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A new method, called the nonnegative (nn) garrote, is proposed for doing subset regression. It both 
shrinks and zeroes coefficients. In tests on real and simulated data, it produces lower prediction error 
than ordinary subset selection. It is also compared to ridge regression. If the regression equations 
generated by a procedure do not change drastically with small changes in the data, the procedure is 
called stable. Subset selection is unstable, ridge is very stable, and the nn-garrote is intermediate. 
Simulation results illustrate the effects of instability on prediction error. 
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1. INTRODUCTION 

One of the most frequently used statistical procedures 
is subset-selection regression. That is, given data of the 
form {(y,, XI,,, . . . , xy,), n = 1, . . . , N}, some of the 
predictor variables xi, . . . , X~ are eliminated and the pre- 
diction equation for y is based on the remaining set of vari- 
ables. The selection of the included variables uses either 
the best subset method or a forward/backward stepwise 
method. These procedures give a sequence of subsets of 
{Xl,..-, xM} of dimension 1,2, . . . , M. Then some other 
method is used to decide which of the M subsets to use. 

Subset selection is useful for two reasons, variance re- 
duction and simplicity. It is well known that each ad- 
ditional coefficient estimated adds to the variance of the 
regression equation. The fewer coefficients estimated, the 
lower the variance. Unfortunately, using too few variables 
leads to increased bias. But, if a regression equation based 
on 40 variables, say, can be reduced (without loss of ac- 
curacy) to one based on 5 variables, then not only is the 
equation simpler but we may also have learned something 
about which variables are important in predicting y. 

Using prediction accuracy as our “gold standard,” the 
hope is that subset regression will produce a regression 
equation simpler and more accurate than the equation 
based on all variables. If M is large, it usually suc- 
ceeds. But, if M is moderate to small-that is, M 5 lo- 
then there is evidence that often the full regression equa- 
tion is more accurate than the selected subset regression. 
Roecker (1991) did recent work on this issue and gave 
references to relevant past work. 

The prime competitor to subset regression in terms of 
variance reduction is ridge regression. Here the coeffi- 
cients are estimated by (X’X + AZ)-‘X’Y, where J, is a 
shrinkage parameter. Increasing A. shrinks the coefficient 
estimates, but none are set equal to zero. Gruber (1990) 

gave a recent overview of ridge methods. Some studies 
(i.e., Frank and Friedman 1993; Hoerl, Schuenemeyer, 
and Hoer1 1986) have shown that ridge regressions give 
more accurate predictions than subset regressions unless, 
assuming that y is of the form 

y = CBkXk +r, 
k 

all but a few of the (bk} are nearly zero and the rest are 
large. Thus, although subset regression can improve ac- 
curacy if M is large, it is usually not as accurate as ridge. 

Ridge has its own drawbacks. It gives aregression equa- 
tion no simpler than the original ordinary least squares 
(OLS) equation. Furthermore, it is not scale invariant. If 
the scales used to express the individual predictor variables 
are changed, then the ridge coefficients do not change in- 
versely proportional to the changes in the variable scales. 
The usual recipe is to standardize the {x,} to mean 0, vari- 
ance 1 and then apply ridge. But the recipe is arbitrary; 
that is, interquartile ranges could be used to normalize in- 
stead, giving a different regression predictor. For a spirited 
discussion of this issue, see Smith and Cambell (1980). 

Another aspect of subset regression is its instability 
with respect to small perturbations in the data. Say that 
N = 100, M = 40, and that using stepwise deletion of 
variables a sequence of subsets of variables {xm; rn E I&), 
of dimension k (j&l = k), k = 1,. . . , M, has been se- 
lected. Now remove a single data case (y,, x,), and use 
the same selection procedure, getting a sequence of sub- 
sets {xm; m E <L}. Usually the {cl} and ([k] are different 
so that for some k a slight data perturbation leads to a dras- 
tic change in the prediction equation. On the other hand, if 
one uses ridge estimates and deletes a single data case, the 
new ridge estimates, for the same A-, will be close to the old. 

Much work and research have gone into subset- 
selection regression, but the basic method remains flawed 
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by its relative lack of accuracy and instability. Subset 
regression either zeroes a coefficient, if it is not in the 
selected subsets, or inflates it. Ridge regression gains its 
accuracy by selective shrinking. Methods that select sub- 
sets, are stable, and shrink are needed. Here is one: Let 
(&} be the original OLS estimates. Take (ck} to minimize 

c (y” - c cki%xk,\ll 
k \ k / 

under the constraints 

ck 2% c ck 5s. 
k 

The &(k(s) = c&k are the new predictor coefficients. As 
the garrote is drawn tighter by decreasing s, mo:e of the 
(ck} become zero and the remaining nonzero j%(s) are 
shrunken. 

This procedure is called the nonnegative (nn) garrote. 
The garrote eliminates some variables, shrinks others, and 
is relatively stable. It is also scale invariant. I show that 
it is almost always more accurate than subset selection 
and that its accuracy is competitive with ridge. In gen- 
eral nn-garrote produces regression equations having more 
nonzero coefficients than subset regression. But the loss 
in simplicity is offset by substantial gains in accuracy. 

The organization of this article is as follows: Section 
2 on model selection gives definitions of prediction and 
model error together with a brief outline of useful esti- 
mates of these errors. These estimates are used to deter- 
mine the value of the garrote parameter s, the ridge pa- 
rameter h, and the dimensionality of the subset regression. 
In Section 3, nn-garrote is compared to subset regression 
on two well-known data sets. The first is the stackloss 
data given by Daniel and Wood (1980). The second is an 
ozone data set used by Breiman and Friedman (1985). In 
Section 4, I assume that X’X = I. The action of the nn- 
garrote becomes clear, and it can be compared to ridge and 
subset selection over an interesting range of (Bk} distribu- 
tions. Section 5 reports on a simulation comparison of 
methods. Conclusions and concluding remarks are given 
in Section 6. 

In many regression problems the number of predic- 
tor variables is a substantial fraction of the sample size, 
and variable subset selection is used to reduce complex- 
ity and variance. The large ratio of variables to sample 
size often reflects the experimenters inclusion of non- 
linear terms in search of a better fit. For instance, the 
stackloss data has three x variables and 17 cases (after 
removal of four outliers). To get a better fit, Daniel and 
Wood (1980) introduced quadratic and interaction terms, 
going from three to nine variables. Then subset selection 
was used to arrive at a three-variable model. The ozone 
data set has 330 cases and eight variables but is known 
to have strong nonlinearities. The analysis in Section 3 
includes quadratic and interaction terms for a total of 44 
variables. 
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Useful analytical results are not available when the 
number of variables is comparable to the sample size. In 
this area empirical results, good heuristics, and simula- 
tions are the only general tools available. Properly used, 
they can give valuable insights. For instance, the concept 
of stability was nurtured by the simulation results reported 
in Section 5 and previous work using simulations to study 
subset selection. 

Sorting out how to reduce complexity and prediction er- 
ror is a complicated problem. There are few relevant stud- 
ies in the statistical literature. The book by Miller (1990) 
summarizes work on variable subset selection and gives an 
extensive bibliography, but it is primarily concerned with 
low-dimensional issues. The work in this article came 
mainly out of a combination of the ideas from Breiman 
(1993), who used nonnegativity and sum constraints in the 
context of combining regressions, and the previous explo- 
rations of subset selection of Breiman (1992) and Breiman 
and Spector (1992). Tibshirani (1994), stimulated by the 
results in a preprint of this article, devised another method 
for shrinking and subset selection. 

The constrained least squares minimization used in the 
nn-garrote can be solved rapidly even for numerous x 
variables. I used a modification of the elegant nonnega- 
tive least squares algorithm given by Lawson and Hanson 
(1974). No stability problems were encountered and com- 
putation times increased only moderately as the number of 
x variables increased. A FORTRAN subroutine that out- 
puts the values of the (ck) for any value of s, 0 < s < M, 
is available by ftp to stat-ftp.berkeley.edu in the directory 
lpubluserlbreiman. 

2. MODEL SELECTION 

2.1 Prediction and Model Error 

The prediction error is defined as the average error in 
predicting y from x for future cases not used in the con- 
struction of the prediction equation. The data on hand 
are of the form ((y,, x,), n = 1,. . . , N}, where x, = 
(xi,,, . . . , x~,,) and the symbols y, xi, . . . , XM are used as 
generic notation for the response and M predictor vari- 
ables, 

There are two regression situations, X-controlled and 
X-random. In the controlled situation, the (x,} are se- 
lected by the experimenter and only y is random. In the 
X-random situation, both y and x are randomly selected. 
Different definitions of prediction error are appropriate. 

In the controlled situation, future data are assumed gath- 
ered using the same (x,] as in the present data and thus 
havetheform((y~‘+‘,x,),n = l,...,N}. Ifp(x)isthe 
prediction equation derived from the present data, then 
define the prediction error as 

PEG) = E c (y,“” - i^i(xn>)“, 
n 

where the expectation is over (y,“ew}. 
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If the data are generated by the mechanism y,, = 
I + en, where the {E,} are mean-zero uncorrelated 
with average variance cr2, then 

PEti% = No2 + ~t~tx.) - i-i<x,N2. 
n 

The first component is the inherent prediction error due to 
the noise. The second component is the prediction error 
due to lack of fit to the underlying model. This component 
is called model error and denoted by ME(F). The size 
of the model error reflects different methods of model 
estimation. If p = Q?&x,,, and j-? = Z&x,, then 

ME(F) = 6 B>‘tX’X>(~- PI. 

If the {x,} are random, then it is assumed that the (yn, x,) 
are iid selections from the parent distribution (Y, X). Then 
if c(x) is the prediction equation constructed using the 
present data, PE(E) = E(Y - F(X))2. Assuming that 
Y = p(X)+e, where E(E ] X) = 0, thenPE($) = Ec2+ 
E&(X) - p(X))2. Again, the relevant error is the second 
component. To put model error in this situation on the 
same scale as in the X-controlled case, define ME(p) = 
N . E(p(X) - c(X)J2, and similarly for PIJ($). If p = 
C_Bmxm andj? = Z/?,,,X~, thenME = (/I-p)‘(N.F) 
(/3 - B), when I’ij = EXiXj. 

2.2 Estimating Error 

Each regression procedure that we study produces a 
sequence of models {pk(x)}. Variable selection gives a 
sequence of subsets of variables {x,, m E [k], l{kl = 
k, k = 1, . . . , M, and ck(x) is the OLS linear regression 
based on Ix,,,, m c (k}. In nn-garrote, a sequence of s- 
parameter values si, . . . , SK is selected and j&(x), k = 
1 .., K, is the prediction equation using parameter Sk. 
In ridge, a sequence of h-parameter values At, . . . ,)LK is 
selected, and j&(x) is the ridge regression based on &. 

If we knew the true value Of PE(&), the model selected 
would be the minimizer of PE(&). We refer to these 
selections as the crystal-ball models. Otherwise, the se- 
lection process construg an estimate I%&) and selects 
that pk that minimizes PE. The estimation methods differ 
for X-controlled and X-random. 

2.2.1 X-Controlled Estimates. The most widely 
used estimate in subset selection is Mallows C,. If k 
is the number of variables in the subset, RSS(k) is the 
residual sum of squares using $k, and 5’ is the noise vari- 
ance estimate derived from the full model (all variables), 
then the C, estimate is p^E(zk) = RSS(k) + 2kz2. But 
Breiman (1992) showed that this estimate is heavily biased 
and does poorly in model selection. 

It was shown in the same article that a better estimate 
for PE(j&) is 

RSS(k) + 2Bt (k), 

where Bt (k) is defined as follows: 
Let o2 be the noise variance, and add iid N(0, t2a2), 
0 < f _( 1, noise {‘$I to the {y,,}, getting {yn}. Using the 

data { (&, x,)}, repeat the subset-section process getting 
a new sequence of OLS predictors {j&, k = 1, . . , M}. 
Then 

where the expectation is on the {&} only. 
This is made computable by replacing a2 by the noise 
variance estimate Z2 and the expectation over the I?,} 
by the average over many repetitions. This procedure is 
called the little bootstrap. 

Little bootstrap can also be applied to nn-garrote and 
ridge. Suppose that the nn-garrote predictor j& has been 
computed for parameter values sk with resulting residual 
sum of squares RSS(sk), k = 1, . . . , K. Now add {7”} to 
the {yn), getting {y”}, where the I?,) are iid N(0, t2Z2>. 
Using the (F;I, x,) data, derive the nn-garrote predictor 
j& for the parameter value Sk, and compute the quantity 
$ C 7, pk (X”) . Repeat several times, average these quan- 
tities, and denote the result by @(Sk). The PE estimate is 
p^E(j&) = RSS(Sk) + 2&(Q). 

In ridge regression, denote by j& the predictor using 
parameter &. The little bootstrap estimate is RSS(&) + 
2B,(hk), where B,(hk) is computed just as in subset se- 
lection and nn-garrote. It was shown by Breiman (1992) 
that, for subset selection, the bias of the little bootstrap es- 
timate is small for t small. The same proof holds, almost 
word for word, for the nn-garrote and ridge. But what 
happens in subset selection is that as t J 0, the variance 
of Bt increases rapidly, and Br has no sensible limiting 
value. Experiments by Breiman (1992) indicated that the 
best range for t is [.6, .8] and that averaging over 25 rep- 
etitions to form Bt is usually sufficient. 

On the other hand, in ridge regression the variance of 
Br does not increase appreciably as t J. 0, and taking this 
limit results in the more unbiased estimate 

@j&) = RSS(&) + 2~2tr(X’X(X’X + &I)-‘). 
(2.1) 

This turns out to be an excellent PE estimate that 
selects regression equations Ek with PE(j&) close to 
mink! PE(&). The estimate (2.1) was proposed on 
other grounds by Mallows (1973). See also Hastie and 
Tibshirani (1990). 

The situation in nn-garrote is intermediate between sub- 
set selection and ridge. The variance of Bt increases as 
t gets small, but a finite variance limit exists. It does not 
perform as well as using t in the range [.6, .8], however. 
Therefore, our preferred PE estimates for subset selection 
and nn-garrote use t E [.6, .8] and (2.1) for the ridge PE 
estimate. The behavior of Bt for t small is a reflection of 
the stability of the regression procedures used. This was 
explored further by Breiman (1994). 

2.2.2 X-Random Estimates. For subset regressions 
(pk} in the X-random situations, the most frequently 
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encountered PE estimate is 

E(Fkk) = (1 -’ +j2RSS(k). 

The results of Breiman and Spector (1992) show that this 
estimate can be strongly biased and does poorly in select- 
ing accurate models. What does work is cross-validation. 

V-fold CV is used to estimate PE(j&) for subset se- 
lection and nn-garrote. The data L = {(y,,, x,), n = 
1 . . , N} are split into V subsets Cl, . . . , Lv. Let Cc”) = 
i 1 f&. Using subset selection (nn-garrote) and the data 
in Cc”), form the predictors {@j(x)). The CV estimate is 

and z(Fkik) = E(Fk) - Nz2. Taking V in the range 5 
to 10 gives satisfactory results. 

To get an accurate PE estimate for the ridge regression 
GJ., remove the nth case (yn, x,) from the data, and re- 
compute z*(x) getting j$n’ (x) . Then the estimate is 

E(h) = c (yn - ~~-“‘(x,))2. 
n 

This is the leave-one-out CV estimate. If r,(h) = y,, - 
El((x,) and h,(h) = xA(X’X + hZ)-‘x,, then 

%(A) = C(r.(h)/l - h,(X))2. 
n 

Usually, h,(h) 2: x(X) is a good approximation, where 
x(h) = tr(X’X(X’X + )LZ)-‘)/N. With this approxima- 
tion 

@A) = RSS@)/( 1 - x(h))2. (2.2) 

This estimate was first derived by Golub, Heath, and 
Wahba (1979) and is called the GCV (generalized cross- 
validation) estimate of PE. Its accuracy is confirmed in the 
simulation in Section 7. 

Breiman and Spector (1992) found that the “infinitesi- 
mal” version of CV-that is, leave-one-out-gave poorer 
results in subset selection than five- or tenfold CV [for 
theoretical work on this issue, see Shuo (1993) and Zhang 
(1992)]. But leave-one-out works well in ridge regression. 
Simulation results show that tenfold CV is slightly better 
for nn-garrote than leave-one-out. This again reflects the 
relative stabilities of the three procedures. 

3. TWO EXAMPLES 

The use of the nn-garrote is illustrated in two well- 
known data sets. One is X-controlled data, and the other 
I put into the X-random context. 

3.1 The Stackloss Data 

These data are the three-variable stackloss data studied 
in chapter 5 of Daniel and Wood (1980). By including 
quadratic terms along with the linear, it becomes a nine- 
variable problem. Eliminating the outliers identified by 
Daniel and Wood leaves 17 cases. 

I compare nn-garrote to subset selection using back- 
ward deletion. Daniel and Wood gave two possible fitting 
equations, stating that there is little to choose between 
them. Backward deletion and 250 repetitions of little boot- 
strap pick the second of these equations, 

y= 14.1 + .71x1 + .51x2 + .0254x,x2. (3.1) 

Garrote picks an equation using the same variables, 

T= 14.1 + .77x, + .40X2 + .0152x1X2. (3.2) 

The estimated model errors are 3.0 and 1.0, respectively 
(with estimated prediction errors 41.4 and 39.3). The two 
equations appear similar, but each pair of coefficients dif- 
fers by almost .5 if the x variables are put on standardized 
scales. 

The value of s selected is .25M (M = 9). Because 
s = 9 corresponds to the full OLS regression, this could 
be interpreted as meaning that the coefficients were shrunk 
to 25% of the OLS values. The sum of the coefficients 
in the garrote equation (3.2) is a bit smaller than those in 
(3.1), but the major effect is the redistribution of emphasis 
on the three variables included. 

3.2 Ozone Data 

The ozone data were also used by Friedman and 
Silverman (1989), Hastie and Tibshirani (1990), and Cook 
(1993). It consists of daily ozone and meteorological data 
for the Los Angeles Basin in 1976. There are 330 cases 
with no missing data. The dependent variable is ozone. 
There are eight meterological predictor variables: 

XI : 500 mb height 
x2: wind speed 
x3: humidity 
x4: surface temperature 
x5: inversion height 
x6: pressure gradient 
x7 : inversion temperature 
xs: visibility 

These data are known to be nonlinear in some of the 
variables, so, after subtracting means, interactions and 
quadratic terms were added, giving 44 variables. Subset 
selection was done using backward deletion of variables. 
To get the estimates of the best subset size, garrote pa- 
rameter, and prediction errors, tenfold CV was used. The 
tenfold CV was repeated five times using different random 
divisions of the data and the results averaged. 

Subset selection chooses the five-variable equation 

p= 6.2 + 4.6~6 + 2.4X2X4 - 1.3X2Xg + 5.5~42 -4.2x;, 

(3.3) 

whereas nn-garrote chooses the seven-variable equation 

7 = 6.2 + 3.9x, - 1.7~~ - .3x; 

+.6x2x4 +5.2x,” + .8x5x7 - .4x,2. (3.4) 
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(All variables, including interactions and quadratic terms 
are standardized to mean 0, variance 1.) 

The estimated mean prediction error for the subset equa- 
tion (3.3) is 10.0, with mean model error 3.3. The nn- 
garrote equation (3.4) has an estimated mean prediction 
error of 9.0 with mean model error of 2.3. Each equa- 
tion has a strong temperature term xi with about the same 
coefficient. Otherwise, they are dissimilar, and include 
different variables. All of the coefficients in the subset- 
selection equation (3.3) are substantial in size. But due to 
the shrinking nature of nn-garrote, some of the coefficients 
in (3.4) are small. 

The value .26 is selected for the nn-garrote parameter. 
This is surprisingly small because s = 44 corresponds 
to full OLS regression. Thus the coefficients have been 
shrunk to less than 1% of their OLS value. 

Equation (3.4) includes some quadratic terms without 
the corresponding linear terms. One referee objected to 
the nonhierarchical form of this model, and an associate 
editor asked me to comment, noting that many statisti- 
cians prefer hierarchical regression models. My model- 
selection approach is based on minimizing prediction 
error, and if a nonhierarchical model has smaller predic- 
tion error, so be it. I agree, however, that in some situations 
hierarchical models make more physical sense. 

4. X ORTHONORMAL 

In the X-controlled case, assume that X’X = I and that 
y is generated as 

yn = c Bmxmn + En7 
n 

where the {e,lare iid N(0, 1). 
Then OLS pm = &+Zm, where the Z, are iid N(0, 1). 

Although this is a highly simplified situation, it can give 
interesting insights into the comparative behavior of sub- 
set selection, ridge regression, and the nn-garrote regres- 
sions. The best subset of k variables consists of those x, 
corresponding to the k largest IEm 1 so that the coefficients 
of a best subset regression are 

iq’ = UIEnl s aL, m=l,...,M, (4.1) 

for some h 1 0, where Z (.) is the indicator function. 
In nn-garrote, the expression 

I \ 2 

1 (Y. - ~cm&xmn) 
m 

is minimized under the constraints c, > 0, all m, 
c ,c, = s. The solution is of the form 

a2 + 
cm= l- ( > z ’ 

where h is determined from s by the condition C c, = s 
and the superscript + indicates the positive part of the 

5- 

-6 -4 -2 0 2 4 6 

beta 

Figure 1. Shrinkage Factor for nn-Garrote. 

expression. The nn-garrote coefficients are 

The ridge coefficients are 

(4.2) 

All three of these estimates are of the form 2 = 
,9@, h)p, where 8 is a shrinkage factor. OLS estimates 
correspond to 8 3 1. Ridge regression gives a co_nstant 
shrinkage, 8 = l/( 1 +h). Subset selection is 0 for I/l I 5 h 
and 1 otherwise. The nn-garrote shrinkage is continuous, 
0 if IpI 5 h and then increasing to 1. The nn-garrote 
shrinkage factor is graphed in Figure 1 for h = 1. 

If the (FL} are any estimates of the I&}, then the model 
error is 

MI383 > = ~6% - a>“. 

m 

For estimates of the form OF, 

ME@.) = ~6% - dirt, N&d2. 

m 

I denote the minimum loss by ME* = mink ME(h). 
Assume that M is large and that the & } are iid selec- 

tions from a distribution P (d/I). Then 

ME(h) = ~(I% - Qth, + Zrn, ~)tBm + ZmN2 

2: hi * E(B - etp + z, I)(B + z>j2, 

giving the approximation 

ME* = M m;‘n E[p - e(p + Z, i)(p + Z)12, (4.4) 

where Z has an N(0, 1) distribution independent of /3. 
To simplify notation, put ME* = ME*/M. For the ridge 
shrink, 

EP2 
=EpTT+ 

The other minimizations are not analytically tractable but 
are easy to compute numerically. 
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I wanted to look at the ME* values for a “reveal- 
ing” family of distributions of p. It is known that ridge 
is “optimal” if B has an N(0, a2) distribution. Subset 
selection is best if many of the coefficients are 0 and 
the rest large. This led to use of the family P(@) = 
p8(@)+qQ(@, o), where6(@)isamassconcentrated 
at 0 and Q(&, a) is N(0, a’). The range of p is [0, 11, 
and o E [0,5]. 

Figure 2 plots ME* versus o for p = 0, .3, .6, .9 for 
subset selection, ridge, and nn-garrote. The scaling is such 

p=o 

1 - 

.5 - 

0 I I I I 

0 1 2 3 4 5 

I-J=.3 

1 - 

.5 - 

o- 

0 1 2 3 4 5 

1176 

1 - 

0 1 2 3 4 5 

p=.9 

0 1 2 3 4 5 
0 .5 

Figure 2. ME* Versus Sigma: -+-, Garrote; +, Subset; Figure 3. 
+, Ridge. 

Proportion Zeroed by Procedure Versus Proportion 
Zero in Distribution: +, Garrote; +, Subset. 

that the OLS ME* is 1. Note that the ME* for nn-garrote is 
always lower than the subset selection ME* and is usually 
lower than the ridge ME* except at p = 0. 

Another question is how many variables are included 
in the regressions by subset selection compared to nn- 
garrote. If hs and hG are the values of A. that minimize the 
respective model errors, then the proportions Ps and PC 
of B’s zeroed are 

ps = PUB + Zl 5 As) 
PC = p(Ib + ZI 5 AC). 

Figure 3 gives plots of Ps, PC versus p for D = 
1.0, 1.5,3.0. 

SIGMA = 1.0 

n E 

SIGMA J 1.5 

1 - 

SIGMA = 3.0 
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In regard to simplicity-that is, how many variables are 
included in the regression-Figure 3 shows that nn-garrote 
is comparable to subset selection. Subset selection has a 
discontinuity at (T = 1. For (T < 1, it deletes all variables 
and Ps = 1. For r~ > 1, it settles down to the behavior 
shown in the o = 1.5 and 3.0 graphs. 

5. SIMULATION RESULTS 

Because analytic results are difficult to come by in this 
area, the major proving ground is testing on simulated 
data. 

5.1 Simulation Structure 

I did two simulations, one, with 20 variables and 40 
cases in the X-controlled case and the other with 40 vari- 
ables and 80 cases in the X-random case. The major pur- 
pose was to compare the accuracies of subset selection, 
nn-garrote, and ridge regression. The secondary purpose 
was to learn as much as possible about other interesting 
characteristics. 

The data were generated by 

Y=~BmXm+t 

with {E) iid N(0, 1). The ticklish specifications are the 
coefficients {pm} and the X design. What is clear is that 
the results are sensitive to the proportion of the {pm} that 
are 0. To create a “level playing field,” five different sets of 
coefficients were used in each simulation. At one extreme, 
almost all of the coefficients are 0. At the other, most are 
nonzero. 

A coefficient cluster centered at j of radius rc is defined 
as 

/?(j + i) = (r-c - lil)2, Ii\ 5 rc 

= 0, otherwise. 

Each cluster has 2rc - 1 nonzero coefficients. In the X- 
controlled case with 20 variables, the coefficients were in 
two clusters centered at 5 and 15, in the X-random case, in 
three clusters centered at 10,20, and 30. The values of the 
coefficients were renormalized so that in the X-controlled 
case, the average R2 was around .85, in the X-random, 
about .75. 

Each simulation consisted of five runs with 250 itera- 
tions in each run. Each of the five runs used a different 
cluster radius with rc = 1,2, 3,4,5. This gave the re- 
sults shown in Table 1. The X distribution was generated 
by sampling from N(0, F), where F;i = pli-jl. In each 
iteration p was selected at random from [- 1, 11. 

In each X-controlled iteration, subset selection was 
done using backward variable deletion. nn-garrote used 
svalues 1,2,..., 20, and ridge regression searched over 
h values such that tr(X’X(X’X + hZ)-‘) = 1,2, . . ,20. 
The ME values for subset selection and nn-garrote were 
estimated using the average of 25 repetitions of little boot- 
strap with I = .6. The ME values for ridge were estimated 
usin& (2.1). The true ME for each predictor was computed 
as (B’ - b)X’X(? - #I). 

Table 1. Results of Simulation Consisting of Five Runs, 
250 Iterations Each 

Cluster X-controlled X-random 
radius #nonzero coeff. #nonzero coeff. 

1 2 3 
2 6 9 
3 10 15 
4 14 21 
5 18 27 

The X-random runs had a similar structure, using back- 
ward deletion, s values = 1, . . . (40, and h values such 
that tr(X’X(X’X + hl)-‘) = 1, . . . (40. The ME values 
for subset selection and nn-garrote were estimated using 
tenfold CV. The ME values for ridge regression were es- 
timated using GCV (2.2). The true ME was computed as 
A@ - p>‘r(B’ - p>. 

5.2 Simulation Results 

In each run, various summary statistics for the 250 it- 
erations were computed. 

5.2.1 Accuracy. The most important results were 
the average true model errors for the predictors selected 
by the various methods. Figure 4(a) plots these values 
versus the cluster radius for the X-controlled simulation. 
Figure 5(a) plots the average true ME values versus the 
cluster radius for the X-random case (the nn-garrote esti- 
mate is chosen using tenfold CV). The two graphs give the 
same message: nn-garrote is always more accurate than 
variable selection. If there are many nonzero coefficients, 
ridge is more accurate. If there are only a few, nn-garrote 
wins. 

An important issue is how much of the differences be- 
tween the ME values for subset selection, garrote, and 
ridge [plotted in Figs. 4(a) and 5(a)] can be attributed to 
random fluctuation. In the simulation, standard errors 
are estimated for these differences at each cluster radius. 
Table 2 gives these estimates averaged over the five cluster 
radii. 

5.2.2 Using a Crystal Ball. I have been comparing 
the estimated best of M subset regressions to the estimated 
best of M nn-garrote and ridge regressions. That is, PE 
estimates are constructed and the prediction equation hav- 
ing minimum estimated PE selected. A natural question is 
what would happen if we had a crystal ball-that is, if we 
selected the best predictor based on “inside” knowledge 
of the true ME? For instance, what is the minimum ME 
among all subset regression predictors? Among all nn- 
garrote predictors? Among ridge predictors? 

This separates the issue of how good a predictor there 
is among the set of M candidates from the issue of how 
well we can recognize the best. Figure 4(b) gives a plot 
of the minimum true ME’s for the subset selection, nn- 
garrote, and ridge predictors versus cluster radius for the 
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Figure 4. ME in X-Controlled Simulation Versus Cluster Ra- Figure 5. ME in X-Random Simulation Versus Cluster Ra- 
dius: a-, Subset; -0-, Garrote; --I-, Ridge. dius: +, Subset; -+-, Garrote; -+-, Ridge. 

X-controlled simulation. Figure 5(b) gives the analogous 
plot for the X-random simulation. Figures 4(c) and 5(c) 
show how much larger the fallible knowledge ME is than 
the crystal-ball ME. Table 3 gives the estimated SE’s for 
the differences of the crystal-ball ME’s plotted in Figures 
4(b) and 5(b) (averaged over the cluster radii). 

The differences between the minimum true ME’s for the 
three methods are smaller than the ME differences using 

0 ’ 
1 2 3 4 5 

(a) 

ME’S OF PREDICTORS SELECTED USING CRYSTAL BALL 

,,I 

0 ’ 
1 2 3 4 5 

(b) 

ME DIFFERENCES -FAWBLE MINUS CRYSTAL BALL 

the predictors selected by the ME estimates. The impli- 
cations are interesting. The crystal-ball subset-selection 
predictors are close (in ME) to the crystal-ball nn-garrote 
predictors. The problem is that it is difficult to find 
the minimum ME subset-selection model. On the other 
hand, the crystal-ball ridge predictors are not as good 
as the other two, but the ridge ME estimates do better 
selection. 
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Table 2. Estimated SE’s for ME Differences 

Difference X-controlled X-random 

Subset-garrote .3 .9 
Subset-ridge .4 1.2 
Garrote-ridge .3 .8 

Better methods to select low ME subset regressions 
could make that procedure more competitive in accuracy. 
But I believe that the intrinsic instability of the method 
will not allow better selection. 

5.2.3 Accuracy of the ME Estimates. The ME esti- 
mates are used both to select a prediction equation and 
to supply an ME estimate for the selected predictor. For 
the selected predictors I computed the average absolute 
value of the difference between the estimated and true 
ME’s. The results are graphed in Figure 6(a) versus clus- 
ter radius for the X-controlled simulation and in 6(b) for 
the X-random simulation. 

The ME estimates for subset selection are considerably 
worse than those for nn-garrote or ridge regression. Part of 
the lack of accuracy is downward bias, given in Table 4 as 
averaged over all values of cluster radius. But downward 
bias is not the only source of error. The standard deviation 
of the ME estimates for subset regression is also consid- 
erably larger than for nn-garrote and ridge regression. 

5.2.4 Number of Variables. I kept track of the av- 
erage number of variables in the selected predictors for 
subset selection and nn garrote. Figure 7(a) plots these 
values versus cluster radius for the X-controlled simula- 
tion. Figure 7(b) is a plot for the X-random simulation. 
In the X-controlled situation, not many more variables are 
used by nn-garrote than subset selection. In the X-random 
simulation, nn-garrote uses almost twice the number of 
variables as subset selection. 

5.2.5 Best Subsets Versus Variable Deletion. In the 
best-subsets procedure, the selected subset [k of k vari- 
ables is such that the regression of y on (x,, m E {k} 
has minimum RSS among all k variable regressions. Our 
simulations did subset selection using backward deletion 
of variables. The question (raised by an associate editor) 
is how much our results reflect the use of deletion rather 
than best subsets. 

Certainly, the subsets selected by the best-subsets pro- 
cedure have lower RSS than those found using dele- 
tion. But, as exemplified in Section 5.2.7, lower RSS 

Table 3. Estimated SE’s for Crystal-Ball ME Differences 

Difference X-controlled X-random 

Subset-garrote .2 .4 
Subset-ridge .3 .8 
Garrote-ridge .3 .6 

X-CONlROLED , - 
6 3 1 
6- 3 
4 - 

2 - 

1 2 3 4 5 

(a) 

X-RANDOM 

5 

1 
0 1 

1 2 3 4 5 

(b) 

Figure 6. Average Absolute Error in ME Estimate for Se- 
lected Predictor Versus Cluster Radius: --W-, Subset; -0-, 
Garrote; +-, Ridge. 

does not necessarily translate into lower prediction er- 
ror. To explore the difference, I used the same data as in 
the 20-variable X-controlled simulation. In each of 250 
iterations, two sequences of subsets were formed, one by 
deletion, the other by the Furnival and Wilson (1974) best- 
subsets algorithm, Leaps. 

Then 25 repetitions of little bootstrap were done using 
deletion and the result used to select one subset out of the 
deletion sequence. Another 25 little bootstraps were done 
using Leaps and the results used to select one of the best 
subsets. The ME’s were computed for each of the selected 
subsets and then averaged over the 250 repetitions. The 
results are plotted in Figure 8. The differences are small. 

Table 4. Downward Bias as Averaged Over all Values of 
Cluster Radius 

Downward bias 

Subset selection 
nn-Garrote 
Ridge 

X-controlled X-random 

5.8 13.0 
3.2 5.0 
1.9 4.1 
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Figure 7. Average Number of Variables Used in Predictors Selected Versus Cluster Radius: +, Subset; -+-, Garrote. 
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5.2.6 Nesting of the nn-Garrote Subsets. Stepwise 
variable deletion or addition produces nested subsets of 
variables. But the sequence of best (lowest RSS) sub- 
sets of dimension 1,2, . . . , M are generally not nested. 
A natural question is whether the subsets of variables 
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Figure 8. ME in X-Controlled Simulation, Leaps Versus Dele- 
tion: +, Best Subsets; -Q-, Deletion. 
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Figure 9. RSS Versus ME for 100 “Best” IO-Variable Subset 
Regressions. 
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produced by nn-garrote as s decreases are nested. The 
answer is “almost always, but not always.” For instance, 
in the 1,250 iterations of nn-garrote in the 20-variable 
X-controlled simulation, 17 were not nested. Of the 1,250 
in the 40-variable X-random simulation, 68 were not 
nested. 

52.7 RSS Versus ME Instability in Subset Selection. 
To illustrate the instability of subset selection, I generated 
an X-controlled data set with rc = 3 and p = .7. Leaps 
was used to find the 100 subset regressions based on 10 
variables having lowest RSS. For each of these regres- 
sions, the true ME was computed. Figure 9 is a graph of 
RSS versus ME for the 100 equations. The 100 lowest 
RSS values are tightly packed. But the ME spreads over 
wide range. Shifting from one of these models to another 
would result in only a small RSS difference but could give 
a large ME change. 

6. CONCLUSIONS AND REMARKS 

I have given evidence that the nn-garrote is a worthy 
competitor to subset selection methods. It provides sim- 
ple regression equations with better predictive accuracy. 
Unless a large proportion of the “true” coefficients are 
nonnegligible, it gives accuracy better than or comparable 
to ridge methods. Data reuse methods such as little boot- 
strap or V-fold CV do well in estimating good values of 
the garrote parameter. 

Some simulation results can be viewed as intriguing 
aspects of stability. Each regression procedure chooses 
from a collection of regression equations. Instability is 
intuitively defined as meaning that small changes in the 
data can bring large changes in the equations selected. If, 
by use of a crystal ball, we could choose the lowest PE 
equations among the subset section, nn-garrote, and ridge 
collections, the differences in accuracy between the three 
procedures are sharply reduced. But the more unstable a 
procedure is, the more difficult it is to accurately estimate 
PE or ME. Thus, subset-selection accuracy is severely 
affected by the relatively poor performance of the PE es- 
timates in picking a low PE subset. 

On the other hand, ridge regression, which offers only 
a small diversity of models but is very stable, sometimes 
wins because the PE estimates are able to accurately lo- 
cate low PE ridge predictors. nn-garrote is intermediate. 
Its crystal-ball selection is usually somewhat better than 
the crystal-ball subset selection, but its increased stability 
allows a better location of low PE nn-garrote predictions, 
and this increases its edge. 

The work in this article raises interesting questions. For 
instance, can the concept of stability be formalized and 
applied to the general issue of selection from a family 
a predictors? Can one use a formal definition to get a 
numerical measure of stability for procedures such as the 
three dealt with here? In another area, why is it that the nn- 
garrote produces “almost always, but not always” nested 
sequences of variable subsets? 

The nn-garrote results may have profitable applica- 
tion to tree-structured classification and regression. The 
present method for finding the “best” tree resembles 
stepwise variable deletion using V-fold CV. Specifically, 
a large tree is grown and pruned upward using V-fold 
CV to estimate the optimal amount of pruning. I am 
experimenting with the use of a procedure analogous to 
nn-garrote to replace pruning. The results, to date, have 
been as encouraging as in the linear regression case. 

Another possible application is to selection of more 
accurate autoregressive models in time series. Picking the 
order of the autoregressive scheme is similar to estimating 
the best subset regression. The nn-garrote methodology 
should carry over to this area and may provide increased 
prediction accuracy. 

The ideas used in the nn-garrote can be applied to get 
other regression shrinkage schemes. For instance, let {bk} 
be the original OLS estimates. Take {ck} to minimize 

F (Y” - pBix,.)2 
under the constraint c ci 5 s. This version leads to 
a procedure intermediate between nn-garrote and ridge 
regression. In the X’X = I case, its shrinkage factor is 

P e@, A) = - 82 + h2 . 
Unlike ridge, it is scale invariant. Our expectation is that 
it will be uniformly more accurate than ridge regression 
while being almost as stable. Like ridge regression, it does 
not zero coefficients and produce simplified predictors. 
Study of this version of the garrote is left to future research. 
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