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This paper describes several algorithms for computing the residual sums of squares for all possible 
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1. INTRODUCTION 
An investigator involved in a multiple regression analy- 

sis with k independent variables often suspects, and even 
hopes, that a subset of these variables may adequately ex- 
plain his data. It may well be that the main purpose of the 
investigation is simply to identify the factors of importance 
in some process or phenomenon. Subset selection is also 
employed when the goal of the analysis is prediction be- 
cause the full equation on all k variables is often unstable. 
The ridge regression approach of Hoer1 and Kennard (1970) 
may be preferable here but the elimination of variables is 
an attractive strategy when costs of measurement are large. 

Many of the criteria which have been suggested for use 
in identifying the ‘best’ subset are monotone functions of 
the residual sum of squares (RSS) for subsets with the 
same number of independent variables (Hocking, 1972). 
Hence, the problem of finding the ‘best’ subset can often 
be reduced to the problem of finding those subsets of size 
p, p = 1,2. . . k - 1, with minimum RSS. The PRESS statis- 
tic described by Allen (197 1) is an exception, but the ad- 
justed R-square, the minimum mean square residual, and 
the Cp statistic of Mallows (1966; also described in Draper 
and Smith, 1966) are all monotone functions of the RSS. 

The search for the subsets with minimum RSS can be 
approached in a straight forward manner by computing 
all possible regressions but the amount of computation re- 
quired can be formidable. The number of possible subsets 
increases exponentially with k and the number of opera- 
tions (multiplications and divisions) required to invert the 
moments matrix associated with each subset is of order k3. 
The cost in computer time is large enough to make the pro- 
cedure impractical for even moderate values of k; hence 
it is not surprising to find a number of investigators en- 
gaged in (1) attempts to reduce the amount of computation 
involved in examining a subset and in (2) developing pro- 
cedures for finding the best subsets without examining all 
possible subsets. 

The present paper is concerned with both approaches 
to computational efficiency. We will describe several algo- 
rithms for computing the residual sums of squares for all 
possible regressions with what we believe to be a minimum 
of arithmetic, and we will show how two of these algo- 

rithms can be combined to form a leap and bound technique 
for finding the best subsets without examining all possible 
subsets. 

2. ALL POSSIBLE REGRESSIONS 
Garside (1965) and Schatzoff, Fienberg and Tsao (1968) 

have described algorithms for computing all possible re- 
gressions which are much superior to the naive approach 
involving the direct inversion of the moments matrix asso- 
ciated with each subset of independent variables. The av- 
erage number of operations per regression for the direct 
approach is of order k” whereas both Garside and Schatz- 
off achieve an order of k2 by repeated application of an 
ingenious technique for modifying one inverse to produce 
another. 

Although the two algorithms are quite similar, the one de- 
veloped by Schatzoff et al. requires less than half as much 
computation as that described by Garside. The reduction is 
achieved by taking advantage of the symmetry of the mo- 
ments matrices and by the deletion of unneeded rows and 
columns as the successive inverses are computed. A further 
reduction of $ or more, depending on the size of k, can be 
obtained (Furnival, 1971) by abandoning the idea of com- 
puting each new inverse from its immediate predecessor. 
More rows and columns can be deleted and a correspond- 
ing gain in efficiency achieved by returning to inverses pro- 
duced in earlier stages of the computations. 

Unfortunately, we have now arrived at what appears to 
be a dead end. The number of operations per regression is 
still of order k2 and it does not seem possible to generate 
the 2” - 1 inverses with less computation. However, the 
limiting word here is inverses. If we are satisfied with less 
output for each regression, further savings are possible. We 
can, for example, compute the regression coefficients, their 
variances and the residual sum of squares with a number of 
operations per regression which is of order k and, if we are 
satisfied with only the residual sum of squares, the number 
of operations per regression can be reduced to slightly less 
than six (Furnival, 1971). 
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2.1 The Matrix Operators 
Several authors (Beaton, 1964; also quoted in Schatzoff 

et al. 1968) have described matrix operators which can be 
conveniently used in computing full inverses for all possible 
regressions. We will describe two additional operators. The 
first, which is often called Gaussian elimination, produces 
only residual sums of squares. The second, which we will 
call a semi-sweep, produces regression coefficients and the 
diagonal elements of the inverses as well as the RSS. 

Both of our operators assume a (k + 1) x (X: + 1) product 
(or correlation) matrix with row and column I; + 1 contain- 
ing the products associated with the dependent variable. We 
begin with the matrix stored in the first block of a three- 
dimensional array A(L, I, J) where L, I, and J are the block, 
row and column indices. Then at each step of our proce- 
dure we produce a submatrix containing the statistics for 
a subset regression by pivoting with one of our matrix op- 
erators on either the original matrix in block one or some 
submatrix stored in another block as the result of a previous 
pivot. 

An explicit definition of our version of Gaussian elimi- 
nation is given in the following Fortran subroutine: 

SUBROUTINE GAUSS (IB, IS, IP, A, KP) 1 
LB=IP+l 2 
DO 1 L = LB, KP 3 
A(IS, IP, L) = A(IB, IP, L)/A(IB, IP, IP) 4 
DOlM=L,KP 5 

1 A(IS, L, M) = A(IB, L, M) 
~ A(IB, IP, M)*A(IS, IP, L) 6 

RETURN 7 

The variable arguments are IB, the index of the source 
block, IS, the index of the storage block and IP, the index 
of the pivot row and column. A is the three dimensional 
storage array and the value of KP is k + 1. The subroutine 
operates only on the upper half of the symmetric matrix and 
only on those rows and columns with indices greater than 
or equal to IP. At the conclusion of a pivot or elimination, 
the element A(IS, KP, KP) contains the sum of squares of 
residuals (RSS) for one of the subset regressions. 

The semi-sweep operator requires ‘a list, IND, of the pre- 
vious pivots on a submatrix and, since it will not always be 
convenient for us to begin with the first element of IND in 
storing these pivot indices, we also include in the calling 
sequence IA, the location in IND of the first pivot index 
and IZ, the location of the last pivot index. 

SUBROUTINE 
SEMI (IB, IS, IP, A, KP, IND, IA, IZ) 1 

A(IS, IP, IP) = l.O/A(IB, IP, IP) 2 
CALL GAUSS (IB, IS, IP, A, KP) 3 
IF (IA.GT.IZ) TO TO 2 4 
LB=IP+l 5 
DO 1 L = IA, IZ 6 
B = A(IB, IND(L), IP)/A(IB, IP, IP) 7 
A(IS, IND(L), IND(L)) = A(IB, IND(L), 

IND(L)) + B*A(IB, IND(L), IP) 8 
DO 1 M = LB, KP 9 
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1 A(IS, IND(L), M) = A(IB, IND(L), M) 
~ B*A(IB, IP, M) 10 

2 RETURN 11 

The arguments IB, IS, IP, A and KP are as defined for 
GAUSS. Statements 5-10 operate above the pivot row; the 
diagonal elements are processed by statement 8 and the el- 
ements to the right of the pivot column by statements 9 and 
10. The major difference between our semi-sweep and a full 
sweep is that we do not operate on off-diagonal elements 
to the left of the pivot column. 

At the conclusion of a pivot, the element A(IS, KP, KP) 
again contains the sum of squares of residuals for a subset 
regression. In addition, the elements A(IS, I, I) and A(IS, 
I, KP) contain, respectively, the diagonal element of the 
inverse and the regression coefficient associated with the 
I-th independent variable. The off-diagonal elements of the 
inverse are not computed. 

2.2 The Regression Tree 
The sequences of pivots utilized in our approach to the 

computation of all possible regressions are derived from the 
binary tree of Figure 1. At the root of the tree is the orig- 
inal matrix and at each interior node a submatrix derived 
from the original matrix by a series of pivots (solid lines) 
and deletions (dotted lines). Finally, each terminal node or 
leaf represents one of the 2” possible subset regressions 
including the null regression. 

The labeling of the nodes utilizes a dot notation simi- 
lar to that employed for partial correlation coefficients. The 
integers listed before the dot are the subscripts of inde- 
pendent variables present in the submatrix on which piv- 
ots have not yet been performed; the subscripts following 
the dot correspond to variables on which pivots have been 
performed. Missing subscripts indicate that the rows and 
columns associated with those variables have been deleted 
in deriving the submatrix from the original matrix. Thus, the 
submatrix 3.1 has been obtained from the original matrix 
by pivoting on X(1) and deleting X(2). A row and column 
associated with the dependent variable is, of course, always 
present. 

The tree is constructed by beginning at the root and 
‘splitting’ the matrix into two new submatrices-one ob- 
tained by pivoting on the first variable of the matrix, the 
other by deleting the row and column associated with that 
variable. The process is repeated for the submatrices un- 
til all variables have been treated either by pivoting or by 
deletion. 

The binary nature of the tree can be used as the basis 
for an argument that our approach to all possible regres- 
sions is at least as efficient as any other procedure utilizing 
a sequence of Gaussian eliminations. We argue that there 
must be at least one pivot on the full matrix and, without 
loss of generality, assume that this pivot is performed on 
variable one. The result is a k - 1 variable submatrix con- 
ditioned on X(1) and it is obvious that all regressions con- 
taining X(1) can be derived more easily from this submatrix 
than from the original matrix. The remaining regressions, 
those without X(l), can clearly be obtained from the other 
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123 

23.1 

3.2 

.123 .12 .13 .l .23 .2 .3 Null 

Figure 1. The Regression Tree 

half of the split-that is, from the Ic - 1 variable subma- 
trix formed by deleting X(1) from the full matrix-just as 
easily as from the full matrix. We can, therefore, proceed 
recursively by applying our argument calling for at least 
one pivot on the full matrix to the submatrices and, finally, 
after the k-th round of splits, we arrive at the residual sums 
of squares for the 2” - 1 regressions of the problem with the 
knowledge that the amount of computation involved could 
not be reduced by using some other pattern of pivots and 
deletions. 

Pivots will have been performed on one k-variable ma- 
trix, two (,4 - l)-variable matrices and so on down to 2”-’ 
one-variable matrices. Thus, one-half of the 2” - 1 regres- 
sions will have been computed by pivoting on submatrices 
containing only one independent variable. 

It might appear that the tree specifies a rigid order of 
computation but, in fact, quite a bit of flexibility is permit- 
ted. Figure 3 gives a condensed version of a four-variable 
tree with the dotted lines omitted. Deletions are now im- 
plied and interior nodes as well as terminal nodes represent 

regressions. The tree can be traversed in any ‘biologically 
feasible’ order-the only restraint is that a father be ‘born’ 
before his son. 

The most obvious approach is to search the tree hori- 
zontally, level by level, from top to bottom. This proce- 
dure produces the regressions in a convenient and natu- 
ral order-all one-variable regressions followed by all two- 
variable regressions and so forth as shown in Table 1. The 
drawback is that all of the submatrices produced in the tra- 
verse of a level must be stored until they in turn have been 
utilized in the pivots required for the traverse of the next 
level. 

Much less storage (no more than k + 1 storage blocks) is 
required if the tree is searched vertically branch by branch 
and there are at least three useful variations here. The first 
is obtained by beginning at the root and moving from fa- 
ther to older son at an interior node. At a terminal node, 
the move is to the next younger brother, or if there is no 
brother, to the father’s next younger brother or, if there is no 
remaining uncle, to the grandfather’s next younger brother 

/ 
/ 

/ 
.1234 

.23u - 

.1234 .124 .134 .14 ,234 .24 .34 .4 

Figure 2. The Bound Tree. 
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1234 

234.1 

34.12 4.13 .14 4.23 .24 .34 

4.123 .124 .134 .234 

.1234 
Figure 3. The Natural and Lexicographic Tree. 

and so on as necessary. The process ends with a return to the 
root and the regressions are produced in a dictionary-like 
or lexicographic order (Table 1). 

The second variation is obtained by applying the vertical 
search procedure just described to the tree in Figure 4 which 
is nothing more than the mirror image of Figure 3 with 
the indexing of the variables reversed. The regressions are 
produced in what we refer to as ‘binary’ order (Table 1). 
That is, if the regressions are numbered with k-digit binary 
integers in the order in which they are calculated, then the 
variables present in a regression can be determined from 
the bit pattern of the integer as illustrated by the following 
series: 

Binary Regression 
Integer Variables 
0001 1 
0010 2 
0011 12 
0100 3 
. . . . 

Our final method of traversing the regression tree is again 
applied to Figure 4 and is something of a hybrid with both 
horizontal and vertical elements. We again move from fa- 
ther to older son as previously described but, when a node is 
visited, the sons of that node, not the node itself, are listed 
in order of age from oldest to youngest. The result is some- 
times described as familial order since all the siblings of a 
family are listed together. Again k + 1 storage blocks are 
required; the storage can be this small only because there 
are never more than Ic - T + 1 sons in a family in the r-th 
generation. 

2.3 Programming 
Algorithms for traversing the regression tree in natural, 

lexicographic, binary and familial order will be given in the 
form of short Fortran programs. In principle, we could em- 
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ploy either our semi-sweep or Gaussian elimination or, for 
that matter, the Beaton sweep, in any of the four algorithms. 
However, in our Fortran implementations of the binary and 
familial traverses, the list of previous pivots required for 
the sweep operators is not produced as an integral part of 
the programs. 

It is not necessary in the programming of the traverses 
to make explicit provision for the deletions of Figure 1. 
The rows and columns to be deleted before a pivot are al- 
ways those with subscripts greater than the index of the 
last previous pivot and less than the index of the up-coming 
pivot. Hence, these deletions are performed automatically 
by GAUSS which operates only on those rows and columns 
with subscripts greater than or equal to the pivot index. 
SEMI accomplishes the same purpose by utilizing a list of 
previous pivots to limit its operations. 

The sequence of pivots employed in the natural traverse 
is conceptually quite simple. We begin with the original 
matrix and pivot on each row in turn beginning with the 

Table 1. Sequences of Regressions 

Natural Lexicographic Binary Familial 

1 1 1 1 
2 12 2 2 
3 123 12 3 
4 1234 3 4 

12 124 13 12 
13 13 23 13 
14 134 123 23 
23 14 4 123 
24 2 14 14 
34 23 24 24 

123 234 124 34 
124 24 34 124 
134 3 134 134 
234 34 234 234 

1234 4 1234 1234 
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1234 

.l 1.2 12.3 123.4 

A A 
.12 .13 1.23 .I4 1.24 12.34 

I I A 
.123 ,124 .134 1.234 

I 
.1234 

Figure 4. The Binary and Familial Tree. 

first. Each pivot produces a submatrix and we pivot in turn 
on the remaining rows of these submatrices and so on until 
the submatrices have been exhausted. 

DO 1 L = l,K 1 
1 IND(L) = 0 2 

M=K 3 
IB = 0 4 
IS = 1 5 

2 IB = MOD(IB, MAX) + 1 6 
DO3L=M,K 7 
IF(IND(L).LT.L) GO TO 3 8 
IND(L) = IND(L - 1) + 1 9 
IND(L) = IND(L - 1) 10 

3 CONTINUE 11 
4 IND(K) = IND(K) + 1 12 

IS = MOD(IS, MAX) + 1 13 
CALL SEMI(IB, IS, IND(K), A, K + 1, 

IND, M, K - 1) 14 
WRITE(6, )(IND(L), A(IS, IND(L), 

K + l), L = M, K) 15 
IF(IND(K).LT.K) GO TO 4 16 
IS = IS - 1 17 
IF(IND(M).EQ.M)M = M - 1 18 
IF(M.GT.0) GO TO 2 19 
STOP 

Statement 15 in the program writes the index and the coeffi- 
cient associated with each independent variable in a subset 
regression and statements 7-12 and 16-19 identify the re- 
gressions. MAX is the dimension corresponding to the first 
subscript of A; a value of 150 is large enough for a prob- 
lem with ten independent variables. The diagonal element 
of the inverse needed for computing the variance of a re- 
gression coefficient is available in A(IS, L, L) but we omit 
this calculation in the interest of brevity. 

Our lexicographic algorithm is little more than a method 
of labeling the subset regressions. We pivot on the last vari- 
able in the regression; the index of the storage block is the 
index of the pivot plus one; and, because of this storage 
convention, the index of the source block is the index of 
the previous pivot plus one. Thus, if we are computing the 
subset regression on variables 1, 2 and 4; then IP is four, 
IS is five (4 + 1) and IB is three (2 + 1). 

IND(1) = 0 1 
M=l 2 

1 M=M+l 3 
IND(M) = IND(M - 1) + 1 4 

2 CALL SEMI(IND(M - 1) + 1, IND(M) + 1, 
IND(M), A, K + 1, IND, 2, M - 1) 5 

WRITE(6, )(IND(L), A(IND, (M) + 1, 
IND(L), K + l), L = 2: M) 6 

IF(IND(M).LT.K) GO TO 1 7 
M=M-1 8 
IND(M) = IND(M) + 1 9 
IF(M.GT.1) GO TO 2 10 
STOP 11 

We recommend the use of this algorithm when coeffi- 
cients and other statistics such as variances and F-ratios 
are to be computed and printed for each subset regression. 
The space requirements are much less than for the previ- 
ous algorithm and the order in which the regressions are 
produced is reasonably intelligible. 

The binary algorithm also operates from the subscripts of 
the independent variables in the subset regressions. How- 
ever, the identification array, NK, is a binary counter with 
a list of ones and zeros which indicate the presence or ab- 
sence of the independent variables and the indexing of the 
independent variables is reversed-that is, the first row (and 
column) of the matrix contains the products with X(K), the 
next with X(K - 1) and so forth to X(l)-but the depen- 
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dent variable is still X(K + 1). The use of the binary array 
requires that the array be scanned to obtain the indices of 
the present and immediately preceeding pivot; the reverse 
indexing requires that IB, IP and IS be complemented. 

DOlL=l,K 1 
NK(L) = 0 2 
NK(K+l)=l 3 
L=l 4 
NK(L) = 1 5 
DO3M=L,K 6 
IF(NK(M + l).EQ.l) GO TO 4 7 
CONTINUE 8 
CALL GAUSS(K - M + 1, K - L + 2, 

K-L+l,A,K+l) 9 
WRITE(6, ) A(K-L+2,K+l,K+l), 

(NK(N), N = 1, K) 10 
DO5L=l,K 11 
IF(NK(L).EQ.O) GO TO 2 12 
NK(L) = 0 13 
STOP 14 

Statements 5 and 11-13 increment the binary step 
counter, NK. The incrementation locates the position of the 
lowest order 1 in NK and this position determines the index 
of the pivot. Statements 6-8 locate the next lowest order 1; 
this second position determines the index of the previous 
pivot and the index of the source block. A variant of this 
algorithm as described in Frayer et al. (1971) is recom- 
mended when residual sums of squares or R-squares only 
are desired for all possible regressions with Ic greater than 
12. The output is a very compact table with 16 regressions 
to a line and 912 to the page. 

Our familial algorithm also assumes that the independent 
variables are in reverse order and it also employs a binary 
counter. However, the block index is now obtained from 
the position of the first rather than the second 1 and it is 
convenient to refer to a stage rather than a step counter. At 
each stage, we pivot on all of the remaining rows of the 
submatrix before returning to the counter. 

DO 1L = 1,K 1 
1 NK(L) = 0 2 

M=K+l 3 
2 NK(M) = 1 4 

DO3L=2,M 5 
CALL GAUSS(K - M + 2, K - L + 3, 

K-L+2,A, Kfl) 6 
NK(L - 1) = 1 7 
WRITE(6, )A(K - L + 3, K + 1, K + l), 

(NK(N), N = 1, K) 8 
3 NK(L - 1) = 0 9 

DO 4 M = 2MK 10 
IF(NK(M).EQ.O) GO TO 2 11 

4 NK(M) = 0 12 
STOP 13 

The positions of the l’s in the binary counter at any 
stage correspond to the indices of the previous pivots on 
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the source submatrix. Statement 7 adds a 1 for the current 
pivot so that NK can be used for labeling the regression 
and statement 9 sets the bit back to zero. 

This algorithm was first programmed in 1958 for the IBM 
650 (Furnival, 1958; also described in Ware et al. 1962) 
and later for the 709 and 7094 (Furnival, 1964). It has also 
been utilized as a screening option in a complete regression 
package by Grosenbaugh (1967). 

2.4 Discussion 
The total number of operations (floating point multipli- 

cations and divisions) required to compute all possible re- 
gressions is the same for the four algorithms but varies with 
the matrix operator. 

Full sweep 2”-3(k2 + lllc + 24) - (iF2 + 5k)/2 - 3 
Semi-sweep 2”-l(3k + 6) - 3(k + 1) 
Gaussian 6(2”) - k(k + 7)/2 - 6 

An IBM 370/158 with fast multiply under the H compiler, 
optimizing level two, performs these operations at a rate of 
approximately 2,000,OOO per minute. 

The maximum number of independent variables which 
can be processed by our algorithms is limited both by the 
amount of output produced and by the number of arithmetic 
operations which must be performed. If we adopt an arbi- 
trary output limit of 50,000 individual regression statistics 
(about 100 compact pages), then the upper limit of k is ap- 
proximately 11 for a full sweep, 12 for our semi-sweep and 
15 for Gaussian elimination. 

However, we believe that our algorithms will be most 
useful in empirical studies of the distribution of regression 
statistics. In such cases, the output can be limited to sum- 
mary statistics and the time required to process the subset 
regressions is the limiting factor. If we adopt an upper limit 
of five minutes for a medium size computer such as the IBM 
370/158 then the maximum value of k is approximately 17 
for the full sweep, 18 for our semi-sweep and 20 for Gauss- 
ian elimination. 

We have been unable to reduce the amount of floating 
point arithmetic required by our algorithms. However, it is 
possible to reduce the indexing and fixed point housekeep- 
ing by performing several (r) preliminary splits and obtain- 
ing a number (aT) of submatrices which are then processed 
in ‘parallel’ by one of the algorithms. Each step of the com- 
putations then produces 2’ regressions and the amount of 
housekeeping is greatly reduced. Storage requirements are, 
of course, increased but can be reduced somewhat by the 
use of linear arrays. It is probable that algorithms which 
permit parallel computation will become more useful as ar- 
ray processors such as Illiac IV come into general use. 

3. ABRANCHANDBOUNDPROCEDURE 
A number of authors have described procedures for find- 

ing the best subset regressions without computing all possi- 
ble regressions (Hocking and Leslie, 1967; Beale, Kendall 
and Mann, 1967; LaMotte and Hocking, 1970). All of these 
methods are based on the fundamental inequality 

RSS(A) I RSS(B) 
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where A is any set of independent variables and B is a 
subset of A. In other words, it is impossible to reduce the 
residual sum of squares for a regression by deleting vari- 
ables from that regression. 

3.1 Inverse Trees 
The use of the inequality to restrict the number of sub- 

sets evaluated in a search for the ‘best’ subset regressions 
is illustrated by the tree diagram in Figure 5. At the root is 
a five-variable inverse and the subset regressions are com- 
puted by pivoting variables &-of the regression. The RSS 
for a node is obviously a lower bound for the RSS of its 
offspring. Hence, if we arrive at the node .2345, say, and 
had already computed one, two, and three-variable regres- 

sions with RSS smaller than that for .2345 then we could -7 
ignore the 14 descendents of .2345. 

The values in parentheses are the RSS for the subset re- 
gressions and the underlining in the labels at the nodes of 
Figure 5 indicates what variables will be removed by future 
pivots on the submatrix. Thus, from the node .1245 will be 
formed those regressions which can be obtained by deleting 
all possible combinations of X(4) and X(5). 

Simple branch and bound algorithms for subset selection 
can be developed by applying our all-possible traverses to 
inverse trees, but the results are not fully satisfactory. The 
difficulty is best shown by an example. Suppose we are at 
.lm with two and three-variable regressions which have 
R-squares smaller than that for .lB but our current best 

.12345 

.123 .124 .125 .134 .135 .145 
(612) (615) (5971 (612) 

I 

(610 (6re) 

I A 
.12 .13 .I4 .15 

(615) (641) (646) (613 

I 
.2345 
(660) 

s 
.234 .235 .245 
(664) (66Q (6m 

.345 
(720) 

I A A 
.23 .24 .25 .34 .35 

(673) (665) (675) 
.45 

(727) t73a (736) 

I A 

&S, 

Null 

Figure 5. The Inverse Tree. 
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one-variable equation fails this test. A reasonable procedure 
would be to evaluate .l and ignore the other descendents of 
.1x. Unfortunately, the evaluation of .l requires the prior 
evaluation of .14J and .15 and these regressions are of little 
or no value to us. 

The problem becomes more serious with larger trees. The 
likely candidates for the best regressions, like good fruit, 
occur at the tips of the branches and can be reached only 
by pivoting through a lot of dead wood. It is possible to 
move these good regressions to interior nodes by reversing 
the order of the variables, but another difficulty emerges 
immediately. The RSS for the interior nodes are now, of 
course, small and therefore practically useless as bounds. 
We assume here that the variables have been ordered by 
some measure of importance such as the magnitude of the 
t-ratios in the full k-variable equation. 

It seems that we require an impossibility-two arrange- 
ments of the same tree. Our solution is two trees-one for 
bounds and one for regressions. The bound tree is obtained 
by eliminating all pivots on variable five from the original 
inverse tree. All the remaining regressions must then in- 
clude variable five since this variable is never pivoted out 
of the regressions. The effect is simply to prune off the 
terminal nodes of the tree of Figure 5. 

The other half of the regressions-those without variable 
five-are included in the regression tree and this need not 
be an inverse tree. A step-down procedure here would, in 
fact, defeat our purpose which is to cluster regressions with 
a small number of independent variables near the root of 
the tree where they can be reached early in the traverse. 
Furthermore, the forward approach involves fewer pivots 
and possibly less rounding error. 

Our object is to work out the branches of the full inverse 
tree (Figure 5) by simultaneous traverses of the regression 
tree and the bound tree. We observe that each submatrix 
produced by the traverse of the bound tree will serve as 
the source for a sub-family or branch of regressions all 
of which contain X(K) and these regressions will make up 
half of the regressions in the corresponding branch of the 
full inverse tree. The other half of the regressions, those 
without X(K), must come from the regression tree and we 
must arrange our traverse so that a source subset will be 
available to produce them. 

A particular branch or sub-family of the full inverse 
tree can be characterized or described by the presence or 
absence of certain variables and the presence or absence 
of these variables also determines the composition of the 
source submatrices. Variables which do not occur in any of 
the regressions of the sub-family must have been pivoted 
out of the source subset of the bound tree and the rows and 
columns associated with these variables need not be present 
in the regression source. On the other hand, variables that 
appear in all the regressions of a sub-family must have been 
pivoted into the regression source and must not have been 
pivoted out of the bound source. Finally, variables which 
are present in some regressions of a sub-family but not in 
others must be included in the bound source and (except for 
X(K)) must be represented in the regression source by rows 
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and columns on which pivots have not been performed. The 
subscripts of this last class of variables are underlined in the 
nodes of the bound tree and appear to the left of the dot in 
the regression tree. 

We next observe that the rows and columns associated 
with non-underlined variables can be deleted-not piv- 
oted out but simply dropped-from the bound submatri- 
ces. These deletions are possible because we are interested 
only in residual sums of squares. We can, therefore, em- 
ploy a procedure very similar to Gaussian elimination and 
we need not operate on rows and columns associated with 
variables which will not be pivoted out of the regression 
represented by the submatrix. 

Symmetry now begins to emerge. Deletions on the bound 
side correspond to pivots on the regression side and vice- 
versa. Thus, for example, the bound source .245 is obtained 
from .12345 by deleting X(2) and pivoting out X(1) and 
X(3). The corresponding regression source 4.2 is developed 
from 1234, by deleting X(1) and X(3) and pivoting in X(2). 
We require, therefore, two traverses which are the comple- 
ments of each other-one deletes where the other pivots. 
The most satisfactory pairing that we have found applies a 
lexicographic traverse to the regression tree and a slightly 
modified (the sons are listed from youngest to oldest) fa- 
milial traverse to the bound tree. 

Figures 1 and 2 show, respectively, the regression tree 
and the bound tree for a four-variable problem. We return 
to the full binary representation for these trees in order 
to emphasize the symmetry and must reduce the number 
of variables from five to four in order to stay within the 
confines of a page. 

3.2 The Algorithm 
Our simultaneous traverses produce both a regression 

RSS and a bound at each step in the computations by par- 
allel pivots on submatrices from the product matrix and 
its inverse. With testing ‘turned off’, all possible regres- 
sions would be produced in the order shown in Table 2 for 
k = 5. However, with testing ‘turned on’ for the problem 
of Figure 5, only those pivots marked with asterisks are 
performed. 

There is no difficulty in combining our lexicographic and 
familial algorithms to produce the sequences of Table 2; 
the problem arises in implementing the testing and skip- 
ping which permit us to perform, for the problem of Fig- 
ure 5, only those pivots marked with asterisks. Before each 
pivot, we will test the RSS for some current best regres- 
sion against some bound and then leap ahead if the test is 
successful. The questions are, of course: which regression, 
which bound and how much? The answers are quite sim- 
ple. The appropriate best regression has the same number 
of variables as the regression which is about to be produced 
by the product traverse; the proper bound is the RSS from 
the source submatrix in the traverse of the inverse; and the 
increment for the stage counter is 2k--pP1 where p is the 
pivot index. 

We illustrate the procedure with a step-by-step descent 
through Table 2. The pivots of stage zero must always be 



Stage number 

0 

1 

2 

3 

4 

5 

6 

7 

Pivot index 

* 1 
*2 
‘3 
*4 

*4 

*3 
4 

4 

*2 
3 
4 

4 

3 
4 

4 
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Table 2. Order of Computations for Leap and Bound Algorithm 

Product traverse Inverse traverse 

Source: Regr’n RSS Source: Regr’n 

1234. 234.1 668 .12345 .m 
234.1 34.12 615 .I2345 .I345 - 
34.12 4.123 612 .I2345 .I245 
4.123 .1234 592 .I 2345 .I235 

4.12 .I24 615 .I245 ,125 

34.1 4.13 641 .I345 ,145 
4.13 ,134 612 .I345 .I35 

4.1 .I4 648 .I45 .I5 

234. 34.2 702 .2345 ,345 
34.2 4.23 673 ,235 .225 
4.23 .234 664 .2345 .235 

4.2 .24 685 ,245 .25 

34. 4.3 746 ,345 .45 
4.3 .34 727 ,345 .35 

4. .4 792 .45 .5 

RSS 

660 
605 
596 
596 

597 

618 
618 

618 

720 
667 
666 

675 

736 
732 

799 

77 

Stage bound 

596 

605 

618 

660 

667 

720 

736 

performed. At stage 1, the inverse source is .1245 and the 
product source is 4.12. The inverse source always bounds 
the regressions that can be produced from it and it also 
bounds the only regression, .124, that can be produced 
from the product source. It is clear, therefore, that our best 
three-variable regression should be tested against the RSS 
for .1245. The asterisk indicates failure; the 612 of .123 is 
larger than the 596 of 1235. At stage two, the inverse source 
.1345 again clearly bounds the regressions that can be pro- 
duced from the product source 34.1, and we test against 
our current best two-variable regression. We use the two- 
variable regression because further pivots on 34.1 will pro- 
duce at least a two-variable regression and pivoting out one 
or more of the underlined variables from ,135 will leave 
at least a two-variable regression. Again the asterisk indi- 
cates that our test fails; the 615 of .12 is larger than the 605 
of ,135. 

Our first success occurs on the next pivot of stage 2. 
Reasoning similar to that described for the earlier pivots 
leads to a test of the best three-variable regression against 
the bound .1345 and the test is passed. The 597 of .125 is 
smaller than 605 and we can leap but not very far. Only one 
regression will be produced from 4.13 and only one from 
.1345 so we can skip only the last pivot of stage two. The 
stage increment is 25-4-1 or 1 and moves us to stage 3. 
A further successful test of a two-variable regression-the 
615 of .12 versus the 618 of .145-moves us to stage 4 and 
our last failure occurs here on the first pivot where the 668 
of .l is larger than the 660 of .2345. 

At the second pivot, however, we are again successful. 
The 615 of .12 is smaller than the 660 of ,225 and the 
regressions from ,235 and 34.2 need not be produced. Each 
of the sources is effectively a two-variable matrix and each 
will produce three regressions in two stages. Hence, we skip 
to stage 6 where a successful test-the 668 of .l versus the 
720 of .25-again permits a leap of two stages and our 

search is completed after evaluating 6 of the 22 possible 
subsets of stages l-7. 

The source submatrices utilized at each pivot in our pro- 
cedure include only the rows and columns associated with 
the dependent variable and those independent variables hav- 
ing subscripts equal to or larger than the pivot index. Each 
source is, therefore, effectively a matrix with k-p indepen- 
dent variables from which 2”-P - 1 subset regressions can 
be formed and these regressions are produced in 2k-p-1 
stages. 

For the lexicographic traverse, a stage is equivalent to a 
branch of a tree and, for the familial traverse, a stage is all 
the sons of a father. In either case, it is easily shown that 
the traverse of an r-variable tree (or sub-tree) requires 2T-1 
stages. There are 2’ nodes in a condensed tree of which half, 
2T-1, are interior nodes and half are exterior. We simply 
note that each interior node is the father of a family of 
sons and each exterior node is the tip of a branch. 

Just prior to each pivot in our procedure we are effec- 
tively at a node of Figure 5 preparing to develop the re- 
gressions in the sub-family defined by the node. We have, 
however, already in hand, in the source submatrix on the 
product side, the regression at the terminal node of the 
longest branch. Our stage increment of 2k-P-1 simply skips 
the remaining regressions which could be derived from and 
are therefore bounded by our node of Figure 5. 

3.3 Programming 
The initial step in our program is the inversion of the 

product matrix using a forward step-wise procedure with a 
tolerance check on the pivot elements. Next we re-order the 
variables by calculating the reduction in the regression sum 
of squares that would occur with the removal of each vari- 
able from the regression equation; the variable associated 
with the largest removal sum of squares becomes the new 
X( 1) and so on. The reordered product and inverse matrices, 
with the new X(K) deleted, are loaded into two-dimensional 
working arrays labeled AA and BB-the product in AA, the 
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inverse in BB. We complete the initialization phase by set- tive but the elements of the inverse in rows and columns IP 
ting IP = 1, KM = K - 1, KMM = K - 2, NXS(1) = 0, through K - 1 and the regression coefficients in column K 
LS = 0 and the array NK (I) to zero for I = 1, 2 . KMM. have their signs reversed. 

1 DO3L==IP,KM 
IS =L+1 
NXS(IS) = NXS(IP) + L - IP 
IF(RM(NXS(IS) + l).LE.BB(K, K)) 

GOT04 
IADD = LS 
DO2I=IS,K 
D02J=I,K 
LS = LS + 1 
AN(LS) = AA(1, J) 
AA(1, J) = AN(LS) 

1 
2 
3 

- AA(L, I)*AA(L, J).AA(L, L) 
2 AI = BB(1, J) 

10 

- BB(L, l)*BB(L, J)/BB(L, L) 11 
3 CALL STORE 12 

L=KM 13 
4 LEAP=K-L 14 

DO 5 M = LEAP, KMM 15 
IF(NK(M).EQ.O) GO TO 6 16 

5 NK(M) = 0 17 
CALL WRITE 18 
STOP 19 

6 NK(M) = 1 20 
IP=K-M 21 
LS = IADD 22 
CALL COPY 23 
GOT01 24 

In order to save space without unduly complicating the in- 
dexing, we work out of the two-dimensional arrays AA and 
BB but store in the linear arrays AN and AI. This practice 
also permits us to lag the storage of the product submatri- 
ces (statement 9) so that the index of the source block for 
a stage is the same for both the product and the inverse 
side of the computations. We begin stage zero with AA and 
BB already loaded and subroutine COPY has the task of 
retrieving the source submatrices before the first pivot of 
each succeeding stage. Statements 13-17 and 20-21 incre- 
ment the stage counter by the amount 2**(LEAP - 1) and 
compute a value for IP which is the index of the source 
blocks and also the index the first pivot of a stage. State- 
ment 3 finds the number of variables in the regressions pro- 
duced by the pivots on the product submatrix and statement 
4 tests the best regression with this number of variables 
against the RSS from the source submatrix of the inverse. 
At stage zero, the array, RM, of best regressions contains 
the best subset regressions found in the initial step-wise 
inversion. 

The pivots are simply Gaussian eliminations and are per- 
formed by statements 6-12. The computations, except for 
the storage lag just described, are identical for the product 
and inverse submatrices. This simplification is possible be- 
cause the original inversion utilizes a sweep operator which 
returns a negative inverse and regression coefficients. Thus, 
at stage zero and thereafter, the RSS in BB(K, K) is posi- 
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Subroutine STORE is assigned the housekeeping chores 
of labeling and saving the RSS for the best regressions; 
subroutine WRITE prints the final output. 

Our operating program reorders the variables just prior to 
the first pivot of each stage using a procedure very similar 
to that described for the initial ordering. We ‘look ahead’ 
and calculate, for each underlined variable in the inverse 
source submatrix, the removal sum of squares 

RIN(L) = -BB(L, K)*BB(L, K)/BB(L, L) 

for L = IP, IP + 1 K - 1. The new X(IP) is the variable 
with the largest removal sum of squares. 

As a by-product of the reordering, we also obtain sharper 
bounds. Referring again to the node .a of Figure 5, we 
see that all one-variable regressions from this source come 
from the sub-sources ,245 and ,345. Hence, the smaller RSS, 
the 667 from .245, bounds the one-variable regressions. A 
similar argument shows that the 666 of .235 bounds the 
two-variable regressions. For the three-variable bound and 
in general for the last bound of a stage, we use the usual 
bound BB(K, K). The RSS needed for the sharper bounds 
can be obtained, without performing the pivots that would 
normally produce them, by simply adding the appropriate 
RIN(L) to BB(K, K). Thus, with the RIN(L) ordered by size 
from largest to smallest and with RIN(K) = 0, the bound 
for the L-th pivot of a stage is BB(K, K) + RIN(L + 1). 

The program also offers the option of finding the best m 
regressions, rather than a single best regression, for each 
size of subset. The changes in the algorithm are minor. The 
tests preceding the pivots of a stage are made on the current 
rn-th best, rather than the best, regression with the appropri- 
ate number of independent variables; and the test procedure 
is modified to ensure that no leap occurs if the test associ- 
ated with any remaining pivot of the stage is not satisfied. 
This situation can never arise in the simpler version of the 
program because there the bounds remain constant within 
a stage and the current best r-variable regression always 
has a[n] RSS at least as small as the current best regression 
with a smaller number of variables. 

In the search for the rn best regressions for each size sub- 
set, the program evaluates a number of additional regres- 
sions and the best of these are saved for each size subset. 
The program also saves for each size subset the smallest 
bound invoking a leap or skip and these bounds are, of 
course, lower bounds for the RSS of the subsets that have 
not been evaluated. 

3.4 Discussion 
Our branch and bound algorithm appears to have some 

desirable features which are not present in others that have 
been proposed. First, we make no real distinction between 
an RSS computed as a bound and an RSS computed for a 
regression; we use both in working out the branches of the 
regression tree. Other algorithms treat their bounds and re- 
gressions separately and may compute the same RSS twice, 
once as a bound and again for a regression, In addition, we 
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compute each RSS with a single pivot and never pivot more 
than twice (only once in product submatrices) on the same 
row and column of any submatrix. Other algorithms employ 
a horizontal traverse and form new regressions by pivoting 
an ‘old’ variable out and then a ‘new’ variable into the re- 
gression. Thus, the subsets are strung along a lengthy chain 
of pivots and two pivots are required to move from one 
subset to another. The results are an increase in computing 
time and perhaps an accumulation of rounding errors. Fur- 
thermore, except for the reordering within stages, we do 
very little housekeeping beyond that required to do all pos- 
sible regressions. In fact, our leaps and bounds procedure 
with testing ‘turned off’ is a very efficient algorithm for 
computing all possible regressions. Finally, we can obtain 
the rn-best regressions, rather than a single best regression, 
for each size of subset and, so far as we know, no other 
program offers this option. 

Some idea of the number of operations required to find 
the best subsets with our program can be obtained from the 
following series of trials: 

k 111 = 1 rn = 10 

10 2,192 3,764 
15 11,050 23,118 
20 66.766 123,412 
25 336,575 639,945 
30 2,169,708 3,934,714 
35 6,301,708 11,614,024 

Again, the number of operations can be converted to ap- 
proximate time in minutes on an IBM 370/l% by dividing 
by 2,000,OOO. However, timing and number of operations 
are strongly data dependent and may vary from that given 
above by as much as a factor of two in either direction. 

We have not had an opportunity to test our program 
against the Beale, Kendall and Mann algorithm. However, in 
a series of trials with k varying from 15 to 27, our program 
was 15-50 times as fast as the LaMotte-Hocking program, 
and the difference in speed increased with Ic. 

Program decks (300 cards), instructions for use, and a 
sample problem are available from the authors. The pro- 

gram is designed for use with an existing regression pack- 
age and is in the form of a sub-routine utilizing a correlation 
or product matrix as input. 

/Received June 1972. Revised March 1974.1 
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