.45 
1.51 1.26 

2.02 
1.73 
1.44 
1.21 

1.12 
1.04 
1.01 
1 .oo 

2.16 2.26 2.38 2.87 3.50 4.03 
1.83 1 *so 2.01 2.35 2.80 3.20 
1.46 1.49 1.54 1.80 2.11 2.34 
1.18 1.17 1.16 1.19 1.29 1.41 

1.04 
1.02 
1.01 
1.01 

1.07 
1.03 
1.01 
1 .oo 

1.22 1.32 1.48 1.94 2.16 2.55 
1.07 1 .os 1.15 1.50 1.93 2.05 
1.01 1.02 1.02 1.07 1.27 1.57 
1.00 1.00 1 .oo 1 .oo 1 .oo 1.01 

NOTE: L values are based on zero-state In-control ARL = 500. 

ARL’s for EWMA control schemes with an in-con- 
trol ARL equal to 500 and HS’s of O%, 25%, 50%, 
and 75%. ARL’s for other HS values can be obtained 
by interpolation. 

In general, we find that this FIR feature is most 
useful for EWMA control schemes with 1. less than 
or equal to .25. Unlike CUSUM control schemes, 
there is no theory that suggests the appropriate HS 
value, so the HS value is obtained by examining the 
trade-off between the percentage of decrease in the 
in-control ARL and the percentage of decrease in 
the out-of-control ARL’s. An HS value of approxi- 
mately 50% works well in the situations that we have 
examined. 

(1973) showed that Shewhart control schemes are 
superior for detecting large shifts. A combined Shew- 
hart EWMA often gives improved properties when 
both large and small shifts are to be detected. This 
is achieved by adding Shewhart limits to an EWMA 
control scheme so that an out-of-control signal is 
given if the EWMA statistic is outside the control 
limits or if the current observation is outside the 
Shewhart limits. 

A disadvantage of this approach is that it requires 
two separate EWMA’s for each process being mon- 
itored. This can be cumbersome when the number 
of processes being monitored is large. Moreover, this 
procedure is not easily generalized to multivariate 
EWMA’s. An alternative FIR feature can be 
achieved by using tighter control limits for the initial 
few observations. A detailed discussion of this ap- 
proach will be given in a future article. 

Tables of ARL’s for the combined Shewhart 
EWMA were given by Lucas and Saccucci (1987). 
Examination of these tables indicates that the com- 
bined Shewhart EWMA shows improved ARL val- 
ues similar to those obtained by a combined 
Shewhart CUSUM (Lucas 1982). In general, we sug- 
gest choosing Shewhart limits larger than would be 
used for a standard Shewhart control scheme to pre- 
vent the Shewhart limits from causing a large reduc- 
tion in the in-control ARL. Although the 
recommended Shewhart control limits depend on the 
in-control ARL and the value of E., Shewhart control 
limits between 4.0 and 4.5 CJ~ work well for an 
EWMA with an in-control ARL equal to 500. 

5.2 Combined Shewhart EWMA 5.3 Robust EWMA 

Although EWMA control schemes can be de- It is useful to consider a robust EWMA whenever 
signed to quickly detect small shifts in level, Lucas the process produces occasional outliers. The com- 
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bined Shewhart EWMA should not be used in these 
situations because the addition of Shewhart limits 
causes the combined Shewhart EWMA to be sensi- 
tive to the occurrence of outliers. 

In this article, we examined the two-in-a-row rule, 
which worked well for CUSUM control schemes (Lu- 
cas and Crosier 1982b). This procedure requires the 
specification of outlier limits for the observations en- 
tering the EWMA (i.e., Y,). In practice, these limits 
are often set at ?4 oy about the target value. A single 
observation outside of the outlier limits does not en- 
ter the EWMA, but two outliers in a row are con- 
sidered to be an out-of-control signal. More 
complicated rules are generally not as useful; they 
decrease the sensitivity of the scheme when large 
shifts occur. 

The performance of the two-in-a-row outlier rule 
was evaluated using a contaminated normal distri- 
bution, formed by combining two normal random 
variables with common mean. The standard devia- 
tion of the first normal random variable was chosen 
to be (1 + 8,))“’ gy, where (Y is the proportion of 
contamination of the second normal random vari- 

EWMA were given by Lucas and Saccucci (1987). 
Examination of the robust ARL tables indicates that 
the ARL’s for the robust EWMA are always larger 
than the ARL’s for the EWMA at the same level of 
contamination. Furthermore, the effect of outliers 
depends on both the level of contamination and the 
parameters of the EWMA control scheme. For large 
values of E., the ARL’s substantially decrease as the 
levelof contamination increases, indicating that Shew- 
hart control schemes are extremely sensitive to out- 
liers. For small values of E., the ARL’s tend to in- 
crease as the level of contamination increases. 

We consider robust control procedures applicable 
for situations in which outliers are known to exist, 
such as those involving tough analytical procedures. 
We do not recommend the routine implementation 
of robust control procedures, however. The presence 
of outliers is itself an indication of quality problems, 
and work should be done to reduce these problems. 

6. COMPARISONS BETWEEN EWMA AND 
CUSUM CONTROL SCHEMES 

able. The standard deviation of the second normal Lucas and Saccucci (1987) compared the ARL’s 
random variable was taken to be three times that of of EWMA and CUSUM control schemes over a wide 
the first normal random variable. Although the over- range of parameter values. These comparisons in- 
all standard deviation of the contaminated distribu- dicate that there is little practical difference between 
tion remains constant, the tails of the distribution the ARL properties of the two control schemes. Al- 
become heavier as the percentage of contamination though one scheme may be superior in terms of other 
increases. properties, it seems likely that nonstatistical criteria 

The ARL properties of the robust EWMA were could be used to decide which particular procedure 
examined for distributions with O%, l%, 3%, and should be used in a given situation. If one scheme is 
10% levels of contamination. This is identical to the currently being used in most applications, we would 
approach used by Lucas and Crosier (1982b) in eval- recommend using the same scheme throughout. 
uating robust CUSUM control schemes, so a com- Table 6 provides a specific comparison between an 
parison can be made between the two schemes. EWMA and a CUSUM control scheme. The param- 

Tables of ARL’s for the two-in-a-row robust eters of the EWMA’s were chosen so that the in- 
Table 6. ARL Comparisons Between EWMA and CUSUM Control Schemes 

Worst 
Zero state Steady state FIR” case 

Shift EWMA, b EWMA,’ CUSUM EWMA, EWMA, CUSUM EWMA, E WMA, CUSUM EWMA, EWMA, 

.oo 465 465 465 459 459 459 434 435 430 310 315 

.25 116 118 139 114 116 137 104 106 122 97.6 100 

.50 33.3 33.8 38.0 32.6 33.1 36.4 27.0 27.6 28.7 34.2 34.7 

.J5 16.0 16.1 17.0 15.6 15.7 16.0 11.8 12.0 11.2 19.1 19.1 
1.00 10.1 10.0 10.4 9.84 9.84 9.62 6.99 7.04 6.35 13.3 13.2 
1.50 5.71 5.67 5.75 5.62 5.57 5.28 3.74 3.73 3.37 8.43 8.32 
2.00 4.04 3.99 4.01 3.98 3.94 3.68 2.59 2.57 2.36 6.25 6.16 
2.50 3.16 3.12 3.11 3.13 3.09 2.86 2.01 2.00 1.86 5.01 4.93 
3.00 2.62 2.59 2.57 2.61 2.57 2.38 1.66 1.65 1.54 4.21 4.14 
4.00 2.05 2.03 2.01 2.01 1.98 1.86 1.23 1.22 1.16 3.23 3.19 
5.00 1 .J7 1.74 1.69 1.68 1.66 1.53 1.04 1.04 1.02 2.71 2.66 

NOTE: EWMA IS compared to a CUSUM with h = 5.00 and k = .50. 
aFlR feature with a 50% HS. 
bEWMAl with L = 2.856 and , = ,133; in-control zero-state.ARL equated to CUSUM. 
CEWMA2 with L = 2.866 and, = ,139; in-control steady-state ARL equated to CUSUM. 
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control ARL’s would match those of a CUSUM con- 
trol scheme with h = 5.0 and k = .5. The matching 
was done for both zero-state and steady-state ARL’s, 
so two EWMA’s were evaluated. Both EWMA’s 
ended up with similar properties. The first EWMA 
was obtained using parameters 1. = .133 and L = 
2.856, and the second EWMA was obtained using 
parameters 1. = .139 and L = 2.864. Each of these 
schemes was designed to detect a 1-ay shift in the 
process. 

Our comparisons showed that the ARL’s for the 
EWMA are usually smaller than the ARL’s of the 
CUSUM up to a value of the shift near the one that 
the scheme was designed to detect. Beyond this shift, 
the ARL’s of the EWMA are larger than the ARL’s 
of the corresponding CUSUM. The steady-state 
comparisons favor the CUSUM more strongly than 
the zero-state comparisons because random obser- 
vations on one side of the target value can delay 
detection of a shift to the other side for an EWMA. 

Following a referee’s suggestion, we evaluated 
worst-case ARL’s for EWMA control schemes. In 
this situation, the EWMA control statistic is at or 
near one of its control limits when a shift occurs in 
the opposite direction. An example of worst-case 
ARL’s is shown in Table 6. For small values of /. and 
moderate to large shifts, the worst-case ARL’s are 
slightly larger than the steady-state ARL’s. In this 
worst-case situation, the EWMA requires a few ob- 
servations to overcome its initial inertia. Although 
this situation is highly unlikely, it can be guarded 
against by using the combined Shewhart EWMA. 

7. SUMMARY AND CONCLUSIONS 

We have described the properties of EWMA con- 
trol schemes and have compared them with CUSUM 
control schemes. The results show that the properties 
of EWMA’s are very close to those of CUSUM 
schemes. 

Both schemes include the one-parameter Shew- 
hart control scheme as a special case. The two pa- 
rameters in the EWMA and CUSUM control 
schemes are used to average observations over time. 
This makes them less sensitive to outliers and enables 
them to detect small shifts more quickly than the 
standard Shewhart control scheme. 

Several enhancements to EWMA control schemes 
were evaluated. These include a FIR feature that 
makes the scheme more sensitive at start-up, a com- 
bined Shewhart EWMA that provides protection 
against both large and small shifts in the process, and 
a robust EWMA that provides extra protection 
against outliers. These enhancements work as well 
for EWMA control schemes as they do for CUSUM 
control schemes. 

ACKNOWLEDGMENTS 

We thank the editor, the associate editor, and the 
referees for their helpful suggestions. We also ex- 
press our appreciation to Ron Crosier for many help- 
ful comments and for providing the CUSUM steady- 
state ARL values and to the computer-center staff 
at Drexel University for providing valuable assist- 
ance in the preparation of this manuscript. This re- 
search was partially supported by the Office of 
Sponsored Projects at Drexel University. 

APPENDIX A: MARKOV-CHAIN APPROACH 

The properties of an EWMA control scheme can 
be approximated using a procedure similar to that 
described by Brook and Evans (1972). Although they 
suggested discretizing the control statistic and then 
evaluating the exact properties of the discretized sta- 
tistic, we evaluate the properties of the continuous- 
state Markov chain by discretizing the infinite-state 
transition probability matrix. This procedure in- 
volves dividing the interval between the upper and 
lower control limits into t = 2m + 1 subintervals of 
width 26. The control statistic, Z,, is said to be in 
transient state (j) at time (i) if S, - S < Z, f S, + 
dforj = -m, -m + 1, . . ,m, whereS,represents 
the midpoint of the jth interval. The control statistic 
is in the absorbing state (a) if Z, falls outside the 
control limits. The process is assumed to be in control 
whenever Z, is in a transient state and is assumed to 
be out of control whenever Z, is in the absorbing state. 
For obvious reasons, the transient states are often 
referred to as in-control states and the absorbing 
state is often referred to as the out-of-control state. 

The run-length distribution of an EWMA is com- 
pletely determined by its initial probability vector 
and transition probability matrix. The initial prob- 
ability vector can be represented by 

piit = (p-m, . . , p-1, PO, PI, . . 1 Pm IO) 

= (P’ I 01, 

where p, represents the probability that Z starts in 
state (j). Note that pu is equal to 0 because the con- 
trol statistic is assumed to start in control. In practice, 
the initial probability vector will usually either con- 
tain a single element equal to 1, representing the 
initial starting state, or it will be a vector of steady- 
state probabilities. 

The transition probability matrix, represented in 
partitioned matrix form, is given by 

where the submatrix R contains the probabilities of 
going from one transient state to another, I is the 
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identity matrix, and 1 is a column vector of ones. 
Hence pjk represents the probability that the control 
statistic goes from state (i) to state (k) in one step. 
To approximate this probability, we assume that the 
control statistic is equal to S, whenever it is in state 
( j). This yields 

P,~ = Pr(going to Sk 1 in S,) 

= Pr[3.-‘{(S, - 6) - (1 - /.)S,} 

< Yi ~ i.~‘{(Sk + S) - (1 - r.)S,}], 

j = -m, -m + 1,. . . , tn. 

The rows of the transition probability matrix must 
add to 1 so that the probabilities of going from an 
in-control state to the out-of-control state are found 
by subtraction. 

For the special case of iid normal observations with 
mean pcv and standard deviation gY, the in-control 
transition probabilities are given by 

p,k = @[(h,)-‘{(Sk + d) - (1 - E.)s, - &Ly}] 

- ~[(~~ay)-‘{(Sk - S) - (1 - n)sj - ;I~y}], 

where @ represents the standard normal distribution 
function. 

Crosier (1986) suggested methods for calculating 
both conditional and cyclical steady-state probability 
vectors. Note, however, that an exact steady-state 
probability vector does not exist because the tran- 
sition probability matrix is not ergodic. The steady- 
state probability vector that we feel best models the 
way control schemes are used is a cyclical steady- 
state probability vector that is obtained by altering 
the transition probability matrix so that the control 
statistic is reset to state (0) whenever it goes into the 
out-of-control state; that is, 

p* = R (I - R)l 
0 1.s.o 0 . . . 

This transition probability matrix is ergodic. The 
steady-state probability vector, ps,, is found by solv- 
ing p = P*Tp subject to lTp = 1. Then, pss = 
(lTq)-‘q, where q is a vector of length t obtained 
from p by deleting the entry corresponding to the 
absorbing state; that is, pss is the probability vector 
obtained from p by deleting the entry corresponding 
to absorbing state and normalizing so that the prob- 
abilities sum to 1. 

The ith-stage transition probability matrix is useful 
for evaluating the run-length distribution because it 
contains the probabilities that the control statistic 
goes from one state to another state in i steps, 

p’ = R’ 
07 

Hence 

Pr(RL 5 i) = pT(I - R’)l 

and 

Pr(RL = i) = pT(R’-’ - R’)l. (A.11 
Using Equation (A.l), the ARL based on t in- 

control states is given by 

ARL(t) = i i Pr(RL = i) 
,=I 

= 2: i pT(R” - R’)l 
,=I 

= i p%‘-‘1 = pT(I - R)-‘1. (A.2) 
i=l 

In general, higher-order moments of the run-length 
distribution can easily be obtained using a recursive 
formula given by Brook and Evans (1972). 

The discretized ARL’s were evaluated for t = 51, 
59, 67, 75, and 83. As t goes to infinity, ARL(t) 
approaches the continuous-state ARL for an EWMA 
control scheme. Following the procedure of Brook 
and Evans (1972), the continuous-state ARL’s were 
approximated as the least squares intercept of the 
quadratic equation in the reciprocal of t, ARL(t) = 
asymptotic ARL + B/t + C/t*. Except for small 
values of 1. (e.g., R < .25), the discretized ARL’s 
quickly converged to the continuous-state ARL’s. 
For small values of 1, we found the convergence to 
be slow. As a numerical accuracy check, we com- 
pared our zero-state ARL’s with those given by 
Crowder (1987) and our steady-state ARL’s with 
those given by Robinson and Ho (1978). Our results 
agree with Crowder’s results to approximately three 
significant digits but only agree with Robinson and 
Ho’s results for large values of 1.. Examination of 
Robinson and Ho’s procedure revealed that their 
algorithm did not converge for small values of 1.. 

APPENDIX B: ENHANCEMENTS 

B.l FIR Feature 

The FIR feature requires the simultaneous imple- 
mentation of two one-sided EWMA control schemes 
with different starting values. One EWMA is started 
above the target value, and the other is started below 
the target value. An out-of-control signal is given if 
the EWMA started on the high side falls outside the 
upper control limit or if the EWMA started on the 
low side falls outside the lower control limit. 

The transition probability matrix requires tZ in- 
control states, withp,k,‘k ’ representing the probability 
that the EWMA with an HS on the high side moves 
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from state j to state k and the EWMA with an HS 
on the low side moves from state j’ to state k’. An 
upper bound for the FIR ARL’s can be obtained 
using only t in-control states. This approach requires 
two initial probability vectors, 

p; = (0, . . . ) 1, . . . ) 0, 0, 0, . . . ) 0, . . . , 0) 

and 

p; = (0, . . ) 0, . . . ) 0, 0, 0, . . . ) 1, . . . ) O), 

where p[ represents the initial probability vector for 
the EWMA with an HS on the low side and p; rep- 
resents the initial probability vector for the EWMA 
with an HS on the high side. When the desired HS 
does not correspond to the midpoint of any discrete 
state, the AR.L can be approximated using quadratic 
interpolation of the three closest states. 

Similarly, the transition probability matrix re- 
quires two out-of-control states, 

1 or 0 
P = 1, R hl , 

( 1 0 OT 1 

where the vector lr contains the probabilities that 
the EWMA of the low-sided scheme goes out-of- 
control on the low side and h1 contains the proba- 
bilities that the EWMA of the high-sided scheme 
goes out-of-control on the high side. The upper 
bound for the FIR ARL’s is given by 

ARL&f) == c i Pr(RL = i) 
i=l 

:= 2 i Pr(RLL = i or RLH = i) 
i=l 

~5 c i{Pr(RL, = i) + Pr(RL, = i)} 
i=l 

:= c +;(h, - h;-,) + p:(li - 1,-1)} 
,=, 

:= c i(p;R’-‘hl + p;Rimlll) 
i=l 

‘= pi&iRiel)h, + pL($iR;-l)& 

= p;(I - R)-*h, + p:(I - R)-*11, 

where 1, = 1,m1 + R’-‘1, and hi = himI + R’-‘h,. 
Using simulation, we found that this upper bound 
closely approximates the FIR ARL’s whenever the 
shift in the process target value is larger than .25 gy. 
The FIR ARL’s for shifts equal to 0 were obtained 
by simulation. We plan to implement the exact 

method for calculating FIR ARL’s in our future work 
when we compare and optimize methods of selecting 
a FIR feature. 

B.2 Combined Shewhart EWMA 

The properties of the combined Shewhart 
EWMA can be obtained by modifying the transition 
probability matrix for an EWMA control scheme. 
The modified one-step transition probabilities are 
given by 

plk = Pr[min(SCL,, max(SCL,, Y,,)} 

< Y, 5 max{SCL,, min(SCLU, Y,)}], 

YL = A-‘{(& - 6) - (1 - /i)s,}, 

and 

Y, = i.-‘{(Sk + 6) - (1 - n)s,}, 

j= -m, -m+ l,..., m, 

where SCL, and SCLL represent the upper and lower 
Shewhart control limits, respectively. 

8.3 Robust EWMA 

The run-length properties of a robust EWMA us- 
ing a two-in-a-row rule can be obtained by modifying 
the transition probability matrix of a combined Shew- 
hart EWMA. The in-control transition probabili- 
ties will be identical to the in-control transition prob- 
abilities for the combined Shewhart EWMA, with 
the Shewhart limits representing outlier limits. When 
a single outlier is observed, the control statistic re- 
mains in the same state and a counter is set. If the 
next observation lies within the outlier limits, the 
counter is reset to 0; otherwise an out-of-control sig- 
nal is given. 

The exact form of the transition probability matrix 
was given by Lucas and Crosier (1982b). Although 
they also gave the ARL vector associated with this 
transition probability matrix, a simplified form of the 
ARL vector is given by 

ARL = (P;, PO 
(1 + c){I - (1 + c)R,}-‘1 

{I - (1 + c)R,}-‘1 . 

A similar result also applies to the modified cyclical 
steady-state probability vector discussed in Appen- 
dix A. 

[Received September 1987. Revised April 1989.1 
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