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Zero-inflated Poisson (ZIP) regression is a model for count data with excess zeros. It assumes 
that with probability p the only possible observation is 0, and with probability 1 - p, a 
Poisson(A) random variable is observed. For example, when manufacturing equipment is 
properly aligned, defects may be nearly impossible. But when it is misaligned, defects may 
occur according to a Poisson(A) distribution. Both the probability p of the perfect, zero defect 
state and the mean number of defects A in the imperfect state may depend on covariates. 
Sometimes p and h are unrelated; other times p is a simple function of A such as p = 
l/(1 + A’) for an unknown constant 7. In either case, ZIP regression models are easy to fit. 
The maximum likelihood estimates (MLE’s) are approximately normal in large samples, and 
confidence intervals can be constructed by inverting likelihood ratio tests or using the ap- 
proximate normality of the MLE’s. Simulations suggest that the confidence intervals based 
on likelihood ratio tests are better, however. Finally, ZIP regression models are not only 
easy to interpret, but they can also lead to more refined data analyses. For example, in an 
experiment concerning soldering defects on printed wiring boards, two sets of conditions gave 
about the same mean number of defects, but the perfect state was more likely under one set 
of conditions and the mean number of defects in the imperfect state was smaller under the 
other set of conditions; that is, ZIP regression can show not only which conditions give lower 
mean number of defects but also why the means are lower. 

KEY WORDS: EM algorithm; Negative binomial; Overdispersion; Positive Poisson; Quality 
control. 

Standard arguments suggest that, when a reliable 
manufacturing process is in control, the number of 
defects on an item should be Poisson distributed. If 
the Poisson mean is A, a large sample of 12 items 
should have about ne-” items with no defects. Some- 
times, however, there are many more items without 
defects than would be predicted from the numbers 
of defects on imperfect items (an example is given 
in Sec. l), One interpretation is that slight, unob- 
served changes in the environment cause the process 
to move randomly back and forth between a perfect 
state in which defects are extremely rare and an im- 
perfect state in which defects are possible but not 
inevitable. The transient perfect state, or existence 
of items that are unusually resistant to defects, in- 
creases the number of zeros in the data. 

This article describes a new technique, called zero- 
inflated Poisson (ZIP) regression, for handling zero- 
inflated count data. ZIP models without covariates 
have been discussed by others (for example, see Cohen 
1963; Johnson and Kotz 1969), but here both the 
probability p of the perfect state and the mean A of 
the imperfect state can depend on covariates. In par- 
ticular, log(A) and logit = log(pl(1 - p)) are 
assumed to be linear functions of some covariates. 
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The same or different covariates might affect p and 
A, and p and A might or might not be functionally 
related. When p is a decreasing function of A, the 
probability of the perfect state and the mean of the 
imperfect state improve or deteriorate together. 

Heilbron (1989) concurrently proposed similar zero- 
altered Poisson and negative binomial regression 
models with different parameterizations of p and ap- 
plied them to data on high-risk behavior in gay men. 
(Although the models were developed independ- 
ently, the acronym ZIP is just an apt modification 
of Heilbron’s acronym ZAP for zero-altered Pois- 
son.) He also considered models with an arbitrary 
probability of 0. Arbitrary zeros are introduced by 
mixing point mass at 0 with a positive Poisson that 
assigns no mass to 0 rather than a standard Poisson. 

Other authors have previously considered mixing 
a distribution degenerate at 0 with distributions other 
than the Poisson or negative binomial. For example, 
Feuerverger (1979) mixed zeros with a gamma dis- 
tribution and coupled the probability of 0 with the 
mean of the gamma to model rainfall data. Farewell 
(1986) and Meeker (1987) mixed zeros with right- 
censored continuous distributions to model survival 
data when some items are indestructible and testing 
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Figure 1. The Data From the Printed Wiring Board Experiment. Each boxplot shows the number of defects on one of the 25 
boards in the experiment. The boxes are labeled by the board factors. When the box degenerates to a line, as happens for the 
leftmost board, which has large openings, thick solder, and mask A, 75% or more of the 27 counts on the board were 0. Counts 
beyond 1.5 interquartile ranges of the nearest quartile are plotted individually as circles. 

is stopped before all items that can fail have failed. 
Regression models that mix zeros and Poissons are 

described in detail in Section 2. Section 3 shows how 
to compute maximum likelihood estimates (MLE’s). 
Section 4 discusses finite-sample inference in the con- 
text of simulations. Section 5 applies ZIP regression 
to the manufacturing data introduced in Section 1. 
Section 6 gives conclusions. 

1. THE MOTIVATING APPLICATION 

Components are mounted on printed wiring boards 
by soldering their leads onto pads on the board. An 
experiment at AT&T Bell Laboratories studied five 
influences on solderability: 

Mask-five types of the surface of the board (A- 
El 

Opening-large (L), medium (M), or small (S) 
clearances in the mask around the pad 

Solder-thick or thin 
Pad-nine combinations of different lengths and 

widths of the pads (A-I) 
Panel-l = first part of the board to be soldered; 

2 = second; 3 = last 

In the experiment, one combination of mask, solder 
amount, and opening was applied to a board. Each 
board was partitioned into three equal panels, and 
each panel was subdivided into nine areas. A differ- 
ent pad size was used in each area of a panel, and 
the same pattern of pad sizes was repeated in all 
three panels. Each area held 24 identical devices with 
two leads each, giving 48 leads per area. A balanced 
experiment with 30 boards was designed, but only 
25 boards were available for statistical analysis. Thus 
the factors that vary between boards are unbalanced. 
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Mask is the most unbalanced factor, C is its most 
unbalanced level, and no board had large openings 
with mask C or small openings with mask E (see 
Fig. 1). 

In each area, only the total number of leads im- 
properly soldered was recorded, giving 27 responses 
between 0 and 48 for each of the 25 boards; that is, 
the response vector Y has 675 elements between 0 
and 48. Out of the 675 areas, 81% had zero defects, 
8% had at least five defects, and 5.2% had at least 
nine. Plainly, most areas had no defects, but those 
that did have defects often had several, as Figure 1 
shows. 

Since each lead has only a small probability of not 
being soldered and there are many leads per area, it 
is reasonable to fit a log-linear Poisson(A) model; 
that is, log(A) = BP for some design matrix B and 
coefficients p. Table 1 summarizes the fit of several 
such models. 

Table 1. Fits of Some Poisson Models for the Number of 
Defects per Area 

Highest terms in the model 

No interactions 
Solder c opening 
Mask c solder 
Mask l opening 
Mask l solder + opening t solder 
Opening t solder + mask t opening 
Mask l solder + mask + opening 
Mask ++ solder + opening t solder 

+ mask I opening 

Log- 
likelihood 

-761.2 
-718.0 
-719.9 
-711.7 
- 700.4 
- 663.9 
-671.5 
- 653.0 

Residual 
degrees 

of freedom 

657 
655 
653 
651 
651 
649 
647 
645 

Mask l opening c solder - 638.2 640 

NOTE: The main-effects model is log(Al = panel + pad + mask + Opening + 
solder. Some effects in the mask l opening interaction are not estimable. All 
models have all main effects; the three-way interaction model also has all two- 
way interactions. 
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Even the richest log-linear Poisson model, which 
has a three-way interaction between mask, opening, 
and solder, predicts poorly. Although 81% of the 
areas had no defects, the model predicts that only 71% 
of the areas will have no defects, since Xf151 P(Y = 
Olfii)/675 = .71. Large counts are also underpre- 
dieted. Although 5.2% of the areas had at least nine 
defects, the model predicts only 3.7% will have at 
least nine defects. Poisson models with fewer inter- 
action terms are even worse. For example, the richest 
model for which all coefficients are estimable pre- 
dicts only 68% zeros and 3.4% counts of at least 
nine. Modeling the split-plot nature of the experi- 
ment in a more complicated, generalized Poisson 
regression still does not give good predictions, as 
Section 5.2 shows. In short, there are too many zeros 
and too many large counts for the data to be Poisson. 

2. THE MODEL 

In ZIP regression, the responses Y = (Yl, . . . , 
Y,)’ are independent and 

Yi - 0 

- Poisson(&) 

so that 

with probability pi 

with probability 1 - pi, 

Yi = 0 with probability pi + (1 - pi)ecAc 
= k with probability (1 - pi)e-“‘hf/k!, 

k = 1,2, . . . . 

Moreover, the parameters A = (A,, . . . , A,)’ and 
P = (PIT * . . , p,)’ satisfy 

log(A) = BP and 

logit = log(p/(l - p)) = Gy 

for covariate matrices B and G. 
(1) 

The covariates that affect the Poisson mean of the 
imperfect state may or may not be the same as the 
covariates that affect the probability of the perfect 
state. When they are the same and A and p are not 
functionally related, B = G and ZIP regression re- 
quires twice as many parameters as Poisson regres- 
sion. At the other extreme, when the probability of 
the perfect state does not depend on the covariates, 
G is a column of ones, and ZIP regression requires 
only one more parameter than Poisson regression. 

If the same covariates affect p and A, it is natural 
to reduce the number of parameters by thinking of 
p as a function of A. Assuming that the function is 
known up to a constant nearly halves the number of 
parameters needed for ZIP regression and may ac- 
celerate the computations considerably. [The maxi- 
mum likelihood computations are no faster than those 
for least squares, which are O(k3) in the number of 
parameters k; for example, see Chambers (1977, p. 

144).] In many applications, however, there is little 
prior information about how p relates to A. If so, a 
natural parameterization is 

log(A) = BP and logit = - ~Bf3 (4 

for an unknown, real-valued shape parameter 7, which 
implies that pi = (1 + A;) - l. In the terminology of 
generalized linear models, log(A) and logit are the 
natural links or transformations that linearize Pois- 
son means and Bernoulli probabilities of success. If 
the term BP is thought of as stress, the natural links 
for p and A are both proportional to stress. ZIP model 
(2) with logit link for p, log link for A, and shape 
parameter T will be denoted ZIP(r). 

The logit link for p is symmetric around .5. Two 
popular asymmetric links are the log-log link defined 
by log( -log(p)) = ~Bf3 or, equivalently, pi = 
exp( - q) and the complementary log-log link de- 
fined by log( - log(1 - p)) = - TBP or pi = 1 - 
exp( - A;‘). Heilbron (1989) used an additive log- 
log link defined by pi = exp( - rAi) or log( - log(p)) 
= BP + log(r). Linear, instead of proportional or 
additive, logit links and log-log links could be defined 
by logit = log(a) - TBP and log( -log(p)) = 
log(o) + TBP, respectively. 

With any of these links, when r > 0 the perfect 
state becomes less likely as the imperfect mean in- 
creases, and as r --, ~0 the perfect state becomes 
impossible if Ai stays fixed. As r + 0 under the ad- 
ditive log-log link and as T ---, -CC under the other 
links, the perfect state becomes certain. Negative T 

are not permitted with the additive log-log link, but 
for the other links with T < 0, the Poisson mean 
increases as excess zeros become more likely. This 
could be relevant in manufacturing applications if 
setting parameters to improve the fraction of perfect 
items leads to more defects on imperfect items. 

3. MAXIMUM LIKELIHOOD ESTIMATION 

The number of parameters that can be estimated 
in a ZIP regression model depends on the richness 
of the data. If there are only a few positive counts 
and A and p are not functionally related, then only 
simple models should be considered for A. The sim- 
ulations in Section 4 suggest that the data are ade- 
quate to estimate the parameters of a ZIP or ZIP(T) 
model if the observed information matrix is nonsin- 
gular. This section shows how to compute the MLE’s; 
the observed information matrix is given in the 
Appendix. 

3.1 A and p Unrelated 

When A and p are not functionally related, the log- 
likelihood for ZIP regression with the standard par- 
ameterization (1) is 
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L(y) P; y) = yzo log(ec~y + exp( - eB@)) 

+ ZIo OtiBiP - eBcB) 

(3) 

where Gi and Bi are the ith rows of G and B. The 
sum of exponentials in the first term complicates the 
maximization of L(y, p; y). But suppose we knew 
which zeros came from the perfect state and which 
came from the Poisson; that is, suppose we could 
observe .Zi = 1 when Y, is from the perfect, zero 
state and Zi = 0 when Yi is from the Poisson state. 
Then the log-likelihood with the complete data (y, 
z) would be 

+ jIl l”df(Yilzi~ PI) 

n 
= C (ZiGiy - lOg(1 + eG1’)) 

i=l 

+ ,zl (1 - zi)(YiB# - eBiP) 

- i: (1 - Zi)lOg(yi!). 
I=1 

This log-likelihood is easy to maximize, because L,(y; 
y, z) and L&3; y, z) can be maximized separately. 

With the EM algorithm, the incomplete log-like- 
lihood (3) is maximized iteratively by alternating be- 
tween estimating Z, by its expectation under the cur- 
rent estimates of (y, g) (E step) and then, with the 
Zts fixed at their expected values from the E step, 
maximizing L,(y, p; y, z) (M-step) (for example, 
Dempster, Laird, and Rubin 1977). Once the ex- 
pected 2,‘s converge, the estimated (y, p) converges, 
and iteration stops. The estimates from the final it- 
eration are the MLE’s (9, fi) for the log-likelihood 
(3). 

In more detail, iteration (k + 1) of the EM al- 
gorithm requires three steps. 

E Step. Estimate Zi by its posterior mean Zik) 
under the current estimates Y(“) and Pck). Here 

.Zik) = PIperfect stately,, y(*), fi(“)] 

PbJperfect state] P[perfect state] 
= P[y,Jperfect state] P[perfect state] + PLyJPoisson] P[Poisson] 

= (1 + e- c&+exp(Bl6(*)) 1 - 1 ify, = 0 

=O ify,= 1,2,. 

M step fir j3. Find P(“+l) by maximizing L,(p; 
y, Zck)). Note that @ck+ l) can be found from a weighted, 
log-linear Poisson regression with weights 1 - Zck), 
as described by McCullagh and Nelder (1989), for 
example. 

M step for y. Maximize L,(y; y, Z(“)) = 2,,,zo 
Zjk)Giy - 2y,=o Zfk) log(1 + e”“) - X.:=,(1 - 
Zik)) log(1 + eG”) as a function of y. (The equality 
holds because Zjk) = 0 whenever yi > 0.) To do this, 
suppose that no of the yls are 0. Say yi,, . . . , yin0 
are 0. Define y: = (yl, . . . , y,, yil, . . . , yin”), 
G; = (G;,. . . , GL, G,!,, . . . , G&), and P: = (pl, 
* . . tPn,Pil,. . ’ > pi,,). Define also a diagonal matrix 
W@) with diagonal wck) = (1 - Z(lk), . . . , 1 - 
Zik’, zp, . . . , Zi$)‘. In this notation, L,(y; y, Zck)) 
= Cyzy Y.&~) G,iy - Zy’_fr” wjk) log(1 + eG*lr) 
the gradient dr score function is G:W@)(y, - P,j 
= 0, and the Hessian or negative of the information 
matrix is - G:W(k)Q,G,, where Q, is the diagonal 
matrix with P,(l - P,) on the diagonal. These func- 
tions are identical to those for a weighted logistic 
regression with response y*, covariate matrix G,, 
and prior weights wck); that is, ~(~1 can be found by 
weighted logistic regression. 

The EM algorithm converges in this problem (see 
the Appendix). Moreover, despite its reputation, it 
converges reasonably quickly because the MLE for 
the positive Poisson log-likelihood is an excellent guess 
for p. The positive Poisson log-likelihood is 

L+(P;s’+) = y~n(~iBiP - eB@> 

-.pg(l - e- exp@y - y-” log(y,!), 

its score equations are 

B: eB+P 
Y+ - 1 - exp( -eB+P) 0, 

and its Hessian is B’+DB + , where the subscript + 
indicates that only the elements or rows correspond- 
ing to positive yl’s are used and D is a diagonal matrix 
with diagonal 

eB+P(l - e-@*p(l f eB+P)) 

(1 - e-eB+P)Z . 
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The score equations can be solved by iteratively re- 
weighted least squares (see Green 1984). 

The initial guess for y has been unimportant in the 
examples and simulations considered to date. One 
possibility when y includes an intercept is to set all 
elements other than the intercept to 0 and estimate 
the intercept by the log odds of the observed average 
probability of an excess 0. The observed average 
probability of an excess 0 is 

h = 

#(yi = 0) - 2 e- -P@‘#“)) 

n 

(If the fraction of zeros is smaller than the fitted 
Poisson models predict, there is no reason to fit a 
ZIP regression model.) 

There are other algorithms, such as the Newton- 
Raphson, for maximizing the log-likelihood (3). When 
it converges, the Newton-Raphson algorithm is usu- 
ally faster than EM. The EM algorithm, however, is 
simpler to program, especially if weighted Poisson 
and weighted logistic regression are available. More- 
over, the Newton-Raphson algorithm failed for the 
final ZIP model in Section 5.1. Whatever the algo- 
rithm, log( 1 + exp(x)) should be computed carefully 
in the tails. 

3.2 p a Function of A 

The log-likelihood for the ZIP(T) model with the 
standard parameterization (2) is, up to a constant, 

L(p, r; y) = Y~Olog(e-TB~a + exp( -eB@)) 

+ X0 (Y&P - eBzB) 

- 2 log(1 + e-TB@). 
i=l 

(4) 

The EM algorithm is not useful here because B and 
7 cannot be estimated simply even if 2 is known. The 
Newton-Raphson algorithm, however, has con- 
verged in the examples and simulations to date. 
Initial guesses of B(O) = fiu and T(O) = - median(+,/ 
fi,), where (9,, fiu) are the ZIP MLE’s, perhaps 
excluding the intercept from the calculation of the 
median, are often satisfactory. If not, first maximiz- 
ing over B for a few choices of fixed 7. and then 
starting at the (fi(~~), 70) with the largest log-like- 
lihood often succeeds. 

4. STANDARD ERRORS AND 
CONFIDENCE INTERVALS 

In large samples, the MLE’s (9, p) for ZIP 
regression and (6, +) for ZIP(T) regression are ap- 
proximately normal with means (y, B) and (B, T) and 
variances equal to the inverse observed information 

matrices 1-l and I;‘, respectively. (The formulas for 
I and I, are given in the Appendix.) Thus, for large 
enough samples, the MLE’s and regular functions of 
the MLE’s, such as the probability of a defect and 
the mean number of defects, are nearly unbiased. 

Normal-theory, large-sample confidence intervals 
are easy to construct, but they assume that the log- 
likelihood is approximately quadratic near the MLE. 
When it is not quadratic a few standard errors from 
the MLE, normal-theory confidence intervals can 
mislead. Likelihood ratio confidence intervals are 
more difficult to compute but are often more trust- 
worthy. A two-sided (1 - a)lOO% likelihood ratio 
confidence interval for /3r in ZIP regression, for ex- 
ample, is found by computing the set of p1 for which 
%W, b> - max,,p-CKP1~ P-A 7)) < XL where 
,& is the upper a quantile of a x2 distribution with 
1 df and B-r is the parameter vector B without its 
first element. 

4.1 The Simulation Experiments 

To explore whether the asymptotic results pertain 
to finite samples, three simulations with 2,000 runs 
each were carried out in S (Becker, Chambers, and 
Wilks 1988). In the first experiment, II = 25, in the 
second IZ = 50, and in the third II = 100. Through- 
out, there is one covariate x taking on II uniformly 
spaced values between 0 and 1, y = ( - 1.5, 2), and 
p = (1.5, -2), so T = 1. With these choices, the 
Poisson means A range from .6 to 4.5 with a median 
of 1.6, and, on average, 50% of the responses yi are 
0 and 23% of the zeros are Poisson. The response y 
was obtained by first generating a uniform (0, 1) 
random vector U of length n and then assigning 
yi = 0 if Ui 5 pi and yi - Poisson@,), otherwise. 

ZIP and ZIP(T) MLE’s and likelihood ratio inter- 
vals were found by the Newton-Raphson algorithm 
using the S function ms, which is based on an algo- 
rithm of Gay (1983). (The function ms is included in 
the 1991 version of S and was described by Chambers 
and Hastie [ 19921.) ZIP regression always converged 
when started from the positive Poisson MLE and one 
EM step for y, even for it = 25. For ZIP(T) regres- 
sion, the Newton-Raphson algorithm always con- 
verged from the ZIP MLE’s for n = 100. But for 
n = 50, these starting values failed in 15 runs. In 14 
of those runs, ]y2] > 1,600, and in the remaining 
run, 92 = -64. (This is not as alarming as it might 
appear. Standard logistic regression coefficients are 
infinite when the xi’s whose responses are 0 and the 
xi’s whose responses are 1 do not overlap. Likewise, 
ZIP regression breaks down when the set of zeros 
that are classified as perfect and the set of zeros that 
are classified as Poisson come from nonoverlapping 
x;s.) In the 15 runs with outlying T2’s, ZIP(T) MLE’s 
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were found by the Newton-Raphson algorithm when 
the log-likelihood was first maximized over p for 
fixed 7, as described in Section 3. For y1 = 25, the 
Newton-Raphson algorithm failed to find ZIP(T) 
MLE’s when started from the ZIP MLE’s in 180 runs, 
but it succeeded in these runs when 7 was arbitrarily 
initialized to 10. In short, the ZIP and ZIP(T) regres- 
sions were not difficult to fit. 

4.2 Simulated Properties of the MLE’s 

Table 2 summarizes the finite-sample properties 
of the estimated coefficients. For all n, the mean fi 
is close to the true p for both ZIP and ZIP(T) regres- 
sions. For n = 50, however, the mean 9 is far from 
y, and for IZ = 25 the mean 9 is off by a factor of 
4,500. This is not surprising, because even standard 
logistic regression MLE’s have infinite bias in finite 
samples. ZIP regressions are, of course, harder to 
fit than standard logistic regressions because it is not 
known which of the zeros are perfect. What is en- 
couraging, however, is that p can be estimated even 

when y cannot. Moreover, if we require that the 
observed information matrix I be nonsingular, then 
the bias in 9 and fi decreases dramatically, espe- 
cially for n = 25. 

Looking at only runs with nonsingular observed 
information, the standard deviations of 8, and p, es- 
timated from observed information are reasonably 
close to the sample standard deviations of 
fil and b2 (within 8% for ZIP regression and n = 
25, within 14% for ZIP(T) regression and n = 25, 
and less than 4% otherwise). The results for +r are 
slightly worse, and those for F2 and + are noticeably 
worse (about 50% too small for IZ 5 50); that is, the 
precision in the estimated slope of the relationship 
between the covariate and the log odds of the prob- 
ability of a perfect 0 is hard to estimate well. As 
often happens, standard deviations based on ex- 
pected information seriously underestimate the var- 
iability in the MLE’s and should not be trusted. 
Standard deviations based on observed information 
are also optimistic but to a much lesser extent. 

Table 2. Behavior of ZIP and ZIP(r) Coefficients As Estimated From 2,000 Simulated Trials 

n = 25 
n = 50 
n = 100 
Asymptotic 

n = 25 
n = 50 

1.476 -2.118 - 6,449. 9,370. 1.466 -2.026 
1.497 - 2.090 -4.565 -4.027 1.489 -2.026 
1.496 -2.037 -1.555 1.876 1.491 -2.004 
1.500 -2.000 -1.500 2.000 1.500 -2.000 

Mean omitting runs with singular observed information* 

1.483 -2.075 -1.834 1.629 1.477 -2.037 
1.497 -2.082 -1.587 1.514 1.489 -2.025 

n = 25 1.504 -2.084 
" = 50 1.513 -2.037 
" = 100 1.505 -2.025 
Asymptotic 1.500 -2.000 

n = 25 
n = 50 
" = 100 

n = 25 
n = 50 

-1.607 2.091 
-1.481 1.939 
-1.506 2.000 
-1.500 2.000 

Standard deviation 

1.497 -2.012 1.126 
1.505 -2.020 1.059 
1.502 - 1.996 1.034 
1.500 -2.000 1.000 

,332 1.055 103,573. 158,075. ,314 ,756 
.218 .704 70.125 159.99 ,203 ,462 
,155 .493 .604 1.742 ,145 ,319 

Standard deviation omitting runs with singular observed information 

,323 1.021 2.021 5.130 .303 .749 
,219 ,701 1.096 3.931 ,203 ,461 

210,328. 
1.028 

,466 

2.228 
1.027 

32,736. 
1.192 
1.088 
1.000 

1.495 
1.191 

Mean of the standard deviations estimated from nonsingular observed information 

n = 25 .299 ,950 1.871 3.906 ,285 ,657 1.544 
" = 50 ,214 ,677 ,928 2.315 ,202 ,454 ,669 
n = 100 ,153 ,485 ,594 1.354 ,143 ,319 .412 

Standard deviation estimated from expected information 

n = 25 ,288 ,927 1.053 2.170 ,254 ,602 ,672 
n = 50 ,210 ,667 .756 1.560 ,184 ,434 ,479 
n = 100 ,151 ,476 ,539 1.112 ,132 ,310 ,341 

*For n = 100. observed information was never singular. ZIP observed information was singular in 17 runs for n = 50 and 
in 160 runs for n = 25; ZIP(T) observed information was singular in one run for n = 50 and in 62 runs for n = 25. 

TECHNOMETRICS, FEBRUARY 1992, VOL. 34, NO. 1 



ZERO-INFLATED POISSON REGRESSION 7 

4.3 Simulated Behavior of Confidence 
Intervals and Tests 

Table 3 shows that 95% normal-theory confidence 
intervals for y2 are unreliable for IZ as large as 100 
and one-sided normal-theory error rates for T are 
obviously asymmetric. Fortunately, even for 12 as small 
as 25, ZIP and ZIP(T) 95% likelihood ratio confi- 
dence intervals perform well when only runs with 
nonsingular observed information are used (see Table 
3). For it = 25, 6.3% of the ZIP 95% intervals for 
& and 5.5% of the 85% intervals for y* did not cover 
the true values; 5.6% of the ZIP(T) 95% intervals 
for p2 and 5.6% of the 95% intervals for 7 did not 
cover the true values. For IZ = 50, the corresponding 
error rates were 5.3% and 5.5% for ZIP and 5.1% 
and 4.5% for ZIP(r) regression. The errors were not 
concentrated on one side of the confidence intervals. 
Moreover, quantile-quantile plots (not given here) 
showed that the x: distribution is appropriate for 
testing the null hypothesis that the ZIP(r) model is 
correct. In particular, for n = 25 twice the difference 
of the ZIP and ZIP(T) log-likelihoods is approxi- 
mately x: up until at least the .99 quantile, and the 
approximation improves with II. 

4.4 Simulated Behavior of Properties of the 
Observable Y 

A different question is how well are the parameters 
of the unconditional distribution of the observable y 
estimated? For example, how good is the estimate 
exp(Xfi)/(l + exp(X+)) of the mean of Y? The left 
half of Figure 2 shows properties of the relative bias 
[&( Y Ix) - E( Y ]x)]lE( Y Ix) plotted against E( Y Ix) for 

x between 0 and 1. In Figure 2, all 2,000 simulation 
runs are used, including those with singular observed 
information, because predictions from models with 
poorly determined coefficients can be valid. The top 
left plot shows that the average relative bias is much 
better for n = 50 or 100 than it is for n = 25, but 
even for IZ = 15 the relative bias lies only between 
-3.8% and 2.5%. For all n, E(Y(x) is, on average, 
overestimated near x = 0 and underestimated near 
x = 1. Loosely speaking &Y/x) shrinks toward 
n-l qL1 8( Y)x,). Figure 2 also shows that the rel- 
ative bias in E’( Y Ix) is even smaller for ZIP(T) regres- 
sion than for ZIP regression, except for x near 0. 

The right half of Figure 2 shows properties of the 
relative bias of the estimated probability that Y = 
0; that is, it shows [P(Y = 01x) - P(Y = O(x)]/ 
P(Y = O(x) for x between 0 and 1. When ZIP(T) 
regression is appropriate, it is better to use it instead 
of ZIP regression even if IZ is as large as 100. For 
it = 100, the average ZIP relative bias is be- 
tween - 1.7% and 4.8% and the average ZIP(T) rel- 
ative bias is between - .5% and 1.3%. For IZ = 
25, the relative biases are - 17.9% and 19.6% for 
ZIP regression and 1.6% and 7.1% for ZIP(T) 
regression. 

To summarize, these simulations with one covar- 
iate for both A and p are encouraging. The ZIP and 
ZIP(T) regressions were not difficult to compute, and 
as long as inference was applied only when the ob- 
served information matrix was nonsingular, esti- 
mated coefficients, standard errors based on ob- 
served information, likelihood ratio confidence 
intervals, and estimated properties of Y could be 
trusted. 

Table 3. Error Rates for 95% Two-Sided ZIP and ZIP(r) Confidence Intervals From 2,000 
Simulated Trials 

ZIP ZIP(T) 

P2 Y2 P2 Y? 

Lower Upper Lower Upper Lower Upper Lower User 

Normal theory intervals, all runs 

n= 25 .0365 .0445 .OOl ,003 ,042 ,017 ,000 .047 
n= 50 .025 ,037 ,011 .0035 .029 .0205 ,001 .0415 
n = 100 ,028 .0245 .0255 .0075 .0365 ,018 ,001 .0345 

Likelihood ratio intervals, all runs 

n= 25 .0325 .0455 ,051 ,042 .0365 ,033 .0655 .oia5 
n= 50 .0215 ,034 ,026 ,035 .0245 .0255 ,025 ,020 
n = 100 .025 ,024 .0305 .0275 ,031 .0215 ,028 .0235 

Normal theory intervals, only runs with nonsingular observed information 

n = 25 ,040 ,048 ,001 ,003 .043 ,018 ,000 ,049 
n = 50 ,025 ,037 ,011 ,004 .029 ,021 ,001 ,042 

Likelihood ratio intervals, only runs with nonsingular observed information 

n = 25 ,031 ,032 .026 ,029 ,027 ,029 ,037 ,019 
n = 50 ,022 ,031 ,025 ,030 ,025 ,026 ,025 ,020 
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Figure 2. Bias in the Estimated Mean of Y and Estimated Probability of a Zero for 2,000 Simulated Trials. The left plots 
describe &Y)lE(Y) - 1; the right plots show&Y = 0)IPIY = 0) - 7. The solid line represents n = 25, the dashed line represents 
n = 50, and the dotted line represents n = 100. 

5. THE MOTIVATING APPLICATION 
REVISITED 

5.1 ZIP Regression 

Tables 4 and 5 summarize the fit of several ZIP 
models to the data described in Section 1. In Table 
4, the probability p of the perfect state is constant; 
in Table 5 it depends on the factors. The simple ZIP 
models in Table 4 are significantly better than the 
Poisson models in Table 1, but the models in Table 
5 are even better. 

The ZIP model in Table 5 with the largest log- 
likelihood can be represented as 

log(i) = panel + pad + mask 

+ opening + solder + mask * solder 

+ opening * solder 
n 

log J- 
( > 1-p = panel + pad + mask + opening. (5) 

Although there are many parameters in the ZIP 
regression model (5), 24 for A and 17 for p, the 
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observed information matrix is nonsingular. The es- 
timated coefficients are shown in Figure 3 for the 
full rank parameterization that arbitrarily sets the 
first level of each main effect to 0. The pi’s for the 
675 design points range from .0004 to .9998, with a 
median of .932 and quartiles of .643 and .988, rein- 
forcing the conclusion that the probability of the per- 
fect state varies with the factors. The estimated Pois- 

Table 4. Fits of ZIP Regression Models With Constant 
Probability of the Perfect State 

Residual 
Highest term in the model Log- degrees 

for log(A) likelihood of freedom 

No interactions - 664.9 656 
Opening x solder - 630.6 654 
Mask I solder - 630.7 652 
Mask * opening -622.8 650 
Mask I) solder + opening l solder -614.1 650 
Opening * solder - 592.9 648 

+ mask x opening 
Mask * solder + mask * opening - 534.8 646 
Mask x solder + opening I solder - 582.1 644 

+ mask * opening 
Mask l opening * solder - 567.1 639 

NOTE: Some effects in the mask l opening interaction are not estimable. All 
models have all main effects; the three-way interaction model also has all two- 
way interactions. 
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Table 5. Fits of ZIP Regression Models With Logit(pJ = 
Panel t Pad + Opening + Mask 

Highest term in the model 
for log(A) 

Log- 
likelihood 

Residual 
degrees 

of freedom 

No interactions 
Opening c solder 
Mask t solder 
Mask l opening 
Mask t solder + opening l solder 

- 563.3 640 

- 524.0 636 

- 537.9 637 
- 524.3 634 
- 511.2 634 

NOTE: The model for p excludes solder. because including it increases the log- 
likelihood by less than 1.0 whenever .4 includes at least one interaction. Observed 
information is singular when the mask l opening interaction is included in the 
model for A. even if a full rank design matrix is used. All models for h have all 
main effects. 

son means range from .02 to 41.8 with a median of 
1.42 and quartiles of .38 and 3.14. 

ZIP regression can be difficult to interpret when 
the covariates affect A, p, and the mean number of 
defects E(Y) = p = (1 - p)A differently. Fortu- 
nately, for these data the effects on p and A, and 
hence the effect on p, generally agree, as Figure 3 
shows. In Figure 3, levels of a factor that are near 
the center of the figure are better, in the sense of 
producing fewer defects; that is, levels near the top 
of the plot for log(A) give large Poisson means; levels 
near the bottom of the plot for logit give few 
perfect zones. For example, pad g is better than pad 
b, because pad g gives a higher p and lower A. In 
contrast, opening M has a complex effect on quality. 
It gives a high A when combined with thick solder 
but has little effect on p. 

It is hard to predict whether E(Y) = p improves 
or degrades when a level of a factor increases both 
p and A. Similarly, it is hard to predict how p changes 
when y and p change, because no transformation of 
p is linear in both y and p. (The same difficulty arises 
in interpreting fixed coefficients in log-linear models 
with random effects.) One way to address such ques- 
tions is to average the estimated means hi over all 
design points that share the same level of a factor 
and then compare the averages. For example, the 
average for mask C, or marginal mean of C, is de- 
fined by 

C Pi 
design points i with mask C 

#(design points i with mask C) 

c (1 - p$, 
= design points i with mask C 

#(design points i with mask C)’ 

Figure 4 shows the marginal means for the terms 
in Model (5) under the full factorial design of 810 
design points. Using the actual unbalanced experi- 
mental design instead would misrepresent the un- 
balanced factors. For example, exactly one board (27 
counts) with mask C has small openings and thin 

solder, which is a “bad” combination, but no board 
with mask C has large openings and thick solder, 
which is a “good” combination. Under the unbal- 
anced design the marginal mean for mask C is 7.47; 
under the balanced design it is only 4.48. 

Together, Figures 3 and 4 describe the roles of the 
factors in detail. For example, pad e improves the 
mean number of defects because it improves the 
probability of the perfect state and the mean in the 
imperfect state. Conditions Athin and Bthick have 
about the same marginal means, but Athin is more 
often in the perfect state and Bthick has fewer defects 
in the imperfect state. Small openings are less likely 
to be in the perfect state than large openings. But 

M- 
thin- 

M 

S 

Figure 3. ZIP Regression Effects for the Printed Wiring Board 
Data. The top half of the figure shows the effects on log(A). 
The bottom half shows the effect on logit( Effects not shown 
were set to 0 to obtain a full rank parameterization. 
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Figure 4. Estimated Marginal Means UnderZIP Regression 
in the Manufacturing Experiment. Each point averages the 
estimated means (1 - p,)& with the specified level of the 
factor under the full factorial design. 

small openings with thick solder give fewer defects 
in the imperfect state than large openings with thin 
solder. Overall, small openings with thick solder have 
smaller marginal means. 

In short, Figures 3 and 4 show not only which levels 
give lower mean numbers of defects but also why the 
means are lower. With plots like these, ZIP regres- 
sion is nearly as easy to interpret as standard Poisson 
regression. 

5.2 ZIP Regression Compared to Negative 
Binomial Regression 

One could ask whether the excess zeros can be 
explained more simply as random variation between 
boards. Expanding the Poisson model by including 
a random-board factor is not enough to model these 
data satisfactorily, however, To see this, suppose that 
counts from different areas j of the same board i are 
Poisson(A&), where Ri is a random effect shared by 
all areas of a board, R, has a gamma(cy, a) distri- 
bution, and log(h,) = X,p. The likelihood for the 
675 observations is then 

fi L(P, aIYilT . . * 7 Yi27) i=l 

= I! ( 
qa + c. Y.. - I)& 

r(*;Jyyij! 

exP(Cj YijxijP) 
* (a + Cj exp(X,P))*+~JJ~ 1 ’ 

which is a product of negative binomials. The MLE 
(fi, &) can be found by maximizing the log-likelihood 
for a set of fixed (Y and then maximizing over (Y. 

If all terms in a model are required to be estimable, 
the negative binomial log-likelihood is maximized 
when A has the same form as the fitted imperfect 
mean (5): log(i) = panel + pad + mask + opening 
+ solder + mask * solder + opening * solder and 
& = 1.38. The maximum log-likelihood is -674.2, 
which is significantly higher than the Poisson log- 
likelihood ( - 700.4) for the same model of the mean. 
Thus random variability between boards is important 
if the Poisson model is used. 

The best negative binomial model does not predict 
as well as the ZIP model (5), however. To see this, 
first estimate probabilities for the negative bino- 
mial model at the 675 design points by taking the 
number of defects Yij in area j on board i to be 
Poisson(fii&j), where fii is the estimated posterior 
mean (& + CjY,)/(& + x&,) of Ri. The 25 i&‘s 
range from .1 to 2.5 with a mean of 1 .OO and a stand- 
ard deviation of .60. Figure 5 shows that the negative 
binomial model underestimates the probability of a 
0 and the probability of at least nine defects and 
overestimates the probability of one, two, or three 

1 

Figure 5. Estimated Probabilities Compared to Empirical 
Probabilities for the Manufacturing Experiment. In each case, 
B&Y, = k)/675 - #(V, = k/675 is plotted against #(Vi = k)l 
675. P denotes Poisson probabilities, Z denotes ZIP, N de- 
notes negative binomial, and T denotes ZIP(r). AN of these 
probabilities have Mode) (5) for log(A). 
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defects almost as badly as the pure Poisson model 
does. Additionally, although ZIP regression does not 
include a parameter for random board variability, 
the ZIP estimates of the mean total number of 
defects on a board, Cj?li (1 - pij)fiij, are as good as 
the negative binomial mean estimates Xf’i i,. 
The 25 residuals observed - expected for the total 
number of defects per board have mean 7.6 under 
the negative binomial and mean - .3 under the ZIP 
and quartiles -3.8 and 4.2 under the negative bi- 
nomial and -2.9 and 1.9 under the ZIP. Thus the 
negative binomial model is not as good as the ZIP 
regression model for these data, and simply increas- 
ing the variability in the Poisson distribution does 
not necessarily accommodate excess zeros. Of course, 
inflating a negative binomial model with “perfect 
zeros” might provide an even better model for the 
printed-wiring-board data than ZIP regression does. 
Such a model was not successfully fit to these data, 
however. 

5.3 ZIP (7) Regression 

Since the factor levels in the fitted model (5) that 
improve A generally tend to improve p as well, it is 
reasonable to fit ZIP(r) regressions to the printed- 
wiring-board data. Table 6 summarizes the fits of 
several ZIP(r) models. The model with mask * solder 
and opening * solder interactions has significantly 
higher likelihood than the others and is the only one 
considered here. 

The best ZIP(T) regression, which has ? = .81, fits 
much better than the Poisson regressions in Table 1 
but not as well as the ZIP regression (5). First, the 
ZIP(r) model underestimates the probability of a 0 
and the probability of at least nine defects, as Figure 

Table 6. Fits of ZIP(r) Regression Models 

Residual 
Highest term in the model Log- degrees 

for log(A) likelihood of freedom 

No interactions - 643.2 656 
Opening l solder - 609.4 654 
Mask l solder -611.2 652 
Mask c opening -602.4 650 
Mask * solder + opening + solder - 595.0 650 

NOTE: All models have all main effects. Not all mask l opening coefficients are 
estimable. 

5 shows. Indeed, the ZIP(r) regression is little better 
than the Poisson for predicting large counts. It is 
much better than the Poisson at predicting zero, one, 
or two defects, however. Second, the Pearson resid- 
uals, defined by (Yi - &YJ)l[var(YJ]l’z, are gen- 
erally worse for ZIP(T) regression than for ZIP 
regression, as Figure 6 shows. For 16 out of 25 boards, 
most of the ZIP(r) absolute residuals exceed the ZIP 
absolute residuals. For four other boards, the ZIP 
and ZIP(r) absolute residuals are nearly the same. 

Most of the estimated effects on A are similar for 
ZIP(T) and unconstrained ZIP regression. There are 
some differences, however. For example, boards with 
small openings and thick solder cannot be distin- 
guished from boards with large openings and thin 
solder in the ZIP(r) model, but they can be distin- 
guished in the ZIP model (large openings with thin 
solder are worse). Moreover, the marginal mean for 
Cthick is better than the marginal mean for Ethin 
under the ZIP model but not under the ZIP(r) model. 

Although ZIP(r) regression does not fit the printed 
wiring board data as well, it might be favored over 
the ZIP regression because it has fewer parameters, 

Figure 6. Difference in Absolute Pearson Residuals Under the ZIP(T) and ZIP Regressions for the 25 Printed Wiring Boards. 
Positive values imply that the absolute ZIP(r) residual is larger than the absolute ZIP residual. Thus boxes that are positioned 
above the y = 0 line favor the ZIP regression model over the ZIP(r) regression model. 
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fits better than the Poisson, and can be easier to 
interpret, since the same coefficients describe the 
imperfect mean, the probability of the perfect state, 
and the mean of Y. But in this application, ZIP 
regression was preferred for two reasons. First, sep- 
arating the effects on the perfect state from the ef- 
fects on the imperfect mean made more sense to the 
engineers than coupling the parameters of the two 
models. More importantly, ZIP regression gave re- 
sults that agreed more closely with the engineers’ 
prior experience. When the same manufacturing ex- 
periment had been run earlier with older practices 
and different equipment at a different factory, few 
counts of 0 had been observed. A Poisson regression 
fit the earlier data well. When the same kind of Pois- 
son regression model was fit to the later data, how- 
ever, the effects of some of the factors changed. But 
when the Poisson model was expanded to the ZIP, 
the estimated effects on the imperfect mean agreed 
well with the estimated effects from the earlier ex- 
periment; that is, the two experiments led to the 
same conclusions about large numbers of defects, but 
the earlier experiment was never in a state that pro- 
duced very low levels of defects and the later one 
was. This simple conclusion was so appealing that 
ZIP regression was preferred over ZIP(r) regression. 

6. CONCLUSIONS 

ZIP regression is a practical way to model count 
data with both zeros and large counts. It is straight- 
forward to fit and not difficult to interpret, especially 
with the plots introduced here. Expressing the zero- 
inflation term p as a function of A reduces the number 
of parameters and simplifies interpretation. Both kinds 
of parameterization have been fit without difficulty 
to simulated and real data in this article. Further- 
more, ZIP and ZIP(r) MLE’s are asymptotically nor- 
mal, twice the differences of log-likelihoods under 
nested hypotheses are asymptotically $, and simu- 
lations suggest that log-likelihood ratio confidence 
intervals are better than normal-theory confidence 
intervals. 

ZIP regression inflates the number of zeros by 
mixing point mass at 0 with a Poisson distribution. 
Plainly, the number of zeros in other discrete ex- 
ponential family distributions can also be inflated by 
mixing with point mass at 0. The natural parame- 
terization r](p) of the mean p of the discrete distri- 
bution would be linear in the coefficients B of some 
covariates B, and the logit (or log-log or comple- 
mentary log-log) link of the probability p of the per- 
fect state would be linear in the coefficients y 
of covariates G. When the probability of the per- 
fect state depends on n(p), taking logit( or 
- log( - log(p)), or log( - log(1 - p)) equal to - rBP, 
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BP - log(T), or (Y - 7BB should make the com- 
putations tractable. Mixing zeros with nonexponen- 
tial family discrete distributions, such as negative 
binomial with unknown shape, however, may be 
computationally more difficult. 
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APPENDIX: SOME DETAILS 

A.1 CONVERGENCE OF THE EM ALGORITHM 

The EM algorithm is monotone in the sense that 
the log-likelihood L(8) (3) satisfies L(E)(k+l)) 2 L(N‘)), 
where 0 = (y, B) (for example, Dempster et al. 
1977). Because L(8) is bounded above, monotonicity 
implies that the sequence of log-likelihoods gener- 
ated by the EM iterations converges, although not 
necessarily to a stationary point of L. The proof of 
that depends on the smoothness of Q(e*, 0) = 
sw*l Y, 41 Y, 01. 

Conditional on yi, the unobserved indicator Zi of 
the perfect state is identically 0 if Yi > 0 and Ber- 
noulli(r,) if yi = 0, where ri is the posterior proba- 
bility of the perfect state: 

eGt~ + A, 
ri = 1 + eGr~+Ar if yi = 0 

= 0 ify, = 1, 2, . . . . 

Therefore, 

ece*, 0) 
+ y,B#* - eB@* - log(y,!) 

1 + &iy + exp@@*) 9 

which is continuous in 8* and 8. Using theorem 2 of 
Wu (1983), this continuity guarantees that the se- 
quence of EM log-likelihoods converges to a sta- 
tionary point of L(B). Moreover, since the first de- 
rivative of Q(e*, 0) with respect to 8* is continuous 
in 8* and 8, it follows that 9@) converges to a local 
maximizer of L(B) (corollary 1, Wu 1983). 

A.2 ASYMPTOTIC DISTRIBUTION OF (9, rj, 
AND THE ZIP LOG-LIKELIHOOD 

Define q = 1 - p and s = 1 - r, and let 0, $, 
i, and j: be the analogous quantities with the MLE’s 
substituted for the true parameter values. Then the 
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observed information matrix corresponding to the 
ZIP log-likelihood (3) is 

where D,,, is diagonal with elements 4 - I, D,,b is 
diagonal with elements -b, and Db,b is diagonal 
with elements A(1 - P)(l - A?). Expected infor- 
mation is 

where d,,, is diagonal with elements p(r - p), d,,, 
is diagonal with elements - Ap(1 - r), and d,,P is 
diagonal with elements A(1 - p) - A*p(l - r). 

If )2 - 1ir,P has a positive definite limit, then, as in 
the work of McCullagh (1983), 

#2 - - Y [ 1 P-P - asymptotically normal(O, ni;,;). 

Observed information can be substituted for ex- 
pected information in the asymptotic distribution. If 
(+,, PO) maximizes the log-likelihood (3) under a null 
hypothesis Z-J, of dimension q9 and (9, fi) maximizes 
the log-likelihood (3) under a nested alternative hy- 
pothesis H of dimension q > qa, then 

2 
[ 

L(?, B) - L(+,, 0,) - asymptotically xi-q0 1 
(for example, see McCullagh 1983). Therefore, twice 
the difference of nested ZIP log-likelihood under 
nested alternative and null hypotheses is asymptot- 
ically chi-squared. 

A.3 ASYMPTOTIC DISTRIBUTION OF (6, ?) 
AND THE ZIP(d LOG-LIKELIHOOD 

Define p, r, q, and s as before, but with B sub- 
stituted for G and -7p substituted for y. Then the 
observed information matrix corresponding to the 
ZIP(r) log-likelihood (4) is 

I1 I2 

I = 13 14 ’ 1 I 
where I, = B’DIB and Di is diagonal with elements 
t”(i) - 6) + A(1 - P)(l - A?) + 2&, I2 = B’D,, 

D2 isAdiagonal with elements 2 - fi + +BB(Q - 
8) + ASPS, and I4 = (Bfi)‘B&Q - 5). Expected in- 
formation is 

i i = f1 .* , [’ I ‘3 ‘4 

where i1 = B’D,B and D, is diagonal with elements 
T*(p(r - p) - r(1 - r)) + A(1 - p) - Ap(1 - r) 
+ 2rAp (1 - r), i, = B’D, and Dz is diagonal with 
elements 7BBp(R - p) + ABBp(1 - R), and 1, = 
W)‘WMr - P). 

If t~-‘i~,~ has a positive-definite limit, then 

#2 s - P 

( 1 
+--7 - asymptotically normal(O, nip,:). 

Observed information can be substituted for ex- 
pected information in the asymptotic distribution. If 
(&,, +,J maximizes the log-likelihood (4) under a null 
hypothesis H,, of dimension q0 and (B, e) maximizes 
the log-likelihood (4) under a nested alterna$ve hy- 
pothesis H of dimension q > 49, then 2[L(p, +) - 
m3 %)I - asymptotically x3 _ qO. 

[Received April 1990. Revised July 1991. ] 
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