
Regressions by Leaps and Bounds

George M. FURNIVAL Robert W. WILSON, Jr.

School of Forestry, Yale University USDA Forest Service

New Haven, Connecticut Northeastern Forest Experiment Station

This paper describes several algorithms for computing the residual sums of squares for all possible
regressions with what appears to be a minimum of arithmetic (less than six floating-point operations
per regression) and shows how two of these algorithms can be combined to form a simple leap and
bound technique for finding the best subsets without examining all possible subsets. The result is
a reduction of several orders of magnitude in the number of operations required to find the best
subsets.

KEY WORDS: Linear regression; Regression computation; Subset selection.

1. INTRODUCTION
An investigator involved in a multiple regression analy-

sis with k independent variables often suspects, and even
hopes, that a subset of these variables may adequately ex-
plain his data. It may well be that the main purpose of the
investigation is simply to identify the factors of importance
in some process or phenomenon. Subset selection is also
employed when the goal of the analysis is prediction be-
cause the full equation on all k variables is often unstable.
The ridge regression approach of Hoer1 and Kennard (1970)
may be preferable here but the elimination of variables is
an attractive strategy when costs of measurement are large.

Many of the criteria which have been suggested for use
in identifying the ‘best’ subset are monotone functions of
the residual sum of squares (RSS) for subsets with the
same number of independent variables (Hocking, 1972).
Hence, the problem of finding the ‘best’ subset can often
be reduced to the problem of finding those subsets of size
p, p = 1,2. . . k - 1, with minimum RSS. The PRESS statis-
tic described by Allen (197 1) is an exception, but the ad-
justed R-square, the minimum mean square residual, and
the Cp statistic of Mallows (1966; also described in Draper
and Smith, 1966) are all monotone functions of the RSS.

The search for the subsets with minimum RSS can be
approached in a straight forward manner by computing
all possible regressions but the amount of computation re-
quired can be formidable. The number of possible subsets
increases exponentially with k and the number of opera-
tions (multiplications and divisions) required to invert the
moments matrix associated with each subset is of order k3.
The cost in computer time is large enough to make the pro-
cedure impractical for even moderate values of k; hence
it is not surprising to find a number of investigators en-
gaged in (1) attempts to reduce the amount of computation
involved in examining a subset and in (2) developing pro-
cedures for finding the best subsets without examining all
possible subsets.

The present paper is concerned with both approaches
to computational efficiency. We will describe several algo-
rithms for computing the residual sums of squares for all
possible regressions with what we believe to be a minimum
of arithmetic, and we will show how two of these algo-

rithms can be combined to form a leap and bound technique
for finding the best subsets without examining all possible
subsets.

2. ALL POSSIBLE REGRESSIONS
Garside (1965) and Schatzoff, Fienberg and Tsao (1968)

have described algorithms for computing all possible re-
gressions which are much superior to the naive approach
involving the direct inversion of the moments matrix asso-
ciated with each subset of independent variables. The av-
erage number of operations per regression for the direct
approach is of order k” whereas both Garside and Schatz-
off achieve an order of k2 by repeated application of an
ingenious technique for modifying one inverse to produce
another.

Although the two algorithms are quite similar, the one de-
veloped by Schatzoff et al. requires less than half as much
computation as that described by Garside. The reduction is
achieved by taking advantage of the symmetry of the mo-
ments matrices and by the deletion of unneeded rows and
columns as the successive inverses are computed. A further
reduction of $ or more, depending on the size of k, can be
obtained (Furnival, 1971) by abandoning the idea of com-
puting each new inverse from its immediate predecessor.
More rows and columns can be deleted and a correspond-
ing gain in efficiency achieved by returning to inverses pro-
duced in earlier stages of the computations.

Unfortunately, we have now arrived at what appears to
be a dead end. The number of operations per regression is
still of order k2 and it does not seem possible to generate
the 2” - 1 inverses with less computation. However, the
limiting word here is inverses. If we are satisfied with less
output for each regression, further savings are possible. We
can, for example, compute the regression coefficients, their
variances and the residual sum of squares with a number of
operations per regression which is of order k and, if we are
satisfied with only the residual sum of squares, the number
of operations per regression can be reduced to slightly less
than six (Furnival, 1971).

@ 1974 American Statistical Association
and the American Society for Quality

TECHNOMETRICS, FEBRUARY 2000, VOL. 42, NO. 1

69

70 GEORGE M. FURNIVAL AND ROBERT W. WILSON. JR.

2.1 The Matrix Operators
Several authors (Beaton, 1964; also quoted in Schatzoff

et al. 1968) have described matrix operators which can be
conveniently used in computing full inverses for all possible
regressions. We will describe two additional operators. The
first, which is often called Gaussian elimination, produces
only residual sums of squares. The second, which we will
call a semi-sweep, produces regression coefficients and the
diagonal elements of the inverses as well as the RSS.

Both of our operators assume a (k + 1) x (X: + 1) product
(or correlation) matrix with row and column I; + 1 contain-
ing the products associated with the dependent variable. We
begin with the matrix stored in the first block of a three-
dimensional array A(L, I, J) where L, I, and J are the block,
row and column indices. Then at each step of our proce-
dure we produce a submatrix containing the statistics for
a subset regression by pivoting with one of our matrix op-
erators on either the original matrix in block one or some
submatrix stored in another block as the result of a previous
pivot.

An explicit definition of our version of Gaussian elimi-
nation is given in the following Fortran subroutine:

SUBROUTINE GAUSS (IB, IS, IP, A, KP) 1
LB=IP+l 2
DO 1 L = LB, KP 3
A(IS, IP, L) = A(IB, IP, L)/A(IB, IP, IP) 4
DOlM=L,KP 5

1 A(IS, L, M) = A(IB, L, M)
~ A(IB, IP, M)*A(IS, IP, L) 6

RETURN 7

The variable arguments are IB, the index of the source
block, IS, the index of the storage block and IP, the index
of the pivot row and column. A is the three dimensional
storage array and the value of KP is k + 1. The subroutine
operates only on the upper half of the symmetric matrix and
only on those rows and columns with indices greater than
or equal to IP. At the conclusion of a pivot or elimination,
the element A(IS, KP, KP) contains the sum of squares of
residuals (RSS) for one of the subset regressions.

The semi-sweep operator requires ‘a list, IND, of the pre-
vious pivots on a submatrix and, since it will not always be
convenient for us to begin with the first element of IND in
storing these pivot indices, we also include in the calling
sequence IA, the location in IND of the first pivot index
and IZ, the location of the last pivot index.

SUBROUTINE
SEMI (IB, IS, IP, A, KP, IND, IA, IZ) 1

A(IS, IP, IP) = l.O/A(IB, IP, IP) 2
CALL GAUSS (IB, IS, IP, A, KP) 3
IF (IA.GT.IZ) TO TO 2 4
LB=IP+l 5
DO 1 L = IA, IZ 6
B = A(IB, IND(L), IP)/A(IB, IP, IP) 7
A(IS, IND(L), IND(L)) = A(IB, IND(L),

IND(L)) + B*A(IB, IND(L), IP) 8
DO 1 M = LB, KP 9

TECHNOMETRICS, FEBRUARY 2000, VOL. 42, NO. 1

1 A(IS, IND(L), M) = A(IB, IND(L), M)
~ B*A(IB, IP, M) 10

2 RETURN 11

The arguments IB, IS, IP, A and KP are as defined for
GAUSS. Statements 5-10 operate above the pivot row; the
diagonal elements are processed by statement 8 and the el-
ements to the right of the pivot column by statements 9 and
10. The major difference between our semi-sweep and a full
sweep is that we do not operate on off-diagonal elements
to the left of the pivot column.

At the conclusion of a pivot, the element A(IS, KP, KP)
again contains the sum of squares of residuals for a subset
regression. In addition, the elements A(IS, I, I) and A(IS,
I, KP) contain, respectively, the diagonal element of the
inverse and the regression coefficient associated with the
I-th independent variable. The off-diagonal elements of the
inverse are not computed.

2.2 The Regression Tree
The sequences of pivots utilized in our approach to the

computation of all possible regressions are derived from the
binary tree of Figure 1. At the root of the tree is the orig-
inal matrix and at each interior node a submatrix derived
from the original matrix by a series of pivots (solid lines)
and deletions (dotted lines). Finally, each terminal node or
leaf represents one of the 2” possible subset regressions
including the null regression.

The labeling of the nodes utilizes a dot notation simi-
lar to that employed for partial correlation coefficients. The
integers listed before the dot are the subscripts of inde-
pendent variables present in the submatrix on which piv-
ots have not yet been performed; the subscripts following
the dot correspond to variables on which pivots have been
performed. Missing subscripts indicate that the rows and
columns associated with those variables have been deleted
in deriving the submatrix from the original matrix. Thus, the
submatrix 3.1 has been obtained from the original matrix
by pivoting on X(1) and deleting X(2). A row and column
associated with the dependent variable is, of course, always
present.

The tree is constructed by beginning at the root and
‘splitting’ the matrix into two new submatrices-one ob-
tained by pivoting on the first variable of the matrix, the
other by deleting the row and column associated with that
variable. The process is repeated for the submatrices un-
til all variables have been treated either by pivoting or by
deletion.

The binary nature of the tree can be used as the basis
for an argument that our approach to all possible regres-
sions is at least as efficient as any other procedure utilizing
a sequence of Gaussian eliminations. We argue that there
must be at least one pivot on the full matrix and, without
loss of generality, assume that this pivot is performed on
variable one. The result is a k - 1 variable submatrix con-
ditioned on X(1) and it is obvious that all regressions con-
taining X(1) can be derived more easily from this submatrix
than from the original matrix. The remaining regressions,
those without X(l), can clearly be obtained from the other

REGRESSIONS BY LEAPS AND BOUNDS 71

123

23.1

3.2

.123 .12 .13 .l .23 .2 .3 Null

Figure 1. The Regression Tree

half of the split-that is, from the Ic - 1 variable subma-
trix formed by deleting X(1) from the full matrix-just as
easily as from the full matrix. We can, therefore, proceed
recursively by applying our argument calling for at least
one pivot on the full matrix to the submatrices and, finally,
after the k-th round of splits, we arrive at the residual sums
of squares for the 2” - 1 regressions of the problem with the
knowledge that the amount of computation involved could
not be reduced by using some other pattern of pivots and
deletions.

Pivots will have been performed on one k-variable ma-
trix, two (,4 - l)-variable matrices and so on down to 2”-’
one-variable matrices. Thus, one-half of the 2” - 1 regres-
sions will have been computed by pivoting on submatrices
containing only one independent variable.

It might appear that the tree specifies a rigid order of
computation but, in fact, quite a bit of flexibility is permit-
ted. Figure 3 gives a condensed version of a four-variable
tree with the dotted lines omitted. Deletions are now im-
plied and interior nodes as well as terminal nodes represent

regressions. The tree can be traversed in any ‘biologically
feasible’ order-the only restraint is that a father be ‘born’
before his son.

The most obvious approach is to search the tree hori-
zontally, level by level, from top to bottom. This proce-
dure produces the regressions in a convenient and natu-
ral order-all one-variable regressions followed by all two-
variable regressions and so forth as shown in Table 1. The
drawback is that all of the submatrices produced in the tra-
verse of a level must be stored until they in turn have been
utilized in the pivots required for the traverse of the next
level.

Much less storage (no more than k + 1 storage blocks) is
required if the tree is searched vertically branch by branch
and there are at least three useful variations here. The first
is obtained by beginning at the root and moving from fa-
ther to older son at an interior node. At a terminal node,
the move is to the next younger brother, or if there is no
brother, to the father’s next younger brother or, if there is no
remaining uncle, to the grandfather’s next younger brother

/
/

/
.1234

.23u -

.1234 .124 .134 .14 ,234 .24 .34 .4

Figure 2. The Bound Tree.

TECHNOMETRICS, FEBRUARY 2000, VOL. 42, NO. 1

72 GEORGE M. FURNIVAL AND ROBERT W. WILSON, JR.

1234

234.1

34.12 4.13 .14 4.23 .24 .34

4.123 .124 .134 .234

.1234
Figure 3. The Natural and Lexicographic Tree.

and so on as necessary. The process ends with a return to the
root and the regressions are produced in a dictionary-like
or lexicographic order (Table 1).

The second variation is obtained by applying the vertical
search procedure just described to the tree in Figure 4 which
is nothing more than the mirror image of Figure 3 with
the indexing of the variables reversed. The regressions are
produced in what we refer to as ‘binary’ order (Table 1).
That is, if the regressions are numbered with k-digit binary
integers in the order in which they are calculated, then the
variables present in a regression can be determined from
the bit pattern of the integer as illustrated by the following
series:

Binary Regression
Integer Variables
0001 1
0010 2
0011 12
0100 3
. . . .

Our final method of traversing the regression tree is again
applied to Figure 4 and is something of a hybrid with both
horizontal and vertical elements. We again move from fa-
ther to older son as previously described but, when a node is
visited, the sons of that node, not the node itself, are listed
in order of age from oldest to youngest. The result is some-
times described as familial order since all the siblings of a
family are listed together. Again k + 1 storage blocks are
required; the storage can be this small only because there
are never more than Ic - T + 1 sons in a family in the r-th
generation.

2.3 Programming
Algorithms for traversing the regression tree in natural,

lexicographic, binary and familial order will be given in the
form of short Fortran programs. In principle, we could em-

TECHNOMETRICS, FEBRUARY 2000, VOL. 42, NO, 1

ploy either our semi-sweep or Gaussian elimination or, for
that matter, the Beaton sweep, in any of the four algorithms.
However, in our Fortran implementations of the binary and
familial traverses, the list of previous pivots required for
the sweep operators is not produced as an integral part of
the programs.

It is not necessary in the programming of the traverses
to make explicit provision for the deletions of Figure 1.
The rows and columns to be deleted before a pivot are al-
ways those with subscripts greater than the index of the
last previous pivot and less than the index of the up-coming
pivot. Hence, these deletions are performed automatically
by GAUSS which operates only on those rows and columns
with subscripts greater than or equal to the pivot index.
SEMI accomplishes the same purpose by utilizing a list of
previous pivots to limit its operations.

The sequence of pivots employed in the natural traverse
is conceptually quite simple. We begin with the original
matrix and pivot on each row in turn beginning with the

Table 1. Sequences of Regressions

Natural Lexicographic Binary Familial

1 1 1 1
2 12 2 2
3 123 12 3
4 1234 3 4

12 124 13 12
13 13 23 13
14 134 123 23
23 14 4 123
24 2 14 14
34 23 24 24

123 234 124 34
124 24 34 124
134 3 134 134
234 34 234 234

1234 4 1234 1234

REGRESSIONS BY LEAPS AND BOUNDS 73

1234

.l 1.2 12.3 123.4

A A
.12 .13 1.23 .I4 1.24 12.34

I I A
.123 ,124 .134 1.234

I
.1234

Figure 4. The Binary and Familial Tree.

first. Each pivot produces a submatrix and we pivot in turn
on the remaining rows of these submatrices and so on until
the submatrices have been exhausted.

DO 1 L = l,K 1
1 IND(L) = 0 2

M=K 3
IB = 0 4
IS = 1 5

2 IB = MOD(IB, MAX) + 1 6
DO3L=M,K 7
IF(IND(L).LT.L) GO TO 3 8
IND(L) = IND(L - 1) + 1 9
IND(L) = IND(L - 1) 10

3 CONTINUE 11
4 IND(K) = IND(K) + 1 12

IS = MOD(IS, MAX) + 1 13
CALL SEMI(IB, IS, IND(K), A, K + 1,

IND, M, K - 1) 14
WRITE(6,)(IND(L), A(IS, IND(L),

K + l), L = M, K) 15
IF(IND(K).LT.K) GO TO 4 16
IS = IS - 1 17
IF(IND(M).EQ.M)M = M - 1 18
IF(M.GT.0) GO TO 2 19
STOP

Statement 15 in the program writes the index and the coeffi-
cient associated with each independent variable in a subset
regression and statements 7-12 and 16-19 identify the re-
gressions. MAX is the dimension corresponding to the first
subscript of A; a value of 150 is large enough for a prob-
lem with ten independent variables. The diagonal element
of the inverse needed for computing the variance of a re-
gression coefficient is available in A(IS, L, L) but we omit
this calculation in the interest of brevity.

Our lexicographic algorithm is little more than a method
of labeling the subset regressions. We pivot on the last vari-
able in the regression; the index of the storage block is the
index of the pivot plus one; and, because of this storage
convention, the index of the source block is the index of
the previous pivot plus one. Thus, if we are computing the
subset regression on variables 1, 2 and 4; then IP is four,
IS is five (4 + 1) and IB is three (2 + 1).

IND(1) = 0 1
M=l 2

1 M=M+l 3
IND(M) = IND(M - 1) + 1 4

2 CALL SEMI(IND(M - 1) + 1, IND(M) + 1,
IND(M), A, K + 1, IND, 2, M - 1) 5

WRITE(6,)(IND(L), A(IND, (M) + 1,
IND(L), K + l), L = 2: M) 6

IF(IND(M).LT.K) GO TO 1 7
M=M-1 8
IND(M) = IND(M) + 1 9
IF(M.GT.1) GO TO 2 10
STOP 11

We recommend the use of this algorithm when coeffi-
cients and other statistics such as variances and F-ratios
are to be computed and printed for each subset regression.
The space requirements are much less than for the previ-
ous algorithm and the order in which the regressions are
produced is reasonably intelligible.

The binary algorithm also operates from the subscripts of
the independent variables in the subset regressions. How-
ever, the identification array, NK, is a binary counter with
a list of ones and zeros which indicate the presence or ab-
sence of the independent variables and the indexing of the
independent variables is reversed-that is, the first row (and
column) of the matrix contains the products with X(K), the
next with X(K - 1) and so forth to X(l)-but the depen-

TECHNOMETRICS, FEBRUARY 2000, VOL. 42, NO. 1

74 GEORGE M. FURNIVAL AND ROBERT W. WILSON, JR.

dent variable is still X(K + 1). The use of the binary array
requires that the array be scanned to obtain the indices of
the present and immediately preceeding pivot; the reverse
indexing requires that IB, IP and IS be complemented.

DOlL=l,K 1
NK(L) = 0 2
NK(K+l)=l 3
L=l 4
NK(L) = 1 5
DO3M=L,K 6
IF(NK(M + l).EQ.l) GO TO 4 7
CONTINUE 8
CALL GAUSS(K - M + 1, K - L + 2,

K-L+l,A,K+l) 9
WRITE(6,) A(K-L+2,K+l,K+l),

(NK(N), N = 1, K) 10
DO5L=l,K 11
IF(NK(L).EQ.O) GO TO 2 12
NK(L) = 0 13
STOP 14

Statements 5 and 11-13 increment the binary step
counter, NK. The incrementation locates the position of the
lowest order 1 in NK and this position determines the index
of the pivot. Statements 6-8 locate the next lowest order 1;
this second position determines the index of the previous
pivot and the index of the source block. A variant of this
algorithm as described in Frayer et al. (1971) is recom-
mended when residual sums of squares or R-squares only
are desired for all possible regressions with Ic greater than
12. The output is a very compact table with 16 regressions
to a line and 912 to the page.

Our familial algorithm also assumes that the independent
variables are in reverse order and it also employs a binary
counter. However, the block index is now obtained from
the position of the first rather than the second 1 and it is
convenient to refer to a stage rather than a step counter. At
each stage, we pivot on all of the remaining rows of the
submatrix before returning to the counter.

DO 1L = 1,K 1
1 NK(L) = 0 2

M=K+l 3
2 NK(M) = 1 4

DO3L=2,M 5
CALL GAUSS(K - M + 2, K - L + 3,

K-L+2,A, Kfl) 6
NK(L - 1) = 1 7
WRITE(6,)A(K - L + 3, K + 1, K + l),

(NK(N), N = 1, K) 8
3 NK(L - 1) = 0 9

DO 4 M = 2MK 10
IF(NK(M).EQ.O) GO TO 2 11

4 NK(M) = 0 12
STOP 13

The positions of the l’s in the binary counter at any
stage correspond to the indices of the previous pivots on

TECHNOMETRICS, FEBRUARY 2000, VOL. 42, NO. 1

the source submatrix. Statement 7 adds a 1 for the current
pivot so that NK can be used for labeling the regression
and statement 9 sets the bit back to zero.

This algorithm was first programmed in 1958 for the IBM
650 (Furnival, 1958; also described in Ware et al. 1962)
and later for the 709 and 7094 (Furnival, 1964). It has also
been utilized as a screening option in a complete regression
package by Grosenbaugh (1967).

2.4 Discussion
The total number of operations (floating point multipli-

cations and divisions) required to compute all possible re-
gressions is the same for the four algorithms but varies with
the matrix operator.

Full sweep 2”-3(k2 + lllc + 24) - (iF2 + 5k)/2 - 3
Semi-sweep 2”-l(3k + 6) - 3(k + 1)
Gaussian 6(2”) - k(k + 7)/2 - 6

An IBM 370/158 with fast multiply under the H compiler,
optimizing level two, performs these operations at a rate of
approximately 2,000,OOO per minute.

The maximum number of independent variables which
can be processed by our algorithms is limited both by the
amount of output produced and by the number of arithmetic
operations which must be performed. If we adopt an arbi-
trary output limit of 50,000 individual regression statistics
(about 100 compact pages), then the upper limit of k is ap-
proximately 11 for a full sweep, 12 for our semi-sweep and
15 for Gaussian elimination.

However, we believe that our algorithms will be most
useful in empirical studies of the distribution of regression
statistics. In such cases, the output can be limited to sum-
mary statistics and the time required to process the subset
regressions is the limiting factor. If we adopt an upper limit
of five minutes for a medium size computer such as the IBM
370/158 then the maximum value of k is approximately 17
for the full sweep, 18 for our semi-sweep and 20 for Gauss-
ian elimination.

We have been unable to reduce the amount of floating
point arithmetic required by our algorithms. However, it is
possible to reduce the indexing and fixed point housekeep-
ing by performing several (r) preliminary splits and obtain-
ing a number (aT) of submatrices which are then processed
in ‘parallel’ by one of the algorithms. Each step of the com-
putations then produces 2’ regressions and the amount of
housekeeping is greatly reduced. Storage requirements are,
of course, increased but can be reduced somewhat by the
use of linear arrays. It is probable that algorithms which
permit parallel computation will become more useful as ar-
ray processors such as Illiac IV come into general use.

3. ABRANCHANDBOUNDPROCEDURE
A number of authors have described procedures for find-

ing the best subset regressions without computing all possi-
ble regressions (Hocking and Leslie, 1967; Beale, Kendall
and Mann, 1967; LaMotte and Hocking, 1970). All of these
methods are based on the fundamental inequality

RSS(A) I RSS(B)

REGRESSIONS BY LEAPS AND BOUNDS 75

where A is any set of independent variables and B is a
subset of A. In other words, it is impossible to reduce the
residual sum of squares for a regression by deleting vari-
ables from that regression.

3.1 Inverse Trees
The use of the inequality to restrict the number of sub-

sets evaluated in a search for the ‘best’ subset regressions
is illustrated by the tree diagram in Figure 5. At the root is
a five-variable inverse and the subset regressions are com-
puted by pivoting variables &-of the regression. The RSS
for a node is obviously a lower bound for the RSS of its
offspring. Hence, if we arrive at the node .2345, say, and
had already computed one, two, and three-variable regres-

sions with RSS smaller than that for .2345 then we could -7
ignore the 14 descendents of .2345.

The values in parentheses are the RSS for the subset re-
gressions and the underlining in the labels at the nodes of
Figure 5 indicates what variables will be removed by future
pivots on the submatrix. Thus, from the node .1245 will be
formed those regressions which can be obtained by deleting
all possible combinations of X(4) and X(5).

Simple branch and bound algorithms for subset selection
can be developed by applying our all-possible traverses to
inverse trees, but the results are not fully satisfactory. The
difficulty is best shown by an example. Suppose we are at
.lm with two and three-variable regressions which have
R-squares smaller than that for .lB but our current best

.12345

.123 .124 .125 .134 .135 .145
(612) (615) (5971 (612)

I

(610 (6re)

I A
.12 .13 .I4 .15

(615) (641) (646) (613

I
.2345
(660)

s
.234 .235 .245
(664) (66Q (6m

.345
(720)

I A A
.23 .24 .25 .34 .35

(673) (665) (675)
.45

(727) t73a (736)

I A

&S,

Null

Figure 5. The Inverse Tree.

TECHNOMETRICS, FEBRUARY 2000, VOL. 42, NO. 1

76 GEORGE M. FURNIVAL AND ROBERT W. WILSON, JR.

one-variable equation fails this test. A reasonable procedure
would be to evaluate .l and ignore the other descendents of
.1x. Unfortunately, the evaluation of .l requires the prior
evaluation of .14J and .15 and these regressions are of little
or no value to us.

The problem becomes more serious with larger trees. The
likely candidates for the best regressions, like good fruit,
occur at the tips of the branches and can be reached only
by pivoting through a lot of dead wood. It is possible to
move these good regressions to interior nodes by reversing
the order of the variables, but another difficulty emerges
immediately. The RSS for the interior nodes are now, of
course, small and therefore practically useless as bounds.
We assume here that the variables have been ordered by
some measure of importance such as the magnitude of the
t-ratios in the full k-variable equation.

It seems that we require an impossibility-two arrange-
ments of the same tree. Our solution is two trees-one for
bounds and one for regressions. The bound tree is obtained
by eliminating all pivots on variable five from the original
inverse tree. All the remaining regressions must then in-
clude variable five since this variable is never pivoted out
of the regressions. The effect is simply to prune off the
terminal nodes of the tree of Figure 5.

The other half of the regressions-those without variable
five-are included in the regression tree and this need not
be an inverse tree. A step-down procedure here would, in
fact, defeat our purpose which is to cluster regressions with
a small number of independent variables near the root of
the tree where they can be reached early in the traverse.
Furthermore, the forward approach involves fewer pivots
and possibly less rounding error.

Our object is to work out the branches of the full inverse
tree (Figure 5) by simultaneous traverses of the regression
tree and the bound tree. We observe that each submatrix
produced by the traverse of the bound tree will serve as
the source for a sub-family or branch of regressions all
of which contain X(K) and these regressions will make up
half of the regressions in the corresponding branch of the
full inverse tree. The other half of the regressions, those
without X(K), must come from the regression tree and we
must arrange our traverse so that a source subset will be
available to produce them.

A particular branch or sub-family of the full inverse
tree can be characterized or described by the presence or
absence of certain variables and the presence or absence
of these variables also determines the composition of the
source submatrices. Variables which do not occur in any of
the regressions of the sub-family must have been pivoted
out of the source subset of the bound tree and the rows and
columns associated with these variables need not be present
in the regression source. On the other hand, variables that
appear in all the regressions of a sub-family must have been
pivoted into the regression source and must not have been
pivoted out of the bound source. Finally, variables which
are present in some regressions of a sub-family but not in
others must be included in the bound source and (except for
X(K)) must be represented in the regression source by rows

TECHNOMETRICS, FEBRUARY 2000, VOL. 42, NO. 1

and columns on which pivots have not been performed. The
subscripts of this last class of variables are underlined in the
nodes of the bound tree and appear to the left of the dot in
the regression tree.

We next observe that the rows and columns associated
with non-underlined variables can be deleted-not piv-
oted out but simply dropped-from the bound submatri-
ces. These deletions are possible because we are interested
only in residual sums of squares. We can, therefore, em-
ploy a procedure very similar to Gaussian elimination and
we need not operate on rows and columns associated with
variables which will not be pivoted out of the regression
represented by the submatrix.

Symmetry now begins to emerge. Deletions on the bound
side correspond to pivots on the regression side and vice-
versa. Thus, for example, the bound source .245 is obtained
from .12345 by deleting X(2) and pivoting out X(1) and
X(3). The corresponding regression source 4.2 is developed
from 1234, by deleting X(1) and X(3) and pivoting in X(2).
We require, therefore, two traverses which are the comple-
ments of each other-one deletes where the other pivots.
The most satisfactory pairing that we have found applies a
lexicographic traverse to the regression tree and a slightly
modified (the sons are listed from youngest to oldest) fa-
milial traverse to the bound tree.

Figures 1 and 2 show, respectively, the regression tree
and the bound tree for a four-variable problem. We return
to the full binary representation for these trees in order
to emphasize the symmetry and must reduce the number
of variables from five to four in order to stay within the
confines of a page.

3.2 The Algorithm
Our simultaneous traverses produce both a regression

RSS and a bound at each step in the computations by par-
allel pivots on submatrices from the product matrix and
its inverse. With testing ‘turned off’, all possible regres-
sions would be produced in the order shown in Table 2 for
k = 5. However, with testing ‘turned on’ for the problem
of Figure 5, only those pivots marked with asterisks are
performed.

There is no difficulty in combining our lexicographic and
familial algorithms to produce the sequences of Table 2;
the problem arises in implementing the testing and skip-
ping which permit us to perform, for the problem of Fig-
ure 5, only those pivots marked with asterisks. Before each
pivot, we will test the RSS for some current best regres-
sion against some bound and then leap ahead if the test is
successful. The questions are, of course: which regression,
which bound and how much? The answers are quite sim-
ple. The appropriate best regression has the same number
of variables as the regression which is about to be produced
by the product traverse; the proper bound is the RSS from
the source submatrix in the traverse of the inverse; and the
increment for the stage counter is 2k--pP1 where p is the
pivot index.

We illustrate the procedure with a step-by-step descent
through Table 2. The pivots of stage zero must always be

Stage number

0

1

2

3

4

5

6

7

Pivot index

* 1
*2
‘3
*4

*4

*3
4

4

*2
3
4

4

3
4

4

REGRESSIONS BY LEAPS AND BOUNDS

Table 2. Order of Computations for Leap and Bound Algorithm

Product traverse Inverse traverse

Source: Regr’n RSS Source: Regr’n

1234. 234.1 668 .12345 .m
234.1 34.12 615 .I2345 .I345 -
34.12 4.123 612 .I2345 .I245
4.123 .1234 592 .I 2345 .I235

4.12 .I24 615 .I245 ,125

34.1 4.13 641 .I345 ,145
4.13 ,134 612 .I345 .I35

4.1 .I4 648 .I45 .I5

234. 34.2 702 .2345 ,345
34.2 4.23 673 ,235 .225
4.23 .234 664 .2345 .235

4.2 .24 685 ,245 .25

34. 4.3 746 ,345 .45
4.3 .34 727 ,345 .35

4. .4 792 .45 .5

RSS

660
605
596
596

597

618
618

618

720
667
666

675

736
732

799

77

Stage bound

596

605

618

660

667

720

736

performed. At stage 1, the inverse source is .1245 and the
product source is 4.12. The inverse source always bounds
the regressions that can be produced from it and it also
bounds the only regression, .124, that can be produced
from the product source. It is clear, therefore, that our best
three-variable regression should be tested against the RSS
for .1245. The asterisk indicates failure; the 612 of .123 is
larger than the 596 of 1235. At stage two, the inverse source
.1345 again clearly bounds the regressions that can be pro-
duced from the product source 34.1, and we test against
our current best two-variable regression. We use the two-
variable regression because further pivots on 34.1 will pro-
duce at least a two-variable regression and pivoting out one
or more of the underlined variables from ,135 will leave
at least a two-variable regression. Again the asterisk indi-
cates that our test fails; the 615 of .12 is larger than the 605
of ,135.

Our first success occurs on the next pivot of stage 2.
Reasoning similar to that described for the earlier pivots
leads to a test of the best three-variable regression against
the bound .1345 and the test is passed. The 597 of .125 is
smaller than 605 and we can leap but not very far. Only one
regression will be produced from 4.13 and only one from
.1345 so we can skip only the last pivot of stage two. The
stage increment is 25-4-1 or 1 and moves us to stage 3.
A further successful test of a two-variable regression-the
615 of .12 versus the 618 of .145-moves us to stage 4 and
our last failure occurs here on the first pivot where the 668
of .l is larger than the 660 of .2345.

At the second pivot, however, we are again successful.
The 615 of .12 is smaller than the 660 of ,225 and the
regressions from ,235 and 34.2 need not be produced. Each
of the sources is effectively a two-variable matrix and each
will produce three regressions in two stages. Hence, we skip
to stage 6 where a successful test-the 668 of .l versus the
720 of .25-again permits a leap of two stages and our

search is completed after evaluating 6 of the 22 possible
subsets of stages l-7.

The source submatrices utilized at each pivot in our pro-
cedure include only the rows and columns associated with
the dependent variable and those independent variables hav-
ing subscripts equal to or larger than the pivot index. Each
source is, therefore, effectively a matrix with k-p indepen-
dent variables from which 2”-P - 1 subset regressions can
be formed and these regressions are produced in 2k-p-1
stages.

For the lexicographic traverse, a stage is equivalent to a
branch of a tree and, for the familial traverse, a stage is all
the sons of a father. In either case, it is easily shown that
the traverse of an r-variable tree (or sub-tree) requires 2T-1
stages. There are 2’ nodes in a condensed tree of which half,
2T-1, are interior nodes and half are exterior. We simply
note that each interior node is the father of a family of
sons and each exterior node is the tip of a branch.

Just prior to each pivot in our procedure we are effec-
tively at a node of Figure 5 preparing to develop the re-
gressions in the sub-family defined by the node. We have,
however, already in hand, in the source submatrix on the
product side, the regression at the terminal node of the
longest branch. Our stage increment of 2k-P-1 simply skips
the remaining regressions which could be derived from and
are therefore bounded by our node of Figure 5.

3.3 Programming
The initial step in our program is the inversion of the

product matrix using a forward step-wise procedure with a
tolerance check on the pivot elements. Next we re-order the
variables by calculating the reduction in the regression sum
of squares that would occur with the removal of each vari-
able from the regression equation; the variable associated
with the largest removal sum of squares becomes the new
X(1) and so on. The reordered product and inverse matrices,
with the new X(K) deleted, are loaded into two-dimensional
working arrays labeled AA and BB-the product in AA, the

TECHNOMETRICS, FEBRUARY 2000, VOL. 42, NO. 1

78 GEORGE M. FURNIVAL AND ROBERT W. WILSON, JR

inverse in BB. We complete the initialization phase by set- tive but the elements of the inverse in rows and columns IP
ting IP = 1, KM = K - 1, KMM = K - 2, NXS(1) = 0, through K - 1 and the regression coefficients in column K
LS = 0 and the array NK (I) to zero for I = 1, 2 . KMM. have their signs reversed.

1 DO3L==IP,KM
IS =L+1
NXS(IS) = NXS(IP) + L - IP
IF(RM(NXS(IS) + l).LE.BB(K, K))

GOT04
IADD = LS
DO2I=IS,K
D02J=I,K
LS = LS + 1
AN(LS) = AA(1, J)
AA(1, J) = AN(LS)

1
2
3

- AA(L, I)*AA(L, J).AA(L, L)
2 AI = BB(1, J)

10

- BB(L, l)*BB(L, J)/BB(L, L) 11
3 CALL STORE 12

L=KM 13
4 LEAP=K-L 14

DO 5 M = LEAP, KMM 15
IF(NK(M).EQ.O) GO TO 6 16

5 NK(M) = 0 17
CALL WRITE 18
STOP 19

6 NK(M) = 1 20
IP=K-M 21
LS = IADD 22
CALL COPY 23
GOT01 24

In order to save space without unduly complicating the in-
dexing, we work out of the two-dimensional arrays AA and
BB but store in the linear arrays AN and AI. This practice
also permits us to lag the storage of the product submatri-
ces (statement 9) so that the index of the source block for
a stage is the same for both the product and the inverse
side of the computations. We begin stage zero with AA and
BB already loaded and subroutine COPY has the task of
retrieving the source submatrices before the first pivot of
each succeeding stage. Statements 13-17 and 20-21 incre-
ment the stage counter by the amount 2**(LEAP - 1) and
compute a value for IP which is the index of the source
blocks and also the index the first pivot of a stage. State-
ment 3 finds the number of variables in the regressions pro-
duced by the pivots on the product submatrix and statement
4 tests the best regression with this number of variables
against the RSS from the source submatrix of the inverse.
At stage zero, the array, RM, of best regressions contains
the best subset regressions found in the initial step-wise
inversion.

The pivots are simply Gaussian eliminations and are per-
formed by statements 6-12. The computations, except for
the storage lag just described, are identical for the product
and inverse submatrices. This simplification is possible be-
cause the original inversion utilizes a sweep operator which
returns a negative inverse and regression coefficients. Thus,
at stage zero and thereafter, the RSS in BB(K, K) is posi-

TECHNOMETRICS, FEBRUARY 2000, VOL. 42, NO. 1

Subroutine STORE is assigned the housekeeping chores
of labeling and saving the RSS for the best regressions;
subroutine WRITE prints the final output.

Our operating program reorders the variables just prior to
the first pivot of each stage using a procedure very similar
to that described for the initial ordering. We ‘look ahead’
and calculate, for each underlined variable in the inverse
source submatrix, the removal sum of squares

RIN(L) = -BB(L, K)*BB(L, K)/BB(L, L)

for L = IP, IP + 1 K - 1. The new X(IP) is the variable
with the largest removal sum of squares.

As a by-product of the reordering, we also obtain sharper
bounds. Referring again to the node .a of Figure 5, we
see that all one-variable regressions from this source come
from the sub-sources ,245 and ,345. Hence, the smaller RSS,
the 667 from .245, bounds the one-variable regressions. A
similar argument shows that the 666 of .235 bounds the
two-variable regressions. For the three-variable bound and
in general for the last bound of a stage, we use the usual
bound BB(K, K). The RSS needed for the sharper bounds
can be obtained, without performing the pivots that would
normally produce them, by simply adding the appropriate
RIN(L) to BB(K, K). Thus, with the RIN(L) ordered by size
from largest to smallest and with RIN(K) = 0, the bound
for the L-th pivot of a stage is BB(K, K) + RIN(L + 1).

The program also offers the option of finding the best m
regressions, rather than a single best regression, for each
size of subset. The changes in the algorithm are minor. The
tests preceding the pivots of a stage are made on the current
rn-th best, rather than the best, regression with the appropri-
ate number of independent variables; and the test procedure
is modified to ensure that no leap occurs if the test associ-
ated with any remaining pivot of the stage is not satisfied.
This situation can never arise in the simpler version of the
program because there the bounds remain constant within
a stage and the current best r-variable regression always
has a[n] RSS at least as small as the current best regression
with a smaller number of variables.

In the search for the rn best regressions for each size sub-
set, the program evaluates a number of additional regres-
sions and the best of these are saved for each size subset.
The program also saves for each size subset the smallest
bound invoking a leap or skip and these bounds are, of
course, lower bounds for the RSS of the subsets that have
not been evaluated.

3.4 Discussion
Our branch and bound algorithm appears to have some

desirable features which are not present in others that have
been proposed. First, we make no real distinction between
an RSS computed as a bound and an RSS computed for a
regression; we use both in working out the branches of the
regression tree. Other algorithms treat their bounds and re-
gressions separately and may compute the same RSS twice,
once as a bound and again for a regression, In addition, we

REGRESSIONS BY LEAPS AND BOUNDS 79

compute each RSS with a single pivot and never pivot more
than twice (only once in product submatrices) on the same
row and column of any submatrix. Other algorithms employ
a horizontal traverse and form new regressions by pivoting
an ‘old’ variable out and then a ‘new’ variable into the re-
gression. Thus, the subsets are strung along a lengthy chain
of pivots and two pivots are required to move from one
subset to another. The results are an increase in computing
time and perhaps an accumulation of rounding errors. Fur-
thermore, except for the reordering within stages, we do
very little housekeeping beyond that required to do all pos-
sible regressions. In fact, our leaps and bounds procedure
with testing ‘turned off’ is a very efficient algorithm for
computing all possible regressions. Finally, we can obtain
the rn-best regressions, rather than a single best regression,
for each size of subset and, so far as we know, no other
program offers this option.

Some idea of the number of operations required to find
the best subsets with our program can be obtained from the
following series of trials:

k 111 = 1 rn = 10

10 2,192 3,764
15 11,050 23,118
20 66.766 123,412
25 336,575 639,945
30 2,169,708 3,934,714
35 6,301,708 11,614,024

Again, the number of operations can be converted to ap-
proximate time in minutes on an IBM 370/l% by dividing
by 2,000,OOO. However, timing and number of operations
are strongly data dependent and may vary from that given
above by as much as a factor of two in either direction.

We have not had an opportunity to test our program
against the Beale, Kendall and Mann algorithm. However, in
a series of trials with k varying from 15 to 27, our program
was 15-50 times as fast as the LaMotte-Hocking program,
and the difference in speed increased with Ic.

Program decks (300 cards), instructions for use, and a
sample problem are available from the authors. The pro-

gram is designed for use with an existing regression pack-
age and is in the form of a sub-routine utilizing a correlation
or product matrix as input.

/Received June 1972. Revised March 1974.1

REFERENCES

Allen, D. M. (1971), “Mean Square Error of Prediction as a Criterion for
Selecting Variables,” Technometrics, 13, 469475.

Beale, E. M. L., Kendall, M. G., and Mann, D. W. (1967), “The Discarding
of Variables in Multivariate Analysis,” Biometrika, 54, 3.57-365.

Beaton, A. E. (1964) The Use of Special Matrix Operators in Stutisti-
curl Culculus, Research Bulletin RB-64-51, Educational Testing Service,
Princeton, NJ.

Draper, N. R., and Smith, H. (1966), Applied Regression Anulysis, New
York: Wiley.

Frayer, W. E., Wilson, R. W., and Furnival, G. M. (1971), A Computer Pro-
gram for Screening All Combinations of Independent Variables in Uni-
variate Multiple Linear Regressions, Dept. of Forest and Wood Sciences,
Coll. Of Forestry and Natural Resources, Colorado State University.

Furnival, G. M. (1958) “Regression Routines,” mimeo, Yale University,
School of Forestry.

~ (1964), “More on the Elusive Formula of Best Fit,” in Proceedings,
Society of Americun Foresters, Washington, DC.

__ (1971), “All Possible Regressions With Less Computation,” Tech-
nometrics, 13, 403408.

Garside, M. J. (196.5) “The Best Subset in Multiple Regression Analysis.”
Journal of the Royal Statistical Society, Ser. B, 14, 19&200.

Grosenbaugh, L. R. (1967), “REX-Fortran- System for Combinational
Analysis of Multivariate Regression,” Research Paper PSW-44, U.S.
Forest Service, Pacific S.W. Forrest Experiment Station, Berkeley, CA.

Hocking, R. R. (1972), “Criteria for Selection of a Subset Regression:
Which One Should Be Used?’ Technometrics, 14, 967-970.

Hocking, R. R., and Leslie, R. N. (1967) “Selection of the Best Subset in
Regression Analysis,” Technometrics, 9, 53 I-540.

Hoer], A. E., and Kennard, R. W. (1970) “Computational Efficiency in the
Selection of Regression Variables,” 12, 5548.

LaMotte, L. R., and Hocking, R. R. (1970), “Computational Efficiency in
the Selection of Regression Variables,” Technometrics, 12, 83-93.

Mallows, C. L. (1966), “Choosing a Subset Regression,” unpublished paper
presented at the Joint Statistical Meetings, Los Angeles, CA.

Schatzloff, M., Fienberg, S., and Tsao, R. (1968), “Efficient Calculations
of all Possible Regressions,” Technometrics, 10, 7688779.

Ware, K. D., Bickford, C. A., Wilson, R. W., and Mayer, C. E. (1962), ‘A
Program for Regression Analysis With the IBM 650 Electronic Com-
puter,” Journal of Forestry, 60, 645-646.

TECHNOMETRICS, FEBRUARY 2000, VOL. 42, NO. 1

