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The goal of algorithmic statistical process control is to reduce predictable quality variations 
using feedback and feedforward techniques and then monitor the complete system to detect 
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Automatic process control and traditional statis- 
tical process control (SPC; arguably a misnomer for 
statistical process monitoring) have developed in rel- 
ative isolation from one another. Yet both of these 
distinct, even divergent, methodologies have scored 
significant successes in the drive for quality improve- 
ment. In recent years several authors have sought to 
bring both approaches into better perspective by de- 
lineating more clearly the contexts to which each is 
best suited. 

ASPC are covered in a companion paper by Tucker, 
Faltin, and Vander Wiel (1991), which gives addi- 
tional references that pertain to the broader context 
of ASPC. 

1. ALGORITHMIC STATISTICAL 
PROCESS CONTROL 

1.1 SPC and Automatic Control: 
A Comparison 

Even these efforts, however, have tended to as- 
sume (at least implicitly) that automatic control and 
SPC are two sides of an either-or proposition. Recent 
experience suggests, to the contrary, that substantial 
improvements to product quality are often best at- 
tainable through an integration of techniques from 
both methodologies, whereby one exploits the ben- 
efits of both. Algorithmic statistical process control 
(ASPC) is our term for an integrated approach to 
quality improvement-an approach that realizes 
quality gains through appropriate process adjust- 
ment (i.e., process control) and through elimination 
of root causes of variability signaled by statistical 
process monitors. 

By SPC we mean a collection of techniques found 
especially useful in improving product quality by 
helping an analyst locate and remove root causes of 
quality variation. Statistical monitoring charts, in- 
cluding Shewhart charts, are emphasized here, but 
other techniques are envisioned as well. By auto- 
matic control we mean a collection of techniques for 
devising algorithms to manipulate the adjustable 
variables of a process to achieve the desired process 
behavior (e.g., output close to a target value). 

A comparison of SPC and automatic control re- 
veals the different orientations of the fields in three 
significant areas: 

In Section 1, the ASPC concept is described in 1. Philosophy: Both fields seek to reduce devia- 
more detail and some relevant past work is reviewed. tions of some characteristic from a target value. In 
In Section 2, an application of ASPC to a polymer- SPC, however, this is accomplished by monitoring a 
ization process is described. In Section 3, guidelines process so as to detect and remove root causes of 
to ASPC implementation are presented. In Section variability. On the other hand, automatic control seeks 
4, a summary is given. Generalizations, detailed ap- to counteract the effects of root causes through con- 
plication guidelines, and research issues relating to tinual process adjustment. 

286 
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2. Application Context: Statistical monitoring charts 
are ordinarily appropriate when it is reasonable to 
expect successive process measurements to be well 
modeled as iid and one is concerned with detecting 
departures from such an ideal. By contrast, auto- 
matic control is ineffective on (even harmful to) an 
iid process. It is most effective in the context of a 
continually wandering process-for example, a process 
that could be well modeled by an autoregressive 
moving average time series. 

3. Traditional Development: Automatic control is 
most often used tactically. For example, feedback 
controllers are typically commissioned to maintain 
the setpoints of important process parameters. SPC, 
however, is often allowed a strategic role. Control 
charts are kept on important quality characteristics, 
allowing SPC to have a direct impact on the quality 
of the process output. Of course, there have been 
occasional exceptions where automatic control has 
taken a more strategic role. See Astrom (1970, chap. 
6), Box and Jenkins (1976, chap. lo), MacGregor 
and Tidwell (1980), and Roffel, MacGregor, and 
Hoffman (1989). 

Thus, in usual applications, the ultimate effect of ap- 
plying SPC has been to fundamentally improve a 
process by removing sources of variations, whereas 
that of automatic control has been to optimally adjust 
an existing process. 

1.2 Combining SPC and Automatic Control 

Tools from either field, used individually, can lead 
to better product quality-automatic control through 
process optimization, SPC through process improve- 
ment. Ideas from both fields can be used together, 
however, securing both optimization and improve- 
ment. This is the concept of ASPC. Such dual im- 
plementation is especially natural in the continuous- 
process industries, where quality improvement is a 
key to profitability and where one is apt to find mea- 
surements that are correlated over time so that the 
process appears to wander. Autocorrelation is es- 
pecially common in these industries because disturb- 
ances such as changes in raw materials tend to have 
immediate, as well as lasting, effects, due, for ex- 
ample, to mixing tanks, recovery and reuse of chem- 
ical agents, and the slow response of many systems 
to control actions. Autocorrelation is not necessarily 
bad. It does, however, mean that the process is some- 
what predictable, and this suggests the possibility of 
compensation. It is interesting that raw-material mix- 
ing, which can cause autocorrelation, is often per- 
formed to make incoming stock more homogeneous. 
In this case the cause of the autocorrelation probably 
should not be eliminated, and when the raw material 
is, for example, crude oil, it is often not feasible to 
eliminate the material causes of variation. 

In brief, ASPC reduces predictable quality varia- 
tions using feedback and feedforward techniques and 
then monitors the complete system to detect and re- 
move unexpected root causes of variation. Obviously 
the philosophy of making compensatory adjustments 
is quite different from that currently popular in SPC. 
MacGregor (1988) stated that automatic control 
strategies “might be thought of as bandaids that hide 
things that should be improved at the process level” 
(p. 31). ASPC does not ignore quality improvements 
attainable through eliminating root causes of varia- 
bility, however; rather, it advocates that compen- 
satory adjustments be applied in conjunction with, 
rather than in competition with, traditional SPC. 

1.3 Relevant Past Work 

There is a large literature concerning control of 
stochastic systems that is relevant to the algorithmic 
part of ASPC. Classic references are Astrom (1970) 
and Box and Jenkins (1970, 1976). A quite separate 
body of literature is that of SPC. Early developments 
in quality monitoring are due to Shewhart (1931), 
and an often cited textbook is that of Duncan (1986). 

One result of the present U.S. emphasis on quality 
improvement has been a marked interest in a pos- 
sible marriage of SPC to automatic control. In the 
discussion following an early article by Box and Jen- 
kins (1962), J. H. Westcott (1962) remarked “Speak- 
ing as a control engineer, I . . . welcome this flir- 
tation between control engineering and statistics. I 
doubt, however, whether they can yet be said to be 
‘going steady.“’ 

The surge of activity relating SPC to automatic 
control in the early 60s was not sustained, and al- 
though the general idea is not new, the specific sug- 
gestion to superimpose statistical process monitoring 
on a closed-loop system appears to be quite recent 
and certainly opens up new lines of research in the 
area of quality improvement. MacGregor (1988) was 
apparently the first to suggest to the SPC community 
that SPC charts be used to monitor the performance 
of a controlled system. He only briefly reviewed basic 
concepts from stochastic control as well as so called 
“on line” SPC methods, however, pointing out sim- 
ilarities and overlap and citing several reasons for 
the lack of interface between the fields. (See also 
MacGregor and Harris 1990). Box and Kramer (1992) 
gave overview descriptions of both fields, delineating 
their similarities and differences. 

One interesting point of overlap occurs when (a) 
control actions have their full effect on process out- 
put in the immediately succeeding period, (b) process 
noise is modeled as a first-order integrated moving 
average, (c) a fixed cost is associated with taking any 
nonzero control action, and (d) additional costs are 
assessed in proportion to the squared deviation of 
the output from target. In this case, the minimum 
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expected cost strategy is to adjust the process at the 
signal of a (control modified) exponentially weighted 
moving average (EWMA) chart by an amount that 
will offset the EWMA predictor. This so-called 
machine-tool problem is one of two discussed by Box 
and Jenkins (1963). The problem demonstrates a point 
of overlap where an optimal control scheme can be 
implemented with a standard SPC chart. The aim of 
ASPC, however, is to use these two methodologies 
to perform the separate functions of control and mon- 
itoring. Thus, from the perspective of the machine- 
tool problem, one would still have SPC charts in 
place operating in conjunction with the SPC-like con- 
trol rule. This emphasis on integration, as applied to 
quality improvement, appears to be quite new to 
both SPC and engineering control. 

A general result encompassing the machine-tool 
problem as a special case was proved by Bather (1963) 
in a foundational article linking optimal control and 
SPC. An even earlier article in this area is that of 
Barnard (1959), who was among the first to suggest 
that the usual practice of making process adjustments 
at the signals of control charts, although simple, can 
be improved on under a reasonable model for a wan- 
dering industrial process. He linked the problem of 
optimal control to that of estimating the current pro- 
cess mean and suggested that it may be useful to 
view the primary function of a control chart as pro- 
viding an estimate of that mean, 

More recently, exact calculations of the control 
limits for the machine-tool problem were given by 
Crowder (1992). Extensions to this problem have 
been studied by Adams and Woodall (1989), Jensen 
(1989), Kramer (1989), and Vander Wiel (1991). 
Taguchi (1985) described a method for on-line pro- 
cess control under similar conditions to those of the 
machine-tool problem. 

2. A BATCH POLYMERlZATlON EXAMPLE 

2.1 Process Description 

In a commercial scale process that produces a poly- 
mer resin used in many familiar consumer products, 
polymerization occurs in five batch reaction lines, 
consisting of three standard reactors in one group 
and two larger reactors in another group, running in 
parallel and sharing common raw materials. The re- 
actors run asynchronously, with each batch cycle con- 
sisting of the following steps: Charge the reactor; run 
the reaction; empty the reactor contents into a hold- 
ing tank for subsequent processing; engage cleaning 
procedures; and recharge to begin the next batch. 
Intrinsic viscosity, a key quality characteristic of the 
polymer, is measured on completing each batch. The 
measurement process introduces modest analytical 
error. Turnaround time is such that the viscosity 
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measurement from the most recent batch produced 
in a given reactor is usually, but not always, available 
when that reactor is prepared for a new batch. 

The objective of this study is to minimize viscosity 
variation about a target level of 100 (coded) viscosity 
units. To this end, process measurements from pre- 
vious batches can be used to adjust the amount of 
catalyst added to future batches. Normally, 50 (coded) 
gallons are needed to attain the target viscosity. Tra- 
ditionally, the exact amount of catalyst added to a 
particular batch was determined by experienced op- 
erators, based on their observations and good judg- 
ment, together with some general guidelines pro- 
vided by the responsible manufacturing engineer. 
More recently, however, a Shewhart-chart approach 
has been used. 

Under the Shewhart scheme, stepped adjustments 
to catalyst were made in response to out-of-control 
signals from an X chart (a plot of viscosity vs. batch 
number) kept for each reactor. The amount of cat- 
alyst added was left unchanged until an out-of-con- 
trol condition was signaled by the chart. at which 
time the catalyst level was increased or decreased by 
one gallon depending on whether the viscosity was 
below or above the target value of 100. One-gallon 
increments to the catalyst level were loosely based 
on a rule of thumb stating that every additional gallon 
of catalyst added should increase viscosity by .75 
units. 

On occasion, the Shewhart adjustment scheme was 
preempted by the operators. This happened, for ex- 
ample, when converting production from standard 
viscosity (a target of 100 units) to low or high viscosity 
(97 or 103 units) or when a very extreme viscosity 
measurement was reported by the quality laboratory. 

Discussions with the manufacturing engineer 
pointed to two types of correlation likely to be pres- 
ent among viscosity measurements-autocorrelation 
over time on a given reactor and cross-correlation 
among reactors. These correlations stem from sev- 
eral factors. First, mechanical considerations prevent 
a reactor from being fully emptied between batches. 
The presence of leftover “heel” material makes it 
reasonable to expect intrinsic viscosity to exhibit se- 
rial correlation on each reactor. Moreover, economic 
and environmental considerations necessitate the re- 
covery and reuse of certain reaction components (e.g., 
solvents). Introducing recycled raw materials into the 
storage tanks has the potential to induce a measure 
of long-term process memory. In addition, the fact 
that all reactors draw from large common sources of 
raw materials suggests that cross-correlations will ex- 
ist between batches produced by different reactors 
and autocorrelations will exist among batches pro- 
duced by a common reactor. Finally, empirical evi- 
dence suggests that there are almost always hidden 
factors such as environmental conditions and main- 
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Figure 1. Viscosity Versus Batch Number With Catalyst 
Held Constant. Viscosity measurements are adjusted to show 
variation in viscosity when catalyst is held fixed at 50 gallons. 
A sharp drop in viscosity begins with period 84. 

tenance schedules, which further promote such 
correlations. 

Both autocorrelation and cross-correlation are easily 
observed in plots of viscosity data. For example, au- 
tocorrelation is seen in Figure 1, a time plot of poly- 
mer viscosity from one reactor corrected to show 
what would have been obtained had the catalyst ad- 
dition been held constant at the nominal level of 50 
gallons. Construction of Figure 1 is explained in Sec- 
tion 2.4. 

2.2 Model Formulation 

The overview of the polymerization process given 
in Section 2.1 suggests a tentative model for the mea- 
sured viscosity of batch t: 

Y, = P&l + 6, + fr, (1) 
where y, = observed viscosity deviation from 100 
units; u,- i = catalyst deviation from nominal (50 
gallons) for batch t, determined after completing batch 
t-l; F, = autocorrelated intrinsic error and = PF~-~ 
+ a,, where a, - independent N(0, ~2); and ft = 
batch-to-batch extrinsic error-for example, mea- 
surement error-distributed independent N(0, a;); 
and independent of {at}. 

The model describes generation of viscosity mea- 
surements on a given reactor. To simplify modeling 
effort, cross-correlations among the reactors were 
initially ignored. In words, the model states that vis- 
cosity = catalyst effect + autocorrelated intrinsic 
error -i- uncorrelated extrinsic error. The model gives 
consideration to three factors mentioned in the pro- 
cess description: (1) Autocorrelation of intrinsic vis- 
cosity, (2) modest measurement error, and (3) a lin- 
ear relationship between the amount of catalyst added 

and viscosity (as suggested by the rule of thumb that 
also suggests .75 as the value for p). 

The autocorrelated term, e,, captures the wan- 
dering nature of the process. In this application it 
can be modeled using one of the most elementary 
time series models, a stationary first-order autore- 
gressive sequence. The correlation structure of 6, is 
characterized by the parameter p (IpI < 1). In par- 
ticular, corr(e,, Ed) = plr-sl. 

Appendix A shows that Model (1) can be repar- 
ameterized as 

(1 - es> 
Y, = Put-1 + (1 _ pg) et, 

where B is the backshift operator (Bx, = x, _ i) and 
et - independent N(0, a:). This representation is 
that of a simple autoregressive moving average trans- 
fer function (ARMAX) model, which can easily be 
fit by many standard time series packages including, 
for example, S-PLUS (Statistical Sciences Inc. 1990), 
Matlab (1987), SAS/ETS (SAS Institute Inc. 1984), 
and BMDP (1983). Relationships between the pa- 
rameters in Representations (1) and (2) are also given 
in Appendix A. 

Model (2) was the first and simplest model pro- 
posed to describe fluctuations in viscosity. Residual 
analyses from this model gave no reason to contem- 
plate a higher order time series model. But since 
process data is readily available on many variables 
in addition to viscosity (y,) and catalyst (u,_ ,), other 
models were fit incorporating various supplementary 
measurements. Some models were designed to cap- 
italize on between-reactor correlation; others used 
more of the available information from a single re- 
actor such as temperatures at various times through- 
out the reaction and levels of several chemicals re- 
covered in solution after the reaction. With the data 
at hand, however, none of the extended models was 
able to produce a substantial increase in explanatory 
power over the simple Model (l), so this is the only 
one considered in the remainder of this article. 

2.3 Model Fitting 

Viscosity and catalyst measurements were ob- 
tained from all five reactors on a total of approxi- 
mately 450 batches of product dating from May 21 
to June 6, 1988. For the reactor considered in this 
article the specified nominal catalyst level of 50 gal- 
lons was not available from engineering considera- 
tions but rather represents average catalyst additions 
during time periods for which the target viscosity was 
100 units. Since the average attained viscosity during 
these periods was very near the target value, a nom- 
inal catalyst level of 50 gallons allowed Equation (2) 
to give an adequate description of the polymer pro- 
duction process even though no intercept term is 
included. 
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Parameters in Representation (2) were estimated 
using the conditional least squares algorithm of the 
ARIMA procedure in SAS/ETS (SAS 1984). The 
parameter estimates and standard errors (in paren- 
theses) are 

,h = 1.087 fi = .859 e = .164 Ge = 2.798. 
(.223) (.071) (.122) (.192). 

From the relationships (given in Appendix A) be- 
tween the sets of parameters in Representations (1) 
and (2), one can obtain estimates and approximate 
standard errors (via second-order Taylor series ex- 
pansions) for the parameters in the original process 
model (1). These are as follows: 

p = 1.087 ,?I = .859 &a = 2.334 $ = 1.222. 
(.223) (.071) (.385) (.377) 

The estimate $ = 1.222 agrees favorably with an 
independent study of the laboratory measurement 
error, which gave $ = 1.2. It is also interesting to 
compare the estimate of p with the rule of thumb 
that suggested a value of .75. If the “true value” is 
near 1.1, then the rule of thumb is anticonservative; 
that is, it would lead to overcontrol. 

After the initial model formulation and analysis, 
several data sets from a six-month period in 1988 
were analyzed to validate and refine the initial pa- 
rameter estimates. Of course, estimates varied some- 
what over the different sets of data and for different 
reactors. Model (l), however, gave a reasonable de- 
scription of the process over a long period of time. 
Compromise parameter estimates of p, p, and 0 used 
to specify the minimum mean squared error (MSE) 
control rule are b = 1.5, 6 = .8, and I$ = .22. The 
compromise estimates are weighted averages from 
the various data sets. Although the compromise fi 
is larger than the previous estimate, it is more con- 
sistent with estimates obtained from the follow-up 
data. Furthermore, when comparing the various es- 
timates, no significant differences were found (at the 
.05 significance level). Most important though, Sec- 
tion 2.4 shows the adequacy of the estimated model 
for the purpose of control. 

2.4 Process Control 

Optimal Control. An alternative to the Shewhart 
chart control scheme (Sec. 2.1), which had been used 
on this process, is to optimize control actions with 
respect to a given criterion. Optimal schemes often 
account for costs associated with deviations of the 
controlled variable from its target value as well as 
costs incurred because of the control actions. In this 
study a moderate change in the amount of catalyst 
added represents negligible cost (or savings) when 
compared to the cost incurred by a batch of off-target 
material. For this reason, the mean squared devia- 
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tion of viscosity from its target value (MSE) seems 
to be a reasonable criterion by which to compare 
control rules. 

Hence a reasonable goal is to specify the amount 
of catalyst to be added in period tin such a way that 
MSE (y,) is minimized. Recall from Section 2.1 that, 
due to laboratory processing time, the viscosity mea- 
surement from the most recent batch on a given re- 
actor is not always available when the next catalyst 
decision is being made. Measurements from two and 
more periods back, however, are virtually always 
available. When the most recent measurement is 
available, we say that the next catalyst decision is a 
one-step decision. Otherwise it is a two-step decision. 

Minimum MSE Feedback Control (no laboratory 
delay). In this section, a minimum MSE control 
rule is given for the process model (2) under the 
assumption that the most recent viscosity measure- 
ment is available; that is, a function g is specified so 
that, if one sets u,~~ = g(~~-~, u~-~, . . . , y,-,, y,-,, 
. . . ), then the resulting y, will have the smallest pos- 
sible MSE. 

The standard textbooks by Astrom (1970) and Box 
and Jenkins (1970, 1976) gave solutions to the min- 
imum MSE feedback problem for general ARMAX 
systems. If laboratory delays were never encoun- 
tered, then the following so-called pure one-step ad- 
justment rule would be the minimum MSE rule for 
Model (2) or equivalently for the original Model (1): 

P-0 
u,-1 = put-2 - [ 1 - Yt-1. 

P (3) 

The adjustment is a simple linear function of the 
catalyst added to the previous batch and the previous 
viscosity measurement. Substituting (3) into (2) re- 
veals that this control action results in the closed- 
hoop process yr = e,. 

Using the compromise parameter estimates the pure 
one-step rule is u,-~ = .8~,-2 - .4yrpl. That is, the 
catalyst addition should deviate from its nominal value 
by 80% of the last deviation minus .4 times the last 
viscosity deviation. This control algorithm has at least 
two advantages over the Shewhart-chart approach 
described in Section 2.1. It is at least as simple, and 
it should reduce viscosity variability even further than 
the former approach. 

Minimum MSE Feedback Control When Mea- 
surements Are Delayed. The minimum MSE rule 
(3) may be obtained by setting the best output pre- 
dictor to 0 and solving for the control action. This 
property is known as certainty equivalence. Bar- 
Shalom and Tse (1974) gave necessary and sufficient 
conditions for certainty equivalence to hold for a 
large class of control systems. In the present context, 
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certainty equivalence can be used to prescribe the 
minimum MSE control policy when measurements 
are possibly delayed. 

If a measurement is delayed, (3) cannot be ap- 
plied. Nevertheless, it is possible to minimize the 
output MSE with respect to the available data as 
outlined in the following. (See Appendix B for fur- 
ther details.) Let j,l,-i(i = 1, 2) be the i-step min- 
imum MSE forecast of yt. Then 

Prlt-i = P&l + fir,r-i, (4) 
where mttlrdi is the i-step minimum MSE forecast of 
the model noise term 

N = (1 - w 
f (1 _ pe) et = yr - Pkl. 

By certainty equivalence the i-step minimum MSE 
feedback rule is found by setting jj,,,+i = 0, resulting 
in 

u,-1 = -~rl,-ilp. (5) 
When y,+, becomes available, the update equation 
for fi+l is 

&-I = &1,r-2 + (P - W-l - Pu,e,>. (6) 

When needed (for two-step adjustments), fi+2 can 
be computed from 

4-2 = P&e (7) 

In the absence of laboratory delays, this procedure 
is equivalent to using (3). Importantly, adjusting (as 
previously) to negate the forecast of N, minimizes 
the output MSE in period t regardless of what control 
policy was used in previous periods. For example, 
suppose the process has been adjusted using a two- 
step minimum MSE rule through period t - 1, but 
beginning in period t laboratory measurements are 
no longer delayed. Simply switching to the one-step 
rule (3) will not minimize the output MSE in period 
t; the derivation of (3) tacitly assumes that the rule 
will be used in each period. Using the intermediate 
quantity fi,,,-; avoids this difficulty. 

Comparison of Control Strategies. If catalyst ad- 
ditions have an effect on only the immediately suc- 
ceeding viscosity measurement with linear gain p, 
then historical data can be used to determine the 
viscosity deviation from target yT that would have 
been obtained had the catalyst deviation from nom- 
inal been held at some value u,“-~ rather than its 
actual value u,- i. The calculation is simply 

* Yt = y, + @(lit”-1 - z&l). (8) 

Figure 1 was constructed using (8) with z&i = 0 on 
the assumption that the estimated gain b = 1.5 is 
correct. Similarly, Figure 2 displays what would have 
resulted from applying the estimated pure one-step 

2’ I,,,,,,,,,, 
0 20 40 60 60 100 

BatchNumber 

Figure 2. Viscosity Versus Batch Number Under One-Step 
Control. Viscosity measurements are adjusted to show what 
would have resulted had catalyst been set using the esti- 
mated one-step minimum MSE policy. The sharp drop in 
Figure 1 beginning with period 84 now appears as a filtered 
change. 

minimum MSE policy (5) [or (3)] over the same pe- 
riod. Table 1 gives a numerical comparison of root 
mean squared errors (RMSE’s) obtained under four 
types of control-no control, actual control by a 
skilled operator, estimated pure one-step control, 
and estimated pure two-step control. The row la- 
beled 1988 refers to the data set of Figures 1 and 2 
collected at the early stages of this study. The row 
labeled 1989 refers to a data set collected after im- 
plementing algorithmic control. Estimated control 
rules were constructed using the compromise param- 
eter estimates. 

The 1988 row of Table 1 shows that before imple- 
menting the feedback algorithm operators were able 
to reduce viscosity deviations from target by about 
30% from what would have resulted had catalyst 
been fixed at its nominal level. Under the pure one- 
step rule, however, one could expect nearly a 30% 
further reduction. Since occasionally viscosity mea- 
surements are not available from the immediately 
preceding batch, the one-step results may be slightly 
optimistic. The RMSE for a pure two-step rule gives 
a worst-case estimate of what to expect from the 
control algorithm of (5)-(7). Note that even this is 

Table 1. Root Mean Squared Errors Under Four 
Types of Control 

Pure Pure 
one- two- 

Data set Sample size None Actual step step 

1988 106 6.00 4.15 2.96 3.66 
1989 213 8.62 3.48 3.37 6.59 

NOTE: Actual for 1988 was under operator control. Actual for 1989 was under 
estimated minimum MSE feedback. 
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better than the actual RMSE achieved by skilled 
operators. 

The results of the first (1988) row of Table 1 in- 
dicate that the feedback algorithm holds potential at 
reducing variability. Further studies validated this 
conclusion. The ultimate proof of the scheme’s ef- 
fectiveness, however, was only seen after it was 
installed. 

The second row (1989) of Table 1 shows a com- 
parison of RMSE’s under various types of control 
several months after the algorithmic adjustment pol- 
icy was implemented. Although the underlying var- 
iability appears to have increased, the adjustment 
scheme has nevertheless substantially reduced vis- 
cosity deviations from what would occur if no catalyst 
adjustments had been made. The actual RMSE is 
also smaller than it was before installing the adjust- 
ment algorithm. In this case the actual RMSE differs 
slightly from the one-step RMSE only because in 
some periods it was necessary to use the two-step 
rule due to delays in the analytical laboratory. 

Assuming the continued appropriateness of (8) with 
P = 1.5 the 1989 follow-up data set confirms the 
effectiveness of the adjustment scheme several months 
after the model fitting and design stage of this study. 

2.5 Putting the SPC in ASPC 

Section 2 has thus far been concerned with the 
algorithmic part of ASPC as applied to a polymeri- 
zation process, and most of the preceding activity 
represents a fairly straightforward implementation of 
techniques from the fields of time series analysis and 
stochastic control. Nevertheless, the work is some- 
what novel in that the application is concerned with 
product quality in contrast to more usual control ap- 
plications dealing with process variables such as feed- 
rate and oxygen concentration. Section 1 stressed 
that ASPC seeks to integrate ideas from both au- 
tomatic control and traditional SPC. In ASPC, the 
role of statistical monitoring is to detect and signal 
when operation of the closed-loop process is not con- 
sistent with the estimated model and control algo- 
rithm. This section presents a cumulative sum 
(CUSUM) monitoring chart developed for the po- 
lymerization process operating under algorithmic 
control. 

A Process-Step Change. Returning to Figure 1, 
which shows viscosity measurements that would have 
resulted from holding catalyst constant, one might 
wonder whether the abrupt downward shift begin- 
ning at period 84 in the sequence is evidence of a 
fundamental change in the polymerization process. 
A change of this nature could, for example, be due 
to resupplying the large holding tanks of raw material 
feeding the reactors. With the new material, perhaps 
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the nominal amount of catalyst required to produce 
the target viscosity has changed. 

Two significant questions in monitoring a closed- 
loop process are evident: (1) How is information 
about underlying changes in the process reflected in 
the sequences of control actions and process output? 
(2) How can this information be best used to detect 
process changes? To illustrate, the apparent step 
change in the “no control” viscosity sequence plotted 
in Figure 1 appears as a filtered change under one- 
step minimum MSE control as shown in Figure 2. 
Obviously, the effect of control actions needs to be 
taken into account by an effective monitoring scheme. 

For purposes of discussion, suppose that the pro- 
cess is given by (2) with known parameter values 
equal to the compromise estimate; however, suppose 
that, beginning with period 84, the mean has shifted 
by an amount S; that is, the correct model is 

y, = 8Z[t 2 841 + @.ir-I + 
(1 - f3B) 
(1 - @) er’ (9) 

where 

Z[t 2 841 = 0, if t < 84 

= 1, if t 2 84. 

Assume also that laboratory measurements are al- 
ways available after one period so that the pure one- 
step minimum MSE control rule (3) is always used. 
In this case (3) shows that it is possible to reconstruct 
the output sequence {y,} from the control sequence 
{u,-,}. For practical purposes, the converse also holds, 
since u,-i has an infinite moving average represen- 
tation in terms of {y,}. In other words, since the 
control rule is known, each series contains exactly 
the same information, and hence it suffices to con- 
sider only one of them. In what follows, only the 
output series y, is used as data. Account is made, 
however, for the fact that the process is operating 
under a known control algorithm. 

Substituting the pure one-step minimum MSE con- 
trol rule (3) into (9) and simplifying shows that the 
closed-loop process output is given by 

Y, = L4 + et, (10) 
where the deterministic sequence of means d, is 

d 
r 

= 6 (1 - PB) 
(1 _ eB) Z[t 2 01. (11) 

Hence Figures 1 and 2 demonstrate two ways of look- 
ing at a step change in the process. In Figure 1 the 
mean of the plotted points changes at period 84 from 
100 to a constant new level 100 + 6. The points 
plotted, however, are serially correlated with known 
covariance structure-that of an autoregressive moving 
average process of order (1, 1). In Figure 2, the 
plotted points are serially independent with mean 
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100 before batch 84 and with a patterned mean after 
batch 84. Independence is obtained because the pro- 
cess is operated under minimum MSE control; the 
patterned mean arises because the step change is 
passed through the inverse filter of the process noise, 
as Equation (11) shows. 

Equation (10) shows that the mean of the (pure 
one-step) minimum MSE controlled process follows 
the solution d, to the deterministic difference Equa- 
tion (11). It is easy to verify that the solution is 

d, = 0, if t < 0 

= a[(%) + B’(G)]if tr0. (12) 

Note that d, = 6, and thereafter the process mean 
decays exponentially to a new level d, = 6( 1 - p)l( 1 
- 0). Using the compromise parameter estimates 
produces d, = .2566. Thus an underlying step change 
in the process level is partially, though not com- 
pletely, compensated for by the (one-step) minimum 
MSE controller. 

Often, conventional practices of engineering con- 
trol would use the potential for step changes to justify 
an integral term in the controller [e.g., replacing p 
with 1 in Eq. (3)] to give long-run compensation for 
a level shift. If the estimated model is correct and 
no step changes occur, however, any controller with 
integral action would produce an output MSE greater 
than necessary. Since we desire to detect and hope 
to remove any step change, we (at least initially) do 
not incorporate integral action in the controller, and 
we leave the detection of step changes to the mon- 
itoring system discussed next. 

CUSUM Monitoring Chart. Equation (10) shows 
that even during a step change in the underlying 
process the closed-loop output is serially indepen- 
dent when pure one-step minimum MSE control is 
used. Pure one-step control is the usual mode of 
operation, since only occasionally are viscosity mea- 
surements delayed for two periods in the analytical 
laboratory. Following a shift, there is a short tran- 
sient period after which the output mean stabilizes 
at a new level d,. Aside from the transient period 
and occasional departures from pure one-step min- 
imum MSE control, this is precisely the scenario in 
which CUSUM charts perform well. Since plant per- 
sonnel were already familiar with these charts, it was 
natural to introduce a CUSUM monitoring scheme 
for the algorithmically controlled process. 

Initial CUSUM implementation was consciously 
aimed at detecting shifts in the process mean because 
operational experience (as well as our own analyses 
conducted during verification studies performed after 
implementing algorithmic control) had provided evi- 
dence of the presence of such changes. A more com- 

plete system, of course, would incorporate provisions 
for monitoring more general kinds of process char- 
acteristics. One important candidate would be the 
innovation standard deviation, v~,, which could be 
tracked via, say, a moving range or moving standard 
deviation chart. Likewise, other equally valid chart- 
ing alternatives, such as an EWMA chart or a Shew- 
hart chart with run rules, might have been used for 
monitoring the process level. For the particular char- 
acteristics of this application, however, CUSUM 
monitoring of the process mean has proved to be an 
effective and successful tool. 

Changes in process level were hypothesized to be 
due to any of several sources, including raw-materials 
effects and seasonal factors affecting heat-exchange 
effectiveness. The net effect of such a shift could be 
equivalently viewed either as a change in viscosity 
of the product or as a change in the nominal catalyst 
level needed to produce material of the target vis- 
cosity. The latter conceptualization has come to be 
the more popular among plant engineers and oper- 
ators. One purpose of the CUSUM system was to 
detect such shifts as quickly as possible when they 
occurred to resolve which of the conjectured mech- 
anisms (if any) was in fact responsible. 

The principal practice issue to be addressed was 
the granularity with which the process should be 
charted; that is, should separate CUSUM charts be 
maintained for each of the several reactors, data from 
all reactors incorporated into a single chart, or some 
option in between? Each alternative posed advan- 
tages and disadvantages, as we believe there was no 
intrinsically “right” answer. Aggregating data from 
multiple sources on a single chart suffers from the 
obvious drawback that the effect of an excursion in 
one reactor is diluted by data from others, which 
may still be performing “on nominal.” Indeed, op- 
posing shifts in reactors that contribute data to the 
same chart might even have a cancellation effect, 
allowing both to perform at their new levels indefi- 
nitely without being detected. Variance monitoring 
could prove to be of great value in such an instance. 
On the other hand, using separate charts for each 
reactor means that data arrive less frequently on any 
given chart, thus allowing common shifts in multiple 
reactors to go undetected for an appreciably longer 
elapsed time, with a correspondingly detrimental im- 
pact on product quality-perhaps even the produc- 
tion of scrap. One is tempted to try an “all of the 
above” approach, but charting both individual re- 
actors and groups of reactors, though viable, raises 
complex simultaneous inference issues among cor- 
related charts. 

In the present context, practical considerations 
guided our choice. Design efficiency had dictated 
that systems for charging raw materials, emptying 
reacted polymer, and so forth should be shared among 
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as many reactors as capacity would permit. There- 
fore, the reactors had been built in two largely sep- 
arate groups, with the reactors in each group sharing 
these “overhead” resources. There also existed mod- 
est differences in technology and capacity between 
the two groups. Production scheduling also tended 
to be handled by reactor group. 

Experience indicated that, although process changes 
affecting a single reactor were not unheard of, the 
linkage that existed within groups resulted more often 
in changes that were manifested by the reactor group, 
or even plantwide (if both groups were affected). 
Moreover, although solo excursions were a concern, 
their impact was mitigated somewhat by the practice 
of scheduling most or all of the reactors in a group 
to be in production simultaneously; thus not only the 
data but also any off-target product would be diluted 
by the presence of other reactors that were still on 
target. 

These considerations suggested that the most suit- 
able way to construct the CUSUM system would be 
to chart data by reactor group. Chart properties de- 
sired for each group varied slightly, since differing 
capacities and numbers of reactors in each group 
meant that changes in the product needed to be de- 
tected within a different number of batches to con- 
stitute a comparable volume of material produced- 
which is the physically meaningful measure of time 
to detection in the present problem. The same qual- 
ity criterion (i.e., the change in viscosity that needed 
to be detected) was applied to both reactor groups, 
however. 

From this point, CUSUM chart design followed 
the recommendations of Lucas (1976) who used lower 
and upper statistics defined, respectively, as L, = 
max[O, - yt - k + L,-,j and H, = max[O, y, - k 
+ H,-,]. A signal is given if either L, or H, exceeds 
a bound, h. One of the groups, for example, used 
CUSUM chart parameters h = 9.45 and k = 1.4, 
selected to rapidly detect a one standard deviation 
(oJ shift of size A = 2.8 in the output mean; this 
requires some interpretation, however. As shown by 
Equation (12), a shift of size 6 in the underlying 
process results in a steady-state shift in the closed- 
loop process of size A = 6(1 - p)l(l - 0). For 
example, by employing the compromise parameter 
estimates in this result, a steady-state shift of A = 
2.8 would result from a shift in the underlying process 
of size 6 = 10.9, a dramatic change in viscosity. 

The CUSUM system has been successful in iden- 
tifying process changes as a trigger for root cause 
determination and continuous improvement. We shall 
comment further on this. 

2.6 Implementation and Benefits 

The progression of activity in the polymerization 
application may be summarized as follows: After 
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forming a process model from discussions with 
knowledgeable process engineers, the model was 
reparameterized into an ARMAX form as given in 
(2). Since the model fit actual data well, a minimum 
MSE control algorithm was developed as if the es- 
timated model were correct. Algorithm development 
was complicated by the fact that viscosity measure- 
ments from laboratory analyses may be delayed by 
either one or two periods. The control algorithm was 
applied to historical process data, and this cross- 
validated its effectiveness. Next, a CUSUM moni- 
toring chart was developed for use on the process 
running under algorithmic control. The chart is in- 
tended to detect a step change in the nominal catalyst 
level necessary to attain the target viscosity. 

Initially, the minimum MSE adjustment algorithm 
was implemented on only one reactor for a trial pe- 
riod. The results were so favorable, however, that 
management immediately requested that the algo- 
rithm be applied to all reactors. CUSUM monitoring 
charts were installed somewhat later after observing 
that changes in the process could cause the adjust- 
ment algorithm to persistently underestimate (or 
overestimate) the amount of catalyst necessary to 
produce on-target viscosity. 

Since installing the optimal control policy and the 
CUSUM monitoring chart, a 35% reduction in the 
standard deviation of viscosity has been realized at 
the reaction stage of this process. A great reduction 
has also been experienced down line in the fraction 
of product (now near 0) that fails to meet specifi- 
cations. Plant personnel attribute much of the im- 
provement to the installation of the ASPC system 
and its operational compatibility with parallel engi- 
neering initiatives. 

The CUSUM system has successfully notified plant 
staff of shifts in the nominal catalyst level needed to 
maintain on-target performance. To date, root-cause 
analyses have turned up two important findings in 
this regard. The first was the discovery of a faulty 
catalyst feed valve, which allowed residual catalyst 
to remain in the charge line, resulting in a viscosity 
“spike” when certain reactors were brought on or 
off line. 

The second, more sweeping, finding was that 
CUSUM indications corresponded on a preponder- 
ance of occasions with identifiable thermal events- 
supporting an early conjecture regarding the origin 
of nominal shifts. A subsequent engineering study con- 
firmed that reactions were sometimes heat-transfer 
limited. This study resulted in two corrective re- 
sponses. The first was a reprogramming of the closed- 
loop temperature control during reaction; this by 
itself resulted in further significant reductions in vis- 
cosity variability. The other was the decision to pro- 
ceed with substantive modifications to the plant heat- 
exchange system-a major capital improvement 
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project nearing completion as of this writing. These 
changes are expected to eliminate once and for all 
the effect of heat-transfer limitations as a source of 
variability in polymer production. 

3. APPLICATION GUIDELINES 

The application of ASPC described in Section 2 
followed general guidelines that were developed by 
Tucker et al. (1991). To place the polymerization 
application in a broader context, this section outlines 
a procedure for implementing ASPC on typical in- 
dustrial processes. Whereas the polymerization ap- 
plication exemplifies this methodology, it was justi- 
fied by Tucker et al. 

There are two essential characteristics a process 
must possess if the algorithmic (i.e., control) portion 
of ASPC is to be successful: First, it must be possible 
to use past process data and covariates to construct 
a good predictor of future process performance. Sec- 
ond, there must be available a compensatory variable 
whose adjustment will have a predictable effect on 
the performance property of interest. These char- 
acteristics are clearly present in the process under- 
lying Model (l), since past values of y, and u,- i can 
be used to construct a good predictor of intrinsic 
viscosity. Furthermore, using the amount of catalyst 
as a compensatory variable was an obvious and ef- 
fective choice. 

The general four-step procedure followed in the 
application is as follows: 

1. Develop a time series transfer-function model 
for the process output including the effect of past 
performance, control actions, and other relevant 
process characteristics. This involves identifying pro- 
cess orders and delays and estimating model param- 
eters. In the application, this step resulted in Model 
(2). 

2. Next, based on pertinent costs, design a control 
rule for the estimated model. For example, recall the 
variable delay scheme given by Equations (4)-(7). 

3. Along with installing the control rule, put in 
place SPC charts to monitor the closed-loop process. 
The SPC charts should signal if the process and con- 
troller are no longer operating as expected from the 
identification and estimation stage. Section 2.5 de- 
scribed our realization of this step in terms of the 
CUSUM monitoring chart. 

4. When a monitoring signal occurs, search for an 
assignable cause and, if feasible, remove it. If no 
cause is found or the cause cannot realistically be 
removed, it may be necessary to reestimate system 
parameters or even reidentify the process form and 
orders. If the process was reestimated or reidentified, 
return to step 2. Responses to monitoring signals in 
the application were discussed in Section 2.6. 

In our experience, each stage of the foregoing pro- 
cedure requires careful planning and analysis. At least 
in our case, however, the result has been a system 
that operators and engineers have been able to use 
successfully in their drive for continuous quality 
improvement. 

4. SUMMARY 

ASPC represents a proactive approach to quality 
improvement in which concepts from automatic con- 
trol are joined with ideas from SPC. Variations in 
product quality are then reduced in two ways, (1) 
through algorithmic compensation for predictable 
quality deviations and (2) through elimination of root 
causes of variability as signaled by statistical moni- 
toring charts. Engineering control and SPC have for 
the most part developed in isolation from one an- 
other. We, however, advocate integrating tools from 
both fields so as to yield quality improvements both 
by removing sources of variability and by compen- 
sating for predictable process deviations from target. 

Application of ASPC to a polymerization process 
has resulted in a 35% reduction in viscosity varia- 
bility at the reaction stage of the process and virtual 
elimination of off-spec material from this source. In 
this study, changes to the chief quality characteristic, 
viscosity, were made by adjusting a compensatory 
variable, the amount of catalyst. A minimum MSE 
control algorithm was developed for this process, and 
then the closed-loop output was monitored by a 
CUSUM chart. 
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APPENDIX A: EQUIVALENCE OF MODELS 
(I) AND (2) 

The equivalence follows from Box and Jenkins 
(1976, A4.4), who implicitly appealed to a represen- 
tation theorem like that of Fuller (1976, theorem 
2.6.3). To relate the parameters of Models (1) and 
(2), write (1) as 

Yt - w-1 = PC%, - w-2) + 6, 64.1) 

where 6, = a, + ft - pft- ,, so E(6,) = 0 and 

E(6,6,-,) = a: + (1 + p*)‘+;, k=O 

= -P$, k=l 

= 0, k = 2,3, . . . (A.21 
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Following Box and Jenkins, model equivalence is 
obtained by representing 6, as 

6, = e, - 8e,- 1, 

so 

e, - independent N(0, a:), (A.3) 

E(6,6,-,) = (1 + e’)C,‘, k=O 

= -euz, k=l 

= 0, k = 2,3, . . . . (A.4) 
Setting (A.2) equal to (A.4) and solving relates 
(uff2, a@ to (0, p, c:) by $ = 0azlp and af = [l + 
tP - 8(p-1 + p)]u2. 

APPENDIX B: MINIMUM MSE CONTROL 
WHEN MEASUREMENTS ARE DELAYED 

Equations (6) and (7) for forecasting N, were given 
by Box and Jenkins (1976, chap. 5). Furthermore, 

= liTrlrp2 + e, + (p - @et-,. 03.1) 
Since e, is independent of (y,- r, yrW2, . . .) and of 
Nt,,-i and similarly (F,, e,-,) is independent of (yrm2, 
Yl-3, . . .) and of NriteZ, Equation (B.l) together 
with (2) implies that MSE(y,) is minimized by ne- 
gating the most up-to-date forecast of N, as in (5). 

It is important to understand that the usual steady- 
state fixed-delay minimum MSE control rules giving 
uI-r as a fixed linear combination of a finite number 
of past U,‘S and y,‘s [like (3) and its two-step version] 
are not appropriate when the delay may vary (and, 
more generally, when the actual adjustments are not 
always as given by a fixed delay control rule). For 
example, suppose that the two-step minimum MSE 
rule u,-r = - fi,,,P,l/3 has been applied through pe- 
riod t - 1. This implies (e.g., see Box and Jenkins 
1976) 

P(P - 0) cl-2 = - p(1 - pB) er-3 03.2) 

and 

Y,-, = e,-, + (P - @et-,. 03.3) 

Next suppose that in period t laboratory measure- 
ments are no longer delayed and the control action 
is given by the steady-state one-step rule (3). Substi- 
tuting (B.2) and (B.3) into (3) gives 

P~(P - 0) 
P&l = - (1 _ @) et-3 

- (P - We,-, + (P - e>e,-2l. 
Substituting this into (2) and simplifying gives yI = 
e, + e(p -j9e,-,, whereas the correct adjustment 
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= -fi~,,-i/p results in yr = e,, which has a 
Miller MSE (for p 7 0). 

The forecasting idea embodied in (4)-(7) can be 
generalized to higher order ARMAX systems in- 
cluding systems with adjustment dynamics. 

[Received January 1990. Revised December 1991. ] 
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