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Abstract7

According to Kendall (1989), in shape theory... The idea is to filter out
effects resulting from translations, changes of scale and rotations and to
declare that shape is “what is left”. While this statement applies in principle
to classical shape theory based on landmarks, the basic idea remains also
when other approaches are used. For example, we might consider, for every
shape, a suitable associated function which, to a large extent, could be used
to characterize the shape. This finally leads to identify the shapes with the
elements of a quotient space of sets in such a way that all the sets in the
same equivalence class share the same identifying function. In this paper, we
explore the use of the interpoint distance distribution (i.e. the distribution
of the distance between two independent uniform points) for this purpose.
This idea has been previously proposed by other authors [e.g., Osada et al.
(2002), Bonetti and Pagano (2005)]. We aim at providing some additional
mathematical support for the use of interpoint distances in this context. In
particular, we show the Lipschitz continuity of the transformation taking
every shape to its corresponding interpoint distance distribution. Also, we
obtain a partial identifiability result showing that, under some geometrical
restrictions, shapes with different planar area must have different interpoint
distance distributions. Finally, we address practical aspects including a real
data example on shape classification in marine biology.

Keywords: Functional data, Identifiability, Interpoint distance, Shape8

analysis, Volume function.9

1. Introduction10

We are concerned here with the problem of classifying shapes, where,11

in informal terms, a shape is the family of all plane figures that can be12

obtained from a basic template figure (e.g., a square) by applying isometry13

transformations (rigid movements + symmetries) together with changes of14

scale. Also, we would like to include all the “deformed versions” (within15

some limits) of these basic elements, subject again to isometry transfor-16

mations and/or scale changes. So, to mention just a very simple example,17
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one could think that we want to automatically discriminate between two18

capital letters, say “B” and “D”, manually drawn with a thick line marker,19

whatever their size or their orientation.20

In marine biology, one might be interested on classifying fish species us-21

ing shape analysis techniques. In some cases the basis for the recognition22

method is the fish image itself; see Storbeck and Daan (2001). Other re-23

searches have used the so-called otholits, small pieces present in the inner24

ear of the fish, which can be considered as “microfossils” whose shapes are25

useful in species recognition, among other applications; see Lombarte et al.26

(2006). In Section 5 we will use this otolith example as an illustration for27

the methodology we propose.28

Whatever the practical problem at hand, we need to define, in precise29

mathematical terms, what we mean for “shapes” in our setting. Then we30

will be ready to use the statistical methods for classification, either super-31

vised (discrimination) or unsupervised (clustering) from the available data32

set of shapes. In the example of Section 5 we will focus on clustering but33

discrimination methods could be considered as well.34

The classical theory of shape analysis is largely based on the use of35

“landmarks” (i.e., finite vectors of coordinates characterizing the shapes). It36

was developed, to a large extent, by D. Kendall who expressively referred to37

shape analysis studies in the following terms: The idea is to filter out effects38

resulting from translations, changes of scale and rotations and to declare that39

shape is “what is left”; see Kendall (1989). A general perspective of this40

theory can be found in Kendall (1989), Kendall et al. (1999) or Kendall and41

Le (2010).42

We should mention however that other, less general, notions of shapes43

have been proposed. As Kent (1995) points out, “... statistical models for44

shapes may be based on underlying models for the landmarks themselves, or45

they may be constructed directly within shape space. In some special cases46

specialized models may be constructed”. Our approach here could be un-47

derstood as one of these specialized models: roughly speaking, we propose48

to identify a shape with the corresponding interpoint distance distribution,49

that is, the distribution of the distance (normalized to 1) between two ran-50

domly chosen points in the figure.51

52

Related literature53

In fact, the idea of using the interpoint distance distribution to identify54

the shapes has been previously proposed by other authors, with different55

applications in mind. For example, the very much cited paper by Osada et56

al. (2002) explores the practical aspects of using the interpoint distance in57

the problem of discriminating shapes in image analysis. As these authors58

point out, “The primary motivation for this approach is to reduce the shape59

matching problem to the comparison of probability distributions, which is60

simpler than traditional shape matching methods that require pose registra-61

tion, feature correspondence, or model fitting. We find that the dissimi-62
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larities between sampled distributions of simple shape functions (e.g., the63

distance between two random points on a surface) provide a robust method64

for discriminating between classes of objects (e.g., cars versus airplanes) in65

a moderately sized database, despite the presence of arbitrary translations,66

rotations, scales, mirrors, tessellations, simplifications, and model degenera-67

cies”. See also Bonetti and Pagano (2005) for a different use of interpoint68

distance distributions in the context of medical research.69

In Kent (1994) interpoint distances (between landmarks) are used, via70

multi-dimensional scaling, in shape analysis. Our approach here is some-71

what different as it avoids the use of landmarks at the expense of some loss72

in generality.73

Let us finally mention that the use of interpoint distance distributions74

entails the precise definition of a corresponding, suitable “space of shapes”;75

see Section 2 below, where the whole approach makes sense. Other related76

shape spaces can be found in the literature, in particular those based on77

“deformable templates”: see Grenander (1976), Amit et al. (1991), Hobolt78

and Vedel-Jensen (2000), Hobolt et al. (2003).79

80

The purpose and contents of this paper81

On the theoretical side, we will provide some support for the use of in-82

terpoint distance distributions to characterize shapes: first, we relate, in83

Theorem 1 below, the distance between interpoint distance distributions84

with a natural, geometrically motivated, distance between shapes defined85

in Section 2. Second, we consider the problem of providing a sufficient86

condition on the sets in the Euclidean plane in order to ensure that two dif-87

ferent sets fulfilling this condition must necessarily have different interpoint88

distance distributions. Theorem 2 provides a quite general identifiability89

criterion, which is in fact the most general result of this type we are aware90

of. In the Supplementary Material section we also briefly consider the con-91

nection between the interpoint distance distribution and the covariogram92

(sometimes called “set covariance”), another popular function which has93

been used sometimes to characterize sets and shapes; see Cabo and Badde-94

ley (1995, 2003).95

Finally, in Section 5 our methodology based on interpoint distance distri-96

butions is used in a problem of fishes otoliths classification, via hierarchical97

clustering.98

99

2. The space of shapes100

In what follows we will mainly focus on the case of shapes in the plane101

R2 (the most important, by far, in practical applications). However, some of102

the ideas we will develop can be also adapted to more general, multivariate103

cases. Our starting point will be the family C of compact non-empty sets in104

R2 with diameter 1; this means that diam(C) = max{‖x− y‖, x, y ∈ C} =105

1, for all C ∈ C, where ‖ · ‖ stands for the Euclidean norm. We may think106
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that the family C is the result of transforming the set of all possible plane107

images by a uniform change of scale (where “uniform” means that the same108

transformation scale is applied in both coordinates) in such a way that all109

of them have a common diameter. We will define our space of shapes as the110

quotient space obtained from a natural equivalence relation in C. However,111

the family C is too large to work with (in particular, to define a meaningful,112

tractable distance between shapes). So we will need to restrict ourselves to113

a smaller subset C1 ⊂ C which, still, will include most “black-and-white”114

images arising in practical applications.115

To be more specific, given two positive constants a and m1, we define C1116

as the class of sets C ∈ C fulfilling the following conditions:117

(i) µ(C) ≥ a, where µ denotes the Lebesgue measure in R2.118

(ii) All the sets in C1 are regular, that is, every C ∈ C1 fulfils C = int(C).119

(iii) µ(B(∂C, ε)) < m1ε, ∀ε > 0.120

Here ∂A denotes the topological boundary of the set A, B(A, ε) stands121

for the “parallel set” B(A, ε) = {x : d(x,A) ≤ ε} and d(x,A) = inf{‖x −122

y‖, y ∈ A} (when A = {x} we will use the standard notation B(x, ε) instead123

of B({x}, ε)).124

We assume that the space C1 is endowed with the metric,

dHH(C,D) = dH(C,D) + dH(∂C, ∂D),

where dH stands for the ordinary Hausdorff metric between compact sets.125

Let us now define on C1 the isometry equivalence relation: we will say126

that C,D ∈ C1 are isometric (and denote it by C ∼ D) when there exists a127

isometry (i.e., a map i : R2 → R2 satisfying ‖i(x) − i(y)‖ = ‖x − y‖) such128

that i(C) = D. The family of all sets in C1 equivalent to a set C will be129

represented by [C].130

Finally, denote by S the family of equivalence classes and define in S131

the quotient metric, d̃HH , using the standard definition method [see, for132

example, Burago et al. (2001, p. 62)],133

d̃HH([C], [D]) = inf{
n∑

i=1

dHH(Pi, Qi) : [P1] = [C], [Qn] = [D], n ∈ N}, (1)

where the infimum is taken on all finite sequences such that [Qi] = [Pi+1] for134

i = 1, . . . , n− 1. In principle, the general method (1) to translate a metric135

to the quotient space defines only a semi-metric, but we will see below that136

in this case it provides a true metric; in fact, we will also see in Proposition137

1 that (1) can be expressed in a much simpler way in our case.138

The elements of the quotient metric space S will be called shapes. So139

the shapes are in fact classes of equivalence [C] for C ∈ C1.140

141

Some motivation142

Regarding the intuitive meaning of the assumptions imposed on C1, let143

us note that they do not entail any serious restriction for the practical144
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classification problems of pattern recognition. To explain the meaning of145

these assumptions let us identify our shapes with figures drawn with a sign146

painting marker:147

Assumption (i) just states that, after re-scaling, our shapes must have148

a minimum “thickness”, expressed in a minimum “drawing area” a.149

Condition (ii) is usual in geometric probability models. Under this as-150

sumption, the set C cannot consist of a closed “central core” C1 plus some151

“superfluous” parts P (such as rays or isolated points) with µ(P ) = 0.152

Condition (iii) rules out too involved drawings, with a very large bound-153

ary. To see this, let us briefly recall the notion of (boundary) Minkowski con-154

tent, which is perhaps the simplest way (among several others, see e.g. Mat-155

tila (1995)) to define the “boundary measure” of a set C ⊂ Rd. Of course, for156

the two-dimensional case, “boundary measure” is synonymous with “length157

perimeter”. In precise terms, the (d − 1)-dimensional Minkowski contents158

of C (or of ∂C) is defined by the limit159

L0(C) = lim
ε→0

µ(B(∂C, ε)

2ε
, (2)

A closely related notion is the one-sided (outer) Minkowski content, defined160

by161

L+
0 (C) = lim

ε→0

µ(B(C, ε) \ C)

ε
, (3)

See Ambrosio et al. (2008) for a comprehensive study of this notion, includ-162

ing conditions under which L0(C) = L+
0 (C). For statistical aspects related163

to the Minkowski content we refer to Cuevas et al. (2007) and Berrendero164

et al. (2014). Note that under condition (iii), L0(C) ≤ m1 for all C ∈ C1.165

166

A simpler, alternative expression for the distance between shapes.167

While (1) gives the “canonical” expression for the distance in a quotient168

metric space, the effective calculation of this metric looks rather trouble-169

some. The following proposition provides a simpler, more natural expression170

for (1) and shows that d̃HH is in fact a metric instead of just a semi-metric:171

this means that d̃HH([C], [D]) = 0 implies [C] = [D].172

Proposition 1. The semi-metric (1) can be expressed as173

d̃HH([C], [D]) = inf{dHH(C ′, D′) : C ′ ∈ [C], D′ ∈ [D]}. (4)

Moreover, this expression defines in fact a true metric.174

Proof. This result follows from Th. 2.1 in Cagliari et al. (2014). In part175

(i) of this theorem it is proved that a expression of type (4) holds for the176

semi-distance (1) in the quotient space whenever the equivalence classes of177

this space are the orbits of the action of a group of isometries. This is the178

case here.179

The fact that expression (1), or (4), defines a true metric is a consequence180

of conclusion (iv) in the aforementioned theorem where the authors prove181
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that (4) is a metric if and only if the orbits of the action are closed sets. To182

see that [C] is a closed set let us consider a convergent sequence {Cn} of183

elements Cn ∈ [C] with n ≥ 1; denote by C0 the limit, i.e., dHH(Cn, C0)→ 0.184

By definition of [C], any Cn can be obtained as Cn = tn(C), where tn is an185

isometry. Since ‖tn(x) − tn(y)‖ = ‖x − y‖, it turns out that the sequence186

{tn} is equicontinuous; moreover, for each x ∈ R2 the sequence {tn(x)} is187

bounded; this is clearly true when x ∈ C, since the sequence Cn = tn(C) is188

dH-convergent. Then, for a general x ∈ R2, {tn(x)} is also bounded (since,189

given x0 ∈ C, ‖tn(x)−tn(x0)‖ = ‖x−x0‖). So, from Ascoli-Arzelà Theorem190

[e.g., Folland (1999, p. 137)] we can ensure that there exists a subsequence191

of {tn}, denoted again {tn}, such that tn → t, uniformly on compacts, for192

some transformation t, which must be necessarily an isometry. We thus193

have dH(tn(C), t(C)) → 0, but, since tn(C) = Cn and dH(Cn, C0) → 0, we194

get C0 = t(C). Finally to see C0 ∈ [C] we only have to prove that C0 fulfils195

conditions (i), (ii) and (iii) stated above in the definition of the class C1. But196

this a trivial consequence of the Classification Theorem for Isometries on the197

Plane [see, for example, Martin (1982, p. 65)] which states that each non-198

identity isometry on the plane is either a translation, a rotation, a reflection,199

or a glide-reflection (i.e., the composition of a reflection and a translation200

in the direction of the reflection axis). This shows that the plane isometries201

are “measure preserving” (i.e., µ(A) = µ(t(A))) and “boundary preserving”202

(i.e., ∂t(C) = t(∂C) and therefore, (i)-(iii) hold also for t(C) = C0. We203

conclude that [C] is closed.204

3. The interpoint distance distribution205

As mentioned in the introduction, our approach is based on eventually206

identifying a shape [C] with a density function, supported on [0, 1]. This is207

the density function of the distribution of the random variable defined as208

the distance between two points randomly chosen on C.209

To be more precise, for each C ∈ C1, define the random variable210

YC = ‖X1 −X2‖, (5)

where X1, X2 are iid random variables uniformly distributed on C. It is211

readily seen that YC is absolutely continuous with respect to the Lebesgue212

measure µ. Let us denote by fC the density function of YC .213

Theorem 1 below provides a partial mathematical motivation for the214

identification [C] ' fC by showing that the transformation [C] 7→ fC is215

continuous (in fact it is Lipschitz), so that if two shapes are close enough216

then the corresponding interpoint distance densities must be also close to-217

gether. The problem of analyzing to what extent fC is helpful in order to218

identify C will be discussed in Section 4.219

The Lipschitz property of the transformation C 7→ fC will be established
with respect to the standard L1 metric between densities and also for the
so-called Wasserstein (or Kantorovich) metric defined, for two cumulative
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distribution functions on the real line F and G, by

dW (F,G) =

∫

R
|F (x)−G(x)|dx =

∫ 1

0

|F−1(t)−G−1(t)|dt,

where F−1, G−1 denote the corresponding quantile functions. This metric220

has a number of interesting properties and applications. It has been some-221

times called “the earth mover distance”, due to its connections with the222

transportation problem; see Villani, C. (2003). In Rubner et al. (2000) and223

Ling and Okada (2007) can be found some details on the use of this distance224

in image retrieval. Of course, when F and G are absolutely continuous (as225

it will always be the case in what follows), dW can also be interpreted as a226

distance between the density functions.227

The following result can be seen as a statement of “compatibility” be-228

tween the distances d1(f, g) =
∫ 1

0
|f − g|dµ or dW (defined in the space of229

densities on [0, 1]) and the “natural” distance d̃HH defined in our space of230

shapes. The whole point is to replace, in practice, the use of d̃HH (whose231

effective calculation is cumbersome) by the more convenient distances d1 or232

dW . In principle, the intuitive interpretation of d1(f, g) (as the area of the233

region between f and g) is perhaps more direct but, as we have already234

mentioned, dW is also used in image analysis, Rubner et al. (2000). Our235

experimental results, see Section 5 and the Supplementary Material doc-236

ument, show a very similar behaviour for both distances with perhaps a237

slightly better performance for d1.238

Theorem 1. Let D be the space of probability density functions (with respect239

to the Lebesgue measure) on [0, 1]. Then240

(a) The transformation T : C1 → D given by T (C) = fC fulfils the Lips-241

chitz condition with respect to the L1 metric, d1(fC , fD) ≤ mdHH(C,D),242

for some constant m > 0.243

(b) Also, if we denote by FC and FD the cumulative distribution functions244

of YC and YD, respectively, we have that dW (FC , FD) ≤ m
2
dHH(C,D),245

where m is the same constant of statement (a).246

(c) The transformation T induces another transformation T̃ ([C]) = fC,247

defined in the quotient space, which is also Lipschitz, with constants248

m and m/2 respectively, for both considered metrics.249

Proof. (a) From the relation between the L1 metric and the total variation250

distance,251 ∫
|fC − fD|dµ = 2 sup

A
|PC(A)− PD(A)|, (6)

where PC and PD are the probability measures associated with fC and fD252

and the supremum is taken on B = B([0, 1]), the Borel sets of [0, 1] on the253
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elements C, D chosen to represent [C] and [D]. Now, observe that for all254

A ∈ B, and using the notation introduced in expression (5),255

PC(A) = P(YC ∈ A) = P(YC ∈ A|X1, X2 ∈ C ∩D)P(X1, X2 ∈ C ∩D)

+P(YC ∈ A|X1 or X2 /∈ C ∩D)P(X1 or X2 /∈ C ∩D),

where X1, X2 are iid uniformly distributed on C. A similar expression holds256

for PD(A), except that C is replaced with D and X1, X2 are replaced with257

X∗1 , X
∗
2 , iid uniform on D, that is,258

PD(A) = P(YD ∈ A) = P(YD ∈ A|X∗1 , X∗2 ∈ C ∩D)P(X∗1 , X
∗
2 ∈ C ∩D)

+P(YD ∈ A|X∗1 or X∗2 /∈ C ∩D)P(X∗1 or X∗2 /∈ C ∩D),

Note that P(YC ∈ A|X1, X2 ∈ C ∩ D) = P(YD ∈ A|X∗1 , X∗2 ∈ C ∩ D).259

Therefore,260

|PC(A)− PD(A)| ≤ P(YC ∈ A|X1, X2 ∈ C ∩D)P(X1 or X2 /∈ C ∩D)

+ P(YC ∈ A|X1, X2 ∈ C ∩D)P(X∗1 or X∗2 /∈ C ∩D)

+ P(YC ∈ A|X1 or X2 /∈ C ∩D)P(X1 or X2 /∈ C ∩D)

+ P(YD ∈ A|X∗1 or X∗2 /∈ C ∩D)P(X∗1 or X∗2 /∈ C ∩D).

For the first term in the right-hand side of |PC(A)− PD(A)| we have,261

P(YC ∈ A|X1, X2 ∈ C ∩D)P(X1 or X2 /∈ C ∩D)

≤ P(X1 or X2 ∈ C \D) ≤ 2P(X1 ∈ C \D) ≤ 2

a
µ(C \D),

where a is the minimal area of the elements of C defined in condition (i).262

The same holds for the third term. Similarly, we have that the second and263

fourth terms in |PC(A)− PD(A)| are smaller than 2
a
µ(D \ C). Hence,264

sup
A
|PC(A)− PD(A)| ≤ 4

a
µ(C∆D), (7)

where C∆D stands for the symmetric difference C∆D = (C \D)∪ (D \C).265

Let us now prove that266

µ(C∆D) ≤ 2m1dHH(C,D), (8)

where m1 is the constant introduced in the definition on C1. To see this,267

put dHH(C,D) = r and take x ∈ C \ D. We must have x ∈ B(D, r) \ D268

which entails x ∈ B(∂D, r) ⊂ B(∂C, 2r). Similarly, if x ∈ D \ C we have269

x ∈ B(C, r) \ C so that x ∈ B(∂C, r).270

Thus, using assumption (iii) we have obtained that

µ(C∆D) ≤ µ(B(∂C, 2r)) ≤ 2m1r = 2m1dHH(C,D).
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This, together with (6), (7) and (8) proves the first statement (a).271

272

(b) This directly follows from Theorem 4 in Gibbs and Su (2002). Ac-273

cording to this result, if we consider probability measures defined on a space274

Ω with finite diameter, diam(Ω), we have dW ≤ diam(Ω) · dTV . In our case,275

all the considered distributions are defined on the unit interval. This, to-276

gether with 2dTV = d1 leads to statement (b).277

278

(c) This statement follows from parts (a) and (b) combined with the279

expression (4) of the quotient metric.280

Remark 1. The search for a Lipschitz-type as that in Theorem 1 is quite281

natural in those situations where a set (or a shape) is replaced with a more282

convenient auxiliary function. For example, a result in a similar spirit can283

be found in Cabo and Baddeley (1995, Th. 5.4) but these authors consider284

the so-called covariogram function, instead of the interpoint distance density,285

and the distance dHH is replaced with another metric defined in terms of286

the so-called “linear scan transform”.287

The covariogram of a bounded Borel set A ⊂ Rd is defined by KA(y) =288

µ(A ∩ TyA), where y ∈ Rd, TyA = A − y = {a − y : a ∈ A} and µ is289

the Lebesgue measure in Rd. This function is useful in different problems of290

stochastic geometry and stereology. Some references are Cabo and Baddeley291

(1995, 2003) and Galerne (2011). Using some results in these papers it292

is easy to prove (see the Supplementary Material document for details)293

that the random interpoint distance YC of a bounded Borel set C in the294

plane has a continuous density fC with fC(0) = 0 and fC(ρC) = 0, where295

ρC = diam(C).296

4. The identifiability problem297

In order to implement the idea of identifying a shape [C] with the cor-298

responding interpoint distance density fC , we must still overcome a further299

obstacle. Even if we restrict to the space of shapes [C] with C ∈ C1 (where300

the continuity of the transformation [C] 7→ fC is warranted) one might have301

that fC = fD for [C] 6= [D]. This follows as a consequence of a counterex-302

ample, due to Mallows and Clark (1970) [inspired by a question posed by303

Blaschke], showing two non-congruent polygons, C and D with the same304

chord length distribution. The chord length is the length of the segment305

intercepted in C by a random chord. Since the chord length distribution306

determines uniquely the interpoint distance distribution [see, Matern (1986,307

p. 25)] the mentioned counterexample applies also to the interpoint distance308

distribution.309

The interpoint distance has been also used (with applications to crystal-310

lography and DNA mapping) in finite sets of points; see Caelli (1980) and311

Lemke et al. (2003) for further counterexamples, references and insights.312
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Thus, in summary, the interpoint distance distribution has not full ca-313

pacity to discriminate shapes. Hence, we should further restrict our shape314

space to those sets [C] such that C lives in an appropriate subset C2 ⊂ C1315

fulfilling the identifiability condition316

(iv) For all C, D ∈ C2 with [C] 6= [D] we have YC
d

6= YD, (9)

where YC and YD denote the interpoint distances (5) on C and D and the317

notation
d

6= means that both variables are not identically distributed.318

Some identifiability problems similar to (9) have been considered in319

the stochastic geometry literature under different conditions. For example,320

Matheron (1986) formulated the following conjecture: Every planar convex321

body is determined within all planar convex bodies by its covariogram, up to322

translations and reflections. This conjecture was completely solved, in the323

affirmative by Averkov and Bianchi (2009).324

In the following subsection we will show that the analogous problem (9)325

for the interpoint distance distribution can be solved under quite general326

conditions, which do not require convexity.327

4.1. Interpoint distances and polynomial area328

The main geometric assumption we will use to guarantee identifiability329

is defined as follows.330

Definition 1. A set C ⊂ R2 is said to have inner polynomial area if there331

exist constant R = R(C) > 0 and L = L(C) > 0 such that332

µ(Ir(C)) = µ(C)− L(C)r + πr2, for 0 ≤ r < R, (10)

where Ir(C) denotes the inner parallel set Ir(C) = {x ∈ C : B(x, r) ⊂ C}.333

For example, the circle C = B(0,m) fulfils (10) with L(C) = 2πm,334

R < m and µ(C) = πm2.335

Remark 2. It is clear that, if (10) holds, the quantity L(C) could be ob-336

tained as a sort of inner Minkowski content, L−0 (C) defined in a similar way337

to outer version L+
0 (C) given in (3). Moreover, if the ordinary (two-sided)338

Minkowski content, L0(C) does exist [see (2)] then condition (10) clearly339

entails L(C) = L0(C) = L+
0 (C).340

Now, our goal is to motivate this definition in a twofold way. First,341

we will relate it to some relevant mathematical concepts. Second, we will342

exhibit a broad class of sets satisfying (10). For this purpose, it will be343

useful to recall some notions, due to Federer (1959), from geometric mea-344

sure theory: the reach of a closed set is defined as the supremum, reach(C),345

of those values such that any point x whose distance to C is smaller than346

reach(C) has only one closest point on C. This concept leads to a valuable347

generalization of the notion of convex set, which can be interpreted also as348
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a geometric smoothness condition (not directly relying on differentiability349

assumptions). Figure 1 illustrates the nice intuitive meaning of this notion.350

It can be shown that C is convex if and only if reach(C) = ∞. Accord-351

ing to a result proved by Federer (1959) [which is a generalization of the352

classical Steiner’s formula for convex sets], the sets of positive reach have a353

polynomial volume. More precisely [Federer (1959), Ths. 5.6 and 5.19]:354

r

x x

Figure 1: The set C in the left has positive reach r (any x whose distance to C is smaller
than r has only one closest point on C). The set C in the right has not positive reach.

355

If S ⊂ Rd is a compact set with r0 = reach(S) > 0, then there exist356

unique values Φ0(S), . . . ,Φd(S) over such that357

µ(B(S, r)) =
d∑

i=0

rd−iωd−iΦi(S), for 0 ≤ r < r0, (11)

where ωj is the j-dimensional measure of a unit ball in Rj.358

Remark 3. The above result has some connections with other important359

geometric notions. Some are almost immediate: for example, if S is a com-360

pact set with positive reach, then Φd(S) = µ(S) and the outer Minkowski361

content defined in (2) always exists and corresponds to the first-degree term362

in (11). Another, not so obvious, deep geometric connection of (11) is as363

follows: the coefficient Φ0(S) coincides with the Euler characteristic of S.364

This is an integer-valued topological invariant with deep geometric implica-365

tions, far beyond the scope of this paper; see, e.g., Hatcher (2002) for details.366

In the following remark we show an example which, in addition to recall the367

intuitive meaning of Φ0(S), will also serve for further generalizations.368

On the other hand, note that reach(S) = r0 > 0 is just a sufficient369

condition for polynomial volume in the interval [0, r0). Many other sets,370

which do not satisfy reach(S) > 0 (such as that of the right panel in Figure371

1), might fulfil a polynomial volume property of type (11).372

Remark 4. Let us consider the annulus D = B(0,M) \ int(B(0,m)), with373

m < M . A direct calculation shows that µ(B(D, r)) = 2π(M+m)r+π(M2−374

m2). Moreover, it is clear that reach(D) = m. As a conclusion, the annulus375

D fulfils Φ0(D) = 0 in (11). By the way, the same holds for any set, of376

positive reach, homeomorphic to the annulus (as the Euler characteristic is377

a topological invariant).378
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Now, we are ready to show that in fact (10) applies to a broad class379

of sets under a quite general condition (expressed in terms of the classical380

positive reach property).381

Proposition 2. The class P(R) of sets which fulfil condition (10) contains382

all regular sets C such that for some closed ball B1, with C ⊂ int(B1), the383

set E = B1 \ int(C) has positive reach R and it is homeomorphic to an384

annulus (as that considered in Remark 4).385

Proof. Note that µ(B(E, r)) = µ(E)+µ(B(B1, r))−µ(B1)+µ(C)−µ(Ir(C)).
Now, E has positive reach R and, by (11), µ(B(E, r)) = rL+

0 (E) + µ(E).
Note also that Φ0(E) = 0 since B1 \ int(C) is homeomorphic to an annulus
D (for which Φ0(D) = 0, according to Remark 4). Therefore,

µ(Ir(C)) = µ(C)− L(C)r + πr2, with L(C) = L+
0 (E)− L0(B1).

386

As a conclusion, we have that the class of sets fulfilling (10) includes387

many relevant sets found in practice. See Berrendero et al. (2014) for further388

information and statistical applications of the notion of polynomial volume.389

We are now ready to establish the main result of this section which390

provides a large class R of sets which can be distinguished from each other391

according to the distribution of the respective interpoint distances. In other392

words, if C,D ∈ R then fC 6= fD, where fC denotes the density function of393

the interpoint distance YC .394

Theorem 2. (a) Suppose that C is a compact set in R2 fulfilling condition395

(10) of inner polynomial area. Denote by YC the interpoint distance in C.396

Then397

P(YC ≤ ρ) =
πρ2

µ(C)
− πρ

3L(C)
µ(C)2

+
π2ρ4

µ(C)2
+

1
µ(C)2

∫

C\Iρ(C)
µ(B(x, ρ)∩C)dx, (12)

for ρ > 0 be small enough so that ρ < R in (10) and Iρ(C) 6= ∅, where398

Iρ(C) denotes the inner parallel set Iρ(C) = {x ∈ C : B(x, ρ) ⊂ C}.399

(b) Let C,D be compact sets, with diameter 1, in R2 fulfilling the poly-400

nomial inner area condition (10). If µ(C) 6= µ(D), then the respective401

interpoint distance have different distributions, that is, YC
d

6= YD.402

Proof. (a) Let X1, X2 bee iid random variables uniformly distributed on C.403

Denote by PC the probability distribution uniform on C.404

P(YC ≤ ρ) =

∫

C

P (X1 ∈ B(x, ρ)) dPC(x) =

∫

C

PC(B(x, ρ))dPC(x)

=

∫

Iρ(C)

PC(B(x, ρ))dPC(x) +

∫

C\Iρ(C)

PC(B(x, ρ))dPC(x)

=
1

µ(C)2

∫

Iρ(C)

µ(B(x, ρ))dx+
1

µ(C)2

∫

C\Iρ(C)

µ(B(x, ρ) ∩ C)dx
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= πρ2µ(Iρ(C))

µ(C)2
+

1

µ(C)2

∫

C\Iρ(C)

µ(B(x, ρ) ∩ C)dx

= πρ2µ(C)− L(C)ρ+ πρ2

µ(C)2
+

1

µ(C)2

∫

C\Iρ(C)

µ(B(x, ρ) ∩ C)dx

=
πρ2

µ(C)
− πρ3L(C)

µ(C)2
+

π2ρ4

µ(C)2
+

1

µ(C)2

∫

C\Iρ(C)

µ(B(x, ρ) ∩ C)dx

(b) This result readily follows from (a). First note that the integral405 ∫
C\Iρ(C)

µ(B(x, ρ) ∩ C)dx in the last term of (12) is of order ρ3 as ρ → 0406

since the integrand is of type O(ρ2) and the measure of the integration set407

is O(ρ), from the polynomial area assumption. Therefore the main term in408

(12) is πρ2

µ(C)
. Now, If µ(C) 6= µ(D), the main terms πρ2

µ(C)
in the respective409

expressions (12) for the distribution functions of YC and YD are different.410

Hence, these distribution functions must be different for ρ small enough.411

5. An application to fish family identification from otolith images412

The AFORO database (http://www.icm.csic.es/aforo/) offers an413

open online catalogue of fish otolith images. As defined by Tuset et al.414

(2008), otoliths are “acellular concretions of calcium carbonate and other415

inorganic salts that develop over a protein matrix in the inner ear of ver-416

tebrates”. The application of otoliths research has developed significantly417

over the last years, see Begg et al. (2005). Fish species identification, age418

and growth determination or stock and hatchery management are some of419

the most common and important applications of otolith data.420

The AFORO database contains at present more than 4500 high res-421

olution images corresponding to 1382 species and 216 families from the422

Mediterranean Sea and the Antarctic, Atlantic, Indic and Pacific Oceans.423

For this study, we have considered fishes belonging to three families: Solei-424

dae, Labridae and Scombridae. There are important features of otoliths425

that can be used for species identification. The otolith shape (outline), the426

inner groove and the otolith margins, among others, are important char-427

acteristics in the morphological description of otoliths. According to the428

characterization in Tuset et al. (2008), the terms that better describe the429

shape of the otolith’s outline in the family Soleidae are discoidal, elliptic430

and bullet-shaped (and intermediate shapes between these three). For the431

family Labridae, the otolith’s outlines are mainly cuneiform, oval and rect-432

angular (and intermediate shapes). For the family Scombridae, the otoliths433

are characterized by their serrate margins. See Figure 2 for examples of434

otoliths from these three families.435

436

Interpoint distance: estimated distribution and density functions. We have437

240 high resolution images of otoliths and their corresponding contours (70438

Soleidae, 125 Labridae and 45 Scombridae). For the practical implementa-439

tion of the method in this example, we need to generate pairs of uniform440
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Figure 2: High resolution images of otoliths. First row: Soleidae. Second row: Labridae.
Third row: Scombridae.

points within the otholiths (area in black in the filled-in contour images,441

see Supplementary material). For this purpose, we can use the standard442

acceptance-rejection method, generating uniform points on a rectangle con-443

taining the otolith and accepting those points belonging to the black area.444

This procedure will be slow on images with a small percentage of black pix-445

els with respect to the bounding rectangle. Another possibility, faster than446

the acceptance-rejection method, is to select pixels in black randomly and,447

for each pixel, generate a uniformly distributed random point within that448

pixel. Other issues about sampling generation in more general situations,449

such as 3D shapes, are discussed in Osada et al. (2002). For each otolith,450

we compute the empirical cumulative distribution function of the interpoint451

distance using the distances (rescaled by the estimated diameter) between452

50000 pairs of random points on the otolith. Figure 3 shows the empirical453

cumulative distribution functions (left) and the estimated interpoint dis-454

tance densities (right) corresponding to the 240 otoliths (Soleidae, Labridae455

and Scombridae in dark, medium and light gray, respectively).456
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Figure 3: Left, empirical distribution functions of the interpoint distance on the otoliths.
Right, estimated densities. In dark gray, Soleidae. In medium gray, Labridae. In light
gray, Scombridae.

457

Hierarchical clustering. First, we apply an agglomerative hierarchical clus-458

tering procedure for each pair of families, considering both the L1 distance459

between densities and the Wasserstein distance between cumulative dis-460

tribution functions as the dissimilarity criterion. As linkage method, we461

have considered single-linkage, complete-linkage and average-linkage. For462
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the sake of brevity, we only discuss here the average-linkage method, which463

gives the best results.464

Let us first discuss the results on the dataset consisting of Soleidae and465

Labridae otoliths (dataset A). Figure 4 shows the dendrogram based on the466

L1 distance between the estimated densities. We can consider the otoliths467

divided in two big groups (represented in dark and light gray). We ob-468

serve, see Table 1 (left), that one cluster is dominated by Soleidae otoliths469

(94.29% of Soleidae otoliths belong to cluster 1) and the other contains470

mainly Labridae otoliths (98.40% of Labridae otoliths belong to cluster 2).471

The results of the clustering procedure based on the Wasserstein distance472

between distribution functions are quite similar, see Table 1 (right).473
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Figure 4: Dendrogram using the L1 distance between interpoint distance densities for
the dataset consisting of Soleidae and Labridae otoliths (dataset A). The tree is cut into
two groups, represented in dark and light gray.

Table 1: Hierarchical clustering on three datasets of otoliths. For each dissimilarity
criterion, count and row percent of the true family labels versus the group labels for a
partition into two clusters.

L1 distance Wasserstein distance
Cluster 1 Cluster 2 Cluster 1 Cluster 2

Dataset A Soleidae 66 4 67 3
94.29% 5.71% 95.71% 4.29%

Labridae 2 123 2 123
1.60% 98.40% 1.60% 98.40%

Dataset B Soleidae 69 1 69 1
98.57% 1.43% 98.57% 1.43%

Scombridae 0 45 0 45
0.00% 100.00% 0.00% 100.00%

Dataset C Labridae 123 2 123 2
98.40% 1.60% 98.40% 1.60%

Scombridae 2 43 2 43
4.44% 95.56% 4.44% 95.56%

Now, let us consider the dataset consisting of Soleidae and Scombridae474
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otoliths (dataset B). We apply again an agglomerative hierarchical cluster-475

ing procedure using both the L1 distance and the Wasserstein distance as476

the dissimilarity criterion. We split the corresponding dendrograms into477

two groups. The results are summarized in Table 1 (dataset B). We found478

that all but one of the Soleidae otoliths belong to the first cluster and all479

the Scombridae otoliths belong to the other cluster.480

Finally, we consider the complete dataset consisting of otoliths from the481

three families and apply the agglomerative hierarchical clustering procedure482

using the L1 distance. If we cut the corresponding tree into three groups, we483

obtain that 94.29% of Soleidae otoliths belong to the first cluster, 96.80%484

of Labridae otoliths belong to the second cluster and 95.56% of Scombridae485

otoliths belong to the third cluster. The dendrogram and the complete486

table of results based on the L1 distance and the Wasserstein distance can487

be found in the Supplementary Material.488

489

k-means clustering. Now, we investigate the performance of the k-means490

clustering algorithm. We apply the k-means algorithm to each pair of fam-491

ilies of otoliths (k = 2). Here we briefly describe the results based on the492

L1 distance (the complete table of results based on the L1 distance and493

the Wasserstein distance is provided as Supplementary Material). For the494

dataset consisting of Soleidae and Labridae images, we obtain a 96.92% of495

correctly clustered otoliths. For the dataset consisting of Soleidae and Scom-496

bridae images, we obtain a 99.13% of correctly clustered otoliths. For the497

dataset consisting of Labridae and Scombridae images, we obtain a 97.64%498

of correctly clustered otoliths.499

500

Final remarks. (a) We observe that both clustering methods (hierachical501

clustering and k-means) perform reasonably well.502

We would also like to note that the main reason to choose the families503

Soleidae, Labridae and Scombridae was that the AFORO database contains504

a large number of images of each of these families. At the beginning of the505

study, we had also considered two other large families: Gobiidae and Ser-506

ranidae (see the Supplementary Material for examples of otoliths in these507

two families). As might be expected, the clustering methods did not per-508

form well, for example, for the dataset containing Gobiidae and Soleidae509

otoliths since the shape of some of the Gobiidae otoliths resembles that of510

the Soleidae otoliths. The same occurs for the dataset containing Serranidae511

and Labridae otoliths.512

(b) As a referee pointed out to us, the use of interpoint distance distri-513

butions can be extended to more general (not necessarily planar) situations.514

Thus, otholits are in fact three-dimensional structures, one might consider515

also the 3D extension of our technique. Likewise, one might think of in-516

corporating possibly non-uniform choices of the random points defining the517

interpoint distances. This would entail additional theoretical and computa-518

tional challenges; see Tebaldi et al. (2011) for computational aspects related519
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to interpoint distance distributions.520

6. Discussion. Connections with FDA521

The study of those problems where the “sample elements” and/or the522

target “parameters” are members of an infinite-dimensional space is today523

a mainstream topic in statistical research. Of course, the classical nonpara-524

metric curve estimation theory (developed since the 1960’s) is an impor-525

tant precedent but perhaps the excellent book by Grenander (1981) is one526

of the pioneering references in putting together these ideas in a more or527

less systematic fashion. As it often happens in the beginnings of a new528

scientific theory, the terminologies are not unified. Grenander’s proposal529

abstract inference, has been later be replaced by the non-exactly equiva-530

lent, infinite-dimensional statistics (Bongiorno et al. (2014)) or functional531

statistics. Recently, the overview paper Marron and Alonso (2014) pro-532

poses the name Object Oriented Data Analysis (OODA) to refer to “sta-533

tistical analysis of populations of complex objects”; In that paper, classical534

Kendall’s Shape Analysis (SA) is explicitly included in the OODA frame-535

work, alongside Functional Data Analysis (FDA), the study of statistical536

methods (regression, classification, principal components, etc.) suitable for537

those situations in which the sample data x1, . . . , xn are functions, typically538

(but not necessarily) depending of one real variable, xi : [a, b]→ R.539

If we take the number of publications as a hint of the popularity of a540

scientific topic, FDA is perhaps the most successful chapter in the field of541

infinite-dimensional statistics. Since the popular textbook by Ramsay and542

Silverman (1997), several other well-known monographs have contributed543

to the popularization of FDA; see Ferraty and Vieu (2006), Ferraty and544

Romain (2011) and Horváth and Kokoszka (2012), among others. See also,545

Cuevas (2014) for a recent overview.546

We think that Marron and Alonso (2014) make a good point in bringing547

together shape analysis and FDA as two particular instances of OODA. In548

fact, the conceptual relation between both topics is quite obvious at a formal549

level, since shapes can be ultimately identified with functions of some kind550

(or equivalence classes of functions). However, the connection holds true551

from, at least, two other more relevant aspects:552

(a) We have shown that (under some restrictions) shapes can be identi-553

fied with density functions (those of the corresponding interpoint distance554

distributions). Hence, following our approach, a statistical problem with555

shapes can be recast as a FDA problem in which the available data are556

density functions. See Delicado (2011) for an account of this topic. Many557

interesting issues can be considered in such a setup: for example, principal558

components analysis and other techniques of dimension reduction.559

(b) Still, considering SA from the FDA point of view suggest to study560

the adaptation of the increasing literature on FDA variable selection (or561

feature selection), to the SA framework; see, for example Berrendero et al.562
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(2015) and references therein for some recent theoretical and practical in-563

sights on this subject. In particular, it seems worthwhile to analyze the564

possible connections between some of these variable selection and the clas-565

sical landmarks theory in shape analysis.566
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