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1
Introduction

Cosmology has come of age. During the last few decades, it has transformed from
an endeavour, where it was all about the search for ’the two numbers’ – the Hub-
ble parameter and the deceleration parameter, to a stage where these two numbers are
eventually expected to be constrained as a byproduct of the surveys aimed at a more
detailed understanding of the origin, structure and dynamics of the Cosmos (Jones
1992; Kim et al. 1995; Hoeflich & Khokhlov 1996; Neben & Turner 2013). Due to re-
cent advances in observational cosmology, humanity is at a stage where we have a
broad understanding of how the Universe came into being and what its composition
is. According to the standard paradigm, the Universe started in the state of a hot big
bang. The latest measurements of the Cosmic microwave Background radiation, as
performed by the PLANCK satellite, establish that only 4.9% of the total mass-energy
content of the Universe is composed of baryonic matter, of which the galaxies, stars
and us humans are made of. The rest of 26.8% and 68.3% is respectively composed
of dark matter and dark energy (Planck Collaboration et al. 2015).

The recent advances, while establishing the broader picture of the Universe on
the one hand, have given way to a whole lot of new questions, while simultaneously
pointing to the discrepancies in our current understanding of the details of the phys-
ical contents and processes that govern the dynamics and evolution of the Universe.
Prominent is the question about the nature of dark matter and dark energy, which
remains a complete mystery to us. With growing observational data, discrepancies
in our theories of the evolution and structural organization of the Universe on the
large scale have also come to the forefront. Similarly, our understanding of the for-
mation and evolution of galaxies remain nebulous still. There has been an ongoing
effort in understanding the formation and evolution of galaxies and galaxy clusters
with respect to the large scale environment they reside in (Efstathiou & Jones 1979;
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Aragón-Calvo et al. 2007a; Jones et al. 2010; Tempel et al. 2013; Aragon-Calvo & Yang
2014). This requires a proper identification and classification of the morphology of
the various structural components of the large scale Universe.

The effort to describe and characterize the formation and evolution of structures
in the Universe has been ongoing for decades now. The tools used for this purpose
have drawn heavily from concepts in statistics, geometry and topology. In the next
few sections, I will present an overview of the current standard paradigm of cos-
mology, as well as a brief but non-exhaustive account of structure formation and
evolution in the Universe. I will also present a brief account of the various tools and
formalisms used to describe the properties of the cosmic matter distribution. This
will establish a background for the new hierarchical topological formalisms that will
be described in this thesis. Based on this, subsequently we will present a hierarchical
topological characterization of heuristic as well as more realistic models of mass dis-
tribution in the Universe. This is with a view to understand and demonstrate what
such a hierarchical topological characterization has to offer over the more traditional
topological measures that have been used to describe the cosmic mass distribution
in the past.

1.1 General Cosmology: an overview

As a result of continuous advances in theory and observations in tandem since al-
most the beginning of this century, the Hot Big Bang Model has established itself as
the standard model of the origin and evolution of the Universe. According to this
paradigm, we live in an expanding Universe that originated in a dense superhot state
of singularity almost 13.8 Gyrs ago (Fixsen et al. 1994; Komatsu et al. 2009; Planck
Collaboration et al. 2015).

The source of the current standard paradigm of cosmology, the idea that the Uni-
verse started in a hot Big Bang, may be attributed indirectly to Einstein who revolu-
tionized our way of thinking about gravitation with his formulation of General Rela-
tivity (Einstein 1916). Culminating in the famous Einstein’s field equations, General
relativity interpreted the interaction of gravitation as a result of spacetime getting
curved by the matter-energy content present in it. The Einstein field equations may
be written as

Rµν −
1
2

gµνR + gµνΛ =
8πG

c4 Tµν. (1.1)

Each of the terms in the field equation is associated with either the curvature of the
spacetime, or its matter energy content. In the above equation, Rµν is the Ricci curva-
ture tensor, gµν is the metric tensor, R is the scalar curvature, Λ is the cosmological con-
stant, G is the gravitational constant, c is the speed of light and Tµν is the stress-energy
tensor. The left-hand side of the equation quantifies the curvature of spacetime, and
the right-hand side quantifies its matter-energy content.



1.1: General Cosmology: an overview 13

1.1.1 The cosmological principle and the Robertson-Walker Metric

The Einstein field equations are metric equations, meaning that the solution to them
are metrics defined on a manifold. A metric captures the notion of distance on the
given manifold. When written fully, the Einstein field equations are a set of ten cou-
pled non-linear partial differential equations. Due to non-linearity of the equations,
as well as coupling, it is not possible to find generic solutions to them. However, un-
der assumptions of symmetry, homogeneity and isotropy, the set of equations admit
exact metric solution.

To build an understanding of the dynamics of the Universe, cosmologists start
with the assumption that there are no preferred directions or preferred locations in
the Universe at large scales. This assumption is encapsulated in the cosmological prin-
ciple, which states that the Universe is isotropic and homogeneous Additionally, if we
assume that the geometry of the spacetime is uniformly curved, there are only three
possibilities for such a spacetime – it can be positively curved or have a spherical ge-
ometry; it can be negatively curved or have a hyperbolic geometry; or it can have zero
curvature or a flat or the familiar Euclidean geometry. The metric for a homogeneous,
isotropic and a uniformly curved spacetime is given by the Robertson-Walker metric.
In spherical coordinates (r, θ, φ), this is

ds2 = −c2dt2 + a(t)2
[
dr2 + Sk(r)2dΩ2

]
, (1.2)

where,

dΩ2 = dθ2 + sin2θ, dφ2, (1.3)

and

Sk(r) =

 Rsin(r/R), k = +1, closed universe
r, k = 0, flat universe
Rsinh(r/R), k = −1, open universe

The quantity R denotes the radius of curvature and the quantity a(t) is the expansion
factor. The latter relates the physical coordinate to the comoving coordinate via the
relation r = a(t)R, with the choice of a(t0) = 1, where t0 is the present time.

1.1.2 The FRWL equations

General relativity laid the foundation for Georges Lemaı̂tre to coin the idea of the
Big Bang Universe – a universe that is not static, but has a finite age . Friedmann
and Lemaı̂tre independently discovered the expanding Universe as a solution to
the field equations under the assumption that the universe was isotropic and ho-
mogeneous (Friedmann 1922; Lemaı̂tre 1927). Known famously as the Friedmann-
Robertson-Walker-Lemaı̂tre equations, they are given by
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ä
a

= −4πG
3

(
ρ +

3p
c2

)
+

Λ
3

(1.4)

ȧ2

a2 =
8πG

3
ρ− kc2

a2 +
Λ
3

. (1.5)

From the above equations, it is also possible to derive the energy equation

ρ̇ + 3
ȧ
a

(
ρ +

P
c2

)
= 0. (1.6)

The energy equation is a statement of conservation of energy. It implies an adiabati-
cally expanding Universe, which is also homogeneous and isotropic.

In the FRWL equations, G is the gravitational constant, ρ is an indicator of the energy
density, p is the pressure, and Λ is the cosmological constant. It is usually the custom
to express the FRWL equations in terms of the Hubble parameter H, and the density
parameter Ω, such that

H2(z) = H2
0

(
Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ

)
, (1.7)

where,

a = 1/(1 + z) H = ȧ/a. (1.8)

In the above equation, z is the redshift corresponding to the scale factor a. At the
present epoch, when matter is the dominating component, the density parameters
are given by

Ωm =
ρm

ρc
, ΩΛ =

Λ
3H2

0
, Ωk = −

kc2

H2
0

(1.9)

where H0 is the current value of the Hubble parameter The density of the various
components are usually specified in the units of the critical density

ρc = 3H2
0 /8πG. (1.10)

The critical density is the energy density for which the curvature of the Universe is
flat.

Table 1.1 presents the latest values of the cosmological parameters as deduced
from the measurement of the temperature anisotropies in the CMB by the PLANCK
satellite (Planck Collaboration et al. 2015).
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Symbol Value Description
t0 13.799±0.021 Gyr Age of the Universe

H0 67.74±0.46 Hubble parameter
Ωbh2 0.02230±0.00014 Physical Baryon density

ΩDMh2 0.1188± 0.0010 Physical dark Matter density
ΩΛ 0.6911±0.0062 Dark energy density

σ8 0.8159±0.0086 rms of density fluctuations at 8h−1Mpc
ns 0.9667±0.0040 Scalar spectral index
τ 0.066±0.012 Reionization optical depth

Table 1.1 The latest values of the cosmological parameters as inferred from the measurement of the
temperature anisotropies in the CMB by PLANCK satellite. Values taken from Planck Collaboration et al.
(2015).

1.1.3 Evolution of the FRWL Universe
The FRWL equations fully describe the evolution of the Universe in terms of its con-
stituents. The evolution and the eventual fate of the FRWL universe is fully deter-
mined by the

– Energy content of the universe, represented through the density and pressure
terms.

– Geometry of the universe, parametrized through the curvature term.

– The cosmological constant, denoted by Λ. The most popular interpretation of
cosmological constant is as a form of energy which has negative pressure and
contributes to an accelerated expansion of the Universe.

The energy content of the Universe has contributions from radiation, matter and
dark energy. Matter consists of baryonic matter and dark matter. The different com-
ponents have different contribution to the energy budget of the Universe. This is
encapsulated in the equation of state, given by

p(ρ) = wρc2, (1.11)

where,

w =

 1/3 radiation
0 matter
−1/3 < w < −1 dark energy.

The case when w = −1 is associated with the cosmological constant. The negative
pressure results in a repulsive force responsible for the accelerated expansion of the
Universe. In fact, in order to get a term which causes an accelerated expansion, it is
enough to have a scalar field which satisfies

p < −ρc2

3
. (1.12)
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One option for such an (evolving) field is quintessence (Peebles & Ratra 1988), and
leads to the notion of dark energy. One should note, however, that though the cosmo-
logical constant and the dark energy have similar behaviour in terms of the equation
of state, their sources are different. The cosmological constant is associated with the
curvature term on the left hand side of the Einstein field equations, and has its source
in the curvature of the spacetime. Dark energy is associated with the energy term in
the right hand side of the field equations.

At different cosmological epochs, different components were dominant. In the
very early inflationary era, when the Universe is in a pseudo-vacuum state, and
expands exponentially, w = −1. This negative repulsive pressure is responsible
for the exponential expansion of the Universe. The case w = 1

3 , is the era when
radiation was the dominating component, and at the current epoch, when matter
is the dominant component, w = 0. However, we discovered recently that since
approximately the last 7 Gyrs, the Universe is in a state of accelerated expansion
(Riess et al. 1998; Perlmutter et al. 1999). This suggests that dark energy has started
to dominate the dynamics of the Universe again about 7 billion years ago.

The evolution of the scale factor a(t), is influenced differently by the different
components of the Universe. Though all the components of the Universe contribute
to the evolution of the scale factor, it turns out that over vast periods of time only
one of the components is dominant. It is then instructive to study the time evolution
of a(t) by only considering the contribution from the dominating component and
ignoring the contribution from the rest. It can be shown that during the different
cosmological epochs, when different components are dominating, the time evolution
of a(t) is approximately given by

a(t) ∝


(t/t0)

1/2, when radiation is dominant
(t/t0)

2/3, when matter is dominant
eH0(t−t0), when dark energy is dominant

Having assessed the dynamics and evolution of the model universe, we now
present an account of the structure of the matter distribution in the Universe.

1.2 Structure formation in the Universe

Observations show that on the scales larger than a few hundred megaparsecs, the
Universe appears homogeneous. However, at smaller scales, it shows very distinct
features and structures. On the large scales, the structures manifest as a web-like
network commonly known as the cosmic web (Bond et al. 1996). On yet progres-
sively smaller scales, one finds the galaxies, stars and planets. The existence of
these pronounced structures reveals that on these scales the Universe is no longer
homogeneous and isotropic. These structures are the result of a growth of quantum
fluctuations planted in the primordial density field in the very early Universe. The
theoretical framework that describes this is that of gravitational instability.
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1.2.1 Gravitational instability and linear growth of structures
The generally accepted theoretical framework for the formation of structure is that
of gravitational instability (Peebles 1980; van de Weygaert & Bond 2008). This frame-
work assumes that the early universe was almost perfectly smooth, with the excep-
tion of tiny density deviations with respect to the global cosmic background density,
and the accompanying tiny velocity perturbations from the general Hubble expan-
sion. The origin of these fluctuations is of a quantum nature. The most plausible
reasoning is that they are the quantum fluctuations of the vacuum state, in which
the Universe was, during the inflationary era.

These tiny local deviations start to grow under the influence of the accompanying
gravity perturbations. In a perfectly homogeneous Universe the gravitational force
is the same everywhere. The presence of density perturbations will induce local dif-
ferences in gravity. In the vicinity of a region with a higher density than the universal
background density, the surplus of matter will exert an attractive gravitational force
larger than the average value. Similarly, near low density regions a deficit in matter
will lead to a weaker force. This locally varying difference in the gravitational force
induces a locally varying deceleration in the cosmic expansion. As it is the tendency
of matter to move towards a region of higher density, the mass of the overdense
regions increases with time.

If and when the region becomes sufficiently overdense, its expansion may even
come to a halt. The region decouples completely from the Hubble expansion, turns
around, and starts to contract. If or as long as pressure forces are not sufficient to
counteract the infall, the overdensity will grow without bound, and assemble more
and more matter by accretion from its surroundings. Ultimately this will turn into
a fully collapsed, gravitationally bound object, which seeks to attain virial equilib-
rium. Once it has done so, a genuine identifiable cosmic object has formed (van de
Weygaert & Bond 2008).

The opposite tendency occurs in the case of primordial density depressions. Be-
cause they contain less matter than on average, the deceleration of the matter in and
around such an underdense region is less than that of the global Hubble expansion.
Matter will therefore tend to get displaced somewhat further, with the net result of
matter streaming out of the interior of the underdensities and them expanding with
respect to the global Universe. As the process continues and becomes more pro-
nounced, the gravitational instability process results in the gradual emergence of a
void in the matter distribution.

1.2.2 Linear structure growth
In the comoving coordinates, the time-dependent density contrast at any location in
the Universe can be written as

δ(x, t) ≡ ρ(x, t)− ρu(t)
ρu(t)

, (1.13)

where ρu(t) is the universal background density at time t, and ρ(x, t) is the density
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at comoving position x at time t. The story of structure growth in the Universe is the
story of the evolution of over- and under-densities δ(x, t) across the cosmic timeline.

The location of an object in the Universe is specified by its physical coordinates r.
In an ideal FRW Universe, only the universal expansion is responsible for changing
the physical coordinate of this object. As such, the physical coordinate can be ex-
pressed in terms of the comoving coordinates x and the expansion factor a(t), such
that

r(t) = a(t)x. (1.14)

In the pure FRW Universe, where the density at any location is the same as the
universal background density, x does not change with time. However, in the con-
text of structure formation due to gravity perturbations, the comoving coordinate
becomes a time dependent quantity x(t),

x(t) =
r(t)
a(t)

. (1.15)

The evolution of density perturbations in an expanding Universe is governed by
a set of three equations – the continuity equation, the Euler equation and the Poisson
equation. The continuity equation is a statement of conservation of mass, while the
Euler equation is a statement of conservation of momentum, and is basically the
equation of motion. The Poisson equation relates the gravitational field to its source,
the mass distribution in the Universe. They are given respectively by

∂δ

∂t
+

1
a
~∇x · (1 + δ)~v = 0, (1.16)

∂~v
∂t

+
1
a

(
~v · ~∇x

)
~v +

ȧ
a
~v = −1

a
~∇xφ

∇2
xφ = 4πGa2ρuδ.

In the above equations, a is the expansion factor, ~v is the peculiar velocity, and φ is
the gravitational potential, all expressed in comoving coordinates.

There are three distinct structural regimes in the Universe that can be demarcated
on based on the value of δ. These are the linear regime, when δ � 1; the mildly
non-linear regime, when δ ∼ 1; and the highly non-linear regime, when δ � 1. In
the linear regime, the Equations 1.14 simplify to a second order partial differential
equation for the density perturbation δ, given by

∂2δ

∂2t
+ 2

ȧ
a

∂δ

∂t
= 4πGρuδ. (1.17)

The solution to this equation can be written as the sum of a growing and decaying
term

δ(x, t) = D+(t)δ(x, t0) + D−(t)δ(x, t0). (1.18)
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Figure 1.1 Temperature anisotropies in the Cosmic Microwave Background as measured by the latest
Planck Collaboration. The orange/red spots are locations where the temperature exceeds the average
background temperature. The blue spots, are locations where the temperature is less than the global
average. The color intensity is proportional to the excess/deficit temperature. Figure Courtesy Planck
Collaboration et al. (2013b).

The part with D+(t) as the coefficient represents the growing mode solution, and the
part with the coefficient D−(t) is the decaying mode solution. The decaying mode
solution becomes negligible with time. The parameter D+(t) is the linear growth
factor that depends on the total matter and energy content of the Universe via the
relation

D(z) =
5Ωm H2

0
2

H(z)
∫ ∞

z

1 + z′

H3(z′)
dz′, (1.19)

where H(z) is the Hubble factor at redshift z. The quantity D+(t) is of crucial impor-
tance, since it quantifies the growth of structure in the Universe. In most cases, its
value grows with time. Note that the above expression is limited to a Universe filled
with matter and cosmological constant, and neglects contributions from radiation
and generic forms of dark energy.
The linear perturbation theory provides an exact description of the structure forma-
tion scenario as long as δ � 1. Once δ ∼ 1, the linear theory approximations break
down and is no long valid in these regimes. Nonetheless, it provides a general view
of structure formation.

1.2.3 The nature of initial conditions
As the structures in the Universe form from the originally tiny perturbations, it is of
primary importance to characterize the nature of these initial perturbations. This is
because the outcome of structure evolution is almost entirely dictated by the charac-
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teristics of the primordial perturbations. The nature of the early spatial perturbations
is characterized as a Gaussian random field (Adler 1981; Bardeen et al. 1986; Heav-
ens & Peacock 1988). The following reasons provide a compelling argument in favor
of this hypothesis.

Inflation. Although there is no direct evidence, it is believed that the Universe un-
derwent a phase of rapid inflation roughly 10−35s after its birth. The ”seeds” for
the structures in the Universe are planted during the inflationary era in the form of
spontaneous quantum fluctuations of the high energy pseudo-vacuum state that the
Universe was in. In the simplest of inflationary theories, these fluctuations are Gaus-
sian distributed and therefore characterized as a Gaussian random field, with a scale
invariant power spectrum of the form P(k) = kn (Guth & Pi 1982). The case when
n = 1 is also predicted independent of the inflationary scenario (Harrison 1970;
Peebles & Yu 1970; Zeldovich 1972). Somewhat more realistic inflationary scenar-
ios predict that n deviates from unity, which agrees with measurements of n ∼ 0.96
(Planck Collaboration et al. 2015).

Cosmic Microwave background. The temperature anisotropies in the Cosmic Mi-
crowave follow the anisotropies in the density perturbations directly, and offer a
peek into the characteristics of the primordial density fluctuations. The measure-
ment of the temperature fluctuations in the cosmic microwave background, also
suggests that its character is that of a homogeneous and isotropic Gaussian random
field to high accuracy (Planck Collaboration et al. 2015; Smoot et al. 1992; Bennett
et al. 2003; Spergel et al. 2007; Komatsu et al. 2010). Figure 1.1 shows the temper-
ature anisotropies in the Cosmic Microwave Background radiation as measured by
experiments like COBE, WMAP and Planck (Fixsen et al. 1994; Komatsu et al. 2009;
Planck Collaboration et al. 2015).

The Central Limit Theorem. The Central Limit Theorem, or CLT, states that a sum
of many independent and identically distributed (i.i.d.) random variables will tend to-
wards a normal distribution. The rapid expansion in the inflationary phase in the
early Universe is most probably a result of an interaction of multiple scalar fields
(Linde 1982a,b). In such a scenario, the observed quantum fluctuations are a su-
perposition of multiple random fields, each corresponding to a given scalar field.
Invoking CLT in such a case means that the net observed fluctuation, which is a
superposition of multiple fields, follows a Gaussian profile.

1.2.4 Gaussian Random fields
A random variable is a variable whose value is subject to probabilistic variations
(Adler 1981; Bardeen et al. 1986). Random variables model the outcome of stochas-
tic processes, the values of which vary randomly over the domain of the variable.
The values of a random variables are not fixed, but rather drawn from a distribution
function. The most common is the Gaussian distribution function, given by
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f (x, σ) =
1

σ
√

2π
e−

x2

2σ2 (1.20)

where, σ is the standard deviation of the variable. We implicitly assume that the
mean or expectation of the variable is zero.

A generalization of a random variable is a random field, which is a collection of
random variables. A random field is a Gaussian random field if the set of constituent
random variables are all drawn from Gaussian distributions.

A random field can be specified by the m-point joint distribution function

P[ f1, . . . , fm]d f1 . . . d fm. (1.21)

The m-point joint probability distribution function for a Gaussian random field
is a multi-variate Gaussian, given by

P [ f1, . . . , fm] d f1 . . . d fm =
1

(2π)N(detM)1/2 · exp

(
−

∑ ∆ fi(M−1)ij∆ f j

2

)
d f1 . . . d fm

(1.22)

The equation is in the normalized form, such that the integral of P [ f1, . . . , fm] d f1 . . . d fm,
over all f ∈ RN , is equal to 1. In the above expression,

∆ fi = fi − 〈 fi〉
Mij = 〈∆ fi∆ f j〉 (1.23)

The matrix M−1 is the inverse of the m×m covariance matrix Mij, in which the angle
bracket denotes the ensemble average of the product, over the 2-point probability
distribution function. In effect, M is the generalization of the variance of the 1-point
normal distribution, and M = [σ2

0 ] for the case m = 1.

Properties of Gaussian random fields: correlation function and power spectrum
Equation (1.22) is an expression of the fundamental property of Gaussian fields

that they are fully specified by the second order moment, via the autocorrelation
function ξ(r), encoded through the covariance matrix. The latter expresses the cor-
relation between the density values at any two points r1 and r2, such that

r = r1 − r2. (1.24)

If the field is homogeneous and isotropic, the correlation function becomes a
function only of the absolute distance between the points r = |r|, such that

ξ(r) = ξ(|r|) ≡ 〈 f (x) f (x + r)〉 . (1.25)

In other words, the entries in the matrix are the values of the autocorrelation function
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for the distance between the points: Mij = ξ(rij), with rij = ‖xi − xj‖ .
To appreciate the contribution from different scales, the structure of a Gaussian

field is more transparently characterized by the power spectrum P(k). It is the
Fourier transform of the autocorrelation function, specifying the mean square of the
fluctuations of the Fourier components f̂ (k) of the field f (x),

f (x) =
∫ dk

(2π)3 f̂ (k) e−ik·x , (1.26)

via the relation

〈 f̂ (k) f̂ (k′)〉 = (2π)3/2 P(k) δD(k− k′) , (1.27)

where δD(k) is the Dirac delta function. This implies that the knowledge of the
power spectrum alone is sufficient to fully characterize a Gaussian random field.
Below we give examples of two cosmologically relevant power spectra.

Power-law power spectrum. The power-law power spectrum is a generic class of
spectrum, specified by the spectral index n

P(k) ∝ kn. (1.28)

The case when n = 1 is the scale invariant spectrum. Known commonly as the
Harrison-Zel’dovich-Peebles spectrum, it is considered to be the natural choice for
the primordial power spectrum (Dunkley et al. 2009; Komatsu et al. 2011; Planck
Collaboration et al. 2015). This is to avoid a power spectrum with large rises either
at large wavenumbers (n > 1) or small wavenumbers (n < 1). In these cases, δ could
exceed unity and nonlinear collapsed structures (e.g. primordial black holes) could
form in the ultra-early universe (van de Weygaert & Bond 2008). The measured
spectrum of the primordial perturbations is very close to it, n ∼ 0.96 (Dunkley et al.
2009; Komatsu et al. 2011; Planck Collaboration et al. 2015). It is worthwhile noting
here that certain inflationary theories also predict n ∼ 1 for the primordial power
spectrum (Guth & Pi 1982).

LCDM power spectrum. The LCDM power spectrum stems from the standard con-
cordance model of cosmology. It fits the measured power spectrum of the cosmic
microwave background as well as the power spectrum measured in the nearby large
scale Universe to high accuracy.It is given by (Eisenstein & Hu 1999; Hu & Eisenstein
1999)

P(k) ∝ T2(k)P0(k), (1.29)

where P0(k) is the primordial power spectrum and T(k) is the transfer function,
which is an expression of physical processes acting on the fluctuations as they enter
the horizon. Its shape can be inferred by evaluating the evolving processes, through
the Boltzmann equation. A good numerical fit is given by (Eisenstein & Hu 1999; Hu
& Eisenstein 1999)
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Figure 1.2 The theoretical power spectrum as predicted by the concordance cosmology. Superimposed
are also the observationally measured power spectra over approximately four decades of wave number.
Figure reproduced from Tegmark et al. (2004).

PCDM(k) ∝
kn

[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]
1/2 ×

[ln(1 + 2.34q)]2

(2.34q)2 ,

(1.30)

q = k/Γ,

Γ = Ωmh exp
{
−Ωb −

Ωb
Ωm

}
.
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In the above expression, Ωm and Ωb are the total matter density and baryonic matter
density respectively. Γ is referred to as the shape parameter. Plugging in the most
recent observed values of Ωb and Ωm, Γ ∼ 0.21.

The LCDM power spectrum is usually normalized by the amplitude of fluc-
tuations in the Cosmic Microwave Background. Figure 1.2 presents the theoreti-
cally predicted power spectrum from LCDM cosmology (in red). Superimposed
in this figure are also measurements using cosmic microwave background (CMB)
anisotropies, galaxy large scale structure, weak lensing of galaxy shapes, and the
Lyman alpha forest, in order of decreasing comoving wavelength (Tegmark et al.
2004). In addition, there is a single data point for galaxy clusters, whose current
space density measures the amplitude of the power spectrum on 8h−1Mpc scales
(White et al. 1993). One can see that the modern CMB and LSS data agree over a sub-
stantial region of overlap with the theoretical power spectrum, giving us reasonable
confidence in the correctness of the model.

1.2.5 The non-linear regime
When δ ∼ 1, linear theory is no longer adequate in explaining the evolution of struc-
tures due to non-linear coupling between different modes. Structure growth in the
non-linear regime has been understood in great details through elementary, yet ele-
gant, models like the spherical collapse model (Gunn & Gott 1972) and the ellipsoidal
collapse model (Icke 1973; White & Silk 1979; Peebles 1980).

In the spherical collapse model, one examines the non-linear evolution of a spher-
ically symmetric density peak. Under gravitational amplification, this primordial
density peak turns around and collapses, when the linearly-extrapolated primordial
density reaches a critical density fc. The peaks in the primordial field that have col-
lapsed into collapsed objects at any time t (and hence the redshift z) are those for
whom the overdensity linearly extrapolated to the present epoch satisfies

δL(x, t|R) > fc(z)/D(z). (1.31)

Here, δL is the linearly extrapolated overdensity, and D(z) is the structure factor (see
Equation 1.19).

While the spherical collapse model is highly instructive in informing about the
mechanism of non-linear growth of structures, it is nevertheless a very idealized
scenario. In realistic circumstances, the primordial density perturbations are never
spherical, nor isolated (Bardeen et al. 1986). The overdensity in realistic circum-
stances collapse anisotropically.

Historically, anisotropic collapse has been modeled by studying the collapse of
homogeneous ellipsoids (Icke 1973; White & Silk 1979; Peebles 1980). Icke (1973)
showed that the collapse along the shortest axis will occur more rapidly than that of
the spherical equivalent; the collapse along the medium axis will be comparable to
the spherical value, while the full collapse along all three axes will be slower than
the spherical counterpart. The extension to a cosmological setting, through inclusion
of the relation of exterior tidal forces to the linear deformation tensor of the interior
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was worked out by Bond & Myers (1996a).
The spherical collapse model is useful in gaining understanding about the con-

ditions when a genuinely recognizable cosmic object may form. In the same vein,
the ellipsoidal collapse model provides a basic understanding about the anisotropic
nature of the structural collapse. However, both these simple models cannot account
for the hierarchical nature of structures observed in the Universe.

1.2.6 Hierarchical growth of structures
In the hierarchical structure formation scenarios, structures form bottom-up. The first
structures to form are small compact objects. These objects merge together to form
larger and larger structures. Extended features that are still in the process of collaps-
ing, or collapsed features that have not fully virialized yet, contain a large amount
of smaller scale substructures at higher density. These substructures are a telling
example of the hierarchical structure formation process in the Universe. This hierar-
chical nature, together with anisotropy is perhaps the most significant property of the
cosmic mass distribution (Press & Schechter 1974; Cole & Lacey 1996; Lindner et al.
1995; Houlahan & Scalo 1992; Abel et al. 1998).

Observationally, the indications of hierarchical structure formation process can
be recognized in the megaparsec scale Universe. On these scales, one may recognize
large unrelaxed filamentary as well as sheet-like structures containing a multitude
of collapsed and virialized structures like rich clusters of galaxies as well as smaller
galaxy groups. On smaller scales, within the galaxy groups, the larger galaxies are
accompanied by smaller dwarf galaxies. Imprints of hierarchical structure forma-
tion are visible even at the scales of fully collapsed objects like clusters of galaxies.
A telling example is the Coma cluster which has a heavy group falling in (Neumann
et al. 2003). At the scales of galaxies, the imprints of hierarchical structure formation
process is manifested through the presence of streams in their dark haloes, which
most likely are remnants of infalling dwarf galaxies (Helmi et al. 1999; Helmi &
White 1999).

Computer simulations also show that larger and larger structures form due to
mergers and accretion of smaller structures that have formed at earlier times. Fig-
ure 1.3 shows zoom-ins at various scales in the state-of-the-art Millennium II simu-
lation (Boylan-Kolchin et al. 2009). At successive scales, the structure is marked by
anisotropic filamentary and sheet-like structures, that contain clusters of galaxies at
smaller scales.

1.2.7 Number distribution of collapsed objects : (extended) Press-Schechter for-
malism

In the hierarchical structure formation scenario, it is possible to statistically account
for the number and mass distribution of gravitationally collapsed objects using the
Press-Schechter formalism (Press & Schechter 1974). It is based on simple geomet-
ric considerations. The two key aspects are that the mass density fluctuations are
Gaussian in nature, and the overdensities collapse spherically (Gunn & Gott 1972),
meaning there is no preferred axis of collapse. It predicts that the number density
n(M) of objects with mass M is given by (Press & Schechter 1974; van de Weygaert
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& Bond 2008)

n(M) dM =

√
2
π

ρu

M2 ν(M) e−
ν2(M)

2 |dlnσ(M)

dlnM
|, (1.32)

ν(M) =
fc

σ(M)
.

In the above expression ρu is the universal background density, σ(M) is the rms
fluctuation at mass scale M, and is basically the power spectrum. This is related to
to the length scale R through the expression

M ∝ R3. (1.33)

ν(M) is the dimensionless threshold decided by the collapse barrier fc and the rms
mass fluctuation σ(M).

More recently, the formalism has been extended to a more detailed and accurate
analysis based on the excursion set formalism (Peacock & Heavens 1990; Bond et al.
1991; Sheth 1998; Sheth & Tormen 2002), and is commonly known as the extended
Press-Schechter formalism.

The PressSchechter formalism can also be applied to calculate the number distri-
bution of voids. The cosmic voids are defined as regions whose density is less than
some critical value δν ≤ 0 or, alternatively, as regions for which the three eigenval-
ues of the tidal tensor (Doroshkevich 1970; Bardeen et al. 1986) lie below some critical
value λν ≤ 0 (Sheth & van de Weygaert 2004; Kamionkowski et al. 2009; Lam et al.
2010; Song & Lee 2009; Jennings et al. 2013; Chan et al. 2014). An important aspect
in the calculation of the probability function of voids is the over-counting of voids
located inside collapsing regions. This voids-in-clouds problem (Sheth & van de Wey-
gaert 2004), can be solved within the excursion set theory by studying a two-barrier
problem: δc for halos and δv for voids. A considerable advantage of studying voids
and the void probability function is that the shape, size and number density of voids
is extremely sensitive to the underlying dark energy model, and hence can be a po-
tentially powerful tool for probing the nature of dark energy (Bonometto 1995; Park
& Lee 2007b; Kamionkowski et al. 2009; Lavaux & Wandelt 2010; Bos et al. 2012).

A very crucial point to note is that the (extended) Press-Schechter formalism re-
lates to the singularity structure of the density field. In particular, it identifies cosmo-
logical objects through the critical points, namely the maxima, saddles and minima,
of the density field. It computes the collapse and the corresponding number den-
sity of objects by tracking the upward crossing of singularities through the density
barrier defined by fc. By invoking the singularity structure of the density field, the
above formalisms are intimately connected to the topological structure of the field.

1.2.8 Numerical simulations
Numerical simulations have become the standard tool to understand the formation
and evolution of structures in the highly non-linear regimes. It has become possi-
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Figure 1.3 A sequential zoom through the Millennium-II Simulation depicting the hierarchical nature
of structures in the Universe. The simulation reveals the anisotropic and multiscale character of the hi-
erarchically evolving mass distribution. The large image (upper left) is a 15h−1Mpc thick slice through
the full 100h−1Mpc simulation box at redshift zero, centered on the most massive halo in the simulation.
Starting from the upper right and moving clockwise, subsequent panels zoom into the cluster region and
show slices that are 40, 15, 5, 2, and 0.5h−1Mpc on a side (with thicknesses of 10, 6, 5, 2, and 0.5 h−1Mpc).
Even at 0.5h−1Mpc, which is approximately 1/10th the diameter of the halo, a rich variety of substructure
is visible. Figure and text courtesy (Boylan-Kolchin et al. 2009).

ble to track and focus on the hierarchical growth of even individual structures, and
visualize the process of hierarchical evolution of structures through numerical sim-
ulations. N-body simulations, in principle involve the integration of 6N ordinary
differential equations defining the particle motions in Newtonian gravity. The first
computer simulation in astrophysics was implemented as early as 1960 (von Ho-
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erner 1960). The earliest N-body simulations in a cosmological context were those of
Aarseth and collaborators in the 1970’s and 1980s (Aarseth 1972, 1973; Aarseth et al.
1979; Aarseth & Dekel 1983; Aarseth 2011).

The majority of simulations aimed at understanding the distribution and evolu-
tion of matter at large scales in the Universe are dark matter simulations. To first
approximation, this is justified because the major share of matter in the Universe
is dark matter. This means that dark matter is the gravitationally dominant mass
component in the structure formation process. As a result, it provides us with an
accurate outline of the full cosmic mass distribution. It is considerably more chal-
lenging to include baryonic physics in simulations. This is because baryonic physics
is rather poorly understood and involves a multitude of processes like star formation
and radiative transfer, which make it considerably more expensive computationally.

The Millennium simulation (Springel 2005) is a state of the art computer simu-
lation that uses 21603 particles (more than 10 million) to trace the evolution of the
matter distribution in a cubic region of the Universe 500h−1Mpc on a side. Figure 1.3
shows the hierarchy of structures as seen in the Millennium II Simulation (Figure
courtesy Boylan-Kolchin et al. (2009)).

Due to the continuous and almost exponential increase in computational power,
we have seen some impressive developments when it concerns simulating the dark
matter and the baryonic matter together. Most recently, the Illustris project (Vogels-
berger et al. 2014) has successfully simulated in extraordinary detail, the full array of
dark matter and baryonic physics. This is in a box of side 100h−1Mpc. The size of the
box is large enough to be able to account for the formation of large scale structures,
while simultaneously being able to simulate baryonic physics as well as black hole
formation.

1.3 The Cosmic web
While we think that the cosmic matter distribution is uniform on large Gigaparsec
scales, it has an intricate web-like pattern on smaller distances. At scales of few
to hundreds of megaparsecs, 1 the universe has a web-like appearance, commonly
known as the Cosmic Web (Bond et al. 1996). The cosmic web is composed of huge,
virialized blobs called clusters, containing thousands of galaxies, as well as huge
amounts of dark matter and high temperature gas. These objects, due to their high
mass and luminosity, represent the most prominent feature of the cosmic web. One
such typical example, the Coma cluster, can be seen at the center of the CfA2 Great
Wall in the lower wedge in the top quadrant of Figure 1.4. Out of these of the virial-
ized clusters, spread out gigantic gigantic filaments. One can notice these filaments in
all the panels of Figure 1.4. Notice, for example, the thready structures coming out of
the Coma cluster. These filaments, also containing thousands of galaxies, dark mat-
ter and gas, serve as transport channels for mass flow in the Universe. The cosmic
web also consists of huge sheet-like objects commonly known as walls. The clusters,

1A parsec is the standard unit of measurement of distances in the cosmos. A parsec is 3.26 times
the light-year, the distance light covers in a year. A megaparsec is a million parsecs, the typical scale of
measurement of size of the large scale structures in the universe.
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Figure 1.4 The cosmic web. The galaxy distribution obtained from spectroscopic redshift surveys and
from mock catalogues constructed from cosmological simulations. The small slice at the top shows the
CfA2 Great Wall, with the Coma cluster at the center The CfA2 great wall contains around 2000 galaxies,
and stretches across 230h−1Mpc. Drawn to the same scale is a small section of the Sloan Digital Sky
Survey, in which an even larger Sloan Great Wall has been identified. This is one of the largest observed
structures in the Universe, containing over 10,000 galaxies and stretching over more than 420h−1Mpc.
The wedge on the left shows one-half of the 2dFGRS survey, which determined distances to more than
220,000 galaxies in the southern sky out to a redshift of 0.25. The SDSS has a similar depth but a larger
solid angle and currently includes over a million observed redshifts in the northern sky. At the bottom
and on the right are shown the mock galaxy surveys, constructed from the ”Millennium simulation. These
are constructed such that the survey geometries and magnitude limits match those of the observational
catalogs.
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Figure 1.5 The Cosmic Web and its components illustrated through a 2D slice of the 3D density field
of Millennium simulation (Courtesy Springel (2008)). It is easy to notice the clusters, filaments and walls
intertwined around vast near-empty voids.

filaments and walls of the web are intertwined around vast near-empty cosmic voids.
As can be seen in all the panels in Figure 1.4, both observations and simulations
present the evidence that cosmic voids are the dominating components in terms of
volume occupancy (also see, e.g., Cautun et al. (2014)).

That the cosmic web indeed exists has been confirmed by a host of galaxy red-
shift surveys like the CfA and CfA2 surveys (de Lapparent et al. 1986; Huchra &
Geller 1982), the 2dFGRS survey (Colless et al. 2003), the SDSS survey (Abazajian
et al. 2003) and the 2MRS survey (Huchra et al. 2005; Skrutskie et al. 2006). Mas-
sive megaparsec to gigaparsec scale computer simulations also show the existence
of the Cosmic web (Springel 2008). Figure 1.4 presents an impression of the galaxy
distribution obtained from spectroscopic redshift surveys, as well as from mock cat-
alogues constructed from cosmological simulations ( Figure courtesy Springel et al.
(2006)). The small slice at the top shows the CfA2 Great Wall, with the Coma clus-
ter at the center The CfA2 great wall contains around 2000 galaxies, and stretches
across 230h−1Mpc. Drawn to the same scale is a small section of the Sloan Digital
Sky Survey, in which an even larger Sloan Great Wall has been identified. This is one
of the largest observed structures in the Universe, containing over 10,000 galaxies
and stretching over more than 420h−1Mpc. The wedge on the left shows one-half
of the 2dFGRS survey, which determined distances to more than 220,000 galaxies in
the southern sky out to a redshift of 0.25. The SDSS has a similar depth but a larger
solid angle and currently includes over a million observed redshifts in the northern
sky. At the bottom and on the right are shown the mock galaxy surveys, constructed
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Component λ1 λ2 λ3
Clusters + + +

Filaments + + -
Walls + - -
Voids - - -

Table 1.2 The morphology of a mass element according to the Zeldovich formalism. The quantities
λ1 > λ2 > λ3 denote the eigenvalues of the deformation tensor. Their signs determines the morphology
of the element.

from the ”Millennium simulation. These are constructed such that the survey ge-
ometries and magnitude limits match those of the observational catalogs. One can
notice the presence of similar kind of structures in all the four wedges that concern
both observational data and simulations.

The theoretical understanding of the nature of the emergent web from the pri-
mordial fluctuation field is now well developed (a brief description of the theory of
formation and evolution of structures in the cosmos can be found in Section 1.2).
However, an in-depth analysis is hindered by a multitude of factors. Chief among
these are the lack of symmetry in the structures, strong non-local influences, and
the hierarchical nature of the gravitational clustering, due to which many scales are
simultaneously relevant. The structures in the web also exhibit complex connectiv-
ity, wherein the structures of lower dimension like filaments are embedded within
structures of higher dimensions like walls. In addition, one also sees the hierarchical
buildup of structures in the web, wherein many small structures connect together
to form progressively larger structures. The complex connectivity, in combination
with the hierarchical buildup of structures, makes it an extremely challenging task
to segregate the components of the web, and study their properties.

1.3.1 Zel’dovich approximation
The Zel’dovich approximation (Zel’dovich 1970) assumes a seminal role in under-
standing the formation of web-like anisotropic structures that pervades the Uni-
verse. It is a Lagrangian formulation, in which the frame of reference moves along
with the mass element of interest. It looks at the displacement and corresponding
deformation of mass elements at the initial Lagrangian location. It can be shown
that the position x(t) at some time t depends on the initial coordinate q and a dis-
placement term via

x(t) = q− D+(t)~∇qΨ(q). (1.34)

Here D(t) is the linear growth factor, and Ψ(q) is related to the initial peculiar grav-
itational potential φ0(q) via the relation

Ψ(q) =
2

3Ω0H2
0

φ0(q). (1.35)
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The peculiar gravitational potential φ0(q) can, in turn, be related to the perturbations
in the initial density field.

Using this prescription, we can evaluate the evolution of the initial mass element
ρ̄d3q to a the element ρ(t)d3x, at a later time t. The mass within the volume element
in question is conserved at all times, such that

ρ0d3q = ρ(t)d3x. (1.36)

This in turn gives the evolution of the density field

ρ(x) =
ρ0

[1− Dλ1(q)][1− Dλ2(q)][1− Dλ3(q)]
, (1.37)

where, (λ1 > λ2 > λ3) are the eigenvalues of the deformation tensor

Ψij =
∂2Ψ

∂qi∂qj
. (1.38)

Equation 1.37 provides a recipe for the anisotropic collapse of matter into pan-
cakes, filaments and clusters. The final morphology is determined by the magnitude
as well as the sign of the eigenvalues, which is presented in Table 1.2. A positive
eigenvalue represents a compression along that direction, while a negative eigen-
value implies an expansion. When λ1 > 0, it implies that (1− Dλ1) → 0 at some
time t corresponding to

D(t) = 1/λ,

and a collapse along that axis results in a sheet. Similarly, for (λ2, λ3) > 0 implies a
collapse along the second and the third axis, giving rise to a filament and a cluster
respectively. The condition (λ1 > λ2 > λ3) also points to the fact that the collapse
and formation of anisotropic structures follows a well-defined sequence – from pan-
cakes, to filaments, to clusters.

The Zel’dovich formalism, however, suffers from the problem that it is a ballistic
motion, that results in extended shapes of collapsed objects. This is an artifact of
the formalism. To remedy this, one needs to stick these particles in the dense region,
which is taken care of by introducing an additional viscosity term. This extension of
the Zel’dovich approximation through the approach of adhesion was first advocated
by Kofman & Shandarin (1988), Gurbatov et al. (1989) and Kofman et al. (1990). It
has received renewed attention in the recent years due to the work of Hidding et al.
(2014, 2015).

A more comprehensive analytical description of the hierarchical structure forma-
tion, embedding the anisotropic collapse into hierarchical clustering scenario, has
been developed by Bond and Myers (Bond & Myers 1996a,b,c), which is known as
the peak patch formalism. Assuming that the initial density field is Gaussian, this
formalism shows that it is enough to know the tidal field in a few well chosen lo-
cations which are the nodes, or clusters, to delineate the patterns of the web in that
region (Bond et al. 1996). It highlights the importance that virialized clusters play in
determining the overall connectivity and shape of the web.
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1.3.2 The importance of the Cosmic Web
Over the last few decades, the importance of determining the properties of the cos-
mic web has become increasingly important. The patterns in the web have signifi-
cant implications for the understanding of the growth of structures in the Universe,
as well as for the understanding of formation and evolution of galaxies. Off late,
the idea that the Cosmic Web may provide an independent and additional probe for
testing deviations of primordial density perturbations from Gaussian initial condi-
tions is also being recognized widely (Verde et al. 2000; Bartolo et al. 2005; Hikage
et al. 2006, 2008; McDonald 2008).

The different components of the cosmic web can provide independent probes for
constraining cosmological models, as well as estimates on the amount of dark matter
and dark energy in the Universe. For example, the structure growth factor, measured
through observations of clustering in the cosmic mass distribution, offers a window
into the role that dark energy plays in governing the dynamics of the Universe in
late epochs (Guzzo 1996; Linder & Jenkins 2003; Seljak et al. 2002; Lavaux & Wandelt
2010; Angulo et al. 2012; Sutter et al. 2014a). The estimation of the total amount of
dark matter in the Universe, can be probed through gravitational lensing of distant
galaxies by the clusters and filamentary structures in the cosmic web (Dietrich et al.
2012).

The measurement of the evolution and influence of dark energy has a potential
probe through the cosmic voids (for a review, see van de Weygaert & Platen 2011).
The underdense nature of cosmic voids makes them more sensitive to the influence
of dark energy, than any other component of the web. Probes of the influence of
dark energy on the voids include determining the evolution of dark energy through
measuring the shape and size of cosmic voids (Park & Lee 2007b; Lavaux & Wandelt
2010; Bos et al. 2012). Cosmic voids also acquire importance in the modified gravity
models, as the shape and size of voids is more sensitive to the details of the model
in comparison to clusters, filaments or walls (Clampitt et al. 2012; Terukina & Ya-
mamoto 2012; Hellwing et al. 2014). This is because in these models, the fifth force
or the modified gravity term is heavily screened in the high density regions.

A tool aimed at studying the nature of cosmic voids is the void abundance or
the density dependent frequency of cosmic voids (Jennings et al. 2013; Chan et al.
2014; Pisani et al. 2015). A considerable advantage of studying voids and the void
probability function is that the shape, size and number density of voids is extremely
sensitive to the underlying dark energy model, and hence can be a potentially pow-
erful tool for probing the nature of dark energy (Bonometto 1995; Park & Lee 2007b;
Kamionkowski et al. 2009).

The cosmic web is also of key importance from the view of understanding about
the formation, evolution and properties of galaxies. The formation and evolution of
galaxies has been shown to depend on the morphology as well as density of the part
of the web where it resides in (Cautun et al. 2014).

The anisotropic nature of matter distribution in the web also generates tidal fields,
which is known to be the responsible for generation of angular momentum in galax-
ies (Hoyle 1951a; Doroshkevich 1970; Efstathiou & Jones 1979; Jones & Efstathiou
1979). This has been investigated in numerical simulations to show that angular mo-
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Figure 1.6 The large scale redshift-space correlation function of the SDSS LRG (luminous red galaxies)
sample. The black dots represent the correlation function calculated from observed galaxy distribution.
The magenta line shows a pure CDM model (Ωmh2 = 0.105), meaning there are no baryons. Characteris-
tically, it lacks the baryonic acoustic peak. The green, red and blue lines represent models with a baryon
fractional density of Ωbh2 = 0.024 and a CDM density of, respectively, Ωmh2 = 0.12, 0.13, 0.14. On the
smaller scales, the correlation function approximates a power law. On progressively larger scales the cor-
relation function drops down near zero, signifying isotropy. The bump at 100h−1Mpc corresponds to the
baryonic acoustic peak. Figure courtesy Eisenstein et al. (2005).

mentum as well as the shape of dark matter haloes is strongly correlated with the
orientation of the host large scale structures (Aragón-Calvo et al. 2007a; Hahn et al.
2007; Libeskind et al. 2012; Aragon-Calvo & Yang 2014). That the orientation of an-
gular momentum of galaxies is strongly correlated to the morphology of the host
large scale structure, in particular the filaments, is also evident in the observations
of alignment of spin axis with respect to the large scale filament they reside in (Jones
et al. 2010; Tempel et al. 2013; Tempel & Libeskind 2013).

Another interesting environment with respect to galaxy evolution is voids. The
void galaxies provide a unique perspective regarding galaxy formation and evo-
lution, because because of the relatively pristine environment uncontaminated by
complex processes like mergers and tidal stripping, that have more significant ef-
fect in denser regions (van de Weygaert & Platen 2011; van de Weygaert et al. 2011;
Kreckel et al. 2012).

1.4 Characterization of the cosmic web

The effort to describe and characterize the mass distribution in the Universe has
been ongoing for decades now. A quantitative characterization of the complex and
rich spatial patterns in the Universe is extremely important in view of comparing
and validating various models with respect to the actual mass distribution in the
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Figure 1.7 An illustration depicting the insensitivity of the correlation function to the phases of the
constituent modes. On the left side is a structural pattern depicting a cellular structure. The right hand
figure is produced by keeping the amplitudes of the constituent Fourier modes of the left-hand figure
intact, while at the same time randomizing the phases of the Fourier modes. Since the correlation function
is dependent only on the amplitude, both the patterns produce the same correlation function. Figure
courtesy Szapudi & Szalay (1997).

Universe. The methods employed towards this end can broadly be classified into
three categories – statistical, geometric or morphological, and topological. Below we
present a short account of these techniques and discuss relevant results wherever
possible.

1.4.1 Statistical quantification of the web

Correlation functions. Measuring the n-point correlation function, more specifi-
cally the 2- point correlation function, has been the mainstay of statistical analysis in
cosmology (Peebles 1980; Davis & Peebles 1983; Hamilton 1993; Szapudi & Szalay
1993a,b) (for an excellent and comprehensive textbook on the statistical characteri-
zation of the large scale mass distribution, see Martı́nez & Saar 2002).

Given a random point (galaxy) at location ~x1, in an infinitesimal volume dV1,
the 2-point correlation function describes the probability that another galaxy will be
found at a location ~x2, in an infinitesimal volume dV2. It is given by

dP~x1,~x2
= n̄2 (1 + ξ(r12)) dV1dV2, (1.39)

where, n̄ is the average number density of galaxies in the given survey volume, and
r1,2 = |~x1−~x2|. The continuous version of the 2-point correlation function is the auto-
correlation function, which for a continuous density field describes the probability
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that the density is ρ1 at location ~x1 and ρ2 at location ~x2

ξ(r12) = 〈ρ(~x1)ρ(~x2)〉. (1.40)

Statistical isotropy and homogeneity, which is the fundamental assumption of the
cosmological principle, implies that the auto-correlation function is a function only
of the absolute distance between the locations (see Equation 1.25). Figure 1.6 presents
the correlation function as measured from the distribution of luminous red galaxies
(LRG) in the SDSS catalog (Peebles 1980; Eisenstein et al. 2005). The black dots rep-
resent the correlation function as measured from the observed galaxy distribution.
The continuous lines are fits from various models. At small scales, the correlation
function approximates a power law

ξ(r) =
(

r
r0

)−γ

(1.41)

where, γ = 1.8 and r0 ' 5h−1Mpc. At progressively larger scales, the correlation
drops down close to zero, signifying that the Universe is homogeneous on those
scales (Peebles 1980; Martinez et al. 1990).

The correlation function has provided a wealth of statistical information about
the nature of the matter distribution in the Universe. However, the auto correlation
function has no structural sensitivity to the geometric and morphological patterns
of the mass distribution. This is because, the auto-correlation function is dependent
only on the amplitude of the constituent Fourier modes, and provides no informa-
tion about the phases of these modes. For example, it cannot distinguish between
distributions with phase correlated Fourier modes versus distributions which have
the phases of the Fourier modes randomly distributed. A revealing illustration of
this is displayed in Figure 1.7. The left panel in the figure displays a pattern with a
clear cellular structure. The pattern in the right panel is constructed from the pat-
tern in the left panel by randomizing the phases of the constituent Fourier modes.
Since the correlation function is dependent only on the amplitude, both the patterns
produce the same correlation function.From this example, it is clear that the corre-
lation function only provides limited or no amount of information on the complex
geometric and morphological patterns of the cosmic web.

Higher order correlation functions, in particular the 3-point correlation function,
have also been used to describe the statistics of matter distribution. However, the
higher order correlation functions are limited in their usefulness because the errors
in their measurement become prohibitively large with increasing order.
Count in cells and fractals. For both numerical models and analytic approximations
of the cosmic mass distribution, it is necessary to characterize the clustering that
develops in a quantitative manner. Conventionally, this is done by presenting the
two-point correlation function xi(r) for the mass distribution. However, by itself
this does not fully characterize the distribution of points. An important alternative
is to look at the distribution of counts in cells as a function of cell size (Jones 1992).

The counts in cell method represents another statistical approach, that is sensitive
to the pattern of the mass distribution (Peebles 1980). The first analyses of galaxy sky
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maps were done by dividing the sky into cells and counting the cell occupancy (Bok
1934; Mowbray 1938; Rubin 1954; Limber 1954; Totsuji & Kihara 1969). It defines the
probability of finding N galaxies in a volume V (White 1979). Particularly interesting
is the void probability function P0(V)

P0(V, n0) = exp(−an0V), (1.42)

that represents the probability that a volume V randomly selected in a point distri-
bution with mean density n0 will contain no galaxies (White 1979). White (1979) also
point out that the scale a can be expanded in terms of the correlation functions of the
point distribution, given by

a = 1 +
∞

∑
0
(−n0)

i−1ξi dV1 dV2 . . . dVn. (1.43)

where, ξi is the i-point correlation function of (i− 1) coordinates. Different clustering
models have been proposed based on particular choices for the counts in cells (Coles
& Jones 1991; Saslaw 2000; Borgani 1993).

There is a formalism for describing moments of cell counts that is commonly
used when describing fractal point sets that was adopted as a clustering descriptor
of the cosmic mass distribution by Martinez et al. (1990). Possible ways of analyzing
the statistical properties of point sets is through the possible scaling of the moments
of the counts in cells (Jones 1992) or the scaling of moments of counts of neighbors
(Martinez & Coles 1994).

The fractal model is of relevance only in the non-linear regimes of gravitational
clustering. In the linear regimes, we do not expect any scaling, as the mass distri-
bution follows from the primordial field. On large scales, the Universe is isotropic
and homogeneous and hence lacking in any structure. Evidence from galaxy dis-
tributions as seen in the SDSS also suggest that the distribution of matter smooths
out on a scale of around 100h−1Mpc (Groth & Peebles 1977, 1986; Peebles 1993). Im-
portant to note also is that the fractal description implies no particular underlying
physical process: it is merely a statement of how moments of counts in cells behave
as a function of cell size (Jones 1992).

1.4.2 Delineating the structures of the web
Over the last decade the view has emerged that a full analysis of the rich structures
seen in the mass distribution in the Universe need to take into account the geometric
and morphological aspects of the elements of the cosmic web. In particular, there
has been an effort to detect and isolate the components of the cosmic web, namely
clusters, filaments, walls and voids, with a view to study their characteristics in a
more systematic way. In recent years, a number of methods attempting to detect
and describe the structural patterns in the cosmic web have been developed. These
methods have been immensely instructive in illuminating the connectivity features
and the structural patterns of the web.

Studies carrying out an analysis of the global connectivity of cosmic web, by
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means of percolation analysis (Shandarin & Zeldovich 1983) were the first to do so
with respect to the filaments in the galaxy distribution. An attempt to construct the
minimal spanning tree (Barrow et al. 1985; Colberg 2007) of the structures in the cos-
mic web has also been instructive in studying the connectivity features of the cosmic
web. Recently, the methodology has been extended to produce a full characterization
of the cosmic filamentary structures in the web by the GAMA (Galaxy and Mass As-
sembly) team (Alpaslan et al. 2015). Percolation analysis and spanning trees, while
relatively sensitive to the underlying structure, are still global quantities and fail to
capture and describe the local variations in shape.

The methods involving determining shapes locally through the eigenvalues of
a range of fields arising in cosmology have also been at the forefront in delineat-
ing the cosmic web. These involve the eigenvalues of the Hessian of density field
(Aragón-Calvo et al. 2007b, 2010; Cautun et al. 2013) or through the eigenvalues of
the tidal tensor (T-Web) or the velocity shear tensor (V-Web) (Tempel et al. 2014).
Aragón-Calvo et al. (2010) and Cautun et al. (2014) further evaluate this in a multi-
scale fashion by performing the procedure on a stack of images in the scale space,
which are derived from the original image through convolution with an appropriate
filter at a range of scales. However, the evaluation of Hessian suffers from numerical
inaccuracies as it is a second order quantity.

Noteworthy also are models and methodologies emanating from statistical con-
siderations for delineating the cosmic filaments. Most prominent among them are
the candy model, that uses a marked point process to delineate the filaments (Stoica
et al. 2005), and the recovery of filaments by recognizing them as the medial axis of
a given point process (Genovese et al. 2010).

1.5 Topology of the mass distribution in the Universe

Topology (greek: ”τóπoς” (topos), meaning ”space”, and ”λóγoς” (logos) mean-
ing ”study”) is the mathematical study of shapes. It is an area of mathematics con-
cerned with the properties of space that are preserved under continuous deforma-
tions including stretching (compression) and bending, but not tearing or gluing. This
includes the study of properties of spaces such as connectedness, continuity and
boundary. Topology developed as a field of study out of geometry and set theory,
through analysis of such concepts as space, dimension, and transformation.

Topology is a vast field, which includes many subfields. General topology estab-
lishes the foundational aspects of topology and investigates properties of topologi-
cal spaces, as well as concepts inherent to topological spaces. Algebraic topology tries
to measure degrees of connectivity using algebraic constructs such as homology and
homotopy groups. Differential topology deals with differentiable functions on differ-
entiable manifolds. It is closely related to differential geometry and together they
make up the geometric theory of differentiable manifolds. Geometric topology pri-
marily studies manifolds and their embeddings in other manifolds. In the context
of this thesis, we are primarily interested in algebraic topology, specifically through
the concept of homology. We also deal with concepts derived from specific areas of
differential topology. These include studying the behaviour of functions on the man-
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ifold, and the geometric properties of the manifold as induced by these functions,
through Morse theory (Milnor 1963). Specifically, we concentrate on the cosmic den-
sity fields, and their geometric and topological properties.

The topological invariant that brings together these seemingly different sub-branches
of topology is the Euler characteristic. It establishes profound, and perhaps even sur-
prising links between seemingly widely different areas of mathematics (Adler & Tay-
lor 2010). While in simplicial topology Euler’s polyhedron formula states that the Euler
characteristic of a manifold is the alternating sum of the number of k-dimensional
simplices needed to triangulate it (Edelsbrunner & Harer 2010)

χ = V − E + F. (1.44)

Its role in algebraic topology as the alternating sum of Betti numbers is expressed by
the Euler-Poincaré formula (see Section 1.6.1 for a definition of the Betti numbers)

χ = β0 − β1 + β2 − . . . (−1)dβd. (1.45)

Even more intricate is the connection that it establishes between these topological
aspects and the singularity structure of a field, which is the realm of differential topol-
ogy. In particular, interesting is the relation established by Morse theory of the Euler
characteristic being equal to the alternating sum of the number of singularities of
different indices, i.e. of maxima, minima and saddle points

χ = Nmax − N2−saddle + N1−saddle − Nmin. (1.46)

Finally, its significance in integral geometry is elucidated via Crofton’s intersection
formula (Crofton 1868; Hadwiger 1957), which establishes the fact that Minkowski
functionals of a manifold M can be expressed as integrals over the Euler charac-
teristic of its intersection with hyperplanes in different dimensions. To evaluate
the k-th Minkowski functional of a d-dimensional manifold M, one has to consider
the Euler characteristic of the intersection of k-dimensional hyperplanes Sk with M,
χ(Sk ∩M). The value of the Minkowski functional Qk(M) is equal to the integral of
the Euler characteristic χ(Sk ∩M) over the space E d

k of all conceivable hyperplanes
Sk (Schmalzing & Buchert 1997),

Qk(M) =
ωd

ωd−kωk

∫
Ed

k

dµk(Sk) χ(Sk ∩M) , (1.47)

where, the normalization constants ωj are the volumes of j-dimensional unit spheres.
A key aspect of topology that makes it an important tool for studying the cos-

mic mass distribution is its insensitivity to systematic effects such as compression,
stretching, bending, rotation and translation. This property can be immediately used
to infer that the topology of the primordial field and that of the evolving field in the
later epochs would be invariant and are insensitive to systematic effects such as grav-
itational evolution, galaxy biasing, and redshift-space distortion (Park & Kim 2010).
This is true as long it involves linear and quasi-linear structures, which, formally,
is the regime before shell crossing occurs. Given this, topological measures are ex-
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tremely robust for the purpose of discrimination between the models of the cosmic
mass distribution.

Topological studies have been invoked to characterize the cosmic mass distribu-
tion analysis for many decades. The first studies that focused on topological char-
acterization of the cosmic mass distribution evaluated and analyzed the genus and
Euler characteristic of the models as well as observational data of the cosmic mass
distribution (Doroshkevich 1970; Adler 1981; Bardeen et al. 1986; Gott et al. 1986;
Hamilton et al. 1986). Later, more discriminative topological information became
available with the introduction of Minkowski functionals (Mecke et al. 1994). As
the Euler characteristic is one of the Minkowski functionals, these descriptions are
intimately connected. In the last decade, methods emanating from topological for-
malisms have also provided recipes for detecting and delineating the structures of
the cosmic web (Platen et al. 2007; Aragón-Calvo et al. 2010; Sousbie 2011; Sousbie
et al. 2011).

In this section, we present a brief description of the topological measures that we
mention in the previous paragraphs, specifically the Euler characteristic and the re-
lated concept of topological genus. These measures have been employed extensively
to study the properties of the cosmic mass distribution.We also discuss their appli-
cations in a cosmological context. This establishes the background and context for
the introduction of the new topological formalisms described in this thesis. These
formalisms are interesting in the sense that they complement and expand on the ex-
isting techniques, and as such present a more detailed account of the topology of
cosmic mass distribution.

1.5.1 Genus and Euler characteristic
Genus 2 is a topological invariant property of a surface, defined as the maximal num-
ber of non-intersecting simple closed curves that can be drawn on the surface with-
out rendering it disconnected. Roughly speaking, it is the number of 1-dimensional
holes in a surface. A hole, in a mathematical object, is a topological structure which
prevents the object from being continuously shrunk to a point. When dealing with
topological spaces, a disconnectivity is interpreted as a hole in the space. Alter-
natively, the genus can be interpreted as the number of independent handles on a
surface.

We give an intuitive interpretation of genus through the illustration of a torus
and a sphere in Figure 1.8. There can be two independent incisions that can be made
on the surface of a torus, without rendering it disconnected. These incisions are
along the curves drawn in red and blue. This suggests that the genus of a torus is
2. On the other hand, it is not possible to draw any closed curve on the surface of
a sphere without rendering it disconnected. Hence, the genus of a sphere is 0. Gott
and collaborators (Gott et al. 1986; Hamilton et al. 1986) introduced the use of genus
to characterize the cosmic mass distribution.

The Euler characteristic is best understood through the Poincaré formula. Let a

2For consistency, it is important to note that the definition of genus g used in cosmological studies
is different from the mathematical definition of genus G, the difference being the number of connected
regions: g = G− c.
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Figure 1.8 Illustration of a torus and a sphere. Genus is the number of independent closed curves that
can be drawn on a surface, without rendering it disconnected. For a torus, there can be two independent
closed curves that can be drawn without rendering it disconnected (drawn in red and blue). This suggests
that the genus of a torus is 2. On the other hand, it is not possible to draw any closed curve on the surface
of a sphere without rendering it disconnected. Hence, the genus of a sphere is 0.

closed surface have genus g. Then the Poincaré formula states that

χ(g) = V − E + F, (1.48)

where

χ(g) = 2− 2g (1.49)

is the Euler characteristic, sometimes also known as the Euler-Poincaré characteris-
tic. V, E and F are the number of vertices, edges and faces used to triangulate the
manifold. In a more general language, the Euler characteristic of a manifold is the
alternating sum of simplex numbers of all the dimensions needed to triangulate the
manifold. As an example, let us consider a sphere. Topologically, this is equivalent
to a tetrahedron The tetrahedron has 4 vertices, 6 edges, and 4 faces or triangles.
So, the Euler characteristic of a sphere (or a tetrahedron) is 2. A vertex, an edge, a

Figure 1.9 From left to right: a vertex, an edge, a triangle, and a tetrahedron. The boundary of a simplex
in d dimension is composed of simplices in d− 1 dimension. The boundary of an edge has two vertices,
the boundary of a triangle has three edges, and the boundary of a tetrahedron has four triangles as faces.
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triangle and a tetrahedron are examples of a simplex in 0-, 1-, 2- and 3-dimensions
respectively (see Figure 1.9 for an illustration of simplices in dimensions up to 3),
with generalizations existing in higher dimensions.

Connecting geometry and topology: the Gauss-Bonnet theorem
The Gauss-Bonnet theorem is perhaps the most fundamental theorem that illumi-
nates the connection between geometry and topology. It relates the total Gaussian
curvature of a manifold, which is a geometric quantity, to its Euler characteristic or
genus, which are topological quantities. The Gaussian curvature, κ, of a manifold is
given by

κ = κ1κ2 =
∮ 1

R1R2
dS, (1.50)

where, R1 and R2 are the radii of curvature of the boundary surface S. κ1 and κ2 are
the principal curvatures. The Gauss-Bonnet theorem states that (Gauss 1900; Bonnet
1848; Gott et al. 1986)

κ = 4π(1− g) = 2πχ, (1.51)

where, κ is the total Gaussian curvature, g is the genus and χ is the Euler character-
istic. This suggests that the knowledge of either κ, g or χ is sufficient to compute the
others.

The Gauss-Bonnet theorem holds a place of immense importance in the field of
computational topology. This is because invoking the Gauss-Bonnet theorem trans-
forms the considerably challenging task of determining the genus or the Euler char-
acteristic, into determining the intrinsic curvature of a manifold. The genus and
the Euler characteristic are topological quantities, while the curvature is a geometric
quantity. This is a more palatable problem because curvature is easily computable in
most situations.

Euler characteristic: Gaussian fields
The genus and the Euler characteristic studies have been an important focal point of
topological studies in cosmology. One reason for this is because the analytic closed
form expression of the genus and the Euler characteristic, in the case of Gaussian ran-
dom fields, for iso-density surfaces as a function of density threshold is well known.
For Gaussian fields, Gott et al. (1986) and Hamilton et al. (1986) derive the expression
for the genus, by computing the average Gaussian curvature, κ, per unit volume,
given by (Gott et al. 1986; Hamilton et al. 1986)

κ =
1
π

[
ξ̈(0)
ξ(0)

]3/2

(1− ν2)e−ν2/2. (1.52)

where, ξ(0) is the auto correlation function, and ν = δ/σ is the dimensionless den-
sity threshold, denoting the number of standard deviations that the density contrast
at a particular location differs from the mean. Thereafter, they relate the calculated
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expression of the Gaussian curvature to the genus through the Gauss-Bonnet theo-
rem.

The expression for the Euler characteristic has been computed independently by
Doroshkevich (1970), Adler (1981) and Bardeen et al. (1986), without invoking the
Gauss-Bonnet theorem. This is made possible by recognizing that the Euler char-
acteristic is the alternating sum of the number of critical points of different indices.
This very important result follows from a theorem due to Morse (more on Morse
theorem later) (Milnor 1963). The number (density) of critical points in the case of
Gaussian fields is computed independently from appropriate integrals of the proba-
bilistic equation of the Gaussian fields. The expression for the Euler characteristic is
given by (Doroshkevich 1970; Adler 1981; Bardeen et al. 1986)

χ(ν) = − 1
8π2

(
〈k2〉

3

)3/2

(1− ν2)e−ν2/2, (1.53)

Important to note is that functional form of the genus and the Euler characteristic
is independent of the specification of the power spectrum for Gaussian fields, and
is a function only of the dimensionless density threshold ν. The contribution from
the power spectrum is restricted to the amplitude of the genus curve through the
quantity 〈k2〉, which is related to the second moment of the power spectrum, or the
auto correlation function. Since the analytic expression for the genus and the Euler
characteristic of Gaussian fields is well known, this makes them an ideal tool for
testing the hypothesis of initial Gaussian conditions, by comparing the observational
data with respect to the analytic formula.

Euler, genus and cosmology
The genus and the Euler characteristic quantifications have also been used routinely
to describe the topology of the primordial density field and the large scale structures
that emerge out of them at later epochs (Gott et al. 1986; Weinberg et al. 1987; Wein-
berg 1988; Gott et al. 1989, 1990; Moore et al. 1992; Vogeley et al. 1994; Protogeros
& Weinberg 1997; Canavezes et al. 1998; Park et al. 1998, 2001; Hikage et al. 2002;
Canavezes & Efstathiou 2004; Park et al. 2005b,a; Gott et al. 2008; James et al. 2009;
Gott et al. 2009; Choi et al. 2010).

In addition to testing the initial Gaussian hypothesis, genus topology has also
been instructive in quantifying the topology of the matter distribution as a function
of density threshold. For Gaussian fields, for a high density thresholds, the genus
is negative, suggesting a meat-ball like topology (Gott et al. 1986; Hamilton et al.
1986). In this case, the manifold is composed of many disjoint pieces and points to
a mass distribution with isolated clusters. As an example, the manifold in the panel
(a) of Figure 1.10 consists of many isolated components, and hence the analogy with
meatballs. For the intermediate thresholds, the genus acquires positive values, and
suggests the presence of a sponge-like topology (Gott et al. 1986; Hamilton et al. 1986).
As an example, the manifold in the panel (b) of Figure 1.10 is composed of a single
connected surface with many tunnels indented in it. This is much like the topologi-
cal structure of sponge. For low threshold values, the genus again becomes negative.
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(a) (b)

Figure 1.10 Figure illustrating meatball-like and sponge-like topologies. The manifold in panel (a) consists
of many isolated components, and hence the analogy with meatballs. The manifold in panel (b) is com-
posed of a single connected surface with many tunnels indented in it. This is much like the topological
structure of sponge.

However, the topology is cheese-like, pointing to a single connected region with en-
closed cavities (Gott et al. 1986; Hamilton et al. 1986). In this case, the topological
structure can be imagined as the complement of the manifold depicted in panel (a).
The empty regions form a closed connected surface, marked by cavities in the places
where the isolated islands are.

1.5.2 Minkowski functionals

There are (d+ 1) Minkowski functionals, Qk((k = 0, . . . , d), defined for a d-dimensional
manifold (Munkres 1984; Mecke et al. 1994; Schmalzing & Buchert 1997; Sahni et al.
1998; Schmalzing et al. 1999; Edelsbrunner & Harer 2010). The first four Minkowski
functionals (d ≤ 3) are the volume, surface area, integrated mean curvature or total
contour length, and the Gaussian curvature. Consider a 3-dimensional space x. We
calculate the Minkowski functionals for the manifold Mν, which is the subset of the
region x with density above the threshold ν.

For a given density field, the volume functional Q0(ν) is the fractional volume
of the regions with density above the threshold ν, normalized by the total volume
of the region V. It is given by the volume integral of the Heaviside step function Θ,
normalized by the whole volume V (Schmalzing & Buchert 1997)

Q0(ν) =
1
V

∫
V

Θ(ν− ν(x)). (1.54)

The other Minkowski functionals of Mν can be calculated by appropriate surface
integrals of the boundary of Mν, denoted by ∂(Mν). The second Minkowski func-
tional, or the area functional, is given by
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Figure 1.11 Difference between the Minkowski Functionals of the CMB (unnormalized), as measured
by PLANCK, with respect to the average of the curves obtained with realistic simulations of the CMB
for several cleaned maps. From left to right: Area, Contour, Genus. The error-bars represent the 1σ
(68%CL) dispersions around the mean obtained with simulations. Figure courtesy Planck Collaboration
et al. (2013a).

Q1(ν) =
1

6V

∫
∂Mν

d2S(x). (1.55)

The third and the fourth Minkowski functionals, namely the integrated mean curva-
ture functional or the total contour length, and the Euler characteristic, involve the
inverse of the radii of curvatures R1 and R2 of the surfaces oriented towards lower
density values. The integrated mean curvature functional is given by

Q2(ν) =
1

6πV

∫
∂Mν

d2S(x)[κ1 + κ2], (1.56)

and the Euler characteristic is given by

Q3(ν) =
1

4πV

∫
∂Mν

d2S(x)[κ1 κ2], (1.57)

where κ1 = 1/R1 and κ2 = 1/R2.
Minkowski functionals are predominantly geometric in nature, though there are

connections to topology as well, through the Euler characteristic. The first three
Minkowski functionals describe the geometry of the manifold. The volume func-
tional Q0(ν) computes the fractional volume above the density threshold ν. The
surface area functional Q1(ν)and integrated mean curvature functional Q2(ν) can
be used to characterize the morphology of the manifold. Pancake or wall-like fea-
tures are characterized by a large surface area and small integrated mean curvature.
On the other hand, filamentary regions are characterized by small surface area and
a large integrated mean curvature.

Minkowski functionals were introduced as measures of the spatial cosmic mass
distribution by Mecke et al. (1994) and have become an important measure of cluster-
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ing of mass and galaxies (Schmalzing & Buchert 1997; Schmalzing et al. 1999; Sahni
et al. 1998).

In cosmology, Minkowski functionals have primarily been used for model dis-
crimination. In this context, they have been an important focal point of topological
and morphological studies, because their analytic closed form expression in the case
of Gaussian random fields for iso-density surfaces as a function of density threshold
is well known (Tomita 1993; Schmalzing & Buchert 1997). This makes them an ideal
tool for testing the hypothesis of initial Gaussian conditions through comparison
with observational data. For Gaussian random fields, the expected value of the first
four Minkowski functionals of the excursion sets have known analytical expressions
(Tomita 1993; Schmalzing & Buchert 1997)

Q0(ν) =
1
2
− 1

2
Φ
(

1√
2

ν

)
,

Q1(ν) =
2
3

λ√
2π

exp
(
−1

2
ν2
)

,

Q2(ν) =
2
3

λ2
√

2π
ν exp

(
−1

2
ν2
)

,

Q3(ν) =
λ3
√

2π
(ν2 − 1) exp

(
−1

2
ν2
)

. (1.58)

where λ =
√
|ξ”(0)|/[2πξ(0)] is related to the correlation function or the power

spectrum, and the function Φ(x) =
∫ x

0 dte(−t2) is the standard error function.
The Minkowski functionals of the CMB have also been calculated and compared

with the Minkowski functionals of theoretical Gaussian random field curves to test
the Gaussian initial condition hypothesis. Figure 1.11 presents the difference of the
data Minkowski Functionals from the Planck measurement of the CMB (unnormal-
ized) with respect to the average of the curves obtained with realistic Planck simula-
tions for several cleaned maps (Planck Collaboration et al. 2013a). From left to right
are plotted the Area, Contour and Genus. The error-bars represent the 1σ (68%CL)
dispersions around the mean obtained with simulations. From this figure, a devia-
tion at a level of ∼ 2σ can be seen for the contour and genus curves. The authors
claim that the difference is not compelling, and that the back- ground of unresolved
sources may be responsible for at least part of the excess signal that is detected.

Minkowski functionals as shape finders. That the Minkowski functionals have pre-
dominantly been recognized as related to the geometric properties of a manifold
can also be appreciated from the fact that specific combinations of Minkowski func-
tionals, called shapefinders (Sahni et al. 1998) can be used to provide a set of non-
parametric measures of sizes and shapes of objects. These are the H1 (Thickness),
H2 (width) and H3 (Length), defined as follows (Sahni et al. 1998):

H1 =
V
A

, H2 =
A
C

, H3 = C. (1.59)
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The above three shapefinders can also be used to construct a pair of another di-
mensionless shapefinders, given by (Sahni et al. 1998)l

K1 ≡
H2 −H1

H2 +H1
; K2 ≡

H3 −H2

H3 +H2
(1.60)

The set of shapefinders (H1,H2,H3), as well as (K1,K2) describe the shape of a
given region. (H1,H2,H3) have dimensions of length and provide an estimate of
the ”extension” of the region: H1 is the shortest and thus describes the characteris-
tic thickness of the region or object; H2 is intermediate and can be associated with
the breadth of the object; H3 is typically the longest and characterizes the length of
the object. KKK = (K1, K2) can be regarded as a two-dimensional vector whose am-
plitude and direction determine the shape of an arbitrary three-dimensional surface
(Sahni et al. 1998). An ideal pancake, which may have vanishing thickness but is
not necessarily planar, has one characteristic dimension much smaller than the re-
maining two, so that H1 � H2 ' H3 and KKK ' (1, 0). A typical filament, which is
a one-dimensional object but not necessarily straight, has two characteristic dimen-
sions much smaller than the third, so that H1 ' H2 � H3 and KKK ' (0, 1). All
three dimensions of a sphere are equal, resulting in H1 'H2 'H3 and KKK ' (0, 0).
Important to note is that, the shapefinders only describe the morphology of simply
connected shapes. Sahni et al. (1998) note that for multiply connected regions, the
knowledge of genus is also essential to fully characterize it. The dimensionless triad
K1,K2, g), gives information about shape as well as topology.

1.6 Beyond the Euler characteristic and Minkowski functionals
Genus and Euler characteristic have provided a wealth of topological information
about the cosmological datasets. Along with the rest of the Minkowski functionals,
they have made possible to get crucial insights into the topology and morphology of
cosmic density fields from models as well as observational data.

Even though they have been extremely instructive in gaining an understanding
about the connectivity as well as the structural patterns pervading in the Universe,
there is still a scope for expanding, and even improving on the topological descrip-
tion of the cosmic mass distribution. In particular, the following observations make
a compelling case for expanding the topological description of the cosmic density
fields:

– While the genus can distinguish between connected, closed surfaces in R3, it
has no discriminative power if applied to a 3-manifold. In other words, the
genus is defined only for connected and closed 2-dimensional surfaces, and
has no generalizations in higher or lower dimensions.

– The Euler-Poincaré formula states that the Euler characteristic is an alternat-
ing sum of another topological invariant called the Betti numbers (Betti 1871).
While, we will elaborate on the Betti numbers in a later section, it suffices to
say here that the Euler characteristic represents a more compressed form of
topological information, than what the Betti numbers may supply.
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– It is established that structures in the Universe form and evolve in a hierarchi-
cal fashion. Smaller high density structures coalesce together hierarchically to
build up larger structures of lower density. A topological description through
genus and Euler characteristic is not equipped to address this aspect of the
cosmic mass distribution. A formalism capable of expressing topology in a hi-
erarchical fashion would present an interesting and powerful alternative for
describing the hierarchical structures in the cosmos.

In view of the above observations, this thesis describes the topology of the models
of cosmic mass distribution through homology and persistence. These formalisms,
as well as techniques derived from them, capture the topology of a manifold in a
more detailed fashion than Euler characteristic and genus. Additionally, persistence
has the ability to describe topological information in a hierarchical fashion. In view
of the fact that the matter distribution in the Universe evolves hierarchically, a hi-
erarchical description of topology presents an interesting extension to the existing
descriptors.

The topological structure of a manifold can also be understood via the path of
differential topology. The theoretical framework that deals with this aspect is called
Morse theory (Milnor 1963). Morse theory is the study of the singularity structure of
a manifold as induced by a smooth scalar function defined on it. The nature of the
critical points of the function, i.e. locations where the gradient of the function van-
ishes, decides the kind of topological holes that may form in the manifold. Due to its
intimate connection with topological holes, Morse theory is also directly relevant to-
wards developing an intuitive understanding of persistence. Another crucial aspect
of Morse theory is that the geometric properties of the manifold in the neighborhood
of the critical points can be harnessed to design structure detection algorithms, that
can be used to delineate the structures in the cosmic web.

We describe the fundamentals of homology, Morse theory and persistence in the
next subsections

1.6.1 Homology and Betti Numbers
Homology is a mathematical formalism for specifying in a quantitative and unam-
biguous manner about how a space is connected, through assessing the boundaries
of a manifold (for a detailed and standard discourse on the subject, see Munkres
1984). Homology groups provide a mathematical language for the holes in a topo-
logical space. Perhaps surprisingly, they capture holes indirectly, by focusing on
what surrounds them (Edelsbrunner & Harer 2010).

A d-manifold can be composed of topological holes of 0 up to (d − 1) dimen-
sions. The holes in the first three dimensions have intuitive interpretations. A 0-
dimensional hole is a gap between two isolated independent objects. A 1-dimensional
hole is a tunnel through which one can pass in any one direction without encounter-
ing a boundary. A 2-dimensional hole is a cavity or void fully enclosed within a
2-dimensional surface.

Alternatively, one can also talk about these holes in terms of what surrounds
them. This is through defining the holes via cycles. A 0-cycle is a connected object
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(a) (b) (c)

Figure 1.12 Figure illustrating the concept of topological holes. (a) There are two independent isolated
discs, which are examples of 0-cycles.The gap thats formed due to these discs (all the space, except the
discs) is a 0-dimensional hole. (b) The cylinder is an example of a 1-cycle (loop) that encloses a tunnel.
(c) The surface of a (empty)-sphere is an example of a 2-cycle, that encloses a void. In addition, (b) and
(c) also exhibit the presence of a 0-cycle, because the circle and the surface of a sphere are both connected
objects.

(and hence, a 0-hole is the gap between two independent objects). A 1-cycle is a loop
that surrounds a tunnel. A 2-cycle is a shell enclosing a void.

The collection of all p-dimensional cycles is the p-th homology group Hp of the
manifold, and the rank of this group is the collection of all independent cycles. The
rank is denoted by the Betti numbers βp, where p = 0, . . . , d (Betti 1871; Edelsbrunner
& Harer 2010). The first three Betti numbers have intuitive meanings. β0 counts the
number of independent components, β1 counts the number of loops enclosing the
independent tunnels and β2 counts the number of shells enclosing the independent
voids. In panel (a) of Figure 1.12, (β0, β1, β2) = (2, 0, 0), because there are two isolated
objects, and no additional holes in in any other dimension. In panel (b), (β0, β1, β2) =
(1, 1, 0), because there is a single connected object (circle), which also bounds a tun-
nel. In panel (c), (β0, β1, β2) = (1, 0, 1), because the surface of a sphere is a connected
object, which also bounds a void. We note that analogous holes in higher dimen-
sions may exist in higher dimensional manifolds. However, they are not interesting
in the context of this thesis, because we are only interested in up to 3-dimensional
manifolds, and no higher. A more mathematically rigorous definition of homology
groups and Betti numbers can be found in Appendix A.3 as well as more traditional
literature on the subject, like e.g. by Munkres (1984).

Figure 1.12 illustrates the concept of topological holes. In panel (a), there are two
independent isolated discs, which are examples of 0-cycles.The gap thats formed
due to these discs (all the space, except the discs) is a 0-dimensional hole. In panel
(b), the tunnel is an example of a 1-cycle (loop) that encloses a tunnel. In panel (c),
the surface of a (empty)-sphere is an example of a 2-cycle, that encloses a void. In
addition, panels (b) and (c) also exhibit the presence of a 0-cycle, because the circle
and the surface of a sphere are both connected objects.

Like the Euler characteristic, the Betti numbers are topological invariants of a
manifold, meaning that they do not change under systematic transformations like
rotation, translation and deformation. Betti numbers contain strictly more topologi-
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cal information than the Euler characteristic. This is because the Euler characteristic
of a manifold can be written as an alternating sum of the Betti numbers. The relation-
ship to the Euler characteristic is given by the Euler-Poincaré Formula (Edelsbrunner
& Harer 2010; Adler & Taylor 2010):

χ = β0 − β1 + β2 − . . . (−1)dβd. (1.61)

where d is the intrinsic dimension of the manifold.
This information is of key importance because it tells us immediately that it is

possible for two different manifolds to have the same Euler characteristic but differ-
ent sets of Betti numbers. As a result manifolds which are topologically equivalent
through a description of Euler characteristic may turn out to have different topolo-
gies when described through the Betti numbers. This has important repercussions
for a topological description of the cosmic mass distribution when model discrimina-
tion is the primary focus. A crucial point to note in this context is that Wintraecken &
Vegter (2013) show that Betti numbers cannot be formulated as integrals of the Euler
characteristic.

1.6.2 Morse theory
Morse theory is the study of the topology of the level sets of a manifold via the
critical points of a smooth scalar function defined on it. Let f : M → R be a real-
valued scalar function defined on a manifold M. Critical points of f are points of f
where the gradient of f vanishes i.e., ∇ f = 0. The function f is said to be a Morse
function if all of its critical points are non-degenerate i.e., the Hessian of f , defined as
the matrix of second order partial derivatives, is non-singular. The non-degeneracy
condition imposes a locally quadratic form for f , within a small neighborhood of its
critical points (Milnor 1963). In other words, using a coordinate transformation, the
function near a critical point p of the d-dimensional manifold M can be written as a
quadratic function

fp(x) = f (p)± x2
1 ± x2

2 ± ...± x2
d. (1.62)

The index of p is equal to the number of negative quadratic terms in the above ex-
pression. In 2D, the index 0 corresponds to a minimum, the index 1 corresponds to
a saddle point and index 2 corresponds to a maximum. The saddle point can be of
two kind, namely the normal saddle and the monkey saddle. In 3D, the index 0 cor-
responds to minima, the index 1 corresponds to 1-saddles, the index 2 corresponds
to 2-saddles, and the index 3 corresponds to maxima. Figures 1.13 and 1.14 illustrate
the geometry as the behavior of the gradients of the manifolds in the neighborhood
of various kinds of critical points in 2D and 3D.

Critical points and topology
A major result that Morse theory establishes is that the global shape and topology of
a manifold is defined only by it critical points (Milnor 1963; Edelsbrunner & Harer
2010). To put it more formally, let M be a closed manifold and f : M → R be a
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(a) (b)

(c) (d)

Figure 1.13 Critical points in 2D, and shape of a manifold in the neighborhood of critical points. Index
0 is a minimum, index 1 is a saddle point and index 2 is a maximum.

Morse function on M. Let Mt = {p ∈ M| f (p) ≤ t} for any arbitrary t in f . If f has
no critical points in [a, b] ∈ R, then Ma and Mb are diffeomorphic, or topologically
equivalent. This is a very important result, and implies that all changes in topology
of M occur only at the critical points of f . Theoretically, there are infinitely many
levels of density as one decreases the value from the highest to the lowest. But for-
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(a) (b)

(c) (d)

Figure 1.14 Critical points in 3D. Panels (a) through (d) present the maximum, 2-saddle, 1-saddle and
the minimum. For a maximum, the flow is directed towards it. For a minimum, the flow is directed away
from it. For a 1-saddle, the flow is towards it in a plane, and away from it along a linear element. The
directions reverse for a 2-saddle.

tunately, the topology of the manifold only changes while passing a critical point
(Edelsbrunner et al. 2002; Edelsbrunner & Harer 2010). This is of key importance
because this means that the infinite number of levels of density threshold can be
constrained to a finite number, by only having to consider one level in between any
two critical points.

Since there are finitely many critical points ci, one may order them according to
decreasing function values. Then passing from the highest-value critical point to the
lowest-value critical point gives all the unique topological changes in the manifold.
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(a) (b) (c)

(d) (e)

Figure 1.15 A vertical torus with a height function defined. Sweeping from the lowest to the highest
function values, one passes the critical points of the height function. These are responsible for the topolog-
ical changes. From panel (a) to panel (e): passing the minimum creates a disk, passing a 1-saddle creates
a cylinder, passing another 1-saddle creates a torus with a hole, and passing the maximum caps the hole
and generates the whole torus. In other words, the various kinds of critical points generate the cycles of
different dimension of the torus. The minimum generates the 0-cycle (disk). The two 1-saddles generate
the two 1-cycles (loops or tunnel), while the maximum generates the 2-cycle. This is the whole torus that
encloses the cylindrical void (also one of the tunnels). Figure courtesy Gyulassy (2008).

For illustration, let us consider the vertical torus, with the height function de-
fined, illustrated in Figure 1.15. Sweeping from the lowest to the highest function
values, one passes the critical points of the height function. These are responsible
for the topological changes. From left to right: passing the minimum creates a disk,
passing a 1-saddle creates a cylinder, passing another 1-saddle creates a torus with a
hole, and passing the maximum caps the hole and generates the whole torus.

A crucial point to note is that the critical points of a function are not only re-
sponsible for the formation of a topological hole, but also for their destruction. We
will elaborate on this in the next subsection, and harness these concepts to build an
intuitive understanding of persistence.

1.6.3 Persistence homology
In Section 1.6.2, we noted the relation between the critical points of a function with
the topological changes it induces in a manifold. In this section, we use the no-
tions described above to sketch an intuitive understanding of persistence homology
(Edelsbrunner et al. 2002; Zomorodian & Carlsson 2005; Carlsson et al. 2005; Carls-
son & Zomorodian 2009; Carlsson 2009; Edelsbrunner & Harer 2010).



54 Introduction

(a) (b)

Figure 1.16 (a) Face on view of a 2D random field. A range of level sets are presented as contours of
different colors. (b) Surface view of the same. Maxima are marked with red balls, saddles with cyan balls,
and minima with yellow balls.

The key observation is that the topology of the manifold changes only when pass-
ing through a critical point of f . Introduction of a critical point to a manifold results
in unique topological changes. These changes may result in either the birth (forma-
tion) or death (destruction) of a topological hole. More specifically, the addition of a
p-critical point can result in either the birth of a p-dimensional hole or the death of
a (p− 1)-dimensional hole (Edelsbrunner et al. 2002; Zomorodian & Carlsson 2005;
Edelsbrunner & Harer 2010). For example, consider a saddle point in a 2D manifold.
The introduction of this saddle point can result in either of the following topological
changes: it can either connect two disjoint objects, which results in the destruction of
a 0-hole; or it can connect the boundary of two already connected objects, forming a
loop. This depicts the creation of a 1-dimensional hole or tunnel.

Central to the formulation of persistence is the necessity to track the birth and
death events, as one changes the superlevel or sublevel sets. In this thesis, we track
the topological changes through changing superlevel sets, noting that tracking it
through changing sublevel sets is equivalent.

Figure 1.16 presents a 2D random field, that we use as an example to illustrate
the working of persistence. In panel (a), we present the face on view of the field.
A range of level sets are presented as contours of different colors. In panel (b), we
present the surface view of the same. Maxima are marked with red balls, saddles
with cyan balls, and minima with yellow balls. Figure 1.17, illustrates the working
of persistence by tracking the birth and death of islands and tunnels, for growing su-
perlevel sets, for the 2D random field show in Figure 1.16. We employ a 2D field for
ease of visualization. Note that in 3D the task of visualization is made considerably
difficult due to the presence of voids. Though not easy to visualize, the voids follow
a similar philosophy concerning birth and death, and an example in 2D presents a
clear intuitive understanding also of the process in 3D.

We trace the growing superlevel set from the top-left panel to the bottom right
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Figure 1.17 Persistence and field singularity structure. The process of birth and death as we grow the
superlevel sets by decreasing the density threshold in a given 2-dimensional random field. The events of
birth and death are quantified in the persistence diagrams in the bottom row. Bottom-left: 0-dimensional
diagram, bottom-right: 1-dimensional diagram.
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panel, as a function of decreasing thresholds of f . We only show regions of the
manifold that are included in the superlevel set. We trace the change in topology of
this region, as the superlevel set grows. In panel (a), we start with a single island,
which is also a peak. In panels (b) and (c), we witness the birth of two more islands.
These are two peaks which get included in the excursion region. In panel (d), two of
the islands merge and we are left with two islands as a result. This merger results in
the death of one of the islands. This is the island which was born at a later threshold.
This is according to the elder rule (Edelsbrunner et al. 2002; Zomorodian & Carlsson
2005; Edelsbrunner & Harer 2010), which dictates that given a choice between killing
two components, the one that is born later is killed preferentially. In panel (e), there
is another merger of two isolated islands.

In panel (f), the first 1-dimensional hole or a loop is born. It has the appearance
of a lake surrounded by land. In panel (g), this loop splits into two. In panel (h),
one of the loops is filled, while the other one still exists. This indicates the death
of a 1-dimensional hole. The density value at which a hole is born, and the density
value at which it gets destroyed quantify its life-span. The life-span is equal to the
difference between the absolute values of the density of birth and death. This means
that one of the two loops has a higher life span or persistence than the other. It is
likely to be a more significant feature than the other. In panel (i), all the holes fill up,
and the superlevel set consists of the whole manifold.

One can record these topological changes as one sweeps from the highest to the
lowest density values, or a continuously decreasing level-set. Each topological hole
is associated with two unique function values: f (cb) associated with the critical point
cb that gives birth to the hole, and f (cd) associated with the critical point cd that is
responsible for killing or filling up the hole. The life-span of the hole, or its persistence,
γ, is then given by the absolute difference between the death and the birth values
associated with the hole (Edelsbrunner et al. 2002; Zomorodian & Carlsson 2005;
Edelsbrunner & Harer 2010)

π = | f (cb)− f (cd)|. (1.63)

Persistence diagrams
Persistence homology is represented in terms of persistence diagrams (Edelsbrunner &
Harer 2010), which is a collection of dots, each dot associated with a unique topolog-
ical change in the manifold (see for example the bottom row of Figure 1.17). There
is a diagram for each ambient dimension of the manifold. 0-dimensional diagrams
record the merger events of two isolated objects. 1-dimensional diagrams record the
formation and destruction of loops, while 2-dimensional diagrams record the birth
and death of topological voids.

Alternatively, the information on persistence topology can also be depicted using
persistence barcodes (Zomorodian & Carlsson 2005; Carlsson et al. 2005; Carlsson 2009;
Adler et al. 2010). The barcode diagram is a collection of line segments on the real
line. Each bar corresponds to a topological feature, like the dots in the dot diagrams.
The coordinates of the end points of the bars in the barcode diagrams denote the
birth and the death values of the topological features. We note that the dot diagrams
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Figure 1.18 The Betti numbers can be read off from the persistence diagrams. The contribution to the
Betti numbers for a level set ν comes from all the persistent dots that are born before ν and die after ν – in
other words, the shaded region anchored at (ν, ν).

and the barcode diagrams are essentially two different representations of the same
information.

Persistence diagrams contain more information than the Betti numbers. We can
read the p-th Betti number of the superlevel set for ν as the number of points of
Dgmp($). The contribution to the Betti numbers for a level set ν comes from all the
dots in the persistence diagram corresponding to cycles that are born before ν and die
after ν – in other words, the shaded region anchored at (ν, ν) in Figure 1.18. Another
useful property is the stability of the diagram under small perturbations of the input.
This was pointed out by Cohen-Steiner et al. (2007). Specifically, the diagram of a
density function, $′, that differs from $ by at most ε at every point of the space, has
a bottleneck distance at most ε from Dgmp($) (Cohen-Steiner et al. 2007). This implies
that every points of Dgmp($

′) is at a distance at most ε from a point in Dgmp($), or
from the horizontal axis. The stability result of the persistence diagrams has been
used to devise bootstrapping methods for determining the confidence intervals for
persistence diagrams arising from stochastic processes (Chazal et al. 2013).
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1.6.4 Information hierarchy between Persistence, Homology and Euler character-
istic

An important point to note is that persistence, homology and Euler characteristic
contain strictly decreasing amount of topological information about the manifold.
They are also closely related in the sense that persistence homology contains infor-
mation about the homology of the manifold, and homology contains information
about the Euler characteristic of the manifold. It is not possible to reverse the se-
quence.

Since persistence homology contains more topological information about the man-
ifold, and is hierarchical in nature, the ideas stemming from it take central impor-
tance in the topological characterization of cosmic mass distribution models in this
thesis. Together with the Minkowski functionals, persistence homology and homol-
ogy characterize the geometry and topology of the manifold more completely. As
such, one intention of this thesis is to propose them as crucial and essential tools for
studying the topology of the cosmic mass distribution.

1.6.5 Feature detection through topology: Segmentation via Morse-Smale com-
plex

Morse theory and related formalisms can be harnessed to devise methods of par-
titioning a manifold (Forman 2002; Edelsbrunner et al. 2001, 2003; Gyulassy 2008;
Gyulassy et al. 2008; Aragon-Calvo et al. 2010; Sousbie 2011). This particularly de-
pends on the geometry of the space in the neighborhood of the critical points of f .
Such a partitioning of the domain is achieved by exploring the features of the gradi-
ent of the scalar function on the manifold.

An important ingredient in understanding how this partitioning may be achieved
is the concept of integral lines. Let us consider a manifold M. A curve l(t) is an in-
tegral line of f on M, if ∂l(t) = ∇ f (l(t)) for all t ∈ R. In other words, an integral
line is a path where the tangent of the path is parallel to the gradient ∇ f at every
point along the path. Integral lines represent the flow along the gradient between
critical points. For example, the lines used to represent the direction of flow in the
Figure 1.14 are the integral lines of the domain. The origin and destination of an in-
tegral line are the critical points of f . An important property of integral lines is that
they cover all of M.

The integral lines can be used to define the ascending and descending manifolds
of a critical point. The set of all integral lines that originate at the critical point p to-
gether with p is called the ascending manifold of p. Similarly, the set of all integral lines
that terminate at the critical point p together with p is called the descending manifold
of p. The ascending manifolds (similarly, the descending manifolds) of all critical
points partition the domain. The ascending manifold of a critical point with index
i has dimension n − i, where n is the dimension of the domain. Thus, the ascend-
ing manifold of a minimum is a three dimensional cell, the ascending manifold of a
1-saddle is a two dimensional sheet, the ascending manifold of a 2-saddle is a one di-
mensional arc, and the ascending manifold of a maximum is equal to the maximum.
The converse is true for the descending manifold i.e., the descending manifold of a
critical point with index i has dimension i. Figure 1.14 also presents an illustration of
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Figure 1.19 Caption next page
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Figure 1.19 Decomposition of a terrain into ascending and descending manifolds, and the Morse-Smale
complex of the same. (a) The function f along with its singularities. Maxima are depicted by red balls,
saddles are depicted by green balls, and minima are depicted by blue balls. (b) Descending manifold of a
maximum of f . (c) Ascending manifold of a minimum of f . (d) Intersection of the ascending manifold of
the maximum and descending manifold of the minimum. The Morse-Smale complex is the decomposition
of a manifold into elements such that the intersection of any two d-dimensional manifolds is a (d − 1)-
dimensional manifold. (e) A 2-dimensional element of the Morse-smale complex. (f) The Morse-Smale
complex of the manifold defined by f . The decomposition is illustrated with tubular elements. (g) It is
sufficient to have the information about nodes, or the critical points, and the arcs that connect them, in
order to be able to fully define a Morse-Smale complex. This is the combinatorial representation of the
Morse-Smale complex of f .

the ascending and descending manifolds associated with the critical points of differ-
ent indices in 3D. The ascending manifolds of a minimum, 1-saddle, 2-saddle, and
maximum are a volume, a surface, pair of lines, and a point respectively. Similarly,
the descending manifolds are a point, a pair of lines, a surface, and a volume.

The decomposition of a domain into its ascending or descending manifolds forms
the Morse complex of f (Forman 2002; Edelsbrunner et al. 2001, 2003). Figure 1.19
presents an illustration of the partitioning of a domain into its Morse-Smale complex.
Panel (a) in the figure presents the domain of interest of a function f . It is a 2D
surface, where we mark the positions of maxima, minima and saddle points with
red, blue and green translucent spheres. Panels (b) and (c) of the Figure 1.19 presents
an illustration of an ascending and a descending manifold. The pink surface in panel
(b) illustrates a typical descending manifold of a maximum of f . Every point in this
region is part of an integral line whose destination is the maximum in the center of
the region. The blue surface in panel (c) illustrates a typical ascending manifold of a
minimum of f . Every point in this region is part of an integral line whose origin is
the minimum in the center of the region.

Constructing the Morse-Smale complex requires the decomposition of a terrain into
cells formed by the collection of integral lines that share a common source and a com-
mon destination (Forman 2002; Edelsbrunner et al. 2001, 2003). This can only happen
if the ascending and descending manifolds of all pairs of critical points intersect only
transversally. This means that if the ascending and descending manifolds of two crit-
ical points intersect, then the intersection has dimension exactly equal to the differ-
ence in the indices of the two critical points. A function f satisfying this condition is
called a Morse-Smale function. Panel (d) shows the intersection of the ascending and
descending manifolds of the minimum and the maximum. Panel (e), shows a 2-cell
resulting from this intersection. This is a typical 2-cell of the Morse-smale complex.
Panel (f) shows the Morse-smale complex of f . It is sufficient to have the information
about nodes, or the critical points, and the arcs that connect them, in order to be able
to fully define a Morse-Smale complex. This is the combinatorial representation of
the Morse-Smale complex of f . Panel (g) shows the structure of the combinatorial
representation of the Morse-Smale complex of f .

The various elements of the cosmic web have natural geometric associations with
the elements of the Morse-Smale complex constructed from cosmic density fields.
Clusters can be seen as the local maxima of the field, filaments can be identified as
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the ascending manifold of 2-saddles, voids can be identified as the ascending mani-
folds of minima, and walls can be identified as the descending manifolds of 1-saddle
that separate these voids. This natural association between the various elements of
the cosmic web and the elements of the Morse-Smale complex is particularly clear
for some morphological elements. To see this, we have to recall that the Morse-Smale
complex is focused on the properties of the gradients of the scalar function to deter-
mine the partition. With this in mind, we examine this association with respect to
voids. A cosmological void is an underdense region, with the center of the void lo-
cated at a density minimum. Over a period of time, matter streams outward of the
void center in all directions. The region of space in which this occurs is precisely the
ascending manifold of the minimum. In the case of the cosmic filaments, they are
known to be the transport channels of mass to the clusters. Combining this observa-
tion with the fact that the destination of the ascending manifold of a 2-saddle are a
pair of maxima, and that the gradient of the flow is towards the maxima, justifies the
modeling of the cosmic filaments as the ascending manifolds of the 2-saddles. Simi-
larly the clusters in the cosmic web are necessarily located at maxima of the density
field. As a result, the nodes of the Morse-Smale complex, which are the positions of
maxima are justifiably modeled as the centers of the clusters.

Topology based methods have played a key role in delineating the elements of
the cosmic web recently. In the recent past, ideas stemming indirectly (Platen et al.
2007; Aragón-Calvo et al. 2010) or directly (Sousbie 2011) from Morse theory have
contributed to the development of structure finders aimed at identifying and delin-
eating the elements of the cosmic web. The watershed transform based void finders
like Watershed Void finder (WVF) (Platen et al. 2007), ZOBOV (Neyrinck 2008), and
the Void Identification and Examination toolkit (VIDE) (Sutter et al. 2014a) are based
on the segmentation of a terrain using the watershed transform. They identify the
voids as the basins of local minima, which is equivalent to the ascending manifolds
of the minima in the Morse-Smale complex. The SpineWeb technique (Aragón-Calvo
et al. 2010) is an extension of WVF and identifies walls and filaments or the spine of
the web as the remaining regions which do not belong to the watershed basins. Dis-
PerSE (Sousbie 2011; Sousbie et al. 2011) directly computes the Morse-Smale complex
of the density field to identify the clusters, filaments, walls and voids.

Neyrinck (2012) also present a general method of delineating the structures of the
web called the ORIGAMI. This is based on the properties of the phase space and and
also harnesses Morse theory in its implementation.

It is relevant also to mention here that most of the scalar fields arising in cosmol-
ogy, like the cosmic density fields, are smooth and continuous, and hence qualify
as Morse functions. Throughout this thesis, the analysis of models of cosmic mass
distribution assumes that they are Morse functions.

1.7 This thesis

In the previous section, we presented a brief overview of the topological and mor-
phological descriptions involving Euler characteristic and Minkowski functionals.
These descriptions, and methods derived from them, have been of key importance
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in describing and discriminating between the models of the cosmic mass distribu-
tion. Subsequently, we introduced the formalisms of homology, Morse theory and
persistence and established that they have the potential to describe the topology of
the cosmic mass distribution in greater detail. In this context, this thesis intends to
apply these formalisms, and develop ideas based on them to explore and investigate
the models of cosmic mass distribution. The models that we investigate are heuristic,
as well as physically more motivated models of the cosmic mass distribution. The
different models mimic different aspects of the cosmic mass distribution.

Random distributions model a variety of phenomena of interest arising in cos-
mology. The Poisson distribution is used routinely to model shot noise. The devi-
ations of a point distribution from a featureless Poisson distribution indicates the
presence of structures in the distribution. Similarly, the Gaussian distribution and
Gaussian fields with a flat power spectrum (n = 0) are used to model white noise
(Bardeen et al. 1986; Gott et al. 2008; van de Weygaert et al. 2011; Park et al. 2013).
Another scenario where Gaussian fields are important is in the modeling of the pri-
mordial fluctuation field (Doroshkevich 1970; Adler 1981; Bardeen et al. 1986; Gott
et al. 1986; Hamilton et al. 1986; Park et al. 2013). In view of this, we explore and
characterize the topology of the Poisson distribution as well as the Gaussian fields in
this thesis. In this context, we note that the topological properties of probability dis-
tributions on a manifold, and and the topological properties of random complexes 3

have recently been an active area of research (Adler et al. 2010; Bobrowski & Strom
Borman 2010; Adler et al. 2014; Bobrowski & Kahle 2014; Bobrowski & Mukherjee
2015; Feldbrugge et al. 2015; Wintraecken et al. 2013). For a survey on the topology
of random geometric complexes, see Bobrowski & Kahle (2014).

To model the web like patterns of the large scale matter distribution in the Uni-
verse, we resort to the Voronoi models (van de Weygaert & Icke 1989; van de Wey-
gaert 1991; Weygaert 2007). The rationale behind the investigation is to identify the
topological signatures of the various morphological features of the cosmic web. The
Voronoi evolution models are a class of heuristic models for cellular distributions
of galaxies that mimics the evolution of the Megaparsec universe towards a web
like pattern. They use Voronoi tessellations as a template for distribution of matter
and related galaxy population, and its subsequent evolution. The models we use
here are considerably sophisticated, and represent a rather realistic depiction of the
cosmic web in void-dominated cosmologies (van de Weygaert & van Kampen 1993;
Sheth & van de Weygaert 2004; Weygaert 2007; Aragon-Calvo & Szalay 2013). For a
more realistic investigation, we also examine the LCDM cosmological simulations.
These are fully physical models, based on laws of physics, that trace the formation
and evolution of the structures in the cosmic mass distribution.

Another important characteristic of the cosmic mass distribution is its hierarchi-
cal nature. To examine this aspect, we use the Soneira-Peebles model (Soneira & Pee-
bles 1978). These are multi-scale fractal models, that are hierarchical in nature. We
revisit the hierarchical aspect of the comic mass distribution in the context of a visual
exploration and extraction of the filaments in the cosmic web. We define and filter

3A random complex is a simplicial complex constructed from a given random point distribution The
point distribution is sampled from a well behaved probability distribution function.
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the cosmic filaments by constructing the hierarchical Morse-Smale complex from the
LCDM simulations.

1.7.1 Hierarchical characterization of the cosmic mass distribution through per-
sistence

In Section 1.6.3, we briefly describe the formalism of persistence. The most impor-
tant feature of expressing topology in this fashion in the cosmological context is that
it is inherently hierarchical in nature (a full treatment of the topic is presented in Ap-
pendix A.5). Persistence topology can naturally account for and identify events that
can change the topology of a manifold in a hierarchical build-up of structures, like
mergers of isolated objects. As it is established that the structures in the Universe
form and evolve hierarchically, a topological description through persistence is nat-
urally tailored towards accounting for the hierarchical nature of the cosmic mass
distribution.

There are many scenarios where a hierarchical expression of topology may be
relevant. An example is the discrimination between various models of cosmic mass
distribution through a topological quantification of the difference in their cluster-
ing properties, as recorded through 0-dimensional persistence diagrams. The 0-
dimensional diagrams have been noted as indicators of the clustering properties of
a manifold (Bobrowski & Mukherjee 2015). Since 0-dimensional diagrams record
merger events, any difference arising in them is a direct measure of difference in the
clustering properties of the models. In this context, it is important to mention here
that the 0-dimensional diagrams should not be confused with the merger trees that
are traditionally used to represent the time evolution of dark matter haloes through
mergers and accretions (Nagashima & Gouda 1997; Shimizu et al. 2002; Parkinson
et al. 2008; Behroozi et al. 2013; Jiang & van den Bosch 2014; Lee & Yi 2015). In the
cosmological context, the merger trees have been routinely used to depict the time
evolution of dark matter haloes through mergers and accretion (see Figure 1.20 for an
illustration). The crucial difference between the merger trees and the 0-dimensional
merger diagrams of persistence is that while merger trees record the merger as a
function of time, the persistence merger diagrams record the merger of isolated ob-
jects as a function of the density threshold. However, one may attempt to arrive at
a relationship between them if some form of dependence is assumed between the
evolution of density contrast and time.

Another considerable aspect of persistence is that at no additional cost, we may
also extract information about the change in topological behavior of tunnels and
voids. Topological behavior of tunnels relates directly to the percolation properties
of the model (Barrow et al. 1985; Sahni et al. 1997; Fairall et al. 2005). It will also, be
interesting to investigate the topological characteristics of the hierarchical formation
of voids for different models of cosmic mass distribution (Sheth & van de Weygaert
2004; Aragon-Calvo et al. 2010; Aragon-Calvo & Szalay 2013; Sutter et al. 2014a).
This has the potential to quantify topological signatures arising due to differing pre-
scriptions of dark energy in, for example, the quintessence models.

Motivated by the above observations and discussions, a significant part of this
thesis is devoted to a topological characterization of the models of cosmic mass dis-
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Figure 1.20 Illustration of a typical halo merger tree (Parkinson et al. 2008). From top to bottom along
the vertical axis, smaller subhaloes merge with the larger one as time proceeds. This is such that ultimately
there is only one large halo with rich substructures left in the end. A 0-dimensional diagram persistence
diagram is comparable to the halo merger trees, as the mechanism of merger is intuitively similar. A dif-
ference arises from the fact that halo merger trees record mergers as a function of time, and 0-dimensional
persistence digram record mergers with changing density threshold. A possible reconciliation may be
achieved if a particular parameterization of density with respect to time is assumed.

tribution using persistence. Chapter 2 introduces an empirical probabilistic descrip-
tion of persistence homology for stochastic models of cosmic mass distribution. This
is done by defining the intensity function, which is the averaged description of per-
sistence over many independent realizations. Chapter 2 also introduces the use of
intensity maps as pictorial representation of the intensity function.

We analyze the persistence topology of random, featureless distributions, taking
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Figure 1.21 Persistence intensity maps for the 0-dimensional holes in highly evolved realizations of
the Voronoi kinematic models (left) and the Soneira-Peebles model (right). The map for the Voronoi
models, has four distinct features, indicating a presence of four different morphologies, namely clusters,
filaments, walls and voids. In the right panel, the maps for the Soneira-Peebles models exhibit a presence
of a number of distinct clumps. These clumps are placed at increasingly higher persistence values. These
clumps signal the presence of strongly hierarchical distribution.

up the particular case of Poisson distribution. In the process, we characterize the
topology of shot-noise as a benchmark, paving the way for a method to estimate the
contribution of shot-noise in the topological characteristics of a given distribution.

Subsequently, we analyze the persistence topology of the pure Voronoi element
models (van de Weygaert & Icke 1989; Icke & van de Weygaert 1991; van de Weygaert
1994). These models are characterized by the presence of predominantly cluster-
like, filament-like or wall-like distributions, resembling the different morphologies
of the cosmic web (Bond et al. 1996). We show that the dominating presence of
different morphologies is reflected in the features of the intensity maps in different
dimensions. Specifically, clustered distributions are characterized by high persis-
tent isolated clouds in 0-dimensional diagrams, loopy distributions characterizing
highly filamentary patterns are reflected in a similar high persistence cloud in the
1-dimensional intensity maps. Predominantly wall-like distributions, denoting the
presence of well formed voids, are characterized by isolated high persistence clouds
in the 2-dimensional intensity maps.

We also analyze the persistence topology of the heuristic Voronoi evolution mod-
els. The models seek to mimic the evolution of mass distribution in the Universe,
gradually progressing from a stage where most of the matter is confined to the field,
to a stage where most of the matter is confined to clusters and filaments. We demon-
strate that the topological characteristics of the different morphologies present in
the distribution – clusters, filaments and walls – are well segregated in the intensity
maps.

In the context of hierarchical distributions, we also analyze the persistence topol-
ogy of the multi-scale fractal Soneira-Peebles model (Soneira & Peebles 1978) in
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Chapter 2. We demonstrate that the levels of hierarchy are well manifested in the
intensity maps.

As an example, Figure 1.21 presents the intensity maps for the 0-dimensional
holes in highly evolved realizations of the Voronoi kinematic models (left) and the
Soneira-Peebles model (right). The map for the Voronoi models, has four distinct
features, indicating a presence of four different morphologies, namely clusters, fila-
ments, walls and voids. In the right panel, the maps for the Soneira-Peebles models
exhibit a presence of a number of distinct clumps. These clumps are placed at in-
creasingly higher persistence values. The number of clumps is related to the number
of level of hierarchies in the distribution. Therefore, we demonstrate that the inten-
sity maps are able to detect the topological signals of the hierarchical nature of the
distribution.

In Chapter 3, we analyze the persistence topology of the Gaussian random fields
(Doroshkevich 1970; Adler 1981; Bardeen et al. 1986; Park et al. 2013). It involves
a detailed study of the connectivity characteristics of the density fields modeled by
Gaussian random fields. We analyze models specified by power-law power spectra,
as well as by the LCDM power spectrum. Keeping model comparison as an impor-
tant aspect of analysis in mind, we also introduce the difference maps in the chapter.
We demonstrate that a combination of intensity, difference and ratio maps express
the topological information content in a greater detail compared to the traditional
descriptors like the Minkowski functionals.

First, we delve into the persistence topology of 1D Gaussian functions. This is
done in order to relate the visual features of the density distribution to the topologi-
cal description, and assess how the topological description reflects the features of the
density distribution. We establish that the features of the persistence diagram are a
direct reflection of the singularity structure of the function.

Having assessed the persistence topology of the 1D functions, we delve into an
analysis of the 3D fields. We do this for the power law models and the LCDM model.
First, we present the intensity and the difference maps of the power law models and
the LCDM model. We demonstrate that the features in the difference maps depend
on the choice of the model. The indication is that the the intensity and the difference
maps are highly sensitive to the parameters of the model, and may therefore be used
to discriminate between various models. This is an important observation in view of
model comparison.

We quantify the intensity maps by decomposing them into marginal and cumula-
tive distributions as a function of the mean-density and persistence of the topological
holes. In this context, we establish that the distribution functions show a characteris-
tic dependence on the index of the power spectrum. We also show that the marginal
distribution of the mean density of the holes follow a near Gaussian distribution.
The marginal distribution as a function of the persistence of the holes indicates a
Poisson distribution.

1.7.2 Homology and Betti numbers of the models of cosmic mass distribution
Betti numbers have been used to address certain aspects of the cosmic mass distribu-
tion concerning the nature of the primordial density field as well as the the topology
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Figure 1.22 The curves of the scaled Betti numbers (left) and the Euler characteristic (right) for Gaussian
random fields specified by a power law power spectrum. The curves are drawn for spectral indices
n = 1, 0,−1,−2 & − 3. The curves are scaled with respect to the amplitude of the curve for the n = 0
model. The Betti numbers show a characteristic dependence on the choice of the power-spectrum, unlike
the Euler characteristic curve. This means that the Betti numbers are sensitive to the index of the power
spectrum, while the Euler characteristic is not.

of large scale structures in the Universe (van de Weygaert et al. 2011; Park et al.
2013). In continuation of the work described in these articles, a part of this thesis
seeks to describe in greater detail the topological properties of models of the cosmic
mass distribution in terms of the Betti numbers. This involves the Betti characteri-
zation of a range of heuristic Voronoi models. These include the single component
Voronoi models, the multi-component Voronoi models and the kinematic Voronoi
models. We also present a Betti characterization of the fractal Soneira-Peebles mod-
els. Throughout, we demonstrate that the Betti numbers are capture the signals from
various morphologies, as well as hierarchies in the relevant scenarios.

Given the importance that Gaussian random fields play in the description of the
initial conditions of the cosmic structure formation, we delve into a systematic and
detailed analysis of the Betti numbers of Gaussian random fields in Chapter 3. We
compare the Betti numbers with the familiar Euler characteristic curves in this con-
text. One of the most crucial observations that we establish is that the Betti numbers
show a characteristic dependence on the choice of the power-spectrum, unlike the
Euler characteristic curve. This means that the Betti numbers are sensitive to the in-
dex of the power spectrum, while the Euler characteristic is not. A visual impression
of this may be obtained from inspecting the scaled Betti number and Euler charac-
teristic curves for Gaussian random fields presented in Figure 1.22. The models are
characterized by a power law power spectrum. The curves are drawn for spectral
indices n = 1, 0,−1,−2&− 3. The curves are scaled with respect to the amplitude of
the curve for the n = 0 model.

A crucial observation is that the topology of the manifold is not strictly either
meatball-like, sponge-like or cheese-like for the density fields. We demonstrate that
there are substantial regions of overlap between the various kinds of topologies enu-
merated above. This is evident from the scaled Betti number curves, which show a
substantial overlap across a range of density thresholds. The overlap is the strongest



68 Introduction

for lower spectral index, and decreases monotonically with increasing spectral in-
dex. In contrast, such information may not be available by looking only at the Euler
characteristic curves, because their shapes are invariant with respect to the spectral
index.

1.7.3 Topology based visualization of Cosmic filaments: Felix
The final part of this thesis introduces and describes a technique for the identification
of filaments based on the topological characteristics of the density field. It is based on
Morse theory and proceeds by constructing the Morse-Smale complex of the density
field. A key aspect of the proposed technique is its interactive nature, and involves
a tunable density parameter.

Exploring the filamentary patterns of the cosmic web is challenging because of
the large range of the spatial scales and density range it exhibits. A proper charac-
terization should also account for the hierarchical nature of structures, which adds
considerable challenge to the task. Though there exist different notions of filaments,
the primary evidence relied upon for extraction and analysis is most often visual.
It is therefore not surprising that structure finding methods often visually verify re-
sults by superimposing the extracted structures upon visualizations of the density
field or the particle distribution (Stoica et al. 2005; Aragón-Calvo et al. 2007b; Gen-
ovese et al. 2010; Sousbie 2011; Cautun et al. 2013). However the visualization plays
a role only after structure extraction process in these methods. We differ in this re-
spect by providing the capability to interact with the structure finding procedure and
extract structures that are visually relevant. The work emanating from this thesis in-
creases, e.g. the scope of investigating, in a more systematic fashion, the dependence
of formation, evolution and properties of galaxies on the surrounding large scale
environment.

Density range based modeling of filaments
The distinction between noise and significant structures is often ill-defined, and
at occasions noise may be confused with genuine structures in the hierarchically
evolved mass distribution. This problem is more pronounced when one studies the
properties of tenuous filaments and walls in low density void-like regions. For the
understanding of the formation and evolution of galaxies in such regions, we need
to assess the possible dependence of galaxy and halo properties on the morphology
and density of the local environment (Jones et al. 2010; Tempel et al. 2013; Cautun
et al. 2014). This must be based on the successful extraction of filaments in low den-
sity regions and the correct identification of galaxies associated with them. In view
of this, we describe Felix4, a topology based visual query framework to extract fila-
mentary structures from a hierarchy of Morse-Smale complexes of the density field.
The filaments in Felix are parameterized by the density values of the maxima and
the 2-saddle that define them. In the software, we incorporate an interactive handle
to specify the density range of the maxima and the saddles. This feature allows the
user to concentrate on and probe structures in specific density regimes. It also offers

4The name Felix is formed from an abbreviation of Filament explorer.
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(a) (b)

(c) (d)

Figure 1.23 Three classes of filaments extracted from the Cosmogrid dataset. (a) Particle distribution
shown along with a volume rendering of the DTFE density. (b) Filaments within cluster like regions
extracted with parameters [Sb, Se] = [105, 108] and [Mb, Me] = [108, 1012]. The highlighted region shows
the retention of intricate topological structures within a large cluster region. (c) Filaments within void
like regions extracted with parameters [Sb, Se] = [100, 105] and [Mb, Me] = [100, 105]. Shown in the inset
is a cluster like region within which filamentary structures are filtered away as desired by the query to
the framework. (d) Filaments that stretch from cluster like regions all the way down to void like regions
using parameters [Sb, Se] = [103, 1011] and [Mb, Me] = [109, 1011]. The highlighted region shows a single
filament passing through the large cluster like region with intricate topological details filtered out by the
framework.

the user the possibility to switch between the various regimes of possible interest in
real time.

As an example, we investigate the nature of filaments in three different density
regimes from the ΛCDM simulations. The first concerns filaments in the high den-
sity regions around compact dense clusters, which are known to function as the
transport channels along which matter moves into the clusters. The second regime
concerns the tenuous low-density filaments found in low-density void regions. The
third regime concerns the filaments that stretch from cluster like regions all the way
down to void like regions. Figure 1.23 presents three classes of filaments extracted
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from a cosmological simulation. Panel (a) shows the particle distribution, along with
a volume rendering of the density field. Panel (b) presents the Filaments within clus-
ter like regions. The highlighted region shows the retention of intricate topological
structures within a large cluster region. Panel (c) presents the filaments within void
like regions. Shown in the inset is a cluster like region within which filamentary
structures are filtered away as desired by the query to the framework. Panel (d)
presents the filaments that stretch from cluster like regions all the way down to void
like regions. The highlighted region shows a single filament passing through the
large cluster like region with intricate topological details filtered out by the frame-
work.

Testing and comparing Felix

In order to test the efficacy of Felix, we compare it with a few structure finders. We
do this by developing a semi automatic structure finder, based on Felix, that clas-
sifies galaxies as cluster/filamentary or not. Using the Voronoi Kinematic model
as a benchmark, we demonstrate that we are able to recover the classification with
high efficiency. We compare Felix with a few other popular methods, namely Dis-
PerSE (Sousbie 2011), MMF/Nexus (Aragón-Calvo et al. 2007b; Cautun et al. 2013)
and SpineWeb (Aragón-Calvo et al. 2010). We demonstrate in the process that we
perform equally good, if not better, in most conditions. This includes models which
are not very highly evolved and hence lack a strong morphological segregation.

We pay a particular attention to the comparison between DisPerSE (Sousbie 2011;
Sousbie et al. 2011) and Felix. These are closely related structure finders, as both
use the Morse-Smale complex of the log-density field and involve feature extraction
from it. DisPerSE simplifies the Morse-Smale complex using Topological Persistence.
It defines significant features as only those that remain unsimplified using the user
defined significance threshold. It ignores the density range characteristics of the
extracted features. A significant consequence is that filaments within void-like re-
gions and cluster like regions are ignored/simplified away. If they are retained, then
the mixing of features causes visual clutter. Furthermore, the significance parame-
ter selection is a fixed constant and visual interaction plays no role in its selection.
In contrast, given the ubiquity of filaments in various density regimes, Felix allows
for density ranged based probes into filaments, within clusters and voids. Another
difference is that Felix uses simplification only for noise removal and not feature
identification.

We construct an experiment to demonstrate the consequences of not correlating
the density characteristics for filament extraction. Using the Voronoi models as a
test, we show that tuning the significance parameter, as implemented in DisPerSE,
is not a sufficient mechanism to extract the desired filaments. Our findings suggest
that a structure identification strategy based on a direct simplification procedure of
the Morse-Smale complex should be applied with care to the density regimes being
studied. By comparing the true and false detection rate profiles we confirm that,
using Felix, we extract filaments that are spatially more proximal to the cluster and
filament particles in the Voronoi Kinematic datasets, as compared to DisPerSE. We
also show that in extreme situations the false detections from DisPerSE have value
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larger than 1. This is indicative of an over-detection of filaments. This is potentially
cumbersome for the analysis of genuine cosmological simulations and observational
surveys. In more complex realistic circumstances, cosmic structure involves features
over a wide range of densities and scales and structural morphologies that are not
as well separated as in the simpler Voronoi models.

In a separate experiment, we demonstrate the exploration of filaments within
high-density cluster like regions and low-density void like regions. Such a delin-
eation, coupled with the visual exploration process, is not possible using DisPerSE.

1.7.4 Outline of this thesis
In Chapter 2, we present a formal discourse on the concepts of Morse theory, ho-
mology and persistence homology. Based on this we introduce the intensity function
and intensity maps as empirical probabilistic description of persistence for stochastic
processes. We then analyze a few heuristic models of cosmic mass distribution in
terms of Betti numbers and persistence.

We proceed to analyze the (persistence) homology of Gaussian random fields
in Chapter 3. In the context of model discrimination, we introduce the use of the
difference maps. We also analyze the Betti numbers of Gaussian random fields and
show that they contain strictly extra information compared to Euler characteristic
and genus. In this context, we arrive at an expression of the scaling properties of
Betti numbers.

In Chapter 4, we exploit the geometry of the manifolds associated with the critical
points, in combination with persistence, to develop an interactive software to iden-
tify the cosmic filaments. This harnesses the hierarchical nature of persistence, and
leverages this to identify structures in the web in a naturally hierarchical fashion. We
compare the method to some of the existing procedures through benchmark models,
and demonstrate that we fare equally good, if not better, in almost all the cases. The
procedure is also naturally suited for additional features like noise removal, based
on topological simplification of the manifold. We propose the software as a rich tool
towards investigating the filamentary structures of the cosmic web.

Chapter 5 concludes this thesis with a summary of the main observations and
conclusions of this thesis, and an outline of some potential problems of relevance
that can be studied through techniques described here.
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2.1 Introduction
The Megaparsec scale distribution of matter revealed by galaxy surveys features a
complex network of interconnected filamentary galaxy associations. This network,
which has become known as the Cosmic Web (Bond et al. 1996), contains structures
from a few megaparsecs up to tens and even hundreds of megaparsecs of size. The
cosmic mass distribution displays a wispy web-like spatial arrangement consisting
of dense compact clusters, elongated filaments, and sheet-like walls, amidst large
near-empty voids, with similar patterns existing at earlier epochs, albeit over smaller
scales. The multi-scale nature of this mass distribution, marked by substructure over
a wide range of scales and densities, has been clearly demonstrated. Its appearance
has been most dramatically illustrated by the recently produced maps of the nearby
cosmos, the 2dFGRS, the SDSS, and the 2MASS redshift surveys (Colless et al. 2003;
Tegmark et al. 2004; Huchra et al. 2005).

The vast Megaparsec Cosmic Web is one of the most striking examples of com-
plex geometric patterns found in nature, and certainly the largest in terms of sheer
size. Computer simulations suggest that the observed cellular patterns are a promi-
nent and natural aspect of cosmic structure formation. These structures form via the
mechanism of gravitational instability (Peebles 1980), which is the standard paradigm
for the emergence of structure in our Universe (Springel et al. 2005). According to the
gravitational instability scenario, cosmic structure grows from tiny primordial density
and velocity perturbations. The evidence provided by the temperature fluctuations
in the cosmic microwave background (Smoot et al. 1992; Bennett et al. 2003; Spergel
et al. 2007; Komatsu et al. 2010; Planck Collaboration et al. 2013b) suggests that the
character of the perturbation field is that of a homogeneous and isotropic spatial
Gaussian process. Theories of the early universe predict such primordial Gaussian
perturbations in the gravitational potential, as they are a natural product of an early
inflationary phase of our Universe.

Since dark matter is the dominant component of the cosmic matter distribution,
its nature is of utmost importance in determining the direction that structure for-
mation in the Universe takes. Depending on whether the dark matter is cold or
hot, structure formation proceeds via either the bottom-up (Peebles 1980) or the top-
down mechanism(Zel’dovich 1970). In the bottom up scenario, the smallerer objects
like galaxies and groups of galaxies are the the first to form. Subsequently, they
merge to form larger and larger structures. In the top-down scenario, the large scale
structures are the first ones to form. Subsequently, the matter inside them fragments
or coagulates to form smaller structures. The primordial Gaussian density field is
probabilistically characterized by its power spectrum. The presence of dark matter
modifies the form of the primordial spectrum at a later epoch through a transfer
function which depends upon the nature of dark matter. This happens because of
coupling of fourier modes in the non-linear regime of gravitational amplification.
Observational measurements of the power spectrum of matter distribution in the
Universe indicate that the bottom-up scenario is the favored one (Planck Collabora-
tion et al. 2013a; Tegmark et al. 2004; Komatsu et al. 2009). The nature of the fluc-
tuations is such that the dynamical evolution of the mass distribution proceeds in a
distinctly bottom-up hierarchical fashion.
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It has remained a major challenge to characterize the structure, geometry, and
topology of the Cosmic Web. The overwhelming complexity of both the individual
structures as well as their connectivity, the lack of structural symmetries, the intrinsic
multi-scale nature of the web, and the wide range of densities in the cosmic matter
distribution has prevented the use of simple and straightforward instruments. Many
attempts to describe and quantify, let alone identify, the features and components of
the Cosmic Web have therefore been of a rather heuristic nature. Measures like the
two-point correlation function, which has been the mainstay of many cosmologi-
cal studies over the past forty years (Peebles 1980), are not sensitive to the spatial
complexity of patterns in the mass and galaxy distribution. A key aspect of the com-
plexity of the Cosmic Web is the connectivity of the various structural components.
Topology is the branch of mathematics that addresses issues of shape and connec-
tivity. The first cosmological studies that focused on topological characteristics of
the cosmic mass distribution evaluated and analyzed the genus and the Euler char-
acteristic of the cosmic mass distribution. Gott and collaborators (Gott et al. 1986;
Hamilton et al. 1986) studied the genus as a function of density threshold. Later,
more discriminative topological information became available with the introduction
of Minkowski functionals (Mecke et al. 1994; Schmalzing & Buchert 1997). How-
ever, nearly without exception these studies had a largely heuristic character, driven
mainly by the urge to find additional useful measures for discriminating between
different cosmologies. There is ample motivation to extend topological studies be-
yond just discriminating between various cosmologies. For example, an interesting
aspect that could have an answer through topological studies is the delineation of
signals of primordial non-Gaussianities from the non-Gaussianities developing due
to gravitational amplification in the later non-linear epochs (Dominik & Shandarin
1992). Similarly, questions on if one can differentiate between signals coming from
various elements of the cosmic web based on their topological characteristics is an
important one. Perhaps one of the most motivating facts for developing the topologi-
cal characterization of the cosmic matter distribution beyond the existing techniques
is the recognition that the matter distribution is distinctly hierarchical in nature. In
view of this, a formalism capable of expressing topology in a hierarchical fashion is
an interesting and powerful alternative to the existing methods.

For a more profound understanding of the topological structure of the cosmic
mass distribution, we have to relate the topological measures to the underlying sin-
gularity and connectivity characteristics. There is a wealth of information to be
gained from a systematic analysis of the singularity structure of a field. This is be-
cause the singularities, or the critical points, determine the overall topological struc-
ture of the field. The basis of this is rooted in Morse theory (Milnor 1963), which
seeks to study the change in topological properties of a manifold through a scalar
function defined on it. With a slight twist, this change in topology can be expressed
in a hierarchical nested fashion, as is achieved in the formalism of persistence (Edels-
brunner et al. 2002; Edelsbrunner & Harer 2010). Informally, this relates to the birth
and death of a topological hole, the dimensions of which are determined by the index
of the critical point associated with its birth and death. See Chapter 1, Section 1.6.3
and Appendix A for a detailed exposition on the procedure.
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A more formal definition of topological holes is through algebraic topology, specif-
ically called Homology. The rank of the p-dimensional homology group Hp, denoted
by the Betti number βp (Betti 1871), counts the number of independent p-dimensional
cycles in a manifold. These cycles bound the holes of the manifold. For a detailed
exposition on holes and homology, refer to Appendix A.

However, Betti numbers attach the same weight to all topological holes. This
is not desirable : in the context of cosmological data sets, almost all data is dis-
cretely sampled – particles in N-body simulations and discrete galaxies in observa-
tions. This introduces erroneous topology at the smallest scales, arising from dis-
crete sampling. Persistence deals with this by formalizing topology as a hierarchical
concept. In this formalism, one records the creation (birth) and destruction(death)
of topological holes, as one sweeps from the highest to the lowest function values.
The topological holes form and destroy only when crossing the critical points of the
function. The absolute difference in the function value between the death and birth
of topological holes quantifies its life-span or persistence. While the definition and
the meaning of ”noise” is case specific, in general, low-persistence holes are more
likely to be topological noise, while high-persistence holes quantify real signals.

The goal of this chapter is to introduce concepts derived from ; homology, Morse
theory and persistence and analyze heuristic models that mimic certain aspects of
the mass distribution in the Universe. To this end we introduce the concept of in-
tensity maps as an empirical probabilistic description of persistence diagrams. The
average of persistence diagrams emanating from realizations of stochastic processes
converge over many realizations asymptotically to a stable function. The intensity
maps also reveal the hidden structures in the the persistence diagrams, which is not
apparent in the scatter plot representation. Specifically, they are able to highlight
specific features of the mass distributions in the models by virtue of being able to
differentiate between topological signals coming from different structural compo-
nents, as for example in the Voronoi evolution models (van de Weygaert 1991). They
are also able to resolve the levels of hierarchies in fractal distributions remarkably
well, as for example in the Soneira-Peebles model (Soneira & Peebles 1978).

In order to explore and understand what a topological description through per-
sistence and homology has to offer, we analyze a few different heuristic models of
mass distribution in the Universe in this chapter. We briefly discuss the topological
concepts essential to the analysis, relegating a detailed description to Appendix A.
In Section 2.4, we seek to analyze the topology of random, featureless distributions,
taking up the particular case of Poisson distributed particles through persistence in-
tensity maps and the Betti numbers. In Section 2.5, we analyze the topology of the
pure Voronoi element models. These models are characterized by the presence of
either a cluster-like, filament-like or wall-like distributions, resembling the different
morphological elements of the cosmic web (Bond et al. 1996). Section 2.6 analyzes the
topology of the multi-scale fractal Soneira-Peebles model (Soneira & Peebles 1978).
The analysis of this model is motivated by the fact that it can be tuned to match the
observed angular distribution of galaxies in the sky. In Section 2.7, we analyze the
topology of the heuristic Voronoi evolution models. The models seek to mimic the
evolution of mass distribution in the Universe, gradually progressing from a stage
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where most of the matter is confined to the field, to a stage where most of the matter
is confined to clusters and filaments. Section 2.8 presents an exposition on a poten-
tial method to separate the contribution of shot noise, arising from discrete sampling,
from the real topological signals. Finally, in Section 2.9, we analyze the topological
characteristic of a single Voronoi evolution model, where the density is computed
through different prescriptions. To this end, we construct the density fields from the
underlying discrete particle distribution using the Delaunay Tessellation Field Es-
timator (DTFE) (van de Weygaert & Schaap 2009a), and the density computed on a
regular grid using Smoothed Particle Hydrodynamics (SPH) (Hernquist & Katz 1989;
Monaghan 2005). This is motivated by the urge to understand how the different den-
sity estimators affect the topological characteristics of the model. We conclude the
chapter in Section 2.10.

2.2 Models

In this study, we seek to analyze the homology of cosmological density fields (Edels-
brunner & Harer 2010). The mass distribution in the Universe is described by the
density perturbation field,

δ(~x, t) =
ρ(~x, t)− ρu(t)

ρu(t)
, (2.1)

which describes the fractional over- or underdensity at position ~x with respect to the
universal mean cosmological density ρu(t). By the definition above, δ ≥ 1.

The models used in the topological analysis are heuristic, but representative of
the certain aspects of the cosmic mass distribution. We begin by analyzing the topol-
ogy of the featureless Poisson distribution. This analysis is motivated by an urge to
understand the topological characteristics of the imprints that the ubiquitous shot-
noise leaves on the cosmological data sets. Thereafter, we move on to the analysis
of Single element Voronoi models, to enhance our understanding on the topologi-
cal characteristics of the various morphological elements of the cosmic web (refer
to Appendix D for the details of the model). The characteristics of hierarchical dis-
tributions are analyzed through the multi-scale Soneira-Peebles model (refer to Ap-
pendix E for the details of the model). Finally, we analyze the Voronoi evolution
models (described in Appendix D) in a bid to understand the topological properties
of dynamically evolving mass distributions, in keeping with the fact that that mass
distribution in the Universe evolves from a rather featureless distribution at the ear-
lier epochs to a distribution with distinct morphological features at the present epoch
in the cosmic timeline.

2.2.1 Excursion sets and Level Set Filtration

When assessing the mass distribution by a continuous density field, f (x), a common
practice is to study the sublevel or superlevel sets of the mean square fluctuation
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Figure 2.1 Density rendering of the superlevel set of the pure filamentary models. From top to bottom:
three snapshots for growing superlevel sets.

smoothed on a given scale Rs, which is given by

σ2(Rs) =
∫

d3 kW2(kR)P(k), (2.2)

where W(x) is the smoothing kernel. The superlevel sets of this field are defined as
the regions

Mν = {x ∈M | fs(x) ∈ ( fν, ∞]} (2.3)

= f−1
s (−∞, fν]. (2.4)

In other words, they are the regions where the smoothed density is greater than or
equal to the threshold value fν = νσ0, with σ0 the dispersion of the density field. A
typical example of superlevel sets of a density field is that shown in figure 2.1.

When addressing the topology of a mass or point distribution, a rich source of
information is the topological structure of a filtration. Given a space M, a filtration is
a nested sequence of subspaces:

∅ = M0 ⊆M1 ⊆ . . . ⊆Mm = M. (2.5)

The nature of the filtration depends, amongst others, on the representation of the
mass distribution. When assessing the topology of a scalar field, the filtration usu-
ally consists of the nested sequence of sublevel or superlevel sets. It is the evolving
topology as we pass through the filtration sequence which represents a rich source
of information on the topological complexity of the field.

Figure 2.1 provides a telling illustration of a density-defined filtration of a web-
like spatial pattern. It concerns a model of the cosmic web consisting exclusively of
filaments (see appendix D for a detailed description). It shows a sequence of three
growing superlevel sets of the weblike density field, along a sequence of decreas-
ing density threshold. The top panel corresponds to the highest density threshold.
It reveals the high density regions that outline the underlying skeleton. The addi-
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tional panels reveal complementary information on the manner in which matter has
distributed itself over the various structural components, revealing how the lower
density mass elements connect up and fill in the interstitial regions of the network.
The illustration shows how the sequence of filtration steps establish the connectivity
of the cosmic mass distribution, and entails its topological structure.

2.2.2 Piecewise Linear scalar fields.

In many practical circumstances, whether it concerns the spatial distribution of galax-
ies in redshift surveys or particles in cosmological N-body simulations, we are deal-
ing with data sets consisting of discrete particle positions. There are various ways in
which the topology of such a discrete particle data set can be analyzed. One option
is to define a filtration on the point distribution itself. The most direct way to achieve
this is that via a simplicial complex generated by the point distribution. Well-known
examples are that of the alpha-complex (Edelsbrunner & Mücke 1994; Edelsbrunner
& Harer 2010) and the Cech complex (see Edelsbrunner & Harer 2010), invoking the
distance function and a corresponding distance parameter to define the filtration.

In our study we follow a different approach. The topological analysis in our
study is based on a density value-based filtration of a piecewise linear density field.
The latter is computed from the discrete particle distribution itself. The filtration
consists of density value superlevel or sublevel sets.

The determination of a piecewise linear density field from a discrete particle dis-
tribution involves a few key steps. The first step involves an estimate of the density
at each of the sample points. Usually, the particles define the point sample, but in
principle one may define alternatives. The second step involves the determination
of a triangulation on the basis of the point sample. In each triangle m (2D) or tetra-
hedron m (3D) of the triangulation, the gradient ∇̂ f

∣∣
m can be uniquely determined

from the D + 1 vertices.

For a sample of N points, with density value estimates f (~xj) (j = 1, . . . , N), the
density value f̂ (~x) at location ~x is uniquely determined from the density gradient
∇̂ f
∣∣
m of the triangle/tetrahedron m in which it is located, and the density value at

one of its vertices, ~xi),

f̂ (~x) = f̂ (~xi) + ∇̂ f
∣∣
m · (~x−~xi) . (2.6)

One key element of a procedure to construct a linear piecewise density field is
the nature of the estimate of the density at each sample point. A second key element
is the nature of the triangulation. In most of our results, we use the Delaunay Tes-
sellation Field Estimator, DTFE (Schaap & van de Weygaert 2001; van de Weygaert
& Schaap 2009b; Cautun & van de Weygaert 2011). It is based on local density es-
timates determined from the volume of the corresponding contiguous Voronoi cell
or star, and the use of the Delaunay tessellation as triangular interpolation mesh. A
summary of the technical details of DTFE can be found in appendix F.0.6.
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Figure 2.2 A solid double-torus with a bubble.

2.3 Topology
In this section, we introduce the topological concepts we use to analyze particle dis-
tributions, through a running example. We relegate the formal definition of these
concepts to the Appendix A. The main new methods for cosmological applications
are Betti numbers and persistence, which we will relate to the more traditional no-
tions of Minkowski functional, Euler characteristic, and genus.

2.3.1 Running example
Let M be a solid double-torus with an empty bubble, that is: a double-donut with
a small void inside; see Figure 2.2. Its boundary, denoted as ∂M consists of two
surfaces: a double-torus on the outside and a sphere bounding the bubble.

The Minkowski functionals are the volume of M, the area, the total mean curvature,
and the total Gaussian curvature of ∂M. These are geometric properties, but they are
not independent of the purely topological concepts we will introduce next.

The Euler characteristic is the alternating sum of simplex numbers needed to tri-
angulate a manifold. Applied to ∂M, the number of vertices minus the number of
edges plus the number of triangles needed to triangulate the double-torus gives −2,
and for the sphere we get +2. It follows that the Euler characteristic of ∂M is χ = 0.
There are many other 2-dimensional manifolds that have the same Euler character-
istic, the torus being one, the union of two tori being another. The Gauss-Bonnet
Theorem relates the Euler characteristic with the total Gaussian curvature, stating
that for a connected surface, the latter is equal to 2πχ. Indeed, the total Gaussian
curvature of the sphere is 4π, no matter how large it is, and the Euler characteristic
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of the same is 2. The genus of ∂M is 2, namely 2 for the double-torus plus 0 for the
sphere. For a connected surface, the genus equals 1 minus half the Euler character-
istic. More generally, the genus of a 2-manifold that is the union of disjoint surfaces
is therefore

g = ∑
i

gi = ∑
i

(
1− χi

2

)
= #components−

(χ

2

)
, (2.7)

where we write χi and gi for the Euler characteristic and the genus of the i-th com-
ponent. The reader may check that this relation holds for ∂M. We get a refinement
of the concepts by introducing Betti numbers. Formally, they are ranks of homology
groups, one for each dimension (more on homology and homology groups later).
We have

β0 = #components,
β1 = #independent loops, (2.8)
β2 = #independent closed surfaces.

For ∂M, we have β0 = 2, β1 = 4, β2 = 2. Indeed, we have two components and two
closed surfaces: the double-torus and the sphere. To see the four loops, draw one
around each hole of the double-torus and another one around each handle. We get
the Euler characteristic by taking the alternating sum: χ = β0 − β1 + β2, which for
∂M gives 0, as required.

Suppose now that M is the portion of the Universe at which the local density ex-
ceeds some threshold, ν. What if we decrease ν by some small but positive amount?
Decreasing the threshold enlarges the portion at which the density threshold is ex-
ceeded. It may be that the bubble fills up. Assuming that nothing else changes, ∂M

is now a double-torus, with β0 = 1, β1 = 4, β = 1. The sphere and the bubble have
gone.

There is a wealth of information in this game of birth and death that unfolds
when we continuously decrease the density threshold. Harvesting this information
is perhaps the most important new idea this paper brings to the study of the cosmic
web. A formal description of this process requires the homology groups, of which
the Betti numbers are the ranks, and the maps between these groups that are in-
duced by the inclusions of one body in the next. The reader who is not inclined to
learn about these algebraic concepts can still follow the text and the results in this
paper, basing her intuition on the closely related but more intuitive birth and death
game we see in Morse theory (refer to Appendix A.4, for an exposition on birth and
death of topological holes and the connection to Morse theory). It suffices to mention
that the a compact representation of the topological changes across the whole range
of function values on a manifold is captured by the persistence diagrams (Edelsbrun-
ner & Harer 2010). Its a collection of dots in R2, where the dots have the same units
as the scalar function defined on the manifold. The usual practice is to represent
the birth value of a feature on the horizontal axis, and the corresponding value of
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density threshold for death on the vertical axis. There are 0−, . . . , (d− 1)− dimen-
sional diagrams for a d-dimensional manifold. We use the persistence diagrams to
arrive at the concept of intensity function and intensity maps as empirical probabilistic
description of persistence homology. This is a novel contribution of this thesis, and
we describe it next.

2.3.2 Persistence intensity function and intensity maps
This chapter concerns itself with the topology of stochastic point processes, and den-
sity field computed on them. In the context of the Universe, both the cosmic mi-
crowave background and the density distribution in the Universe are examples of
spatial stochastic processes. It is a universal property of stochastic processes that the
expectation value of the quantities defined on them converge over many realizations.
Our conjecture is that this must also be true for the birth-death events, as reflected
in the persistence diagrams, if averaged over many realizations. While a rigorous
attempt at deriving a probabilistic and statistical description of persistence topology
is beyond the scope of this chapter, we provide an empirical description and test, as
proof of the hypothesis, by introducing the intensity maps.

We are interested in the statistical description of persistence diagrams, as an av-
erage over many realization, of the stochastic process f . To this end, we construct
the intensity maps, which is the function p : R2 → R in the mean density-persistence
plane, whose integral over every region R ⊂ R2 is the expected number of points in
R, 〈Ntot〉. Note that 〈Ntot〉 is a representative of the total intensity of the map. We dis-
cretize the intensity map into a number of regular grid-cells in the plane, and define
the intensity function, for the grid-cell (i,j) as

Iij =
〈Nij〉
〈Ntot〉

. (2.9)

The total intensity of the maps is proportional to the average number of total dots
in the persistence diagrams. For each grid cell, the intensity function represents the
fraction of the total intensity of the map. Since the intensity in each bin is normal-
ized by the total intensity of the map, the integral of the intensity function over R2

always evaluates to 1, irrespective of the model in question. In the limit of the size
of the grid-cells going to zero, the discretized intensity function approximates the
probability density function. At this point, we only have empirical evidence that if
f arises from a stochastic process and is is tame (all the derivatives well defined),
the intensity maps are well defined . As we will show shortly, the intensity function
and intensity maps are highly sensitive to the parameters of the model, and capture
local variations in topology across the whole range of function value. As such, we
propose their use to characterize and discriminate between various models. These
maps are defined for all ambient dimensions of the manifold on which f is defined.

Our preferred visual presentation of a diagram is averaged over a number of
realizations of the same random experiment; see Figure 2.7, which shows the plots
for the data generated as described in Section 2.4. To construct it, we superimpose
the diagrams of the different realizations, we discretize R2 using a grid of 100-by-100
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squares, and we form the histogram by counting the points in each square. The result
is a real-valued function on the plane, which we denote as the averaged persistence
diagram or the intensity map of the diagram.

2.3.3 Running example : persistence homology of a triangle
In this section, we illustrate the construction of filtration and boundary matrix, and
the subsequent reduction of the boundary matrix through an example. We take a
triangle as our input simplicial complex.

Filtration
We assume there is a function defined on the simplices that constitute the triangle.
The function is such that it induces an ordering of the simplices, from the lowest to
the highest dimension. Figure 2.3 depicts such an ordering and the order in which
the simplices appear in the filtration. we examine the filtration now, while simulta-
neously keeping track of the birth and death events.

First the vertex 〈1〉, appears in the filtration. this corresponds to the birth of a 0-
dimensional hole, or an isolated object. Subsequently, vertices 〈2〉 and 〈3〉 appear, in
that order, taking the number of isolated objects to 3. order. Thereafter, the edge 〈4〉
appears, merging the vertices 〈1〉 and 〈2〉 into a single component. We have a death
of a 0-dimensional hole here. According to elder rule, the component that forms
early lives, and the younger component dies. In other words: the edge 〈4〉 kills the
vertex 〈2〉, and {〈2〉, 〈4〉} form a birth-death persistence pair in the corresponding
to a 0-dimensional hole. Thereafter comes edge 〈5〉, merging the vertex 〈3〉 with
the connected component 〈1〉 (note that, since 〈2〉 is dead, the connected component
resulting from the merger of 〈1〉 and 〈2〉 has the same index as 〈1〉).

The first topological hole in 1-dimension is born when the edge 〈6〉 appears in
the filtration. this completes the triangle, forming a loop. This 1-dimensional hole
dies when the face of the triangle appears in the final phase of the filtration, patching
up the loop that had formed due to the introduction of the edge 〈6〉. In other words,
{〈6〉, 〈7〉} form a birth-death persistence pair in 1-dimension.

In summary, there are three birth-death pairs in the filtration of the triangle : two
corresponding to isolated components – {〈2〉, 〈4〉} & {〈3〉,〈5〉}, and one correspond-
ing to the loop – {〈6〉, 〈7〉}.

From the point of view of need to construct the boundary matrix, we also enu-
merate the simplices and their boundaries here. The boundary of the edges con-
stitutes of the vertices – for example, the boundary of the edge 〈4〉 consists of the
vertices 〈1〉 and 〈2〉. The boundary of the triangular face 〈7〉 consists of the edges
〈4〉, 〈5〉 and 〈6〉.

Boundary matrix and its reduction
We construct the boundary matrix, ∂ of the filtration of the triangle (refer to Ap-
pendix B.5 for a detailed account on boundary matrices and the algorithm for com-
puting persistence). Since the number of simplices in the filtration is 7 (3 vertices, 3
edges, and 1 face), the size of the boundary matrix is 7X7. If the simplex i is in the
boundary of the simplex j, the (i, j)-th element of the matrix is 1. All other elements
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Figure 2.3 Figure illustrating the order in which the simplices of the triangle appear in the filtration.

Figure 2.4 Figure illustrating reduction of the boundary matrix. R is the reduced matrix, ∂ is the original
boundary matrix and V is the matrix whose column jencode the columns of ∂ that add up to give the
column j of R. The shaded entries in the matrices denote 1. All other entries are zero.

are 0. We reduce the boundary matrix to R, using Algorithm 2, to the form detailed
in Appendix B.5. Figure 2.4 illustrates this operation in the form of the matrix multi-
plication notation R = ∂ · V, where R and ∂ are the reduced matrix and the original
boundary matrix respectively. One may verify that the shaded entries in the ∂ ma-
trix of Figure 2.4 indeed correspond to the simplices of the triangle, and its boundary
(Figure 2.3 and Section 2.3.3).
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Figure 2.5 Persistence diagrams corresponding to the birth-death pairs in the filtration of a triangle. Left
panel presents the 0-dimensional persistence diagram, corresponding to birth-death or merger events of
isolated objects. Right panel presents the 1-dimensional persistence diagram, corresponding to birth-
death events of loops.

Persistence diagrams
It is easy to read off the persistence diagrams from the reduced matrix R. In Fig-
ure 2.4, the matrix R is the reduced matrix corresponding to the persistence ho-
mology computation of the filtration of a triangle. The shaded entries in this ma-
trix have a value 1. Moreover, the entries in a deeper shade of pink denote the
lowest row of a column whose entry is 1. The lowest 1’s indicate the birth-death
persistence pair. In this example, the lowest 1 entry indices correspond to the set
(i, j) = {(2, 4), (3, 5)&(6, 7)}. The first entry in the pair is the index of the simplex
that gives birth to a topological hole. The second entry is the index of the simplex that
kills that particular topological hole. One can verify that the indices of these pairs in-
deed correspond to the birth-death pairs, as enumerated in Section 2.3.3. Figure 2.5
presents the information of birth-death pairs in the filtration of a triangle in the form
of persistence diagrams.

2.3.4 Points of caution.
The methods employed in this paper are perhaps on the more sophisticated end
of the spectrum of cosmic web analyzes. It is therefore important to make sure that
each step is rational and reliable, and the results are not contaminated by side-effects.
There are indeed a few subtleties we need to keep in mind, and we list them here to
avoid possible pit-falls.

– PERIODIC TILING. Instead of the 3-dimensional Euclidean space as a model of
the Universe, we use the 3-torus, which has non-trivial homology, with Betti
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numbers β0 = 1, β1 = 3, β2 = 3, and β3 = 1. These numbers interfere with
our statistical analysis of the topology of superlevel sets, but they are barely
noticeable in the midst of usually thousands for ranks we observe.

– DENSITY FIELD ESTIMATION. Among the many possible density field estima-
tors, we rely mostly on the DTFE as it naturally adapts to the particle distribu-
tion. It has the side-effect of forming high density spikes above particles that
are completely and tightly surrounded by others.

– SYMBOLIC PERTURBATION AND SUPERLEVEL SETS. We use the technical tools
of symbolically perturbing the density values at the vertices, and retracting
each superlevel set to the full subcomplex above the threshold. Both techniques
simplify the computation but have otherwise no effect. In particular, they give
precisely the same persistence diagrams and intensity plots.

– INTENSITY PLOTS. The averaged diagrams are meant to approximate the un-
derlying distribution from which the persistence diagrams are sampled. We
have no proof that they exist, other than the visual evidence that the diagrams
for statistically similar particle distributions appear similar. We draw these
plots by counting points within each square of a 100-by-100 grid, which im-
plies that small shifts of the grid would give (slightly) different plots.

– PERTURBATIONS AND STABILITY. Recalling the Stability Theorem for persis-
tence diagrams (Cohen-Steiner et al. 2007), we note an ε-perturbation of the
density function can lead to the addition or removal of points at distance at
most ε from the horizontal axis. As a consequence, the intensity plots may
change an arbitrary amount near the horizontal axis, but not at a distance larger
than ε.

2.4 Random Topology
Random processes play a crucial role in many aspects of life. In this paper, the analy-
sis of random data provides a baseline for comparison, training the eye to pay atten-
tion to features that are not accidental, caused by inevitable random configurations
in the data. We create this baseline by picking particles in space uniformly at ran-
dom.

2.4.1 Poisson process.
Recall that our model of the Universe is the 3-dimensional cube with opposite faces
glued to each other to create a periodic tiling of space. We call this the 3-torus model,
denoting it by X. We choose the length unit such that each edge is 200h−1Mpc long.
Within this cube, we pick n = 500, 000 particles in a Poisson process1. For practical
purposes, the particles are thus chosen from a uniform distribution over the 3-torus.
This forms a reasonable approximation of a Poisson process.

1The Poisson process depends on a parameter λ that determines the expected number of particles. We
slightly rig the process such that the number of chosen particles is precisely the expected number.
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Figure 2.6 Left: The three Betti numbers of the superlevel sets of a density function on the 3-torus. The
threshold, ν, decreases from left to right, and the numbers of components, tunnels, and voids increase
from bottom to top. Generating 500, 000 particles in a Poisson process, we get the density with the DTF
estimator as explained in Appendix F.0.6. The graphs are averaged over ten realizations. Right: the same
graphs in log-log scale.

2.4.2 Graphs of Betti numbers.
To get a feeling for the DTF estimator of the particle sample, we compute the Betti
numbers of the superlevel sets. Writing $ : X → R for the estimated density func-
tion, we plot the p-th Betti number of $−1[ν, ∞) as a function of ν, for p = 0, 1, 2.
Drawing ν decreasing from left to right, we superimpose the graphs of the Betti num-
ber functions for ease of comparison; see Figure 2.6. We observe that the graph of β0
peaks first, at a density threshold of ν ≈ 0.04. As expected, the graph of β1 peaks
second, at ν ≈ 0.015, and the graph of β2 peaks last, at ν ≈ 0.007. This suggests that
loops are formed preferably by merging clusters into filaments, as opposed to grow-
ing horns that eventually meet. Similarly, voids are formed preferably by merging

Figure 2.7 From left to right: the intensity plots of the persistence diagrams for dimensions 0, 1, 2,
averaged over ten realizations. The sum of the logarithms of birth- plus death-values decreases from left
to right, while the logarithm of the persistence increases from bottom to top.
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clusters and filaments into walls that eventually meet to completely enclose junks of
empty space. In addition to the clear order, we observe that each of the three graphs
has a clean shape with a clearly defined single mode. These properties are indicative
of the data following a single, well-defined distribution. Indeed, the graphs resemble
that of the Poisson distribution – a single early mode and an exponentially decaying
tail – which is plausible since the DTF estimator is sensitive to and preserves the local
density of the particles.

2.4.3 Averaged persistence diagrams.
As explained in Appendix B.5, persistence diagrams contain strictly more informa-
tion than the graphs of the Betti numbers. Figure 2.7 shows the intensity plot of the
density function, $ : X→ R, again in log-log scale. To compare these plots with the
curves in Figure 2.6 on the right, we observe that the number of birth-death pairs,
(νb, νd), with νb ≥ ν > νd gives the Betti numbers for the superlevel set for threshold
ν.2 Since we draw the diagrams as intensity plots, we need to compare the integral
over the V-shaped region anchored at the point (log ν + log ν, 0) with the Betti num-
ber at log ν. When doing this, note that the horizontal axes in Figure 2.6 are labeled
with values of ν, while the horizontal axes in Figure 2.7 are labeled with twice the
logarithm to the base 10 of ν. Similar to the graphs in Figure 2.6, the diagrams of
β0, β1, β2 are ordered along the horizontal axis. In addition, the persistence, which
we see as the vertical distance from the horizontal axis, decreases from β0 to β1, and
then again from β1 to β2. This is a reflection of the DTF estimator, which tends to
form spikes of high density at clusters. The height of these spikes is measured by the
persistence of dots in the diagram of β0, and these spikes are visible even after tak-
ing the logarithm of the density. In contrast, the depth of voids is measured by the
persistence of the dots in the diagram of β2, which is much milder, as seen in Figure
2.7. Finally, we point out the characteristic “pointed hat” shape of the diagrams, and
more specifically the sideways leaning tips for β0 and β2.These shapes seem related
to heavily studied but difficult questions in percolation theory, and in particular to
threshold phenomena, which are characteristic of this field.

2.4.4 Scaling Relations of Poisson Topology
In order to probe the scaling relations of various quantities for the Poisson distri-
bution, we construct realizations with different mean inter-particle separation λ =
0.0625, 0.125 and 0.25. Keeping the box size same, this amounts to an increased num-
ber of particles with decreasing λ. Figure 2.9 plots the Betti numbers for realizations
with different λ, where the horizontal axis (corresponding to level set value) is scaled
with the variance of density, which is computed at each particle position. The βis for
different λ’s have the same peak positions after scaling. Peak positions are well sep-
arated, denoting that topology is predominantly either “cluster-like”, “sponge-like”
or “cheese-like” at different level set values. β0 peaks at ν ≈ 1.8, β1 at ν ≈ 0.6 and
β2 at ν ≈ 0.3. The coincidence of peak-positions suggest a functional form of Betti
numbers as a function of level set.

2This relation may be violated by the 8 = 1+ 3+ 3+ 1 essential homology classes of the 3-torus, which
are not drawn in our diagrams. Their number is too small to be notices in our figures.
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Figure 2.8 Scaling relations for different quantities for the poisson distribution. The quantities on
the vertical axis (except the bottom-right panel) are per-unit-volume. Top-left panel : Scaling of peak-
amplitude of β0, β1 and β2 with the parameter of distribution λ. Top-right: scaling of normalized (with
the standard deviation) peak-position (on the horizontal axis) with λ. Bottom-left: scaling of number of
simplices with lambda. This can be translated to the scaling of number of simplices with the number of
particles in the box. Bottom-right : scaling of time required to compute persistence with the number of
simplices. The quantities on vertical axis scale linearly with quantities on horizontal axis in the top-left,
top-right and bottom-left panel. The scaling in bottom-right panel has a power-law form. the slope of
scaring is doted by “m” in the first three panels. In the fourth panel, m is the index of the power-law
distribution.

In addition to the scaling of peak positions with normalized level set values, the
peak amplitudes and the location of the peak amplitude of βi also scale with λ. This
scaling is shown in the top-left and top-right panels of Figure 2.8. Peak amplitudes
of β0, β1 and β2 scale linearly with λ, with different slopes. β1, the number of loops
rises the sharpest with λ, with a slope of m = 0.08902, followed by β0 (m = 0.05036)
and β2 (m = 0.00989). The non-normalized (with respect to variance) peak positions
on the horizontal axis also scale with λ. However, the trend is not the same as the
peak amplitudes. In this domain, ν0, the peak position for β0 rises the sharpest with
increasing λ, with a slope of m = 0.57749, followed by ν1 (m = 0.2299) and ν2 (m =
0.11004), in that order. The number of simplices per unit volume also scales linearly
with λ and has a slope of m = 29.07. This is presented in the bottom-left panel of
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Figure 2.9 Betti numbers for poisson distribution with λ, the parameter of distribution varying. For
each realization, the levelset values on the horizontal axis are normalized by the standard deviation of
that particular realization. In the representation of normalized horizontal axis, the peak positions for real-
izations with different λ are coincident. The lowest peak-amplitude corresponds to λ = 0.0625, followed
by λ = 0.125&0.25 respectively.

Figure 2.8. Bottom-right panel of Figure 2.8, presents the scaling of time required
to compute persistence for the poisson distribution with respect to the number of
simplices in the triangulation. The time required to compute persistence seems to
follow a power-law with respect to the number of simplices. We fit a power-law of
the form f (x) = axb where b is the index of the power-law. The fitted curve to the
data points gives the value of the index b = 2.

2.5 Single-Scale Topology
In this section, we consider a random process that produces particle distributions
near the elements of a fixed Voronoi diagram. While heuristic in nature, these dis-
tributions mimic the structural patterns observed in the Universe: the clusters, fila-
ments, and walls in the Cosmic Web.

In these Voronoi clustering models, outlined in appendix D, a geometrically fixed
Voronoi tessellation defined by a small set of nuclei is complemented with a heuris-
tic prescription for the location of particles or model galaxies within the tessellation
(van de Weygaert & Icke 1989; van de Weygaert 1991; Weygaert 2007). We distin-
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Figure 2.10 Top row, from left to right: particle distribution in the three pure Voronoi element models
corresponding to clusters, filaments, and walls. Each data set consists of 262, 144 particles inside a periodic
box of side length 200h−1Mpc. Bottom row, from left to right : density rendering of the same.

guish two classes of Voronoi models: the pure Voronoi element models and the Voronoi
evolution models. Both are obtained by moving an initially random distribution of N
particles toward the faces, lines, and nodes of the Voronoi tessellation. They do this
by a heuristic and user-specified mixture of projections onto the various geometric
components of the tessellation. The Voronoi evolution models accomplish this via
a gradual motion of the galaxies from their initial, random locations towards the
boundaries of the cells.

2.5.1 Pure Voronoi element models.
Recall that a Voronoi diagram in space has four types of elements: vertices, edges,
faces, and cells. Constructing and fixing a diagram for only 32 nuclei within a pe-
riodic box with sides of length 200h−1Mpc, we consider three random processes
that generate particles near the vertices, edges, and faces. With each realization,
we get 262, 144 particles distributed uniformly along and with a Gaussian spread
of 1h−1Mpc around the elements of the Voronoi skeleton; see Figure 2.10 and ap-
pendix D for a detailed description of the models. The first process generates the
particles in clusters around the vertices, the second forms filaments along the edges,
and the third creates walls following the faces. Since each process focuses on the ele-
ments of a single dimension, we call the resulting distributions pure Voronoi element
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Figure 2.11 The Betti numbers of the superlevel sets of the density function for pure Voronoi element
models as functions of the threshold. From left to right: β0 β1, β2.

models.

2.5.2 Graphs of Betti numbers.
We begin our analysis by looking at the Betti numbers of the superlevel sets of the
estimated density field. Figure 2.11 shows the numbers as functions of the threshold.
All results are averaged over eight realizations. The number of particles being the
same in all three models, the average matter density in the clusters is higher than
along the filaments, which in turn is higher than inside the walls. This is reflected
by the graphs of β0, in which the density threshold of the maximum is highest for
clusters, between the extremes for filaments, and lowest for walls. The value at the
maximum (the number of components) follows a reverse trend.

Note the prominent shoulder in the graph of β0 for clusters, which we do not see
in the graphs for filaments and voids. The shoulder is a reflection of the merging
process, which first consolidates the particles into clusters and second merges the
clusters into one connected whole. We thus observe a transition from intra-cluster
to inter-cluster merging, with the parameters of the shoulder identifying the den-
sity values at which this transition happens. In the filament and wall models, we
have a single connected component as soon as all filaments and walls have been
consolidated, which explains the absence of shoulders. Nevertheless, we observe a
transition from a focus on intra- to inter-structural connectivity as a function of the
density threshold. Indeed, the graph for β1 has a shoulder, both for clusters and for
filaments, and the explanation is similar.

Continuing the trend, the graph for β2 has two clear modes for clusters and fil-
aments, and a hint of two modes for voids. A comparison with the intensity plots
shows that this hint is a fluke, and while the separation into two populations of voids
is real, it is not visible in the graph. More about this shortly. Returning to the graphs
of β2, we note that the left modes reflect the consolidation of the particles sampling
the Voronoi elements, and the second modes reflect the filling up of the global, inter-
structural voids. We see that the ordering of the left modes from clusters to filaments
to walls is reversed for the right modes, remembering that β2 for walls does not dis-
tinguish between the two populations and combines the left and right modes into
one. The reversal of order makes geometric sense, since we are talking about the
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Figure 2.12 The averaged persistence diagrams of the density functions for pure Voronoi element mod-
els. From top to bottom, we show the intensity for clusters, filaments, walls, and from left to right for
classes of dimension 0, 1, 2.

same voids in all three models, but these voids are shallower and appear at lower
density values for clusters than for filaments, and more so for walls.

2.5.3 Averaged persistence diagrams.
The intensity plots for the pure Voronoi element models display features the graphs
of the Betti numbers fail to capture, primarily because the plots distinguish between
significant and insignificant features. For example, each realization of the filament
model has a large number of tiny loops inside the filaments, but also a smaller num-
ber of larger loops that are carried by the filaments themselves. The 1-st averaged
persistence diagram distinguishes between these two populations.

More generally, Figure 2.12 shows the intensity plots of all diagrams for all pure
Voronoi element models: from top to bottom for clusters, filaments, voids, and from
left to right for β0, β1, β2. To a first degree of approximation, all diagrams contain
a red and green high-intensity region and a blue low-intensity region. For the six
diagrams in the upper-right triangle of the 3-by-3 array, the second region forms
a island, by which we mean a hill that is completely surrounded by a ring of zero
intensity. As before, the high-intensity regions reflect the intra-structural consolida-
tion, while the low-intensity regions consist of points that represent large topological
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structures each carried by several clusters, filaments, or walls. For components, the
two populations are clearly separated in the upper-left diagram for clusters.

Similar to the graphs, we see no separation into the two populations of compo-
nents in the diagrams for filaments and walls. For loops, the two populations are
most clearly separated in the center diagram of Figure 2.12, which plots the inten-
sity for filaments. The two populations of loops are less clearly separated in the top
diagram for clusters, and not at all separated in the bottom diagram for walls. Nev-
ertheless, that plot has a tongue suggesting a population of loops emigrating from
the bulk. The geometric interpretation of this phenomenon is that the walls meet in
filaments, which are therefore more densely sampled, so that global loops can form
before the walls are completely filled.

For voids, the separation into two populations is clearly visible in all three di-
agrams; see the third column in Figure 2.12. Most noteworthy is the separation in
the bottom diagram, in which the two populations have roughly the same mean age
but very different persistence. Such populations cannot be separated by V-shapes,
which is the reason the function of Betti numbers is oblivious to this difference.

2.6 Multi-Scale Topology
One of the major features of the matter distribution at large scales is the presence of
a hierarchy of substructures, with a large dynamic range in density and spatial scale.
As a result, we see a multi-scale distribution, with interesting features at every scale.

2.6.1 the Soneira-Peebles model.
Soneira-Peebles is a random process with adjustable parameters that generates a
fractal distribution of particles (Soneira & Peebles 1978). Both the two-point cor-
relation function and the fractal dimension of these particle sets are well understood
analytically; see Appendix E. The parameters can be chosen such that the correlation
function of the particle distribution mimics that of the galaxies in the sky. It is used to
explain the clustering statistics of the galaxy distribution, taking into account the fact
that they display strong self-similarity. The placement of the particles is controlled
by three parameters, each responsible for tuning a different aspect of the hierarchy:

η: the height, equal to the number of levels minus 1;

ζ: the concentration, equal to the ratio between consecutive radii;

ψ: the branching factor, equal to the number of children.

We start the construction with a unit sphere at level 0, inside which we place the
centers of ψ level-1 spheres, each with radius 1/ζ at random positions. The next
iteration places the centers of ψ level-2 spheres with radius 1/ζ2 inside each level-1
sphere. We continue the process until we reach level η, with a total of ψη spheres of
radius 1/ζη . Finally, we pick a particle at the center of each level-η sphere. Figure
2.13 shows three sample distributions with fixed height and branching factor, but
with varying concentration.
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Figure 2.13 Particle distributions generated with the Soneira-Peebles process. Fixing the height to η = 6
and the branching factor to ψ = 9, we vary the concentration from left to right as ζ = 5.0, 7.0, 9.0. there
are 69 particles in each data set. Due to the high concentration factor, the number of particles may seem
smaller than that, but it is not. Zooming into a particular region shows similar structure at higher levels
of hierarchy. Density rendering of the distribution is not feasible due to high concentration.

Figure 2.14 From left to right: the 0-th, 1-st, 2-nd Betti numbers of the superlevel sets of the density
function for the Soneira-Peebles particle distributions plotted on a logarithmic scale. Fixing the height to
η = 5 and the branching factor to ψ = 9, we vary the concentration as ζ = 5.0, 7.0, 9.0.

2.6.2 Graphs of Betti numbers.
We study particle distributions generated with height η = 6, branching factor ψ = 9,
and three different concentrations, ζ = 5.0, 7.0, 9.0. For each parameter triplet, we
average the results over eight realizations. Figure 2.14 shows the Betti numbers as
functions of the threshold defining the superlevel set of the density functions defined
by the particle distributions. Evidence of modularity3 is present in the curves for all
chosen values of ζ. For β0, it manifests itself as ripples on the right side of the mode,
when the number of components decreases after reaching a maximum. For β1 and
β2, the evidence can be seen in the number of modes. Higher concentration results in
a more clearly defined modular distribution. Indeed, the number of distinct ripples
in the graphs for β0 is the largest for ζ = 9.0, while they are barely visible for ζ = 5.0.

The peak amplitude for β0 is the same for all three distributions. The reason may

3The term “modularity” is used for particle distributions with distinguishable levels in the hierarchy.
A modular distribution is hierarchical in nature.
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Figure 2.15 From left to right: the 0-, 1-, 2-dimensional persistence diagrams of the density functions
obtained from the Soneira-Peebles particle distributions. Fixing the height to η = 5 and the branching
factor to ψ = 9, we vary the concentration from top to bottom as ζ = 5.0, 7.0, 9.0.

be trivial, namely the fact that η and ψ are the same for all three experiments, im-
plying that all data sets contain the same number of particles, namely ψη . However,
the peaks occur at different density thresholds, reflecting the varying local density of
the distributions generated for different concentrations. Indeed, more concentrated
particle distributions have higher density peaks, and as a result we see the mode at
higher thresholds. We observe the same trend in the curves for β1, and even for β2,
although the latter curves a much rougher, reflecting overall smaller numbers and
more noise. The number of levels in the hierarchy is reflected in the number of rip-
ples, which is most clear for the graph of β1. We see five distinct ripples, while the
number of levels in the distribution is six. It seems that the lowest level has too few
components to be visible in the graphs. While the graphs of β2 are noisy, they also
exhibit a similar ripple structure.

2.6.3 Averaged persistence diagrams.
The intensity plots of the particle distributions described above are shown in Figure
2.15, for ζ = 5.0, 7.0, 9.0 from top to bottom, and for dimension 0, 1, 2 from left to
right. The features in the diagrams show a clear transition as a function of the con-
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centration, with evidence of modularity present in all diagrams. In particular, we
notice hills in the intensity, which we define as the neighborhood of a local maxi-
mum away from the horizontal axis. Note that these are different from tongues in the
intensity plots, which are regions right below the local persistence maxima.

Hills seem rather unusual features as the intensity usually decreases monoton-
ically from bottom to top. For the 0-dimensional diagrams, we notice an increase
in the number of hills when we increase the concentration: there is a single hill for
ζ = 5.0, we see the hint of a second hill for ζ = 7.0, and there are three clear hills
for ζ = 9.0. In words, we get progressively more evidence for modularity as the
concentration increases, which is hardly surprising. Interestingly, the hills come in
sequence, from bottom to top, so that later hills represent birth-death pairs of higher
persistence. Furthermore, the intensity of the hills decreases from bottom to top.
This makes sense since lower levels in the construction contain fewer clusters with
lower persistence. Indeed, the highest level in the hierarchy generates the densest
regions with the largest number of particles. Physically this means that many tiny
clusters form at high density thresholds. These clusters are short lived, and as we go
down from the highest level, a large number of tiny clusters merge together to form
fewer but larger clusters. These larger clusters are of higher persistence and corre-
spond to the low-intensity, high-persistence hills in the diagrams. The bias of the
higher persistence hills towards the lower density values, is interesting, as it coun-
ters the higher density leaning pointy hat shape we see for the uniformly distributed
particles; see Figure 2.7.

Progressively better defined modularity as a function of increased concentration
is also evident in the 1-dimensional intensity plots. Here, we see tongues that cor-
respond to the hills in the 0-dimensional plots. Larger concentration corresponds to
smaller filling rate, which results in bigger patches of empty space. This is reflected
in the 2-dimensional intensity plots, which record the information for the voids or
empty regions: we see three or perhaps four grainy tongues, which are fuzzy for
ζ = 5.0, and progressively better defined for ζ = 7.0 and 9.0.

2.7 Dynamic Topology
In this section, we consider particle distributions that change configuration over
time, similar to the matter in the Cosmos. Under the influence of gravity, the rela-
tively uniform distribution at early epochs accumulates in the potential wells, evolv-
ing into galaxies arranged in clusters, filaments and walls.

2.7.1 Voronoi evolution models.
Starting with a random distribution of particles over the entire volume, Voronoi evo-
lution generates a time-series of particle distributions driven by slow drifts from
higher- to lower-dimensional elements of an underlying Voronoi diagram. Their
construction is described in some detail in appendix D.

We have sampled this time-series at three moments in time, called stages, and we
show the results for these, emphasizing the continuous change that becomes visible
by comparing the graphs and diagrams. To parametrize the stages, we keep track of
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Figure 2.16 Snap-shots in the Voronoi evolution time-series. Top row, from left to right: particle distri-
bution at the least, medium, most evolved stage. Bottom row, from left to right: volume rendering of the
same.

Figure 2.17 The graphs of the Betti numbers computed for the suoerlevel sets of the density function of
evolving particle distributions. From left to right: β0, β1, β2 at different stages of the evolution. Stages 1,
2, 3 progress from least, to medium, to most evolved.

the percentage of particles that lie in the interior of cells, faces, edges, and vertices of
the Voronoi diagram; see Table 2.1. Stage 1 is the least evolved particle distribution,
With the highest percentage of particles in cells, while Stage 3 is the most evolved
distribution, with the highest percentage at and around the vertices. Figure 2.16
shows the three stages as point clouds, going from left to right in the evolution.
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cell wall filament cluster
Stage 1 49.93% 38.52% 10.46% 1.08%
Stage 2 5.03% 23.50% 41.26% 30.22%
Stage 3 2.00% 14.72% 39.81% 43.47%

Table 2.1 The relative abundance of particles in each structural element throughout the course of evolu-
tion. Stage 1 is the least evolved, with almost half the particles residing in cells, while Stage 3 is the most
evolved, with almost half the particles residing in clusters.

2.7.2 Graphs of Betti numbers
We show the Betti numbers as functions of the threshold defining the superlevel
set in Figure 2.17. The graphs are significantly different from the ones we see for
the single-scale Voronoi models in Figure 2.11. The graphs for β0 show a gradual
transition from two to four peaks. The four peaks in Stage 3 reflect the fact that
we have a non-trivial number of particles populating each of the four morphological
features (clusters, filaments, walls, and the space in between) so that each population
contributes its own peak to the graph. As before, the contributions are ordered from
left to right as the clusters are densest and merge first, and so on. In contrast to Stage
3, Stage 1 has most particles near the walls and in the space between them, so that
there are only two significant contributions to the graph.

A similar trend is also seen in the graphs for β1. The particle distribution gets
progressively more segregated into the morphological features, each with its own
density, which explains the clear four peaks we see for Stage 3. The signal we get
from β2 is different while consistent with our explanation. We see one peak at Stage
1 and two peaks each at Stages 2 and 3. As before, the difference is between intra-
and inter-structural consolidation, and the second peak barely exists in Stage 1, at
which time a large fraction of the particles populates the space between the walls.

2.7.3 Averaged persistence diagrams
The evolution of the particle distribution is well visible in the averaged persistence
diagrams, which we show separated for the three stages and the different dimen-
sions in Figure 2.18. Each intensity plot is obtained by averaging eight realizations.
While the evolution flows from top to bottom, we show the results for the compo-
nents, loops, and voids from left to right.

Recall that Stage 1 is dominated by particles distribution near the walls and in
the space between the walls. Corresponding to the two peaks of the graph for β0, we
see two tongues in the upper-left intensity plot, which shows the averaged diagram
for the components. Note that the tongue with higher intensity is on the right hand
side, where the mean age is smaller. Indeed, the density in the space between the
walls is smaller while the population there is larger. Two things happen when we
go from Stage 1 to Stage 3: the number of tongues increases to four, and the order
of the tongues by intensity is reversed. Similar to the graphs of the Betti numbers,
we attribute the four tongues at Stage 3 to a clean segregation of the particles into
four morphological elements. The change in order is of course due to the trend to
put larger populations of particles into lower-dimensional elements. We point out
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Figure 2.18 The averaged persistence diagrams of the density function for the Voronoi evolution mod-
els. From top to bottom, we show the intensity plots for least, medium, most evolved stages, and from
left to right for classes of dimension 0, 1, 2.

that the two phenomena are related to each other. The percentage of particles in
a morphological component dictates its average density, which, in turn, drives the
segregation.

Note also the formation of a low-intensity island in the intensity plots, which
breaks from the bulk and migrates towards high persistence values as the model
evolves. We see this phenomenon in all three dimensions. The underlying reason is
that the cells deplete of particles during the evolution, and the created empty space
favors the appearance of inter-structural consolidation – a manifestation of the struc-
ture of the underlying Voronoi skeleton itself – which is represented by the islands.

2.8 Persistence Based Noise Estimation.

The density field arising out of the matter distribution in the Universe is a continuous
smooth field. However, the current methods employed by us to study the Universe
are based on discrete techniques, almost without exception, both in cosmological
simulations and observaitions. Simulations are n-body experiments that use discrete
particles to model the Universe, while closer home observationally, we rely on galax-
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Model # particles Threshold Volume Edge Length of
Occupancy Poisson Box

Cluster 262,144 1 78,914.6 43
Filament 262,144 1 371449.5 72

Wall 262,144 1 1525370.2 115

Table 2.2 Parameters for determining the poisson distribution for noise estimation for the single com-
ponent voronoi models. Volume is estimated by extrapolating density to a regular grid cell using volume-
weighted DTFE, and adding the volumes with grid cells with density threshold above 1. Column 1 de-
notes the model investigated, column 2 the corresponding number of particles. Column 4 is the volume
occupied by the structural elements. Column 2 and 4 are used to estimate column 5, the edge-length of
the Poisson-distributed box with the same number of particles and volume occupancy as the model in
question.

ies as the luminous tracers of the baryonic matter. These galaxies are assumed to be
embedded in dark matter, and hence assumed to trace the dark matter distribution
as well. Because of this discrete sampling of density field in simulations and observa-
tions alike, there is an inherent noise in the measurement of quantities. We expound
on a method that employs the concept of persistence to set a benchmark for noise,
and thereby segregate noisy structures from significant ones. We use the single com-
ponent Voronoi models to test the credibility of noise-estimation. For these models,
we can estimate the volume occupied by the structural elements in the box. We also
know the number of sample points used to construct these models, a-priori. Though
in our construction of the models, the points are sampled around the voronoi ele-
ments with a finite thickness, and the sampling density follows a Gaussian profile,
we assume that they are uniformly sampled in the given thickened element. We will
demonstrate shortly that this assumption has no significant negative repercussions
on the detection of significant structures. The recipe for noise estimation is the fol-
lowing : for a given number of particles and volume occupancy, we construct a box
with same the same volume and number of particles, where the particles are pois-
son distributed. This is in essence equivalent to constructing a poisson distribution
with the same mean inter-particle separation as inside the structural elements of the
voronoi model. The parameters for construction are presented in Table 2.2.

The Poisson distribution has a characteristic persistence diagram for a given mean
inter-particle separation. We set the maximum persistence, or the height of the per-
sistence diagram for this poisson distribution as the persistence threshold of the
noisy structures for the respective models in question. Figure 2.19 presents the per-
sistence diagrams for 0−, 1− and 2− dimensions (in red) superposed with the re-
spective diagrams for the poisson distribution (in blue). The black line denotes the
persistence threshold for noise as determined from the poisson distribution. For the
0− dimensional diagrams, we notice that there are significant number of dots above
the persistence threshold for clusters, while this is not the case for filaments and
walls. This is because for the filament and the wall models, by the time we cross the
persistence threshold, the structure has consolidated into a single connected compo-
nent. For the cluster model, however we still have many isolated objects, which are
the clusters themselves. In 1− dimension,there is a formation of loops which have
higher persistence than the noise threshold for all the three models. For the cluster
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Figure 2.19 Persistence diagram for single component Voronoi models (in red) superposed with the
corresponding diagrams of appropriately constructed poisson distribution (in blue). Top to bottom: dia-
grams for clusters, filaments and walls respectively. Left to right: 0−, 1− and 2−dimensional diagrams.
We set a the benchmark for noise threshold at the maximum persistence of the diagram for poisson dis-
tribution, which is at approximately τ = 0.5 for all the models.

Figure 2.20 Persistent Betti numbers in 1 dimension, as derived from the Poisson-benchmarked dia-
grams in Figure 2.20. Left to right: clusters, filaments and walls respectively. The curves corresponding
to τ = 0.5 count the loops which are exactly above the poisson threshold. The curves corresponding to
τ = 0 count all the loops which are above zero-persistence threshold – in other words, the original Betti
numbers.
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model, it arises out of the inter-connectivity of individual clusters as we decrease the
superlevel set. For filaments and walls this is a manifestation of the loops formed
by the particle distribution, a significant number of which are contributed from the
loops formed by the edges of the underlying voronoi skeleton. In 2− dimensions,
we notice that there are very few persistent dots above the noise threshold. This
is because the mass-weighted DTFE heavily under-samples the void regions (as op-
posed to cluster, filament and wall regions, where the sampling density is high). To
get a better estimate of structures in the voids, we propose the use of volume-weighted
DTFE. We also notice that the dots in the main island for the voronoi models have
a wider spread along the horizontal axis compared to the poisson distribution. This
is due to the fact that that the dots are not Poisson-sampled around the elements,
but rather follow a Gaussian profile. However, this seems to have little effect on the
maximum persistence of noisy structures, which is what we predicted above.

2.8.1 Persistent Betti Numbers.
Using the persistence diagrams, we can correct for noise in the Betti number graphs
as well. The persistent Betti numbers for a level ν get contributions from all the cycles
which are born before ν, die after ν and have a persistence larger than the threshold.
Figure 2.20 plots the persistent Betti number curves for panels that have significant
number of cycles above the persistence threshold in Figure 2.19: 0−dimensional
structures (isolated objects) for clusters, and 1−dimensional structures (loops) for
clusters, filaments and walls. The curve in black denotes the regular Betti number
curve, counting all the structures at a given threshold,without employing persistence
for filtering them. The rest of the curves are for cycles above different persistence
threshold as determined from the persistence diagram in Figure 2.19. Denoting τ as
persistence, for the 0-dimensional diagrams in cluster model we fix the threshold at
τ = 2. For the 1-dimensional diagrams for clusters, filaments and walls, we fix the
threshold at τ = 0.5. We notice a complete suppression of the prominent peaks at
high density thresholds for the first three panels in Figure 2.20. As we had explained
in 2.5, these peaks correspond to noisy structures, and are corrected for once we take
into account the persistence threshold for noise. For clusters, the persistent Betti
numbers for τ = 2 in 0-dimension start appearing at density value of around 0.01
and peak at around 0.001 before they start dropping for yet lower density thresholds.
At their maximum, we count above a 100 clusters above noise threshold. For the 1−
dimensional persistent Betti numbers, setting the persistence threshold at τ = 0.5
as determined from the diagrams, we count about a 100 loops for clusters and fila-
ments. The number is significantly higher for walls.

2.9 Density estimators: comparison
Within the computational pipeline outlined in Appendix B, we have encountered
the issue of density field representation. This involves the choice for both the den-
sity field estimator as well as the field sampling. For a full appraisal of the potential
of persistent homology in the analysis of the cosmic web, we need to understand the
sensitivity of persistence diagrams and Betti number curves to the density estimator



104 On the Betti of the Universe, and Her Persistence

Figure 2.21 The averaged 0-dimensional persistence diagrams for the superlevel sets of the density
functions estimated from point sets generated according to the Voronoi evolution model. From left to
right: the intensity plots for the density estimated according to the mass-weighted DTFE, the volume-
weighted DTFE, and the SPH method.

and field sampling. Within the scientific community, the most widely used choice
of density estimation is the kernel density estimator. It has specifically been used
to compute persistent homology of superlevel sets of manifolds, in the context of
defining confidence intervals for delineating noise from real signal (Fasy et al. 2013).
Bobrowski et al. (2014) apply the kernel density estimator to introduce a consistent
estimator for homology, that involves inferring the homology structure of manifolds
from noisy data. Kernel density estimates have also been used to study the possibil-
ity of inferring the geometric inference of a point cloud (Chazal et al. 2011) by using
the kernel distance (Phillips et al. 2013), instead of distance to a measure (Chazal
et al. 2009; Chazal et al. 2011). In this chapter, we use the DTFE technique to estimate
density. It is an important exercise to investigate the effects of the choice of different
density estimators on the computational results presented in this chapter. In view of
this, in this section, we compare the resulting persistence diagrams for three differ-
ent recipes of density estimation. The first procedure involves field estimation using
the DTFE technique on the raw input point cloud. The second method produces an
image on regularly sampled grid points. The third procedure that we test is the stan-
dard kernel density estimator. A brief account of the technical details o the different
density estimators is provided in Appendix F.

The tests are based on eight model realizations, each of them corresponding to the
most developed stage of the Voronoi evolution model (see table 2.1). In this section
we discuss and compare the persistence intensity plots for dimension 0.

2.9.1 Density field sampling strategies
The first comparison is between a computational pipeline built on the raw DTFE
density field sampling strategy and that based on DTFE image sampling of the den-
sity field on a regular grid. The raw DTFE sampling strategy operates on the basis
of the DTFE Delaunay triangulation and the density field estimates at its vertices.
The DTFE image sampling strategy samples the density fields on a regular grid, and
subsequently processes the 3-D image for extracting its persistent topology.
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The first two frames of figure 2.21 show the resulting persistence diagram for
the raw DTFE sampling strategy (lefthand frame) and the image DTFE sampling
(central frame). The two plots share several important features. Each plot consists
of two regions: a low-intensity, high-persistence island and a high-intensity, low-
persistence mainland that is structured into several tongues. The island reflects the
underlying Voronoi skeleton in which high-density clusters persist over a large range
of scales.

The range is more pronounced for the raw DTFE sampling than for the image
DTFE sampling. It is reassuring that the basic information conveyed by the three
plots is qualitatively the same and thus independent of the particular density esti-
mator used to construct the function under study.

On the next finer scale, we observe a differently structured mainland in each
of the plots. For the raw DTFE sampling, we see four clearly delineated tongues,
the fourth one with lowest mean age smaller than the first three. For the image
DTFE sampling, we still see three tongues, although smaller now, and the fourth has
disappeared.

We explain these differences by the effective smoothing that differentiates the
image DTFE sampling strategy from that of the raw DTFE sampling method. In-
deed, the latter picks up the structural details of all four morphological components:
clusters, filaments, walls, and cells. The smoothing of the image DTFE sampling is
apparently strong enough to remove ay traces of the fourth tongue whose law mean
age identifies it as the one that used to belong to the cell morphology.

2.9.2 Density field estimator: DTFE vs. SPH
The second comparison is between a computational procedure defined on the basis
of the SPH density estimates, yielding a 3D image representation of the density field
on a regular grid, and that based on DTFE density estimates, specifically the image
DTFE method. SPH or kernel density estimate has been the standard method of
density estimate across various disciplines(Monaghan 2005; Fasy et al. 2013; Phillips
et al. 2013; Bobrowski et al. 2014).

The righthand frame of figure 2.21 depicts the dimension 0 persistence intensity
diagram based on the SPH density estimate. We observe the same trends as seen
in the central diagram, that corresponding to the image DTFE sampling. It displays
the same three small tongues, with a trace of a fourth tongue with very high mean
age. The latter is likely an artifact of the partially deteriorated clusters. There is not a
trace of a fourth tongue seen in the raw DTFE sampling method persistence diagram
at low age values.

There are some minor differences between the SPH and DTFE persistence dia-
grams. For instance, SPH density estimates may appear to correspond to walls of a
lower persistence than those found in the DTFE density fields.

2.9.3 Summary
Overall, the tests indicate the use of different field sampling strategies or field es-
timators do not introduce or remove features in the persistence diagrams. Overall,
the three frames in figure 2.21 display the same characteristics, although there are
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also differences. The impact of differences in the density estimator, DTFE or SPH, is
considerably smaller than that of the sampling strategy. This appears mainly to be a
result of the effective smoothing involved with the field representation on a regular
grid in the image DTFE sampling and the SPH method. By contrast, the raw DTFE
sampling retains all aspects of the density field traced by the discrete point sample.

2.10 Conclusions and Discussion

This chapter introduces the use of tools emanating from Morse theory, homology
and persistence homology in the topological analysis of the mass distribution in the
Cosmos. The focus is on the analysis of heuristic models, having tunable parameters,
that mimic certain aspects of the cosmic mass distribution. This is motivated from
the angle to understand and expose the connection between the salient features of
the models vis-a-vis their manifestation in the topological characteristics.

In Section 2.4, we analyze the topology of random, featureless distributions, tak-
ing up the particular case of poisson distributed particles, through persistence and
Betti numbers. In the process, we characterize the topology of shot-noise as a bench-
mark, paving the way for a method to estimate the contribution of signals arising
due to the presence of shot noise in generic distributions with real features (Sec-
tion 2.8). In Section 2.5, we analyze the topology of the pure Voronoi element mod-
els. These models are characterized by the presence of predominantly either cluster-
like, filament-like or wall-like distributions, resembling the different morphologies
as seen in the cosmic web (Bond et al. 1996). We show that dominating presence of
different morphologies is reflected in the features of the intensity maps (averaged per-
sistence diagrams) in different dimensions. Specifically, clustered distributions are
characterized by high persistent isolated clouds in 0-dimensional diagrams, loopy
distributions characterizing highly filamentary distributions are reflected in a simi-
lar high persistence cloud in the 1-dimensional intensity maps, while predominantly
wall-like distributions denoting the presence of well formed voids are characterized
by isolated high persistence clouds in the 2-dimensional intensity maps. Section 2.6
analyzes the topology of the multi-scale fractal Soneira-Peebles model (Soneira &
Peebles 1978). We demonstrate therein that the levels of hierarchy are well mani-
fested in the intensity maps as well as the graphs of Betti numbers. In Section 2.7,
we analyze the topology of the heuristic Voronoi evolution models. The models seek
to mimic the evolution of mass distribution in the Universe, gradually progressing
from a stage where most of the matter is confined to the field, to a stage where most of
the matter is confined to clusters and filaments. We demonstrate that the topological
characteristics of the different morphologies present in the distribution – clusters, fil-
aments and walls – are well segregated in the intensity maps and the graphs of Betti
numbers.

In Section 2.9, we analyze the topological characteristics of a single Voronoi evo-
lution model, where the density is computed through different prescriptions, specif-
ically the density computed using DTFE (van de Weygaert & Schaap 2009b) on the
raw particle distribution, density computed on a regular grid using DTFE, and den-
sity computed on a regular grid using SPH (Hernquist & Katz 1989; Monaghan 2005).
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We demonstrate that the significant topological properties of the model are retrieved
irrespective of the density estimator in use.

We conclude, based on our preliminary investigations on heuristic models, that
the intensity maps and Betti numbers are excellent indicators of the presence of mul-
tiple morphologies as well as the presence of hierarchies in the distribution. In ad-
dition, we can design methods based on these prescriptions to segregate topological
noise from real signals. The topological methods are also fairly robust in extracting
the real signals irrespective of the choice of density estimators. We, therefore propose
their use as a new standard in the characterization of the cosmic mass distribution.
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3.1 Introduction
A Gaussian random field is an example of a spatial stochastic process. Given a spatial
location s, a Gaussian random field is a random function X(s) on R3 such that, when
restricted to any finite set, one has a multivariate normal distribution. Gaussian
random fields play a key role in describing and modeling the fields arising in cos-
mology. As a telling example, in the simplest form, the inflationary theories predict
the primordial perturbations to be a Gaussian random field (Guth & Pi 1982). The
primordial perturbations are a result of the quantum fluctuations, plated during the
early inflationary era, in an otherwise homogeneous and isotropic Universe (Peebles
1980; Guth & Pi 1982). The temperature fluctuations in the observable cosmic mi-
crowave background, which follow the pattern of the quantum perturbations from
the inflationary era, also suggest that the character of the primordial perturbations is
that of a homogeneous and isotropic Gaussian random field to high accuracy (Smoot
et al. 1992; Bennett et al. 2003; Spergel et al. 2007; Komatsu et al. 2010; Planck Collab-
oration et al. 2015). Skipping the description at sub-linear scales, where the details
of galaxy formation process become important, the density in the large-scale Uni-
verse reflects the characteristics of the primordial fluctuation field. This is because
the structures in the Universe emerge from the primordial fluctuation field, the im-
prints of which are preserved at very large scales. Indeed, if one smooths the cosmic
fields over scales much larger than the correlation length, one expects to recover the
primordial fluctuation field. As a result, we also expect the Gaussian random fields
to model the cosmic fields in the regimes at the later epochs (Adler 1981; Bardeen
et al. 1986; Gott et al. 1986, 1989, 2009; Park et al. 2013).

Due to the central role it plays in describing a multitude of fields of interest that
arise in cosmology, the characterization of Gaussian random fields has been an im-
portant focal point in cosmological studies (Doroshkevich 1970; Bardeen et al. 1986;
Gott et al. 1986; Bertschinger 1987; Scaramella & Vittorio 1991; Schmalzing & Buchert
1997; Matsubara 2010). A Gaussian random field is fully specified by its power spec-
trum. As a result, the determination and characterization of the power spectrum of
the theoretical models as well as observational data has been one of the main focal
points in the analysis of the primordial fluctuation field as well as the large scale
cosmic fields. Within this, the analysis of the power spectrum of the Cosmic Mi-
crowave background has played the key role in the study of the characteristics of the
primordial fluctuation field (Scaramella & Vittorio 1991; Eisenstein & Hu 1999; Oh
et al. 1999; Efstathiou & Bond 1999; Seljak & Zaldarriaga 1999b; Peterson et al. 1999;
Knox & Page 2000; Wilson et al. 2000; Grainge et al. 2003; Durrer et al. 2003; Tristram
et al. 2005; Hazra et al. 2013).

Topology is the branch of mathematics that is concerned with the properties of
space that are preserved under continuous deformations including stretching (com-
pression) and bending, but not tearing or gluing. It also includes invariance of prop-
erties such as connectedness, continuity and boundary. Topological studies of the
cosmic density fields have also been very insightful in understanding their proper-
ties. This is because a topological description provides an insight into the the promi-
nence of topological features, and the global structure as well as the connectivity
characteristics of the field. The analysis of the connectivity characteristics help to
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develop a better understanding of how cosmic structures emerge, and subsequently
interact and merge with neighboring features, as structure formation evolves in the
Universe. Because topology is insensitive to continuous deformations like stretch-
ing and bending, topological measures are also expected to be relatively insensitive
to systematic effects such as non-linear gravitational evolution, galaxy biasing, and
redshift-space distortion (Park & Kim 2010). As a result, one expects the topology
of the primordial field and the large-scale linear field at the later epochs to be simi-
lar (Gott et al. 1986, 1989, 2009; Park et al. 2013). Formally, this is only true as long
as there is no shell-crossing in the evolving mass distribution. When shell-crossing
occurs the field may change its connectivity characteristics, and as such there may
be a net difference between the topological properties of the field before and after
shell-crossing.

The topological characterization of the models of cosmic mass distribution has
also been a focal point of many studies (Doroshkevich 1970; Adler 1981; Bardeen
et al. 1986; Gott et al. 1986; Hamilton et al. 1986; Canavezes et al. 1998; Canavezes
& Efstathiou 2004; Pogosyan et al. 2009; Choi et al. 2010; Park & Kim 2010). The
early studies of the topological characteristics of the cosmic mass distribution were
based on the evaluation and analysis of the genus and the Euler characteristic of
models as well as the observational data (Doroshkevich 1970; Adler 1981; Bardeen
et al. 1986; Gott et al. 1986; Hamilton et al. 1986; Canavezes et al. 1998; Canavezes &
Efstathiou 2004; Pogosyan et al. 2009; Choi et al. 2010; Park & Kim 2010; Park et al.
2013). Gott and collaborators (Gott et al. 1986; Hamilton et al. 1986) introduced the
use of the genus as a function of density threshold to characterize the cosmic mass
distribution. Refer to Section 1.5.1 and Appendix A for a detailed definition and
illustrative examples of the genus and the Euler characteristic.

Genus or Euler characteristic studies have played a key role in the topological
studies of the cosmic density fields. Of fundamental importance in this respect has
been the realization that the expected value of the genus in the case of Gaussian ran-
dom fields for iso-density surfaces as a function of density threshold has an analytic
closed form expression (Adler 1981; Bardeen et al. 1986; Gott et al. 1986):

g(ν) = − 1
8π2

(
〈k2〉

3

)3/2

(1− ν2)e−ν2/2. (3.1)

In this expression, ν = δ/σ is the dimensionless density threshold, specifying the
number of standard deviations that the density contrast at a particular location dif-
fers from the mean. Important to note that functional form of the genus is indepen-
dent of the specification of the power spectrum for Gaussian fields, and is a function
only of the dimensionless density threshold ν. The contribution from power spec-
trum is restricted to the amplitude of the genus curve through the quantity 〈k2〉,
which is related to the second moment of the power spectrum.

Later, more discriminative information became available with the introduction
of Minkowski functionals (Mecke et al. 1994; Schmalzing & Buchert 1997; Schmalz-
ing et al. 1999; Sahni et al. 1998). There are (d + 1) Minkowski functionals, Qk((k =
0, . . . , d), defined for a d-dimensional manifold (Mecke et al. 1994; Schmalzing &
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Buchert 1997; Schmalzing et al. 1999; Sahni et al. 1998). Predominantly geometric
in nature, the first four Minkowski functionals (d ≤ 3) are respectively the volume,
surface area, integrated mean curvature or total contour length, and the Gaussian
curvature. Refer to Section 1.5.2 for a detailed exposition on the Minkowski func-
tionals.

Statistics based on the Minkowski functionals have played a key role in the the
topological and morphological studies of the cosmic density fields. For Gaussian
random fields, the expected value of the first four Minkowski functionals of the ex-
cursion sets have known analytical expressions (Tomita 1993; Schmalzing & Buchert
1997). Amongst others, this makes them an ideal tool for validating the hypothesis
of initial Gaussian conditions through a comparison with the observational data.

The genus and the Euler characteristic, along with the rest of the Minkowski
functionals, have been extremely instructive in gaining an understanding about the
connectivity as well as the structural patterns pervading in the Universe. However,
the topological information represented by the genus and the Euler characteristic is
limited. A full description should involve a considerably more extensive palette of
topological characteristics, than what the Minkowski functionals may supply. The
foremost compelling reason to look beyond the available topological descriptors is
the observation that structures in the Universe form and evolve in a hierarchical
fashion. Smaller high density structures coalesce together hierarchically to build up
larger structures of lower density. A topological description through the Minkowski
functionals is not equipped to address this aspect of the cosmic mass distribution. A
formalism capable of expressing topology in a hierarchical fashion would present an
interesting and powerful extension to the Minkowski functionals.

In view of the above observations, this chapter seeks to present a topological
analysis of Gaussian random fields through homology (Munkres 1984; Edelsbrunner
& Harer 2010; Adler & Taylor 2010) and persistence (Edelsbrunner et al. 2002; Zomoro-
dian & Carlsson 2005; Carlsson et al. 2005; Carlsson & Zomorodian 2009; Carlsson
2009; Edelsbrunner & Harer 2010). For a detailed exposition on homology and per-
sistence, refer to Appendix A, as well as Chapter 1 (Section 1.6.1 and Section 1.6.3.
The topological properties of probability distributions on a manifold, and and the
topological properties of random complexes 1 have been an active area of research
recently (Adler et al. 2010; Bobrowski & Strom Borman 2010; Feldbrugge et al. 2015;
Adler et al. 2014; Bobrowski & Kahle 2014; Bobrowski & Mukherjee 2015). Homol-
ogy and persistence have played a key role in these studies. For a survey on the
topology of random geometric complexes, see Bobrowski & Kahle (2014).

The formalism of persistence is inherently hierarchical in nature. This may be in-
ferred from examining the topological changes that occur in 0-dimension. One may
recall that the 0-dimensional holes are isolated objects (islands). The death of a 0-
dimensional hole is equivalent to the merger of two isolated objects. In this sense,
the information about persistence of the 0-dimensional holes represents the infor-
mation about the distribution of the peaks of the density field, as well as the merger
processes that occur to form larger and larger objects, as the density threshold de-

1A random complex is a simplicial complex constructed from a given random point distribution The
point distribution is sampled from a well behaved probability distribution function.
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creases. This is not unlike the the build up of structures in the hierarchical structure
formation scenarios, where smaller high density objects coalesce together to form
larger and larger structures of lower density.

This chapter presents a numerical investigation of the topological properties of
Gaussian random fields through persistence and homology. In a related paper (Park
et al. 2013), we present a preliminary investigation on the homology of Gaussian
random fields, as described by the Betti numbers. A semi-analytic theoretical frame-
work towards calculating the Betti numbers and persistence of Gaussian fields has
been developed recently by Feldbrugge et al. (2015). In this chapter, we extend the
study to an elaborate and systematic numerical analysis of persistence and homol-
ogy of Gaussian random fields.

We introduce the intensity maps as ensemble averages of the persistence diagrams
of stochastic processes. Keeping model comparison as an important objective in
mind, we also introduce the difference maps and the ratio maps. First, we delve into
the persistence topology of 1D Gaussian functions. This is done in order to relate the
visual features of the density distribution to the topological description, and assess
how the topological description reflects the features of the density distribution. We
establish that the features of the persistence diagram are a direct reflection of the sin-
gularity structure of the function. Having assessed the persistence topology of the
1D functions, we delve into an analysis of the 3D fields. We do this for the power
law models and the LCDM model. We demonstrate that the features in the intensity
and the difference maps depend on the choice of the model. The indication is that
the the intensity and the difference maps are highly sensitive to the parameters of
the model, and may therefore be used to discriminate between various models.

We quantify the intensity maps by decomposing them into marginal and cumula-
tive distributions as a function of the mean-density and persistence of the topological
holes. In this context, we establish that the distribution functions show a characteris-
tic dependence on the index of the power spectrum. We also show that the marginal
distribution of the mean density of the holes follow a near Gaussian distribution.
The marginal distribution as a function of the persistence of the holes indicates a
Poisson distribution.

Subsequently, we delve into an investigation of the Betti numbers of Gaussian
random fields. We compare the Betti number curves with the Euler characteristic
and show that while the Euler characteristic is insensitive to the index of the power
spectrum, the Betti numbers show a systematic dependence on it. We also present a
brief analysis on the Minkowski functionals of the model towards the end. Together,
the Minkowski functionals, homology and persistence establish a more comprehen-
sive and detailed picture of the topology and morphology of the models.

We begin by providing a description of Gaussian random fields in Section 3.2.
Thereafter, we present a brief description of the topological background in Section 3.3.
Section 3.4 through Section 3.7 present the main results of this paper. We conclude
the chapter by discussing the results in Section 3.8.
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3.2 Gaussian random field
A random variable is a variable whose value is subject to probabilistic variations. Ran-
dom variables model the outcome of stochastic processes, the values of which vary
randomly over the domain of the variable. The values of a random variables are not
fixed, but rather drawn from a distribution function. The most common is the Gaussian
distribution function, given by (Adler 1981)

f (x, σ) =
1

σ
√

2π
e−

x2

2σ2 (3.2)

where σ is the standard deviation of the variable. We implicitly assume that the
mean or expectation of the variable is zero.

A generalization of a random variable is a random field, which is a collection of
random variables. A random field can be specified by the m-point joint distribution
function

P[ f1, . . . , fm]d f1 . . . d fm. (3.3)

A random field is a Gaussian random field if the set of constituent random variables
are all drawn from Gaussian distributions. The m-point joint probability distribu-
tion function for a Gaussian random field is a multi-variate Gaussian, given by
(Doroshkevich 1970; Adler 1981; Bardeen et al. 1986)

P [ f1, . . . , fm] d f1 . . . d fm =
1

(2π)N(detM)1/2 · exp

(
−

∑ ∆ fi(M−1)ij∆ f j

2

)
d f1 . . . d fm,

(3.4)

where, M−1 is the inverse of the m×m covariance matrix Mij.
The equation is in the normalized form, such that the integral of P [ f1, . . . , fm] d f1 . . . d fm,
over all f ∈ RN , is equal to 1. In the above expression,

∆ fi = fi − 〈 fi〉
Mij = 〈∆ fi∆ f j〉 (3.5)

The matrix M−1 is the inverse of the m×m covariance matrix Mij. The angle bracket
denotes the ensemble average of the product. In effect, M is the generalization of the
variance of the 1-point normal distribution, and M = [σ2

0 ] for the case m = 1.

3.2.1 Properties of Gaussian random fields: correlation function and power spec-
trum

Equation (3.4) shows that a Gaussian random is fully specified by the second order
moment, via the autocorrelation function ξ(r), encoded through the covariance ma-
trix M. The latter expresses the correlation between the density values at any two
points r1 and r2 at a distance r = r1 − r2.
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If the field is homogeneous and isotropic, the correlation only depends on the
absolute distance between the points r = |r|, such that

ξ(r) = ξ(|r|) ≡ 〈 f (x) f (x + r)〉 . (3.6)

In other words, the entries in the matrix are the values of the autocorrelation function
for the distance between the points: Mij = ξ(rij), with

rij = ‖xi − xj‖ . (3.7)

To appreciate the contribution from different scales, the structure of a Gaussian
field is more transparently characterized by the power spectrum P(k). It is the
Fourier transform of the autocorrelation function, given by

〈 f̂ (k) f̂ (k′)〉 = (2π)3/2 P(k) δD(k− k′) , (3.8)

where, δD(k) is the Dirac delta function. This implies that the knowledge of the
power spectrum alone is sufficient to fully characterize a Gaussian random field.
The contribution of power at a particular scale to the total variance of the density
field is specified by the relation

σ2 =
∫ ∞

0
dk k2P(k) =

∫ ∞

0
d lnk k3P(k). (3.9)

such that, k3 P(k) is the contribution of the power spectrum per unit logarithmic bin
to the total variance of the density field.

This chapter investigates the topological properties of zero-mean Gaussian ran-
dom fields. They are specified as density values on a regularly spaced cubic grid.
We focus on the models with cosmologically relevant power spectra – power-law
power spectra and the LCDM power spectrum. In all, we investigate six models –
the LCDM model, and five power-law models with different spectral indices.

Power-law power spectrum. The power-law power spectrum is a generic class of
spectrum, specified by the spectral index n

P(k) = An kn. (3.10)

The case when n = 1, the Harrison-Zel’dovich spectrum, is the predicted spec-
trum of the primordial density perturbations (Harrison 1970; Peebles & Yu 1970;
Zeldovich 1972). This is because of its property of scale invariance, which makes
it natural choice for the primordial power spectrum (Dunkley et al. 2009; Komatsu
et al. 2011; Planck Collaboration et al. 2013b). The measured spectrum of the primor-
dial perturbations is very close to it, n ∼ 0.96 (Dunkley et al. 2009; Komatsu et al.
2011; Planck Collaboration et al. 2013b). It is worthwhile noting here that certain
inflationary theories also predict n ∼ 1 for the power spectrum. The top-left and the
bottom-left panels of Figure 1.2 plots the power spectrum P(k) and k3 P(k) for the
power law models.
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Figure 3.1 The scaled power spectrum P(k), as well as power spectrum per unit logarithmic bin k3 P(k).
Graphs are presented for the different spectral indices of the power-law model, as well as the LCDM
model. The spectra are scaled such that different models have the same variance of the density fluctua-
tions, when filtered with a top-hat filter of radius 8h−1Mpc.

LCDM power spectrum. The LCDM power spectrum stems from the standard con-
cordance model of cosmology. It fits the measured power spectrum of the cosmic
microwave background as well as the power spectrum measured in the nearby large
scale Universe to high accuracy.It is given by (Eisenstein & Hu 1999; Hu & Eisenstein
1999)

P(k) ∝ T2(k)P0(k), (3.11)

where P0(k) is the primordial power spectrum and T(k) is the transfer function,
which is an expression of physical processes acting on the fluctuations as they enter
the horizon. Its shape can be inferred by evaluating the evolving processes, through
the Boltzmann equation (Seljak & Zaldarriaga 1999a). A good numerical fit is given
by (Eisenstein & Hu 1999; Hu & Eisenstein 1999)
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Figure 3.2 The effective spectral index for the LCDM power spectrum within the simulation box ana-
lyzed in this chapter. The effective spectral index of the CDM power spectrum is a function of the wave
number k. The vertical dashed lines correspond to the wavenumbers associated with the fundamental
and the Nyquist mode of the box. The horizontal dashed lines are drawn for comparison with the index
of power spectrum for the power-law models.

PCDM(k) ∝
kn

[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]
1/2 ×

[ln(1 + 2.34q)]2

(2.34q)2 ,

(3.12)

q = k/Γ,

Γ = Ωmh exp
{
−Ωb −

Ωb
Ωm

}
.

In the above expression, Ωm and Ωb are the total matter density and baryonic matter
density respectively. Γ is referred to as the shape parameter. Inserting the most recent
observed values of Ωb and Ωm, Γ ∼ 0.21. The top-right and the bottom-right panels
of Figure 3.1 plot P(k) and k3 P(k) for the CDM power spectrum. It can be seen
that the spectral density per logarithmic bin increases with increasing wavenumbers
or decreasing wavelengths. As a result, the LCDM power spectrum shows very
prominent small scale features.
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Locally, the spectrum resembles a power-law, with the spectral index ne f f (k)
showing a dependence on the scale k, through the relation

ne f f (k) =
dlnP(k)

d lnk
. (3.13)

Figure 3.2 plots the effective spectral index ne f f (k) for the CDM power spectrum
as a function of scale k. In the asymptotic limit of small and large k, the limits of
ne f f (k) are well defined. At very large scales, its behavior tends towards a power-
law with index n = 1, as can be seen in the plot. At small scales, the LCDM power
spectrum behaves like a power-law power spectrum with index n = −3. The vertical
dashed lines in the plot correspond to the fundamental and the Nyquist mode of the
simulation box respectively. It is evident from the plot that the effective index of the
model varies steeply between ne f f ∼ −0.5 to ne f f ∼ −2.5. At the lower limit, the
Nyquist mode of the box corresponds to the scales of milkyway like galaxies. At
the other end the fundamental mode of the box corresponds to wavelengths well
beyond the scales at which the Universe appears homogeneous.

3.2.2 Normalization of the power spectrum
The amplitude of the power spectrum is not predicted by the fundamental physical
theories. It has to be determined from observations of the amplitude of mass fluc-
tuations in the Universe. One of the means to calculate its value is by equating the
theoretically calculated variance of the density field in the Universe to the observa-
tionally determined value, filtered by a top-hat filter of radius 8h−1Mpc

σ8(obs) = A
∫ d~k

(2π)3 P(k)Ŵ2
TH(k). (3.14)

where, ŴTH is the top-hat filter given by

ŴTH(x) =
3
x3 (sinx− xcosx). (3.15)

The left-hand side of Equation 3.14 is the rms of the observed value of density fluc-
tuations filtered by a top-hat filter of radius 8h−1Mpc. The integral on the right hand
side of the equation is solved numerically. The ratio of the observed σ8 to the cal-
culated integral gives the value of the amplitude A of the power spectrum. For the
models in this chapter, Figure 3.1 presents the graph of the normalized power spectra
for the various power-law models as well as the CDM model.

It is important to note that the power-law power spectrum has no characteristic
scale, and diverges asymptotically for either small or large values of k, depending
on the choice of the power spectrum. As a result the integral in Equation 3.14 also
diverges for the power-law models. In order to remedy this, the usual practice is to
set the limits of integration to the fundamental mode and the Nyquist frequency of
the of the simulation box. The fundamental mode k f und and the Nyquist mode kNyq
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Figure 3.3 Density fluctuations in a random realization of a 1D Gaussian random field with a power
law power spectra. The spectral index are n = 1, 0,−1,−2 and −3. For the positive spectral index
there is more power at small scales. As a result, the appearance of the field is spiky. As the spectral
index decreases, the power shifts towards larger scales. As a result, there are more prominent large scale
features gradually. The small scale features appear as tiny wiggles, due to decreasing power at those
scales.

are inversely proportional respectively to the box size L, and twice the grid size, l.
For the models discussed in this chapter, k f und = 2π/128h−1Mpc ∼ 0.049hMpc−1

and kNyq = 2π/2h−1Mpc ∼ 3.14hMpc−1.

3.2.3 Model realization
We examine 1D and 3D models of Gaussian random fields. In both the cases, the
models are constructed in a simulation box of side 128h−1Mpc with a grid resolution
of 1h−1Mpc. For the 1D case, we analyze models specified by a power law power
spectrum. The value of the spectral indices are n = 1, 0, 1,−2 and −3. For the 3D
case, we analyze models specified by a power law power spectrum, with indices
n = 1, 0, 1,−2 and −3. In addition, we also analyze a model specified by the LCDM
power spectrum. All the models are smoothed with a Gaussian kernel of scale R f =

2h−1Mpc. The results presented for all the models are averaged over 100 realizations.
The density fluctuation δ at each location is normalized by the square root of the
variance of the density fluctuation σ0, such that the dimensionless density threshold
ν is given by

ν = δ/σ0. (3.16)

The results in this chapter are quoted in terms of the dimensionless threshold ν.
Figure 3.3 presents the density fluctuations in a random realization of a 1D Gaus-

sian random field. Figure 3.4 shows 2D slices of a single realization of 3D Gaussian
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Figure 3.4 2D slices of a single realization of 3D Gaussian random field models investigated in this pa-
per. The models are constructed in a simulation box of side 128h−1Mpc with a grid resolution of 1h−1Mpc.
Subsequently, it is smoothed with a Gaussian kernel of scale R f = 2h−1Mpc. The top left panel shows a
realization of the LCDM power spectrum. The rest of the panels show realizations of power-law power
spectra with spectral indices n = 1, 0,−1,−2 and −3. As we go from positive to progressively negative
spectral indices, the structures become visibly larger. This indicates increasing power at larger scales with
decreasing spectral index.

random field. The top left panel shows a realization of the LCDM power spectrum.
The rest of the panels show realizations of power-law power spectra. For these mod-
els, there is relatively more power at the small scales for a higher spectral index, in
comparison to a lower spectral index. This can be inferred from the shape of the
curves for k3 P(k) in the lower left panel of Figure 3.1. As a result, the appearance
of the field is spiky. As the spectral index decreases, the power shifts towards larger
scales. As a result, there are more prominent large scale features gradually. The small
scale features appear as tiny wiggles, due to decreasing power at those scales.

3.3 Topology
In this section, we give an informal presentation on the theory of homology and per-
sistence, and the concepts essential to its formulation. As Gaussian random fields are
an example of a stochastic process, we briefly revisit intensity maps as an empirical
probabilistic description of persistence. Keeping our mind focused on model dis-
crimination, we also introduce the difference and ratio maps as new concepts. Then
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we discuss the Betti numbers and argue that they are emergent from the descrip-
tion of persistence. Subsequently, we define and describe the genus and the Euler
characteristic. Thereafter, we establish that persistence diagrams, Betti numbers and
genus or Euler characteristic strictly contain decreasing amount of information. We
refer the reader to Appendix B for technical details on the computational procedure
involved.

3.3.1 Homology

Homology is a mathematical formalism for specifying in a quantitative and unam-
biguous manner about how a manifold is connected, through assessing its bound-
aries and cycles (for a detailed and standard discourse on the subject, see Munkres
(1984); Edelsbrunner & Harer (2010); also see Appendix A). Homology groups pro-
vide a mathematical language for describing the holes in a topological space. A
d-manifold can be composed of topological holes of 0 up to (d− 1) dimensions. The
holes in the first three dimensions have intuitive interpretations. A 0-dimensional
hole is a gap between two isolated independent objects. A 1-dimensional hole is
a tunnel through which one can pass in any one direction without encountering a
boundary. A 2-dimensional hole is a cavity or void fully enclosed by a 2-dimensional
surface. Alternatively, the holes can be defined by the cycles that form their bound-
ary. Two 0-cycles form the boundary of the the gap (0-dimensional hole) between
them. A 1-cycle bounds a tunnel, and a 2-cycle bounds a void. The collection of all
p-dimensional cycles is the p-th homology group Hp. The rank of this group is de-
noted by the Betti numbers βp, where p = 0, . . . , d (Betti 1871; Edelsbrunner & Harer
2010). β0 counts the number of independent components, β1 counts the number of
loops enclosing the independent tunnels and β2 counts the number of shells enclos-
ing the independent voids. Also refer to Appendix A for more details on homology.

3.3.2 Topology and singularities: Morse functions
Morse theory (also see Appendix A.4) studies the change of topology of the manifold
M as induced by the superlevel-sets of the function f . The superlevel sets of a field are
defined as the regions

Mν = {x ∈M | fs(x) ∈ ( fν, ∞]} (3.17)

= f−1
s (−∞, fν].

In other words, they are the regions where the smoothed density is greater than or equal to
the threshold value fν = νσ0, with σ0 the dispersion of the density field.

The key property is that the topology of the manifold changes only when passing
through a critical point of f . A critical point is the point where the gradient of the
function vanishes, i.e.

∇ f = 0. (3.18)

The type of the critical point is decided by the number of negative indices in the
eigenvalues of the Hessian of the function at that location, which is the matrix of the



122 Persistence and Homology of Gaussian fields

(a) (b)

Figure 3.5 (a) Face on view of a 2D random field. A range of level sets are presented as contours of
different colors. (b) Surface view of the same. Maxima are marked with red balls, saddles with cyan balls,
and minima with yellow balls.

partial double derivatives of the function, given by

∂2 f
∂xi∂xj

.

A 1D function can only have two kinds of singularities: a maximum or a minimum.
A negative eigenvalue for the Hessian denotes a local maximum, and a positive
eigenvalue denotes a local minimum. A 2D function can have three kinds of singu-
larities: maxima, minima and saddles. In the case of a maximum, the eigenvalue of
the Hessian has two negative quadratic terms. For a saddle point, there is a positive
and a negative term. For a minimum, there are two positive terms in the eigenvalue.
In 3D, there are four kinds of critical points: maxima, minima and two different
kinds of saddle points. A maximum has three negative eigen values, and the mini-
mum has three positive eigen values. The different kind of saddles have two positive
(or negative) and one negative (or positive) eigen values. The type of the saddle is
determined by the particular combination (see Section 1.6.2 for the definition and
illustration of the critical points in 2D and 3D).

3.3.3 Hierarchical topology: Persistence
In Section 3.3.2, we noted the relation between the critical points of a function with
the topological changes it induces in a manifold. In this section, we use the no-
tions described above to sketch an intuitive understanding of persistence homology
(Edelsbrunner et al. 2002; Zomorodian & Carlsson 2005; Carlsson et al. 2005; Carls-
son & Zomorodian 2009; Carlsson 2009; Edelsbrunner & Harer 2010).

Persistence is a hierarchical extensison of homology. Having deep connections
with Morse theory (Milnor 1963), at the heart of the formalism of persistence is the
key observation is that the topology of the manifold changes only when passing
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Figure 3.6 Persistence and field singularity structure. The process of birth and death as we grow the
superlevel sets by decreasing the density threshold in a given 2-dimensional random field. The events
of birth and death in each dimension are recorded separately in the persistence diagrams. Bottom-left:
0-dimensional diagram, bottom-right: 1-dimensional diagram.
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through a critical point. More specifically, the addition of a p-critical point can re-
sult in either the birth of a p-dimensional hole or the death of a (p− 1)-dimensional
hole (Edelsbrunner et al. 2002; Zomorodian & Carlsson 2005; Edelsbrunner & Harer
2010). Central to the formulation of persistence is the necessity to track the birth and
death events, as one changes the superlevel or sublevel sets. Tracking the topolog-
ical changes through changing superlevel sets, is equivalent to tracking it through
changing sublevel sets, by noting that β0 of the superlevel sets is equivalent to β2
of the sublevel set, and vice-versa. Theoretically, there are infinitely many levels of
density as one decreases the value from the highest to the lowest. But fortunately, the
topology of the manifold only changes while passing a critical point (Edelsbrunner
et al. 2002; Edelsbrunner & Harer 2010). This is of key importance because this means
that the infinite number of levels of density threshold can be constrained to a finite
number, by only having to consider one level in between any two critical points. In
addition, each topological hole is associated with two unique function value: f (cb)
associated with the critical point cb that gives birth to the hole, and f (cd) associated
with the critical point cd that is responsible for killing or filling up the hole. The life-
time or persistence π (Edelsbrunner et al. 2002; Edelsbrunner & Harer 2010), of the
hole is then given by the absolute difference between the death and the birth values
associated with the hole

π = | f (cb)− f (cd)|. (3.19)

Persistence: an example

Figure 3.5 presents a 2D random field, that we use as an example to illustrate the
working of persistence. In panel (a), we present the face on view of the field. A
range of level sets are presented as contours of different colors. In panel (b), we
present the surface view of the same. Maxima are marked with red balls, saddles
with cyan balls, and minima with yellow balls. Figure 3.6, illustrates the working
of persistence by tracking the birth and death of islands and tunnels, for growing
superlevel sets, for the 2D random field show in Figure 1.16. We employ a 2D field
for ease of visualization. An example in 2D presents a clear intuitive understanding
also of the process in 3D.

We trace the growing superlevel set from the top-left panel to the bottom right
panel, as a function of decreasing thresholds of f . We only show regions of the
manifold that are included in the superlevel set. We trace the change in topology of
this region, as the superlevel set grows. In panel (a), we start with a single island,
which is also a peak. In panels (b) and (c), we witness the birth of two more islands.
These are two peaks which get included in the excursion region. In panel (d), two of
the islands merge and we are left with two islands as a result. This merger results in
the death of one of the islands. This is the island which was born at a later threshold.
This is according to the elder rule (Edelsbrunner et al. 2002; Zomorodian & Carlsson
2005; Edelsbrunner & Harer 2010), which dictates that given a choice between killing
two components, the one that is born later is killed preferentially. In panel (e), there
is another merger of two isolated islands.

In panel (f), the first 1-dimensional hole or a loop is born. It has the appearance



3.3: Topology 125

Figure 3.7 Typical persistence diagram for islands, tunnels and voids for a white noise Gaussian ran-
dom field in 3D.

of a lake surrounded by land. In panel (g), this loop splits into two. In panel (h),
one of the loops is filled, while the other one still exists. This indicates the death
of a 1-dimensional hole. The density value at which a hole is born, and the density
value at which it gets destroyed quantify its life-span. The life-span is equal to the
difference between the absolute values of the density of birth and death. This means
that one of the two loops has a higher life span or persistence than the other. It is
likely to be a more significant feature than the other. In panel (i), all the holes fill up,
and the superlevel set consists of the whole manifold.

3.3.4 Persistence diagrams

Persistence homology is represented in terms of persistence diagrams (Edelsbrunner
et al. 2002; Edelsbrunner & Harer 2010), which is a collection of dots, each dot as-
sociated with a unique topological change in the manifold. There is a diagram for
each ambient dimension of the manifold. 0-dimensional diagrams record the merger
events of two isolated objects. 1-dimensional diagrams record the formation and de-
struction of loops, while 2-dimensional diagrams record the birth and death of topo-
logical voids. We have introduced a representation of the persistence diagrams that
involves a rotation according to

b : d→ d + b
2

: d− b. (3.20)

In this representation, the horizontal axis
(

d+b
2

)
is the mean-density of the feature.

The vertical axis (d− b) is the persistence, or life-span of the feature. The persistence
diagrams corresponding to the birth and death events depicted in Figure 3.6 are pre-
sented in in the bottom row. The bottom-left panel presents the persistence diagram
for islands, and the bottom-right panel presents it for tunnels. Figure 3.7, presents
the typical dot diagrams for islands, tunnels and voids for a random realization of a
3D white noise Gaussian random field.
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(a) (b) (c)

Figure 3.8 Figure illustrating the difference between peaks and islands. The left panel illustrates two
peaks. They are composed of a single maximum. However, since they are also trivially connected and
isolated objects, they double up as islands also. The middle and the right panels illustrate islands with a
more complex topology. In the middle panel the island is a connected object, and contains many peaks.
In the right panel, the island encloses a loop as well.

3.3.5 Peaks vs. Islands

There is a telling distinction between peaks such as described by Bardeen et al. (1986),
and the islands of our definition. An island is a single connected object. A peak is the
location of a local maximum of the function. In general, an island may be marked
by many peaks. However, at the highest density thresholds, when no saddle points
have yet been introduced in the manifold, there will be necessarily one peak per
island. As the threshold is lowered, the number of peaks per island increases. As
this happens, the manifold starts developing complex connectivity. This happens
because the peaks merge through saddles, and an island may even form tunnels. As
an example, Figure 3.8 illustrates the difference between peaks and islands. The left
panel illustrates two peaks. They are composed of a single maximum. However,
since they are also trivially connected and isolated objects, they can be classified as
islands also. The middle and the right panels illustrate islands with a more complex
topology. In the middle panel, the island is a connected object, and contains many
peaks. In the right panel, the island encloses a loop as well. In this context, we point
out that the number of peaks per island, as a function of the density threshold, is a
topological quantification of the strength of clustering of a model. We investigate the
model dependent variation of the number of peaks per island for the 3D Gaussian
field models in Section 3.6.3.

3.3.6 Intensity, difference and ratio maps

Here we briefly revisit the concept of intensity maps (see also Equation 2.9). Also,
we introduce the difference and ratio maps.

Intensity maps

We divide the persistence diagrams into n× n regular grid cells. The intensity in a
grid cell (i, j) is the total number of dots Ni,j in that cell. The intensity map are aver-
aged representations of persistence diagrams over multiple realizations. We define
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the normalized intensity function Iij as

Iij =
〈Nij〉
〈Ntot〉

, (3.21)

where 〈〉 denotes the ensemble average over many realizations. Here 〈Ntot〉 is the
total intensity, or total number of points over R2, which is simply the total num-
ber of topological holes of a particular dimension that form and destroy as the den-
sity threshold is lowered. The intensity function I : R2 → R in the mean density-
persistence plane is such that its integral over every region R ⊂ R2 is equal to unity,
i.e. ∫

R
Iij(~x)dx = 1. (3.22)

The plane is defined by the mean-density coordinates on the horizontal axis and
persistence on the vertical axis.

In 3D, there are three possible maps, one each for islands (D=0), tunnels (D=1)
and voids (D=2). Figure 3.13 presents typical maps for Gaussian random field for
power-law power spectrum for different spectral indices.

Difference and Ratio maps
It is possible to highlight the difference between the intensity maps of two different
models quantitatively. One possible method to this end is to construct the difference
and the ratio maps. The difference of two functions f and g is a signed difference
between their intensities at any location in the mean density–persistence plane, while
the ratio function is the ratio of their intensities, such that

∆ f ,g(i, j) = I f (i, j)− Ig(i, j) (3.23)

∆̃ f ,g(i, j) =
I f (i, j)
Ig(i, j)

.

(3.24)

The difference and the ratio functions quantify the excess or deficit of topological
holes of f with respect to g, in the neighborhood defined by a given mean density
and persistence value. Evidently, the difference maps are less sensitive to noise than
the ratio maps.

3.3.7 Genus and Euler characteristic
Genus is a topological invariant property of a surface. It is defined as the maximal
number of non-intersecting simple closed curves that can be drawn on the surface
without rendering it disconnected (Munkres 1984; Gott et al. 1986; Edelsbrunner &
Harer 2010). Roughly speaking, the genus is the number of 1-dimensional holes in a
surface. A hole, in a mathematical object, is a topological structure which prevents
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the object from being continuously shrunk to a point. When dealing with topological
spaces, a disconnectivity is interpreted as a hole in the space. Alternatively, the genus
can be interpreted as the number of independent handles on a surface.

The Euler characteristic, sometimes also known as the Euler-Poincaré character-
istic (Edelsbrunner & Harer 2010), of a manifold is the alternating sum of simplex
numbers of all the dimensions needed to triangulate it. It is best understood through
the Poincaré formula. Assume a manifold M. Then the Poincaré formula states that

χ(M) = V − E + F, (3.25)

where, V, E and F are respectively the number of vertices edges and faces used
to triangulate the manifold. The genus of a surface is closely related to its Euler
characteristic. Let us consider a manifold M, and denote the closed surface that
bounds it by ∂M. If the genus of ∂M is g, the Euler characteristic of M is given by

χ(M) = 2− 2g(∂M). (3.26)

3.4 Persistence characterization of 1D Gaussian random functions
For obtaining insight into the topological characteristics of Gaussian random fields,
we first assess 1D Gaussian random functions. We begin by describing the features
of the distribution of critical points in the density field. Subsequently we relate it
to their topological properties, as described through persistence. The analysis of 1D
field is particularly useful for a visual appreciation of how the critical point charac-
teristics are related to the properties of the persistence diagrams. This becomes an
important exercise in view of the observation that a visualization of the interior of
the structures in 3D fields is a considerably challenging task, due to complications
involved in rendering and visualizing the interiors of 3D objects.

The features visible in the function can be characterized in terms of their mean
density, persistence and scale. Recall that every topological feature is associated with
two critical points. In the 1D case, there is a local maximum responsible for its birth,
and a local minimum responsible for its death. The mean density of a feature is half
the sum of absolute values of the maximum and the minimum. The persistence of
a feature is defined as the absolute difference between the maximum and the min-
imum. The scale is defined as the separation between the two adjacent maxima or
minima. To a first approximation, this can be deemed roughly equal to the scale on
which the field is smoothed.

Figure 3.3 presents the density fluctuations for a random realization of a 1D Gaus-
sian random function. We plot the spatial coordinate x on the horizontal axis, and
the density δ(x) at that location on the vertical axis. The function values are nor-
malized by the rms of the density fluctuations. The function is characterized by a
power law power spectrum. The normalized power spectrum P(k) is presented in
the top-left panel of Figure 3.1. The bottom-left panel of the same figure presents
the power per logarithmic bin, k3 P(k). It is indicative of the relative variance of the
models with respect to each other. From the Figure, it is clear that the variance of the
field decreases with decreasing spectral index.
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The n = 1 model is characterized by increasing power at smaller scales. Hence
we see a dominating presence of small scale features with high amplitude in the den-
sity field. In terms of critical points, this denotes a presence of spatially close high
peaks separated by low valleys, giving the field a very spiky appearance. As the
index of the power spectrum decreases, there is increasing power at larger scales,
accompanied by diminishing power at smaller scales. This results in large scale fea-
tures becoming more prominent in the density field. Low power at small scales
manifests as tiny wiggles modulating the prominent large scale features.

The features of the density field in Figure 3.3 are reflected directly in the per-
sistence diagrams shown in Figure 3.9. The diagrams are symmetric about ν = 0,
reflecting the symmetry about the mean of the field. Maximal persistence decreases
marginally for decreasing spectral index. This can be tied in to the fact that the vari-
ance of the fluctuations in the box decreases with decreasing spectral index. Indeed,
for a given filtering scale R f , the variance of the density fluctuation goes as (Bardeen
et al. 1986)

σ0(R f ) ∝ R−(3+n)
f . (3.27)

The diminishing variance, as a function of the decreasing power spectrum, is re-
sponsible for the decrease in the separation between the pair of maximum and the
minimum that constitutes the maximal-persistence feature in the different models.
This trend can be noticed in the persistence diagrams, where we see the maximum
persistence falling monotonically with decreasing spectral index. The fact that the
height of the maximal peaks decreases, with decreasing spectral index, can also be
confirmed from the structure of the 1D function in Figure 3.3. It can also be noticed
that as the spectral index decreases, the concentration of dots increases towards the
horizontal axis. This is a direct reflection of the increase in the number of small scale
features of low persistence, as the spectral index decreases.

3.4.1 Cumulative and marginal distributions
The persistence diagrams can also be characterized through the the cumulative and
marginal distributions of the mean density and persistence of the topological fea-
tures. The marginal density n(ν) is defined as the number density of the topological
holes in the threshold range (ν, ν + dν). The normalized cumulative distribution
N(ν) is defined as

N(ν) =

∫ ν
0 n(ν′) dν′∫ ∞
0 n(ν′) dν′

, (3.28)

where, n(ν′) is the marginal number density between (ν′, ν′ + dν′). The cumulative
distribution asymptotically approaches unity, as ν→ ∞.

Distribution of mean density
Figure 3.10 presents the marginal and the cumulative distribution of mean density
of the features for the various models. The left panel plots the marginal distribution
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Figure 3.9 Persistence diagrams for the features in the models 1D random functions
with power-law power spectra The mean density is plotted on the horizontal axis,
and the persistence is plotted on the vertical axis.

of mean density. The curves are symmetric about ν = 0, where they also attain their
maximum. This indicates that for a Gaussian field, the constituent maximum and
minimum for a majority of the features are a mirror image about the mean of the
density field. Thus, these are the zero-mean features. As the spectral index decreases,
the amplitude of the curves falls monotonically. This is simultaneously accompanied
by increasingly fatter tails. This indicates an increasing population of features with
a non-zero mean density. This phenomenon is intimately connected to the shape of
the power spectrum. As the spectral index decreases, the location of the maximum
of the curve of the marginal number density of peaks shifts towards lower density
thresholds (see Figure 2, Bardeen et al. (1986)). This results in increasingly significant
number of peaks for lower density thresholds. In fact, for n ∼ −3, the amplitude of
the curve of the number density of maxima is symmetric about ν = 0, and there
are a significant number of peaks even below the mean of the field (Bardeen et al.
1986). The shift of peaks towards lower density thresholds results in features whose
constituent pair of maximum and minimum both have function values lower than
the mean of the field. As a result, their mean density is lower than the mean of the
density field. In fact, it is only required that the maxima-minima pair of a feature be
not symmetric about the mean of the field, for it to have a non-zero mean density.

The negative mean density of the features is indicative of the cloud-in-void phe-
nomenon (Sheth & van de Weygaert 2004). This happens when a local maximum is
located in an overall underdense region. For Gaussian fields, the cloud-in-void phe-
nomenon increases with decreasing spectral index. An important point to remember
is that as Gaussian fields are symmetric, the opposite void-in-cloud phenomenon also
occurs. This means that a number of minima have their function values higher than
the global mean. For Gaussian fields, this phenomenon also increases as the spectral
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Figure 3.10 Normalized marginal and cumulative distribution of mean density of the topological fea-
tures. The graphs are drawn for varying spectral index. Left: marginal distribution of the mean density
of the features. Right: cumulative distribution of mean density of the features.

index decreases.

The right panel presents the curves for the cumulative distribution of the various
models. The steepness of the distribution decreases for decreasing spectral index.
The mean density of the major fraction of features for the n = 1 model is located
within |ν| ≤ 1. For lower spectral indices there is a significant fraction of features
beyond |ν| ≥ 1. The fraction increases with decreasing spectral index, and we see a
a progressing uniformity as the spectral index decreases.

Distribution of persistence

Figure 3.11 presents the marginal and the cumulative distribution of persistence of
the features. The distribution of persistence π is different from the distribution of
mean density ν. The cumulative number density for the n = −3 model increases
more sharply, followed by n = −2,−1, 0 and 1 in that sequence. For the n = 1
model, the features are more uniformly distributed along the persistence axis. This
is indeed what we observe in the persistence diagrams of the 1D Gaussian process
in the Figure 3.9. The smoothly increasing cumulative distribution curve in the right
panel of Figure 3.11 confirm this impression. For lower spectral indices, the curve
quickly converges to its asymptotic limit 1. It is a clear manifestation of the fact
that for lower spectral indices, there is a larger fraction of small scale low amplitude
features, and a relatively lower number of large scale features with large amplitude
(also see Figure 3.3). The left panel of the Figure 3.11 presents the marginal distribu-
tion of persistence for the models. The curves for n = 1 and n = 0 indicate a clear
peak and have a wide tail. The peak disappears for index n ≤ −1. In this, it resem-
bles the Gamma distribution. The Gamma distribution is the continuous version of
the discrete Poisson distribution.
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Figure 3.11 Normalized cumulative and marginal distribution of persistence of the topological features.
The graphs are drawn for varying spectral index. Left: marginal distribution of persistence of the features.
Right: cumulative distribution of persistence of the features.

3.5 Persistence characteristics of 3D Gaussian random fields
Having assessed the topological characteristics of 1D Gaussian random functions,
we turn to the analysis of the topology of the 3D fields. We present the persistence
characterization of the 3D models described in Section 3.2. Subsequently, we inves-
tigate the topological characteristics of the intensity, difference and ratio maps of the
models. We also investigate the properties of the distribution of topological objects
as a function of their mean density and persistence.

3.5.1 Number density per unit volume of the topological features
The average total intensity 〈Ntot〉, per unit volume, is a measure of the topologi-
cal structure of a field. It represents the average number of topological objects per
unit volume in the density field. Figure 3.12 presents the average total intensity as a
function of the index n of the power spectrum. The average total intensity shows a
characteristic dependence on the choice of the power spectrum. It decreases mono-
tonically with decreasing spectral index. This means the number of topological ob-
jects per unit volume decreases monotonically with decreasing spectral index. This
is expected on account of the fact that for lower spectral indices, the structures in the
field become progressively larger. As a consequence, lesser number of features can
be packed in a given volume.

3.5.2 Intensity maps
Figure 3.13 presents the intensity maps for the 3D Gaussian random field models.
The intensity maps for the LCDM power spectrum is presented in Figure 3.14. The
intensity along successive contours decreases by a factor of 2. The left column of the
figures presents the intensity maps for islands, the middle column presents the maps
for tunnels, and the right column presents the maps for voids.

For all the models, the intensity maps are triangular in shape for all the dimen-
sions, i.e. for the islands, tunnels and voids. The maps also exhibit a symmetry
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Figure 3.12 The average total intensity as a function of the index of the power spectrum. It indicates
the average number of topological objects per unit volume in the density field characterized by a given
power spectrum. The curve is presented as a function of the spectral index n. The average total intensity
decreases monotonically with decreasing spectral index.

under reflection along the vertical axis: the maps for islands is a mirror image of
the map for voids. The map for tunnels is a reflection of itself, the axis of symmetry
being ν = 0. This reflects the symmetry of the Gaussian field itself (which has half
the volume with negative field values (underdense), and the other half with positive
field values (overdense)). The shape of the maps also show various degrees of con-
cavity in their arms. The level of concavity depends on the spectral index. For the
0- and 2-dimensional maps, the concavity is in the arm towards which the maps tilt.
The quantification of the model dependent concavity appears non-trivial, and may
be an interesting exercise for the future.

By definition, the integral of the intensity function over the plane defined by the
mean density and persistence is unity. Recasting the intensity function in this nor-
malized format means that the total intensity is conserved, and the same, irrespective
of the model. Seen in the light of this statement, the effect of the choice of the model
is restricted to the redistribution of intensity in the plane. This has repercussions
on the shape of the intensity function, which can be observed by following the iso-
contours of a particular intensity in the intensity maps. As an example, we follow
a randomly picked iso-intensity contour I = 0.006 in Figure 3.15. We note that iso-
intensity contours of any other value follow a similar pattern. The peak height of the
contour decreases while simultaneously accompanied by a spread along horizon-
tal axis. The increasing intensity near the horizontal axis for lower spectral indices
indicates the growing population of low persistence small scale features, due to de-
creasing power at those scales. As the index of the power spectrum decreases, the
sharp cuspy appearance of the contours progresses towards a more smooth peak.

Interesting to note is that the iso-intensity contour for the white noise case (n =
0) departs from the trend followed by the rest of the models. The curve has a more
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Figure 3.13 Intensity maps of islands, tunnels and voids (left to right) of the 3D Gaussian random field
models. Intensity I is defined as the fraction of total objects (for each dimension separately) in a grid
cell. Successive contours have intensity values that differ by powers of 2. The maps show a characteristic
dependence on the choice of the power spectrum.
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Figure 3.14 Intensity maps of islands, tunnels and voids (from left to right) in Gaussian random fields
for the LCDM power spectrum. The box size is 128h−1Mpc, with a smoothing radius of 2h−1Mpc. Inten-
sity I is defined as the fraction of total objects (for each dimension separately) in a grid cell. Successive
contours have intensity value that differ by powers of 2. The color bars are the same as Figure 3.13.

Figure 3.15 Iso-intensity contours corresponding to a randomly chosen value of intensity function,
Iij = 0.06. The curves are presented for the power-law power spectrum. The curve characteristics show a
systematic dependence on the choice of the power spectrum. The curve for white noise departs from the
trend followed by curves for other spectral indices.
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Figure 3.16 Normalized marginal and cumulative distribution of mean density the features in the mod-
els of 3D Gaussian fields. The graphs are drawn for varying spectral index. Black: topological voids, red:
tunnels. Curves for the topological islands are identical to the curves for the islands, under reflection
about ν = 0.

peaky appearance and thinner tails compared to the others. The starkly different
behaviour of the white-noise model in comparison with the other models requires
requires a careful consideration, and is still under investigation.

The width in the mean density distribution, as well as maximum persistence are
important markers of difference in the map characteristics. They are a reflection
of the features in the density landscape of the field. From n = 1 to n = −3, the
maximum persistence decreases. As argued in the 1D case, this is a reflection of
the decreasing variance of the density field, as the spectral index decreases: σ0 ∝
R−(n+3).

3.5.3 Mean density: Statistical distribution
In this section, we study the marginal and cumulative distribution of mean density
of the topological features. We are also interested in an empirical fitting formula for
the distributions. The form of the fitting function is motivated by the observed curve
characteristics.

Figure 3.16 presents the marginal and cumulative distribution of the mean den-
sity of the features for the various models. The left and the right panels present the
marginal and the cumulative distribution respectively. The curves in black present
the graphs for the topological voids. The curves in red present the graph for tunnels.
The curves for the topological islands are identical to the curves for the voids, under
reflection about ν = 0.

The rate of change in the cumulative distributions of voids and tunnels is the
same for any given power spectrum. This follows from the observation that the local
slope of the cumulative distribution is the same for both voids and tunnels. This may
also be visually confirmed from the graphs. The cumulative distribution increases
most steeply for the n = 1 model, and decreases with decreasing spectral index. The
curves for the tunnels cross each other at ν = 0. A reflection of this can also be seen in
the curves for the marginal distribution of mean density. The curves for the tunnels



3.5: Persistence characteristics of 3D Gaussian random fields 137

are symmetric about ν = 0. The peaks of the curves are located at ν = 0, irrespective
of the model.

The cumulative and the marginal distribution curves for the voids are shifted
towards lower density thresholds for higher spectral indices. The location of the
maximum of the marginal distribution of voids follows a similar trend. As noted
earlier, the curve for islands is a mirror image of the curve for voids. This means that
for a smaller spectral index, the cumulative and the marginal distribution curves are
shifted towards lower density thresholds. As noted in the 1D case, this is a con-
sequence of the fact that for lower spectral indices, there is a significant fraction of
maxima located near or even below the mean of the field.

Mean density fit: the skew-normal distribution
Under the assumption that the intensity maps arise from a well behaved probability
distribution function (Section 3.3.6), we attempt an empirical fit to the distribution.
To this end, we take into account that the distributions for islands and voids are
skewed and a mirror image of each other about ν = 0. We also note that the distribu-
tion of tunnels is symmetric to itself and exhibits no skewness. The observation that
the curves for islands and voids exhibit a skewed distribution, while the curve for
tunnels has no skew motivates to introduce a generic class of distribution called the
skew-normal distribution, as a fit simultaneously for the marginal distribution of mean
density of islands, tunnels and voids. The standard normal distribution is emergent
from the skew-normal distribution.

The skew-normal distribution is given by(O’Hagan & Leonard (1976); Azzalini
(1985)):

f (ν) =
A0

ωπ
e−

(ν−ξ)2

2ω2

∫ α
(

ν−ξ
ω

)
−∞

e−
t2
2 dt, (3.29)

where, A is the amplitude, α is the skewness parameter, ξ is the location parameter and
ω is the scale parameter. For more details on the skew-normal distribution, refer to
Appendix G.
We present the fit to the marginal distribution curves for the n = 0 model in Fig-
ure 3.17. The solid red curves present the marginal distribution of islands, tunnels
and voids for the n = 0 model. The black dot-dashed lines presents the skew-normal
fit curves for the same. In addition, the curves for n = 1 and n = −1 are also pre-
sented in red, for comparison as dotted and dot-dashed lines in red respectively. The
fitted curves for islands and voids match the actual distribution remarkably well.
The curve of actual distribution for tunnels has slightly broader tails and higher peak
than the fitted curve. The fit for tunnels has the skewness factor α = 0, indicating
that the mean density of the tunnels may be normally distributed.

Table 3.1 presents the parameters of fit for the various power-law models us-
ing the skew-normal distribution. Columns 3 presents the skewness, defined γ1 =

µ3/σ3. Column 4 presents the excess kurtosis, defined as γ2 = µ4

σ4 − 3. By this defini-
tion, the excess kurtosis of the standard normal distribution is 0. The absolute value
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Figure 3.17 Marginal distribution of the mean density of islands, tunnels and voids for n = 1, 0 and − 1.
The solid curve in red is the average computed from multiple realizations. The curve in black(dot-dashed)
plots the best fit skew-normal distribution for each of islands, tunnels and voids. The values of parameters
of distribution A(amplitude), ζ (location), α (skewness-parameter) and ω(scale/width) are depicted in
Table B.1.

of skewness for the curves corresponding to islands and voids increases as one pro-
gresses from n = 1 to n = −3. The distribution for tunnels exhibits a near-zero,
negligible skewness for all values of n. The excess kurtosis for all islands, tunnels
and voids is∼ −2.9 : −3.0, with small variations that show a decreasing trend in the
absolute magnitude as one lowers the spectral index.

The dependence of the various parameters of fit on the value of spectral index
is presented in Figure 3.18. The location parameter (ζ) and skewness (γ1) show an
increasing trend with increasing value of the spectral index, while the width param-
eter (ω) and skewness parameter(α) show a decreasing trend. Columns 5 through
8 of Table 3.1 also enumerate the best-fit values for the parameters. The absolute
value of the location parameter decreases for both islands and voids as n decreases.
The trend in the dependence of location parameter on the value of spectral index is
depicted by the solid curve in Figure 3.18. The trend in the dependence of skewness
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Figure 3.18 Fitting parameters for the mean density distribution. The solid line corresponds to the best-
fit values of the location parameter ξ, the dashed line for skewness parameter α, and the dot-dashed line
for scale/width parameter ω. The double dashed line corresponds to the skewness (note that skewness is
different from skewness parameter).

parameter α on the choice of spectral index is depicted by the dashed curve in Fig-
ure 3.18. The absolute value of skewness parameter decreases for decreasing n in the
case of islands and voids. On the other hand, it is ∼ 0 for tunnels, as expected. The
trend in the dependence of scale/width parameter on the choice of spectral index
is depicted by the dot-dashed curve in Figure 3.18. The scale parameter ω, which
indicates the width of the curves, increases uniformly for decreasing n. This is true
for islands, tunnels and voids.

3.5.4 Persistence: statistical distribution

Figure 3.19 presents the cumulative and marginal distribution of persistence of the
features for the various models. The left and the right panels present the marginal
and the cumulative distribution. The curves in black present the graphs for the topo-
logical voids. The curves in red present the graph for tunnels. The curves for the
topological islands are identical to the curves for the voids, due to the symmetry of
the field. The marginal distribution of tunnels is different from the marginal distri-
bution of islands and voids. However the cumulative distribution of islands, tunnels
and voids are approximately coincident for all the models.

The left panel of Figure 3.20 plots the marginal distributions of persistence for
the islands, tunnels and voids for the n = 0 model. For low values of persistence
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Figure 3.19 Normalized marginal and cumulative distribution of persistence of the features. Black:
topological voids, red: tunnels. Curves for the topological islands are identical to the curves for the
islands, under reflection about ν = 0.

Figure 3.20 Left: Marginal distribution of persistence of the toplogical holes. The rate of decrease is the
same for islands tunnels and voids. For small values of persistence, the rate of fall fits a power law. Right
: the trend in the dependence of the value of the persistent index on the index of the power spectrum.
Persistence index decreases while going from spectral index 1 to 0, and increases monotonically while
going from 0 to −3.

π ∼ (0.1− 1σ), the distribution follows a power-law

ψ = ψ0π−τ (3.30)

for islands, tunnels and voids. The index of the power-law τ indicates the rate of fall
in the number of objects as a function of persistence. We call this the persistence index.
Columns 9 and 10 of table 3.1 list the amplitude ψ0 and the value of the persistence
index τ for the power-law models. The persistence index τ is approximately the
same for islands, tunnels and voids for a given spectral index n. For n = 1, 0,−1 ,
the persistence index is τ ∼ 0.9. It shows an increasing trend for decreasing n < −1.
For the n = −2 model, τ ∼ 1, and for the n = −3 model τ ∼ 5

4 . The right panel of
Figure 3.20 presents the trend in the dependence of the persistence index (τ) on the
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power spectrum index n.

3.5.5 Difference and ratio maps
To compare the intensity maps, we construct the difference and the ratio maps as
defined in (3.24). Quantification of the difference and the ratio function di,j between
two models f and g results in maps which are, locally, at various factors of elevation
or depression with respect to each other. These elevations and depressions indicate
an excess or deficit in the number of topological features in the neighborhood de-
fined by a particular value of mean density and persistence. We note here that the
difference and the ratio maps display similar global features. However, the contours
in the difference maps are less noisy compared to the ratio maps. This reflects the
fact that the difference function numerically is more stable than the ratio function.

Difference and ratio maps of the power law models.
Figure 3.21 presents the difference maps for Gaussian random fields with power-law
power spectra. The model of reference for the comparison is the white noise model
with spectral index n = 0. The difference function is given by

dij = I(ij), f − I(ij),n=0, (3.31)

such that I(ij), f is the intensity of the compared model in the (i,j)-th bin, and I(ij),n=0
is the intensity of the reference n = 0 model in the same bin. We follow the maps
for tunnels, noting that the maps for islands and voids show similar properties. Iso-
difference contours are drawn and marked for a range of values. The details of the
features present in the difference maps show a systematic dependence on the value
of the spectral index. A visual inspection of Figure 3.21 reveals this. The difference
maps, like the intensity maps, also exhibit a symmetry: the maps for islands are
symmetric with respect to the maps for voids about ν = 0. The maps for loop is a
mirror image of itself under reflection about ν = 0. For all the models, the overall
shape of the maps is triangular.

For the maps corresponding to tunnels, the n = 1 model exhibits an elevated
peak along and around ν = 0 . This indicates that the n = 1 model has a larger
number of topological features with zero or near-zero mean density, as compared
to the white noise case. This elevation decreases in height monotonically on either
sides. In contrast, the maps for n = −1,−2, and − 3 are depressed around ν = 0.
The extent of depression shows dependence on the value of the spectral index. The
maps corresponding to a lower index are more depressed compared to a map with
higher index. This is similar to the trend seen in the 1D case (Section 3.4). As the
spectral index decreases, the number of features with the mean density equal to the
mean of the field decreases monotonically. It is simultaneously accompanied by an
increase in the features with a non-zero mean density. As noted in the 1D case, this
happens because lowering the spectral index results in an increase of the small scale
features with a non-zero mean density.

The maps show an opposite trend along the edges of the triangular arms, com-
pared to the neighborhood defined by ν = 0. As noted earlier, the n = 1 exhibits
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Figure 3.21 Difference maps of islands, tunnels and voids (from left to right) in Gaussian random fields
for a power-law power spectrum, for spectral indices n = 1,−1,−2and− 3. The difference function d is
defined as the signed difference of intensities of a given power-spectrum, with respect to the white-noise
power spectrum in a grid cell. Successive contours have intensity value as half of the previous ones.

an excess of features along ν = 0 compared to the white noise case. However, the
n = 1 model has lesser number of features along the triangular arms compared to
the white noise model. This is brought out sharply in the ratio maps for the mod-
els, presented in Figure 3.22. The ratio maps maginify the contrast of the differences
between the models.

The difference in the map characteristics is also illustrated if one plots the frac-
tional area enclosed within regions defined by a particular ratio value. For a given
ratio value q, we define the fractional area as the area bound by the contour q over
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Figure 3.22 Ratio maps of islands, tunnels and voids (from left to right) of Gaussian random fields for
a power-law power spectrum, with spectral indices n = 1,−1,−2and− 3. The maps are constructed with
respect to the n = 0 model. The box size is 128h−1Mpc, with a smoothing radius of 2h−1Mpc. The ratio
function ∆ is defined as the ratio of intensities of a given power-spectrum, with respect to the white-noise
power spectrum in a grid cell. Successive contours have intensity value as half of the previous ones.

the total area covered by non-zero regions of the ratio maps

A =

∫∫
q dS∫∫
dS

, (3.32)
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Figure 3.23 Plot of fractional area covered by ∆ij > q for the different power-law models. The fractional
area covered is defined as A∆ij>1/Atot. For the power-law models, the fractional area covered by the is-
lands and the voids is the same within 1σ error. The fractional area covered for the tunnels is significantly
different from those of islands and voids. For the LCDM model, the fractional area covered is the same
for islands, tunnels and voids, within 1σ error.

where,
∫∫

q dS is the area above the region demarcated by the contour q, and
∫∫

dS is
the total area of non-zero regions in the ratio maps. Figure 3.23 plots the fractional
area covered for q = 1, for the different power-law models. Along this contour, the
compared models have equal number of features. The fractional area covered by the
islands and the voids is the same within 1σ error. The fractional area covered for the
tunnels is significantly different from those of islands and voids. The fractional area
covered decreases monotonically for all islands, tunnels and voids as the spectral
index decreases. The excess of number of features, as denoted by a non-zero value
of fractional area for q = 1, indicate that all the models have a number of features in
excess of the the white noise model for some values of mean density and persistence.
This excess in the number of features arises because every model has excess power
compared to the white noise model, for some scale.

Difference maps of the LCDM model
Figures 3.24 presents the difference maps of the LCDM model with respect to the
power-law models. The left column in the figure presents the maps for islands, the
middle column presents the maps for tunnels, and the right column presents the
maps for voids.

We are motivated to compare the LCDM model with all the power law mod-
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Figure 3.24 Difference maps of the LCDM model with respect to the various power-law models.
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els. This is because the LCDM model has a running, scale-dependent spectral in-
dex, and its slope locally resembles a power law, with the spectral index ne f f =
d ln P(k)/d ln k. Recall from Figure 3.2 that the effective spectral index ne f f for the
LCDM model runs between approximately −0.5 and −2.5 in our simulation box.

The difference maps of the LCDM model show evident differences with respect
to the power-law models. The region around the mean density ν = 0 is the re-
gion where most of the significant differences arise across all the maps. Examining
Figure 3.24, we notice that the the LCDM model has consistently lower number of
topological features globally with respect to the n = 1, 0 and − 1 power-law mod-
els. For n = −2 and − 3, the LCDM model has a higher number of features than
the power law models. The n = −1 model appears closest to the LCDM model. As
can be verified from the values of the contours in Figure 3.24, the difference function
reaches a minimum for the n = −1 model and the LCDM model.

3.6 Betti numbers of 3D Gaussian random fields
Following the hierarchical topology of the Gaussian field models in terms of per-
sistence, we turn to the analysis in terms of the Betti numbers in this section. We
compare them with the topology as described through the Euler characteristic. The
three Betti numbers β0, β1 and β2 are computed as a function of the dimensionless
density threshold value ν = δ/σ. We also devote a subsection to quantifying the
statistics of local maxima or peaks (Bardeen et al. 1986), and the isolated connected
objects or islands as quantified by the zeroth Betti number β0. This is motivated by
the need to understand the relation between peaks and islands, and how a topology
description in terms of one compares to the other.

In a related article, we present a preliminary investigation of Betti numbers of
Gaussian fields, focusing on a comparison with genus statistics (Park et al. 2013).
Here we expand and deepen this analysis. To this end, we use the more direct and
fundamental computational procedure detailed in Chapter 2 and in Pranav et al.
(2013). In this context, we also note that a semi-analytical calculation of the Betti
numbers of the Gaussian fields in 2D has been carried out by Feldbrugge et al. (2015).

3.6.1 Gaussian Betti numbers in 3D: generic properties
The top-left panel of Figure 3.26 shows the unscaled Betti number curves for the
various power-law models, as well as the LCDM model. For Gaussian fields, β0 and
β2 are a mirror image of each other about ν = 0. β1 is symmetric to itself under
reflection about ν = 0. Because of their symmetry, an analysis with respect to the
islands is also indicative of the properties of voids.

At ν =∼ ±
√

3, the number of isolated islands and voids attain their maximum
respectively. The maximum of β0 curve gradually moves to lower thresholds as n
decreases. At ν ∼ 1, the number of isolated islands is equal to the number of isolated
tunnels. This threshold of equality gets closer to the maximum of β0 as the spectral
index decreases. At ν = 0, the number of isolated tunnels attains a maximum. At
this threshold, the number of isolated islands also equals the number isolated voids.
The extent of overlap between islands and voids increases with decreasing spectral
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Figure 3.25 Caption next page
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Figure 3.25 Contour surfaces denoting the structure of the field for three different density thresholds
ν =
√

3, 1, and 0, for the n = 1 and the n = −3 models. The left column presents the contour surfaces for
the n = 1 model and the right column presents the contour surfaces for the n = −3 model. Examples of
typical tunnels are enclosed in translucent red spheres; examples of typical isolated islands are enclosed
in green spheres. The topology of the contour surfaces shows a dependence on the choice of the power
spectrum, as well as the density threshold.

index. It is negligible for the n = 1 model, and becomes considerably significant as
the spectral index decreases to n = −3.

Figure 3.25 illustrates the iso-density surfaces denoting the structure of the field
for three different density thresholds ν =

√
3, 1, and 0, for the n = 1 and the n = −3

models. The left column presents the contour surfaces for the n = 1 model, and the
right column presents the contour surfaces for the n = −3 model. For illustration,
examples of a typical tunnel are enclosed in a translucent red sphere. Examples of a
typical isolated island are enclosed in a green sphere. The topology of the iso-density
surfaces shows a dependence on the choice of the power spectrum. The dependence
on the power spectrum is most evident around ν = 0. At this threshold, for the
n = 1 model, the topology is predominantly loop-like or sponge-like, with nearly a
singly connected surface. For the n = −3 model, the topology is a visible mixture
of loops as well as isolated islands. The strength of mixing of the different kinds of
topological entities, indicated by the relative number of different topological holes,
increases with decreasing spectral index. This indicates that the different models
have inherently different topological structure. In other words, the manifold cannot
be described as either predominantly meatball-like or sponge-like, but rather as a
mixture of these topologies.

The increase in the overlap between meatball-like, sponge-like and cheese-like
topologies for decreasing spectral index is more evident once we zoom in to the
concerned region in Figure 3.27. The bottom-left panel plots the overlap between β0
and β1, and the bottom-right panel plots the overlap between β0 and β2. The value
at the point of overlap increases with decreasing spectral index for both β0/β2 as
well as β0/β1. These trends are related to the observation that for lower spectral
indices there is significant power at large scales. This is reflected in the presence of
a larger number of isolated islands, even significantly below the mean value of the
density field. This is indicative of the cloud-in-void effect (Sheth & van de Weygaert
2004). The number of clouds or islands in the overall underdense regions increases
with decreasing spectral index. The opposite void-in-cloud effect also increases with
decreasing spectral index. This means that there are more and more void like regions
above the mean of the density field, as the spectral index decreases.

The presence of a progressively larger number of isolated islands for low rms
density thresholds, or the increasing cloud-in-void effect, is also evident if one plots
the fractional value of number of islands with respect to the sum of total number of
islands, tunnels and voids. This is shown in the left panel of Figure 3.28, where we
plot this quantity as a function of the dimensionless density threshold. For higher
spectral indices, the fractional value quickly falls down to almost zero. On the other
hand, for lower spectral indices it is larger than zero for thresholds as low as −2σ.
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Figure 3.26 Betti numbers and Euler characteristic curves of Gaussian random fields. The curves are
drawn for the LCDM model and for the power-law models as a function of the dimensionless density
threshold ν. Top-left: Unscaled Betti numbers for the LCDM and power-law models. Top-right: Scaled
Betti numbers for the power-law models. Bottom-left: unscaled Euler characteristic curves for the power
law models. Bottom-right: Scaled Euler characteristic curves. The shape of the Betti number curves
depend on the choice of the power spectrum, unlike the shape of the Euler characteristic curves.

The shape of the Betti number curves show a dependence on the choice of the
power spectrum: the Betti number curves become broader as n decreases. This can
be seen from the shape of the scaled Betti number curves in the top-right panel of
Figure 3.26. The Betti numbers have been scaled with respect to the n = 0 model. It
is also evident from the overlap between the various Betti numbers (see Figure 3.27).
The dependence of the Betti number curves on n is nearly exclusively confined to
the range |ν| ≤

√
3.

The bottom-left panel of Figure 3.26 shows the unscaled Euler characteristic curves
for the power law models. The bottom-right panel presents the scaled Euler charac-
teristic curves. The scaled curves fall on top of each other, indicating that the shape
of the Euler characteristic curve is insensitive to the choice of power spectrum. This
is unlike the Betti numbers, whose shapes show a characteristic dependence on the
choice of the power spectrum. The dependence of Euler characteristic on the choice
of the power spectrum is restricted to the expression for amplitude, through the vari-
ance term. Also note that the different Betti numbers dominate different regions of
the Euler characteristic curve.
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Figure 3.27 Zoom-in into the Betti numbers and Euler characteristic curves. Top: Zoom-in into the
Betti number (solid) and Euler characteristic curves (dashed) around ν = 0. The Euler characteristic
curves have an amplitude slightly lower than the β1 curves. Bottom-left: overlap between β0 and β1.
Bottom-right: overlap between β0 and β2. In both the panels, it is evident that the overlap between the
various Betti numbers spans across a substantial range of density threshold. The strength of the overlap
between different topologies, measured by the relative number of different topological entities at a given
threshold, increases for decreasing spectral index.

The extrema of the three 3D Betti numbers correspond to the three extrema of the
Euler characteristic curve. Only for large thresholds of |ν| > 3, β0 and β2 are almost
equal to −χ. This is because the absolute value of the Euler characteristic is very
close to the number of excursion sets or peaks in the asymptotic limit of high density
thresholds (Adler 1981; Bardeen et al. 1986). For thresholds as large as ν ∼ 2, there is
a significant contribution from β1 to χ. For the n = −3 model, this is even as large as
10%− 15%, as seen in the right panel of Figure 3.28. In the top panel of Figure 3.27
we see that the amplitude of χ is lower than the amplitude of β1. The difference
becoming larger as the spectral index decreases. It is an indication of the presence of
a significant number of islands and voids at ν = 0 for lower spectral indices.

The above observations can be related to the nature of the density fluctuation
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Figure 3.28 The fractional contribution of islands and tunnels to the sum of Betti numbers in all three
dimensions for rms threshold range between (−5σ : 5σ). Left: β0/(β0 + β1 + β2) – fractional contribution
of islands to the total sum of Betti numbers. Right: β1/(β0 + β1 + β2) – fractional contribution of tunnels
to the total sum of Betti numbers.

field as a function of spectral index. For higher spectral indices, there is signifi-
cant power only at smaller scales. This results in high density peaks connected by
low density saddles, giving the field a distinctly spiky appearance. These peaks
get connected before they start forming tunnels and voids, resulting in a clear cut
demarcation of meatball-, sponge- or cheese-like topology. As the spectral index
decreases, the demarcation diffuses. As the spectral index decreases, progressively
more and more isolated islands contain additional topological holes of higher di-
mensions, at thresholds well before the manifold becomes a singly connected entity.
This is reflected in the broadening and increased overlap of the Betti number curves,
indicating an increase in the mixture of topology as the spectral index decreases. In
contrast, the Euler characteristic curve does not have this dependence. As a result,
this additional information about the inherent differences in the topological struc-
ture of the various power law models is not available from the Euler characteristic
curves. It is clear from this discussion that the Betti numbers add extra information
to the description of topology than the that by the Euler characteristic.

The above remarks lead us to conclude the following. In general, only for positive
spectral indices, it is feasible to describe the topology of the field as either meatball-
like, or sponge-like or cheese-like. For negative spectral indices, the demarcation is not
clear, except near the tails of the density distribution. The topology is an increasing
mixture of the three types as the spectral index decreases.

3.6.2 Betti numbers: Scaling relation
The amplitudes of the unscaled Betti numbers depend on the value of the spectral
index. The trend of the dependence of the maximum of the Betti number curves
on the value of the spectral index is shown in Figure 3.29. The amplitudes are fit
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Figure 3.29 Amplitude of Betti numbers as a function of the spectral index. The amplitudes are fit to an
exponential function of the form a · exp ν. The χ2 of the fits is 0.007 and 0.033 for the islands/voids and
tunnels respectively.

to an exponential of the form f (n) = A0en/τ , with the decay parameter τ = 2.
This suggests that the amplitude of all the Betti number curves decrease roughly
exponentially as the value of spectral index decreases.

The amplitudes for β0, β1 and β2 scale the same as a function of the smoothing
length Rg. We fit the maximum of the peaks to the function βmax

i = A0Rτ
g . Table 3.2

presents the values of the parameters of fit for the various models. The values of τ

suggest that the Betti numbers scale as R(n+3)
g , which is also proportional to σ2

0 . This
is the same as the scaling law for genus. The reduced χ2 of the fit is 0.003. Park et al.
(2013) show that the scaling relation of the Betti number curves is very close to that
of the genus curve, which is gR3

G ∝ (n + 3)3/2 (Hamilton et al. 1986), but not exactly

index (n) τ(β0,β2)
τ(β1)

1 4.027± 0.01 3.99± 0.01
0 3.012± 0.018 2.99± 0.02

-1 2.001± 0.01 1.98± 0.015
-2 1.015± 0.05 0.99± 0.01
-3 0.0015± 0.002 0.001± 0.002

Table 3.2 Scaling of Betti numbers as a function of smoothing radius for the power-law models with
spectral indices n = 1, 0,−1,−2 and − 3. The maxima of Betti numbers is fit to the function βmax

i (Rg) =

A0Rτ
g . The values of τ suggest that the Betti numbers scale as R(n+3)

g , which is the same as the scaling law
for genus. Reduced χ2 of the fit is 0.003.
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Figure 3.30 Marginal distribution of peaks, and the Betti numbers. The left and the right columns plot
the marginal distribution of peaks and the zeroth Betti number respectively. The zeroth Betti number
counts the number of isolated islands at a particular density threshold. The curves for both the quantities
show a characteristic dependence on the index of the power spectrum. Note also that the location of
peaks shifts towards lower density thresholds for both the quantities. This effect is strong for the marginal
distribution of peaks, but marginal for the Betti numbers.

the same.

3.6.3 Peaks vs. Islands: the Gaussian case
In Section 3.3.5, we noted that there is a difference between peaks and islands. The
former are the local maxima, while the latter grow depending on the density thresh-
old ν. An island may contain multiple peaks. In fact, as an island grows it might
get arbitrarily complicated, acquiring tunnels and even voids, while always staying
connected. But in the asymptotic limit of high ν, every island will contain only one
peak.

Bardeen et al. (1986) derive the marginal number distribution of peaks for Gaus-
sian random fields, as a function of the dimensionless density threshold ν

Npk(ν) dν =
1

(2π)2R3
?

e−ν2
G(γ, γν). (3.33)

Here, the function G(γ, γν) is a fitting function (see Appendix C.1.1 for the exact
form). For the power law models, the parameters γ and R? are related to the var-
ious moments of the power spectrum, the value of the spectral index n, and the
co-moving filtering radius R f .

Figure 3.30 plots the marginal distribution of peaks and the Betti numbers for the
3D Gaussian fields. The left and the right panels plot the marginal distribution of
peaks and the zeroth Betti number β0 respectively. The curves are drawn as a func-
tion of the dimensionless density threshold ν. The marginal distribution of peaks
counts the number density of peaks in the neighborhood (ν, ν + dν). The zeroth Betti
number counts the number of isolated islands at ν. The curves for both the quantities
show a characteristic dependence on the index of the power spectrum. The curves
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Figure 3.31 Top: Cumulative number distribution of islands and peaks as a function density threshold
for the n = 0 model. Bottom-left: Number of peaks per island as a function of the density threshold,
for the different power law models. Bottom-right: The number of peaks per island presented in the
logarithmic scale.

of both the quantities also show different characteristics from each other. This indi-
cates that they measure different features associated with the topology of the density
distribution. The number density of peaks differs from the zeroth Betti number be-
cause the zeroth Betti number also depends on the number distribution of 2-saddles.
From the graphs, it is evident that the location of peaks shifts towards lower den-
sity thresholds for both the quantities, as the spectral index decreases. This effect is
strong for the marginal distribution of peaks, but small for β0. Note also the orders
of magnitudes of separation between the amplitudes of both the quantities.

For the n = 1 model, the small scales are dominant. In terms of the structures
in the density fluctuation field, this means that the number of small scale peaks of
high amplitude is large. They are also separated by low-density saddles. There is no
discernible large scale feature in the density field. As the index of the power spec-
trum decreases, the power shifts to large scales. The small scale peaks are separated
by saddles occurring at relatively high density thresholds. As a result the features
formed by these peaks and saddles are of low persistence. It is also accompanied by
a decrease in the amplitude of the global maximum of the field. As noted earlier, this
is because the variance of the density field in the box decreases with decreasing spec-
tral index: σ0 ∝ R−(n+3). This phenomenon is reflected in the curves of the marginal
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distribution of peaks in the Figure 3.30. For a larger n, the number distribution of
peaks attains its maximum at a larger density threshold compared to a smaller n. For
the n = 1 model, the maxima is located as high as ν = 2, and the number density
rapidly starts approaching zero near ν = 0. In contrast, for the n = −3 model, the
maximum is located at ν ∼ 0, and there are significant number of peaks even below
ν = 0. As noted earlier, this is a direct reflection of the fact that there are progres-
sively more number of peaks for lower thresholds, as the spectral index decreases
(Bardeen et al. 1986). In contrast, the location of the maxima of β0 curves shows a
marginal dependence on the value of spectral index.

For very high values of rms density threshold, as long as the peaks do not start
merging, we expect the cumulative number density of peaks to be equal to the num-
ber density of islands. This is confirmed in the left panel of Figure 3.31 where we
present the cumulative number density of peaks npk and the number density of is-
lands β0 per unit volume, as a function of ν for the n = 0 model. The cumulative
number density of peaks equals the number density of islands asymptotically for
very large rms density thresholds. The equivalence starts breaking down rapidly at
thresholds even as high as ν ∼ 4. This is attributed to the fact that for high thresh-
olds all the peaks represent disconnected regions almost surely (Bardeen et al. 1986),
while they start connecting up and forming complex topology as the threshold de-
creases.

In the middle and the right panel of Figure 3.31, we present the number of peaks
per island as a function of the dimensionless density threshold ν. The vertical axis of
the middle panel is plotted on a linear scale, while it is in a logarithmic scale for the
right panel. The number of peaks per island reaches a minimum within 1 ≤ ν ≤ 2
for all the models. The location of the minimum shifts to lower density thresholds
for decreasing spectral index. The value at the minimum increases for decreasing
spectral index, indicating that the number of peaks per island around the minimum
decreases with increasing spectral index. For lower density thresholds, the trend
is reversed. There are more number of peaks per island for increasing spectral in-
dex. In this connection, it is important to note that the number of peaks per island
depends on two quantities : the number distribution of peaks themselves, as well
as the number distribution of the 2-saddles, as a function of the density threshold.
Both these quantities behave differently in general (Bardeen et al. 1986; Pogosyan
et al. 2009). The situation is further complicated by the fact that not all 2-saddles at
a given density threshold join two disconnected peaks. A fraction of them is also
responsible for connecting two or more already connected peaks, thereby forming
loops or tunnels (Edelsbrunner & Harer 2010; Feldbrugge et al. 2015). Further, the
fraction of 2-saddles that join two isolated objects would be, in general, a function of
the density threshold (also see Feldbrugge et al. (2015) for a semi-analytic framework
describing this).

3.7 Minkowski functionals of Gaussian random fields

In principle, the Minkowski functionals provide complementary geometric informa-
tion to the topological analysis described in this chapter. As such, it is of importance
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to assess the correspondence between these quantities.

There are (d + 1) Minkowski functionals, Qk((k = 0, . . . , d), for a d-dimensional
manifold (Mecke et al. 1994; Schmalzing & Buchert 1997; Schmalzing et al. 1999;
Sahni et al. 1998). Predominantly geometric in nature, the first four Minkowski
functionals (d ≤ 3) are the volume, surface area, integrated mean curvature or to-
tal contour length, and the Gaussian curvature. Within the context of this chapter,
we assume a 3-dimensional space x. We calculate the Minkowski functionals for the
manifold Mν, which is the subset of the region x with density above the threshold ν.

The volume functional Q0(ν) is the fractional volume of the regions with density
above the threshold ν, normalized by the total volume of the region V. It is given
by the volume integral of the Heaviside step function Θ, normalized by the whole
volume V (Schmalzing & Buchert 1997)

Q0(ν) =
1
V

∫
V

Θ(ν− ν(x)). (3.34)

The other Minkowski functionals of Mν can be calculated by appropriate surface
integrals of the boundary of Mν, denoted by ∂(Mν). The second Minkowski func-
tional, or the area functional, is given by

Q1(ν) =
1

6V

∫
∂Mν

d2S(x). (3.35)

The third and the fourth Minkowski functionals, namely the integrated mean curva-
ture functional or the total contour length, and the Gaussian curvature, involve the
inverse of the radii of curvatures R1 and R2 of the surfaces oriented towards lower
density values. The integrated mean curvature functional is given by

Q2(ν) =
1

6πV

∫
∂Mν

d2S(x)[κ1 + κ2], (3.36)

and the Gaussian curvature is given by

Q3(ν) =
1

4πV

∫
∂Mν

d2S(x)[κ1 κ2], (3.37)

where κ1 = 1/R1 and κ2 = 1/R2.

3.7.1 Analytical expressions for Minkowski functionals of Gaussian random fields

For Gaussian random fields, the expected value of the first four Minkowski function-
als of the excursion sets have known analytical expressions (Tomita 1993; Schmalzing
& Buchert 1997)



158 Persistence and Homology of Gaussian fields

Q0(ν) =
1
2
− 1

2
Φ
(

1√
2

ν

)
,

Q1(ν) =
2
3

λ√
2π

exp
(
−1

2
ν2
)

,

Q2(ν) =
2
3

λ2
√

2π
ν exp

(
−1

2
ν2
)

,

Q3(ν) =
λ3
√

2π
(ν2 − 1) exp

(
−1

2
ν2
)

. (3.38)

where λ =
√
|ξ”(0)|/[2πξ(0)], and the function Φ(x) =

∫ x
0 dte(−t2) is the stan-

dard error function. This makes them an ideal tool for model discrimination.

3.7.2 Computing the Minkowski functionals
Suppose the density at a location x is specified as u(x). The volume functional is
computed directly from Equation 3.34. Replacing the surface integration in Equa-
tions 3.35, 3.36 and 3.37 with a spatial mean over the whole volume, we get (Koen-
derink 1984)

Q1(ν) =
1

6V

∫
V

d3xδ(νσ− u(x))|∇u(x)|,

Q2(ν) =
1

6πV

∫
V

d3xδ(νσ− u(x))|∇u(x)|[κ1 + κ2],

Q3(ν) =
1

6πV

∫
V

d3xδ(νσ− u(x))|∇u(x)|[κ1 κ2], (3.39)

where δ is the Dirac delta function. The local radii of curvature can be expressed in
terms of geometric invariants known as the Koenderink invariants. They are formed
from the first and the second derivatives of the density field u(x) (Koenderink 1984;
Kerscher et al. 1996)

κ1 + κ2 =
εijmεklm u,iu,jku,l

(u,nu,n)3/2 ; κ1κ2 =
εijkεlmn u,iu,lu,jmu,kn

2(u,pu,p)2 , (3.40)

where u,i and u,ij are the first and second spatial derivatives in the i and j direction,
and εijk is the Levi-Civita tensor. Equation 3.39 can be performed computationally,
when the inverse of radii of curvature is replaced by the form given in Equation 3.40.
Kerscher et al. (1996) and Schmalzing & Buchert (1997) develop a code to compute
the Minkowski functionals of density fields specified on a regular grid, based on the
above prescription 2. We adapt the code to perform the computation of Minkowski

2We adapt the code developed by Kerscher et al. (1996); Schmalzing & Buchert (1997) for our cal-
culations. The original code is available at http://www.physik.uni-muenchen.de/sektion/
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Figure 3.32 Minkowski functionals of the LCDM and the power-laww models. Top left: Volume func-
tional. Top right: Area functional. Bottom left: Integrated mean curvature functional. Bottom right: Euler
characteristic or Gaussian curvature functional. All the functionals are normalized by the total volume of
the simulation box. The volume functional is invariant with respect to the choice of the power spectrum.
The amplitude of the area, contour length and Euler characteristic shows a dependence on the choice of
the power spectrum.

functionals of the models described in this chapter.

3.7.3 Minkowski functionals of the models
Figure 3.32 presents the graph of the Minkowski functionals for the power-law mod-
els. The graphs are averaged over 100 realizations. The quantities are plotted as a
function of the density threshold ν. The top-left panel presents the volume func-
tional Q0,the top-right panel plots the area functional Q1, the bottom-left panel plots
the integrated mean curvature functional Q2, and the bottom-right panel plots the
Euler characteristic Q3. All the functionals are normalized by the total volume of the
simulation box. The fractional volume Q0 is invariant with respect to the choice of
the power spectrum. All the other functionals show a systematic dependence on the
choice of the power spectrum. The amplitude of the graphs of the area functional, the
integrated mean curvature functional, and the Euler characteristic decreases mono-
tonically with the decrease in the index of the power spectrum.

Figure 3.33 presents the rescaled Minkowski functional curves. In this figure, the

lswagner/buchert_software.html
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Figure 3.33 Scaled Minkowski functionals of the LCDM and the power-law models. Top left: Volume
functional. The power-law curves are scaled to the amplitude of the LCDM curve. Top right: Area
functional. Bottom left: Integrated mean curvature functional. Bottom right: Euler characteristic. All the
functionals are normalized by the total volume of the simulation box. The shape of the curves is invariant
with respect to the choice of the power spectrum.

graphs for the rest of the power-law models have been scaled to the amplitude of
the curve of the n = 0 model. The shape of the rescaled graphs falls neatly on top
of each other. This indicates that the shape of the Minkowski functional curves is
independent of the choice of the power spectrum. This observation is in line with
the Equation 3.38. The dependence on the choice of the power spectrum comes in
only through the amplitude term. This dependence is parametrized in terms of λ,
which is a function of the correlation function or equivalently the power spectrum.

That the shape of the Minkowski functional curves is independent of the choice
of the power spectrum is an important observation, when seen in comparison to the
shape of the Betti number curves, which show a characteristic dependence on the
choice of the power spectrum. We present a detailed analysis of the Betti numbers
with respect to the Euler characteristic in Section 3.6. This indicates that the Betti
numbers are potentially more discriminatory than the Minkowski functionals.

Recall that the ratio of the Minkowski functionals are a crude indicator of the
morphological properties of manifold (Sahni et al. 1998). For example, a high surface
area to volume ratio indicates a more pancake like morphology of structures. The
reverse indicates a more filamentary morphology. Figure 3.34 presents the ratios of
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Figure 3.34 Ratios of Minkowski functionals. Left: The ratio Q1/Q0, denoting the ratio between the
total occupied volume and the total surface area corresponding to the occupied volume. Middle: The
ratio Q2/Q1, denoting the ratio between the total length of contours and the total surface area. Right: The
ratio Q2/Q0, denoting the total length of contours per unit volume occupied. The curves are drawn with
respect to the dimensionless density threshold ν.

the first three Minkowski functionals with respect to each other. In the left panel, we
present the ratio Q1/Q0, denoting the ratio between the total surface area and the
total occupied volume. In the middle panel, we present the ratio Q2/Q1, denoting
the ratio between the total length of contours and the total surface area. In the right
panel, we present the ratio Q2/Q0, denoting the total length of contours per unit
volume occupied. The curves are drawn with respect to the dimensionless density
threshold ν.

All the three quantities increase monotonically for increasing density thresholds.
However, they also show a characteristic dependence on the choice of the power
spectrum. Note that the curves for the negative power spectra increase more steeply
towards the extremes of the density threshold, and flatten out as the threshold moves
to further extremes. This is in contrast to the behavior for the n = 1 and the n = 0
models, for which the curves show no such behavior. For all the models, the surface
area to volume ratio is high for high density thresholds. It indicates that the struc-
tures are more flattened for high thresholds. Interesting is the sharp rise in the value
for the negative spectra. This indicates that at very high thresholds, the structures
in the n = −3 model are the most flat. This ties in with the observation that for the
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n = −3 model, there are large scale structures that have low amplitude. This gives
rise to the overall flattened characteristics of the density field. The large structures
are a consequence of significant powers at those scales.

In summary, the Minkowski functionals characterize the geometric properties of
the manifold predominantly. The connection to topology comes through the Euler
characteristic. Hence, the Minkowski functionals maybe seen as complimentary to
the topological descriptors such as persistence and Betti numbers. The Minkowski
functionals, together with the information on the homology and persistence of a
manifold, provide a richer and more comprehensive morphological and topological
information about the manifold.

3.7.4 Betti numbers vs Minkowski functionals
As we learnt in the previous sections, the Betti numbers are topological quantities.
They measure topology by assessing the number of independent holes in the differ-
ent dimensions. On the other hand, the Minkowski functionals are primarily mor-
phological measures, the exception being the Minkowski functional Q3, or the Euler
characteristic, χ. The first three Minkowski functionals are associated with the vol-
ume (Q0), surface area (Q1) and the integrated mean curvature length (Q2) of the
manifold. However, an important question one may ask is if the Betti numbers and
the Minkowski functionals convey different information about the manifold charac-
teristics. With a view to investigate this, we assess the correspondance between the
Betti numbers and the Minkowski functionals.

Figure 3.35 presents the various Betti numbers plotted against the various Minkowski
functionals. The top-left panel of the figure plots β0 on the vertical axis against Q0
on the horizontal axis, and so on. We notice that almost all the pairs of quantities
exhibit a degeneracy. For example, in the top-left panel, we notice that there are two
values of Q0 for which the value of β0 is the same. The exception is the peak of the
curve, at which β0 is associated with a unique value of Q0. The only exception to this
trend of degeneracy is the middle panel of the middle row, where we plot β1 against
Q1. The curve is monotonic, indicating that β1 and Q1 behave in a similar fashion.
In general, a monotonic curve between any two plotted quantities indicates a similar
behaviour of the quantities.

Another simple method to investigate whether the Betti numbers and Minkowski
functionals present similar information about the manifold characteristics is to plot
the ratio of the Betti numbers to the Minkowski functionals. In certain cases, the
ratio of a given Betti number to a given Minkowski functional can be associated
with particular features of the manifold. For example, the ratio β0/Q0 represents the
number of isolated objects per unit occupied volume. Note that the occupied volume
is different from the total volume of the manifold. The total volume is a constant,
while the occupied volume is a function of the density threshold. Similarly, the ratio
β1/Q1 indicates the number of independent tunnels per unit surface area. This may
be regarded equivalent to the information on the genus of the manifold. Figure 3.36
presents the ratio of the various Betti numbers to the various Minkowski functionals,
as a function of the density threshold ν. The plots are presented for the different
power law models. We notice a dependence of the quantities on the choice of the
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spectral index. It is important to note that a constant, or a monotonically increasing
or decreasing curve indicates quantities with similar characteristics. This is because
in the case of a constant or a monotonic ratio between two quantities, one differes
from the other by only a factor. We notice that none of the pair of quantities exhibit
a monotonic ratio. This indicates crudely that the Betti numbers and the Minowski
functionals behave differently from each other in general.

3.8 Discussions and conclusions.
This chapter analyzes the topology of Gaussian random fields in a hierarchical fash-
ion through concepts emanating from homology, persistence and Morse theory. Such
a topological analysis of Gaussian random fields is interesting in the cosmological
context given that the density perturbations in the early Universe are predicted to be
highly Gaussian in nature.

A hierarchical topological characterization of the cosmic mass distribution has a
rich potential of unlocking tools for studying the nature of the cosmic mass distribu-
tion, especially given the fact that structure formation in the Universe proceeds in a
hierarchical fashion.

We study the power-law and the LCDM model using using a variety of topolog-
ical measures. We demonstrate that a combination of intensity, difference and ratio
maps express the topological information content in greater detail than the tradi-
tional descriptors like the Minkowski functionals.

First, we delve into the topological description of 1D Gaussian functions. This
is done in order to relate the visual features of the density distribution to the topo-
logical description, and assess how the topological description reflects the features
of the density distribution. We establish that the features of the persistence diagram
are a direct reflection of the singularity structure of the function.

Having assessed the topology of the 1D functions, we then delve into an analysis
of the 3D fields. We do this for the power law models and the LCDM model. First we
present the intensity, difference and the ratio maps of the power law models, as well
as the LCDM models. We demonstrate that the difference and ratio maps present
the differences between the topology of two models in comparison at a more de-
tailed level. The indication is that the intensity, difference and ratio maps are highly
sensitive to the parameters of the model, and may therefore be used to discriminate
between various models.

We quantify the intensity maps by a decomposing them into marginal and cu-
mulative distributions of the mean-density and persistence of the topological holes
in different dimensions. In this context, we establish that the distribution functions
show a characteristic dependence on the index of the power spectrum. We also show
that the marginal distribution of mean density of the holes follow a Gaussian distri-
bution approximately. The marginal distribution as a function of persistence indi-
cates a Gamma distribution.

Thereafter, we proceed to compute the Betti numbers for the models, and com-
pare them with the Euler characteristic of the models. Recalling that the Euler char-
acteristic is the alternating sum of Betti numbers, we also demonstrate that the Betti
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numbers of Gaussian random fields contain strictly extra information compared to
the Euler characteristic. In particular, we show that the shape of the Betti number
curves is dependent on the choice of the index of the power spectrum. In contrast,
the curves of shape of the Euler characteristic curve is insensitive to the choice of the
power spectrum.

A crucial observation is that the topology of the manifold is not strictly either
meatball-like, sponge-like or cheese-like for the density fields. This is demonstrated
in details in the Section 3.6, where we find that there are substantial regions of over-
lap between the various kinds of topologies enumerated above. This claim is re-
inforced by the scaled Betti number curves that show a substantial overlap across
a range of density thresholds. The overlap is the strongest for a lower spectral in-
dex, and decreases monotonically with increasing spectral index. We note that such
information may not be available through the Euler characteristic curves.

Further, we devote a section to understanding the relationship between peaks
and islands. We study their relationship by computing the marginal distribution
of peaks and the zeroth Betti number. The quantities behave differently, except for
asymptotically high density thresholds. This is established by plotting the cumula-
tive number distribution of peaks with respect to β0. In this process, we also compute
the number of peaks per island as a function of the density threshold.

Finally, we present an analysis in terms of the Minkowski functionals of the mod-
els. The Minkowski functionals measure the morphological properties of the man-
ifold, hough there are connections to topology through the (d + 1)-th functional.
Most importantly, we show that the shape of the Minkowski functionals is indepen-
dent of the choice of the power spectrum, unlike the Betti numbers. We also show
that the ratio of the Minkowski functionals, which denote the shape characteristics
of the density field, show a dependence on the choice of the power spectrum. The
indication is that the shapes become progressively more flattened as the spectral in-
dex decreases. We conclude that the Minkowski functionals are complimentary to
topological measures like persistence and the Betti numbers. A detailed information
about all of them presents a comprehensive picture of the morphological as well as
the topological attributes of the manifold.

Given the extra information content of persistence homology and homology, as
quantized by the Betti numbers, they will prove to be key concepts for a more pro-
found understanding of the topology in the future. As an example, it would be
interesting to analyze the persistence and homology of the temperature fluctuations
of the Cosmic microwave background, as recently measured in extraordinary details
by PLANCK satellite.
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4.1 Introduction

At scales from a megaparsec to a few hundred megaparsecs1, the universe has a web-
like appearance. In the cosmic web (Bond et al. 1996; van de Weygaert & Bond 2008),
galaxies, intergalactic gas, and dark matter have aggregated in an intricate wispy
spatial pattern marked by dense compact clusters, elongated filaments and sheetlike
walls, and large near-empty void regions. The filaments, stretching out as giant ten-
tacles from the dense cluster nodes, serve as transport channels along which mass
flows towards the clusters. They surround the flattened walls, which are tenuous,
membrane-like features in the cosmic mass distribution.

All structures and objects in the universe emerged out of primordial fluctuations
that were generated during the inflationary era, moments after its birth, as the uni-
verse underwent a rapid phase of expansion (Guth 1981; Linde 1982a,b). The quan-
tum fluctuations generated during this phase manifest themselves as fluctuations in
the temperature of the cosmic microwave background (Spergel et al. 2007; Komatsu
et al. 2011; Planck Collaboration et al. 2015). The gravitational growth of these den-
sity and velocity perturbations has resulted in the wealth of structure that we see in
the Universe. The web-like patterns mark the transition phase from the primordial
Gaussian random field to highly nonlinear structures that have fully collapsed into
halos and galaxies. As our insight into the complex structural pattern of the cosmic
web has increased rapidly over the past years, it has become clear that the cosmic-
web contains a wealth of information on a range of cosmological and astronomical
aspects and processes.

An important illustration of the cosmological significance of the cosmic web con-
cerns its dependence on the nature of dark energy and matter, the dominant but as
yet unidentified forms of energy and matter in the Universe. One telling example
of this is the recent realization that cosmic voids are sensitive and useful probes of
the nature of dark energy and dark matter and testing grounds for modified gravity
theories (Ryden & Melott 1996; Schmidt et al. 2001; Park & Lee 2007a; Lavaux & Wan-
delt 2010; Bos et al. 2012; Lavaux & Wandelt 2012; Clampitt et al. 2013; Sutter et al.
2014b). As the cosmic web is first and foremost defined and shaped by the gravi-
tationally dominant dark matter, it would be of considerable importance to be able
to obtain detailed maps of dark matter distribution. In recent years, great strides
have been made towards this goal as gravitational lensing of distant galaxies and
objects by the dark matter have enabled an increasingly accurate view of its spatial
distribution (Tyson 2000; Kneib & Natarajan 2011). Initial efforts concentrated on the
detection and mapping of the deep potential wells of the nodes in the cosmic web,
i.e.,, of galaxy clusters. Recent results have opened the path towards the mapping
of filaments via their lensing effect on background sources (Dietrich et al. 2012). The
identification of the structural components of the cosmic web is also important for
our understanding of the relation between the formation, evolution, and properties
of galaxies and the structural environment of the cosmic web. A direct manifestation
of this is the generation of the angular momentum of galaxies. This is a product of

1A parsec is the standard unit of measurement of distances in the cosmos. A parsec is 3.26 times
the light-year, the distance light covers in a year. A megaparsec is a million parsecs, the typical scale of
measurement of size of the large scale structures in the universe.
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the torqueing by the large-scale tidal force field (Hoyle 1951b; Peebles 1969; White
1984). While these force fields are also the agents for the formation and shaping of
filaments, we would expect that this results in the alignment of the spin axis of galax-
ies with respect to cosmic filaments (Lee & Pen 2000; Jones et al. 2010; Tempel et al.
2013).

The identification, description, and characterization of the elements of the cosmic
web is a non-trivial problem. Several characteristics of the mass distribution in the
cosmic web have made it an extremely challenging task to devise an appropriate
recipe for identifying them:

– The cosmic web is a complex spatial pattern of connected structures displaying
a rich geometry with multiple morphologies and shapes.

– There are no well-defined structural objects at a single spatial scale or within
a specific density range. Instead, elements of cosmic web are found at a wide
range of densities and spatial scales. This is a consequence of the hierarchical
evolution of structure formation in the universe, such that smaller high-density
structures merge to form larger objects.

– There is a clear anisotropy in the structures of the cosmic web, a consequence
of gravitational instability. The structures in the cosmic web exhibit elongated
and flattened characteristics.

The attempts to analyze the structure of the cosmic web have a long history. The
absence of an objective and quantitatively accurate procedure for identifying and
isolating the components of the cosmic web has been a major obstacle in describing
it. In recent years, more elaborate and advanced techniques have been developed
to analyze and describe the structural patterns in the cosmic web. Nonetheless, a
consensus on the proper definition of filaments is yet to be achieved. In the subse-
quent subsection 4.1.1 we present a short account of the available techniques and the
definitions on which they are based.

4.1.1 Related Work
Statistical measures such as the auto-correlation function (Peebles 1980) of the matter
distribution in the web have been the mainstay of cosmological studies over many
decades. However, while this second-order measure of clustering does not contain
any phase information (one may e.g. always reproduce a distribution with the same
2nd order moments and random Fourier phases), the auto-correlation function is
not sensitive to the existence of complex spatial patterns. Higher order correlation
functions only contain a very limited amount of such structural information, while
in practical observational circumstances, it quickly becomes cumbersome to measure
them as the magnitude of the error increases drastically with increasing order.

The first attempts towards characterizing complex geometric patterns in the galaxy
distribution mainly involved heuristic measures. Early examples of techniques ad-
dressing the global connectivity of structure in the Universe are percolation analysis
(Shandarin & Zeldovich 1983) and the minimum spanning tree of the spatial galaxy
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distribution (Barrow et al. 1985; Alpaslan et al. 2014). While these are useful global
descriptions, they do not capture and describe local characteristics of the mass dis-
tribution.

More elaborate and advanced techniques have been developed in recent years.
Several of these methods apply sophisticated mathematical and visualization tech-
niques, involving geometric and topological properties of the cosmic mass distribu-
tion. There are a multitude of different methods for detecting filaments, based on a
range of different techniques. We may recognize several categories of techniques.

One class of methods seeks to describe the local geometry on the basis of the
Hessian of the density field (Aragón-Calvo et al. 2007a,b; Bond et al. 2010; Cautun
et al. 2013) or closely related quantities such as the tidal force field (Hahn et al. 2007;
Forero-Romero et al. 2009) or the velocity shear field (Libeskind et al. 2012; Cautun
et al. 2013). The Hessian provides direct information on the local shape and dynami-
cal impact of the corresponding field. The morphological elements of the cosmic web
are identified by connecting the areas within which a specific range of anisotropies
is registered.

These studies concentrate on a single scale by appropriately smoothing the field,
and do not consider the multi-scale nature of the cosmic mass distribution. The Hes-
sian based Nexus/MMF technique (Aragón-Calvo et al. 2007b), which was perfected
into a versatile and parameter-free method (Cautun et al. 2013), implicitly takes into
account the multi-scale nature of the web-related fields. It accomplishes this by a
scale-space analysis of the fields. At each location the optimal morphological signal
is extracted via the application of a sophisticated filter bank applied to the Hessian
of the corresponding fields in scale space. The application of this machinery has en-
abled thorough studies of the hierarchical evolution and buildup of the cosmic web
(Cautun et al. 2014).

A promising and highly interesting recent development has opened up the path
towards dynamical analysis of the evolving mass distribution in full six-dimensional
phase-space (in which the position of each mass element is specified by its space
coordinates and velocity/momentum). In the 6D phase space, the cosmic mass dis-
tributions defines a 3D sheet. Independently, three groups arrived at tessellation
based formalisms that exploit the evolving structure and folding of the phase space
sheet in phase space (Shandarin 2011; Abel et al. 2012; Neyrinck 2012) (also see e.g.
Shandarin et al. (2012)). The number of folds of the phase space sheet at a given
location indicates the number of local velocity streams, and forms a direct indication
of the morphology of the local structure. Interestingly, the resulting characterization
of the web-like distribution, the Origami formalism of Neyrinck (2012) for example,
appears to resemble that of the Nexus/MMF formalism (Cautun et al. 2014).

An entirely different class of techniques, based on statistical methods, have also
been used to recover the filamentary patterns in the Universe. The key idea be-
hind these techniques is to treat the galaxy distribution as a Markov point process.
Within this class, particularly worth mentioning is the Bisous or the Candy model,
which has been used by Stoica et al. (2007) to detect the filamentary network 2. In

2See Stoica et al. (2005), for a detailed description of this object point process which is used to charac-
terize an observed point distribution by a fitting procedure using global optimization techniques.
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this model, one places a random configuration of interacting geometric cylindrical
objects on the point process to detect filamentary structure. It has been developed
into a versatile, statistically solid yet computationally challenging formalism for the
identification of filaments in a spatial point distribution, such as N-body simula-
tions and galaxy redshift surveys (Tempel et al. 2013). An additional example of a
method involving statistical analysis of a geometric model is that of Genovese et al.
(2010), which seeks to describe the filamentary patterns of the cosmic web in a non-
parametric way by recovering the medial axis (Blum 1967) of the point-set of galax-
ies.

The fourth major class of methods, the one which we will also pursue in this
paper, exploits the topological structure of the cosmic mass distribution. The funda-
mental basis of these methods is Morse theory (Milnor 1963). The geometric struc-
ture of the Morse-Smale complex (Edelsbrunner et al. 2001) naturally delineates the
various morphological components on the basis of the connections between the crit-
ical points of the density fields and the higher dimensional cells that are incident
on the critical points. Various Morse theory based formalisms have been applied
to the identification of components of the cosmic web. One of the first applications
concerned the detection of voids in the cosmic density field. The Watershed Void
Finder (Platen et al. 2007) identifies these with the watershed basins around the den-
sity minima. The SpineWeb procedure (Aragón-Calvo et al. 2010) extended the wa-
tershed transform towards the detection of the full array of structural components,
filaments, walls and voids. These techniques use a user-defined filter to incorporate
the multi-scale structure of the cosmic density field.

A natural topological means to address the multi-scale topological structure em-
anates from the concept of persistence (Edelsbrunner et al. 2002). It provides a nat-
ural recipe for detecting and quantifying the components of the cosmic web in a
truly hierarchical fashion. Sousbie Sousbie (2011); Sousbie et al. (2011) has exploited
and framed this in an elegant and impressive framework, the DisPerSE formalism.
Following the construction of the Morse-Smale complex, they proceed to simplify
it. The simplification proceeds by canceling pairs of critical points iteratively, where
each pair represents a structure in the cosmic web. Topological persistence is in-
voked to order the critical point pairs. However, this measure of importance is not
unique, and one may consider alternatives, dependent on the specific interest and
purpose.

In effect, to tackle similar issues in other visualization areas, a range of variations
have been proposed in other studies (Günther et al. 2012; Reininghaus et al. 2011;
Weinkauf & Günther 2009). Weinkauf & Günther (2009) describe the concept of sep-
aratrix persistence, where they compute the strength of separation of points on a
separatrix curve (in 2D) connected to a saddle as the sum of the absolute differences
of function values of the saddle and the extrema connected to it. This concept is
extended to 3D separating sheets by Günther et al. (2012). Reininghaus et al. (2011)
develop the concept of scale-space persistence where they accumulate the absolute
difference in function value measure of critical points across a hierarchy of derived
functions. The set of derived functions are generated by smoothing the function us-
ing a family of Gaussian kernels of increasing variances. This is similar to the Multi-
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scale Morphology Filter Nexus/MMF (Aragón-Calvo et al. 2007b; Cautun et al. 2013)
described above. Both methods adopt the scale space formalism as the first step to
detect features at multiple scales. However, scale space persistence and separatrix
persistence, disregard specific density regimes of interest and are potentially inap-
propriate when small scale features with specific density characteristics are of inter-
est.

4.1.2 Present study: contributions
In the present study, we describe and introduce a technique for the identification
of filaments based on the topological characteristics of the density field. A key as-
pect of the proposed technique is its interactive nature, involving a tunable density
parameter. Specifically, we describe the following contributions:

– We describe Felix3: a topology based framework for visual exploration of fil-
aments in the cosmic web. In particular, we develop a query framework to
extract filamentary structures from a hierarchy of Morse-Smale complexes of
the density field. The filaments in Felix are parameterized by the density val-
ues of the maxima and the 2-saddles that define them.

– Using Felix, we develop a semi-automatic structure finder that classifies galax-
ies as cluster/filamentary or not. We demonstrate its efficiency through two
tests. First, using the Voronoi Kinematic model as a benchmark, we demon-
strate that we are able to recover the classification with high efficiency. Second,
we show that the classifications are quantitatively comparable to, and in sev-
eral cases better than, existing classifiers.

– We investigate the nature of filaments in two different density regimes from the
ΛCDM simulations. The first concerns filaments in the high density regions
around compact dense clusters, which are known to function as the transport
channels along which matter moves into the clusters. A second regime con-
cerns the tenuous low-density filaments found in low-density void regions.
We present an additional experiment, where we investigate the nature of three
classes of filaments in a relatively cleaner region of a ΛCDM dataset.

– We describe an efficient structure based volume rendering enhancement rou-
tine that allows us to highlight the density distribution in regions that are close
to the selected features.

The distinction between noise and significant structures is often ill-defined, and
at occasions noise may be confused with genuine structures in the hierarchically
evolved mass distribution (see Figure 4.4 and the caption thereof for an illustration).
This problem is more pronounced when one studies the properties of tenuous fil-
aments and walls in low density void-like regions. For the understanding of the
formation and evolution of galaxies in such regions, we need to assess the possible
dependence of galaxy and halo properties on the morphology and density of the lo-
cal environment. This must be based on the successful extraction of filaments in low

3The name Felix is formed from an abbreviation of Filament explorer.
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density regions and the correct identification of galaxies associated with them. In
view of this, we include an interactive handle on the density regimes so that one can
concentrate on and probe structures in specific density regimes.

The remainder of the paper is organized as follows. Section 4.2 introduces nec-
essary background material. Section 4.3 describes Felix. Section 4.4 introduces the
cosmological datasets used in the experiments. Section 4.5 discusses the application
of Felix as a structure finder and as a tool for exploring filaments in different den-
sity regimes. Section 4.6 discusses an application based on Felix for a volumetric
enhancement routine. This is used to supress the opacity of the density field far re-
moved from the structures of interest, thereby reducing the visual clutter. Section 4.7
concludes the paper by summarizing the main results and possible future directions.

4.2 Background
This section reviews relevant background on Morse functions, the Morse-Smale com-
plex, and topological simplification. This is a necessary prerequisite for understand-
ing the definition of filaments and extraction methods described in the subsequent
sections.

4.2.1 Morse theory and the Morse-Smale complex
Let f : M → R be a real-valued scalar function defined on a manifold M. Critical
points of f are points of f where the gradient of f vanishes i.e.,, ∇ f = 0. Morse
theory is the study of the relationship between the topology of level sets of scalar
functions and the critical points of the function. The function f is said to be a Morse
function if all of its critical points are non-degenerate i.e.,, the Hessian of f , equal to
the matrix of second order partial derivatives, is non-singular. The non-degeneracy
condition imposes a locally quadratic form for f within a small neighborhood of
its critical points. In other words, using a coordinate transformation, the function
near a critical point p of the n-dimensional manifold M can be written as fp(x) =

f (p)± x2
1 ± x2

2 ± ...± x2
n. The index of p is equal to the number of negative quadratic

terms in the above expression. In 3D, the index 0 corresponds to minima, the index
1 corresponds to 1-saddles, the index 2 corresponds to 2-saddles, and the index 3
corresponds to maxima. An integral line is a maximal curve in the domain, whose
tangent aligns with the gradient of f at every point. The function f increases along
the integral line and its limit points are the critical points of f .

The set of all integral lines that originate at the critical point p together with p
is called the ascending manifold of p. Similarly, the set of all integral lines that ter-
minate at the critical point p together with p is called the descending manifold of p.
The ascending manifolds (similarly, the descending manifolds) of all critical points
partition the domain. The ascending manifold of a critical point with index i has
dimension n− i, where n is the dimension of the domain. Thus, the ascending man-
ifold of a minimum is a three dimensional cell, the ascending manifold of a 1-saddle
is a two dimensional sheet, the ascending manifold of a 2-saddle is a one dimen-
sional arc (see Figure 4.1), and the ascending manifold of a maximum is equal to
the maximum. The converse is true for the descending manifold i.e., the descending
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Figure 4.1 Ascending manifolds of a 2-saddle (yellow sphere). The scalar function is a sum of two 3D
Gaussians centered on either side of the volume. The two arcs incident on the 2-saddle constitute the
ascending manifold and terminate at the two maxima (red spheres) of the scalar function.

manifold of a critical point with index i has dimension i. The Morse-Smale complex is a
partition of the domain into cells formed by the collection of integral lines that share
a common source and a common destination. The function f is called a Morse-Smale
function if the ascending and descending manifolds of all pairs of critical points inter-
sect only transversally i.e., if the ascending and descending manifolds of two critical
points intersect, then the intersection has dimension exactly equal to the difference in
the indices of the two critical points. The critical points, referred to as nodes, together
with the 1-manifolds that connect them, referred to as arcs, form the 1-skeleton of
the Morse-Smale complex, which is referred to as the combinatorial structure of the
Morse-Smale complex.

4.2.2 Morse-Smale complex simplification
The Morse-Smale complex may be simplified by repeated application of the topo-
logical cancellation procedure. Topological cancellation eliminates a pair of critical
points in the Morse-Smale complex connected by a single arc. The resulting com-
plex is representative of a smoother version of f , which may be obtained by a local
smoothing operation within an infinitesimal neighborhood of the arc. The canceled
pair of points are no longer critical in the smoother version of f . By repeatedly ap-
plying topological cancellations, one obtains a simpler Morse-Smale complex, where
undesirable pairs of critical points are eliminated. This simplified Morse-Smale com-
plex is representative of the function f with several smoothing operations applied to
it. Pairs of critical points that are multiply connected in the Morse-Smale complex,
referred to as strangulations, cannot be simplified by topological cancellation.

The cancellation procedure mandates changes to the combinatorial structure and
ascending/descending manifolds of critical points that survive the cancellation. These
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Figure 4.2 Topological cancellation of a pair of critical points in a 2D Morse-Smale complex. (a) Morse-
Smale complex of the function shown in Figure 1 restricted to a 2D slice. Maxima are denoted by �,
saddles by ⊕, and minima by }. A pair (pi+1, qi) of critical points connected by a single arc is scheduled
to be canceled. (b) D(pi+1) is the set of surviving index i critical points connected to pi+1 and A(qi) is
the set of surviving index i + 1 critical points connected to qi . (c) Combinatorial realization: connect all
critical points D(pi+1) to those in A(qi). Geometric realization: merge the descending manifold of pi+1
with those of critical points in A(qi). Merge the ascending manifold of qi with those of critical points in
D(pi+1).

changes are respectively referred to as the combinatorial and geometric realization
of the cancellation. Let pi+1 and qi denote the pair of critical points to be eliminated
with i + 1 and i being the respective Morse indices. The combinatorial realization
proceeds by first removing pi+1 and qi as well as all arcs incident upon them. Next,
new arcs are introduced between every surviving index i critical point that was con-
nected to pi+1 and every surviving index i + 1 critical point that was connected to
qi. The geometric realization merges the descending manifold of pi+1 with the de-
scending manifold of each surviving index i + 1 critical point connected to qi. Anal-
ogously, the ascending manifold of qi is merged with the ascending manifold of each
surviving index i critical point connected to pi+1. Figure 4.2 illustrates both realiza-
tions of a topological cancellation procedure applied to the Morse-Smale complex of
a two-dimensional slice of the function shown in Figure 4.1.

The ordering of cancellation pairs plays a crucial role in determining the result-
ing structure of the Morse-Smale complex and its geometry. To simplify the Morse-
Smale complex, pairs of singularly connected critical points having the least absolute
difference in function value are iteratively canceled. This approach is equivalent to
the notion of topological persistence (Edelsbrunner et al. 2001, 2002) for 2D Morse-
Smale complexes, but not necessarily for 3D Morse-Smale complexes (Günther et al.
2014).

4.2.3 The hierarchical Morse-Smale complex
A sequence of cancellations results in a hierarchical sequence of Morse-Smale com-
plexes MSC0, MSC1, ..., MSCn, where each Morse-Smale complex is a simpler ver-
sion of the preceding Morse-Smale complex containing fewer critical points. Morse-
Smale complex MSCi is said to be coarser than MSCj if i > j and finer if i < j.
The version index i enumerates the Morse-Smale complexes in the hierarchy. Each
non-zero version of the Morse-Smale complex, MSCi, is associated with the absolute
difference in function value, ti, of the pair of critical points canceled in the preceding
version, MSCi−1. As each iteration selects the pair of critical points with the least ab-
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Figure 4.3 Hierarchical Morse-Smale complex. A family of Morse-Smale complexes generated by it-
eratively canceling pairs of critical points. MSC0 is the Morse-Smale complex of a 2D equivalent of the
function shown in Figure 4.1. It is simplified to generate a coarser version, MSC1, by canceling a pair of
critical points (cyan) connected by a single arc and having least absolute difference in function value t1.
Successive versions MSCi are computed similarly by selecting arcs so that t0 = 0 ≤ t1 ≤ . . . ≤ t6.

solute difference in function value, the sequence of ti’s is monotonically increasing
i.e. (t0 = 0) ≤ t1 ≤ t2 . . . ≤ tn. For completeness of the sequence, t0 is set to zero.
Figure 4.3 illustrates a hierarchy of Morse-Smale complexes of a 2D equivalent of the
function shown in Figure 4.1.

It is not necessary to explicitly store all versions of the hierarchy of Morse-Smale
complexes. Instead, the combinatorial representation of only MSC0 is computed
initially. Subsequently, MSCi can be obtained from a finer MSCi−1 by performing
topological cancellation (see Section 4.2.2). Analogously, MSCi is obtained from a
coarser MSCi+1 by applying the inverse operation of a topological cancellation.

4.3 Methodology
Exploring the filamentary patterns of the cosmic web is challenging because of the
large range of the spatial scales and density range it exhibits. A proper characteriza-
tion should also account for the hierarchical nature of structures, which adds consid-
erable challenges to the task. Though there exist different notions of filaments, the
primary evidence relied upon for extraction and analysis is most often visual. It is
therefore not surprising that structure finding methods often visually verify results
by superimposing the extracted structures upon visualizations of the density field or
the particle distribution. However the visualization plays a role only after structure
extraction process in these methods. We differ in this respect by providing the ca-
pability to interact with the structure finding procedure and extract structures that
are visually relevant. To accomplish such a visual exploration framework, a succinct
model of filament definition, an efficient representation of hierarchical structures,
and an appropriate query mechanism that supports the extraction of these structures
are paramount. The following exposition details our framework on these terms.

4.3.1 Density estimation and filament modeling
Cosmological simulations are N-body particle experiments that simulate structure
formation and evolution by tracing positions of the particles under the influence
of physical laws. In the observational reality, the information about structures in
the cosmos comes through observing the galaxies. The galaxies can be treated as
particles also for the purpose of analysis in the context of large scale structures.
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(a) (b)

Figure 4.4 (a) A scatter plot of the function values of the canceled critical point pairs for the function
shown in Figure 4.1. A 2-saddle-maximum pair is the only pair that is far removed from the diagonal.
This corresponds to cancellation of the 2-saddle with a maximum that represents one of the Gaussians
in Figure 4.1. Other pairs close to the diagonal represent insignificant features that manifest due to the
added Gaussian noise as well as sampling noise. (b) A scatter plot of the function values of the canceled
critical point pairs for the Voronoi-Kinematic dataset B (see Section 4.4.1). No discernible separation of
points is seen, though there are many points that are far removed from the diagonal. Thus, no clear global
simplification threshold may be used for filament extraction.

The input to Felix is the logarithm of the density scalar field on the given 3D do-
main of interest. The domain could be 3D structured grids or tetrahedral meshes,
with the density specified on the vertices of the grid/mesh. We find that the loga-
rithm of the density field, instead of the density field itself, resolves the structures
with more visual clarity. This has also been independently established in an earlier
work (Cautun et al. 2013). Additionally, the input may be specified as a distribution
of particles within a 3D region of interest. This could be a snapshot from a cos-
mological simulation, or galaxies in real observational data. We use the Delaunay
tessellation field estimator (DTFE) (Schaap & van de Weygaert 2000a; van de Wey-
gaert & Schaap 2009a) to estimate the density of the input particles in the 3D region
of interest. This procedure begins by computing the periodic Delaunay triangula-
tion (CGA ????) on the points (simulation particles or galaxies). Next, the density at
each vertex of the triangulation is estimated by the inverse of the volume of the tetra-
hedra incident upon it. Finally, the density is linearly interpolated onto the edges,
faces, and tetrahedra of the Delaunay triangulation to yield a piecewise linear den-
sity function on the domain. The periodic Delaunay triangulation, computed by the
DTFE procedure, is used to represent the domain.

The Morse-Smale complex of the logarithm of the density field is computed. Fil-
aments are modeled as the ascending manifolds of 2-saddles of the Morse-Smale
complex. These arcs represent paths of steepest descent from the two maxima merg-
ing at the 2-saddle. This 2-saddle represents the lowest density point along the
arcs connecting the two maxima. A schematic illustration of this is presented in



178 Filament Exploration

Figure 4.1. There are many algorithms available in the literature to compute the
3D Morse-Smale complex. The algorithms are primarily based on either the quasi
Morse-Smale complex formulation (Gyulassy et al. 2007; Edelsbrunner et al. 2003)
or Forman’s (Forman 2002) discrete Morse theory (Gyulassy et al. 2008; Robins et al.
2011; Shivashankar et al. 2012; Shivashankar & Natarajan 2012). We use a parallel
algorithm based on the latter approach (Shivashankar & Natarajan 2012) resulting in
fast computation even for large datasets.

The density field is rarely smooth and several local maxima obscure a view of the
larger scale behavior of the density field. This is especially true if the density field is
computed on the raw particle distribution, where the density field tends to be spiky
and with a lot of fluctuations in the high density cluster-like regions. The Morse-
Smale complex is simplified by iteratively canceling pairs of singularly connected
critical points with least absolute difference in function value to generate a hierarchy
of Morse-Smale complexes.

In most applications, a specific version of the Morse-Smale complex from the hi-
erarchy is chosen based on a perceptibly clear separation of noise and features. One
way to choose such a threshold separating noise and feature is by using a scatter plot
of the function values of canceled critical point pairs (see Figure 4.4) where the lower
function value among the pair corresponds to the x-coordinate and the higher func-
tion value corresponds to the y-coordinate. In datasets where topological features
are well separated (see Figure 4.4a), pairs representing significant features appear
far away and isolated from the diagonal. In such cases, the coarsest Morse-Smale
complex version wherein the insignificant pairs are removed is selected for feature
analysis/extraction. However, this strategy is not easily applicable to cosmology
datasets (see Figure 4.4b). A well defined separation is rarely discernible, though
there are many scatter points that are far removed from the diagonal. Hence, we
drop the assumption that we must work with a specific version of the Morse-Smale
complex. Instead, we query for features across all Morse-Smale complexes in the
hierarchy, as discussed in the following sub-section.

4.3.2 Density range based filament selection
Cosmic filaments exhibit a large range of variation in their density characteristics.
Indeed, one expects filaments to be present both in void like regions and between
cluster like regions. While strong dense filaments in between clusters define the
spine of the Cosmic Web, in the hierarchically evolving mass distribution we en-
counter a wide spectrum of ever more tenuous filaments on smaller mass scales.
Small filaments define the directions of mass inflow into galaxies, and form a crucial
component in the formation of galaxies (Codis et al. 2012). Even more tenuous are
the systems of filaments stretching over the hollows of voids, often conspicuously
aligned along the direction defined by neighbouring superstructures. The under-
standing of this network is tightly related to the issue of the “missing” dwarf galaxies
in voids (Peebles 2001). While this illustrates the complexity of the multiscale filigree
of filaments in the Cosmic Web, we follow a strategy in which we focus our atten-
tion on specific aspects and details of the cosmic web. Dependent on the identity of
objects and structures of interest, we wish to be able to zoom in on to the correspond-
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Figure 4.5 (a) Filaments are modeled as the ascending paths of 2-saddles connecting two extrema. The
2-saddles are filtered based on the range constraints [Mb, Me] and [Sb, Se] on the highest and lowest values
respectively along the ascending paths. The highest values along the 2-saddle’s ascending manifold are
at extrema and the lowest value is at the 2-saddle. The function along the paths needs to be simplified as
it is rarely smooth. In the illustration, a simplification threshold of t reveals a filament with appropriate
density characteristics. However, imposing such a threshold uniformly will cause another filament (b)
having the required density characteristics to be destroyed. It is therefore necessary to extract filaments
by querying all Morse-Smale complexes within a given hierarchy.

ing filamentary network. This is largely dependent on the mass scales of the objects
involved, and the density values of the corresponding filament generating density
peaks (Aragón-Calvo et al. 2010; Cautun et al. 2014).

Following this rationale, we translate this strategy into the use of queries that
depend on the density properties of interest. Specifically, we query for filaments by
specifying the density range [Mb, Me] of the clusters they connect (the maxima at the
end points), as well as the density range [Sb, Se] of the lowest point along the con-
necting path (the density range of the 2-saddles). Figure 4.5 conceptually illustrates
the characterization of filaments using density ranges, where density along filaments
varies significantly necessitating simplification.

Algorithm 1 lists the algorithm to process such a query. The algorithm accepts,
together with the combinatorial Morse-Smale complex MSC, the density ranges of
2-saddles [Sb, Se] and maxima [Mb, Me] as input (the subscripts b and e denote the
beginning and ending of each density range respectively). The algorithm returns
a list of 2-saddles that satisfy the above criteria together with the maximal Morse-
Smale complex version in which they do so.

The algorithm begins by creating a list S of 2-saddles that have their function
value in the given 2-saddle range [Sb, Se]. Then, for each 2-saddle in S, a Morse-
Smale complex version in which it possibly connects two maxima within [Mb, Me]
is computed. The appropriate version is given by the minimum of three version
indices va, vb and vc.
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Algorithm 1 ([Sb, Se], [Mb, Me] )
SELECT2SADDLES

1: Sver = Empty Map
2: S = {s|s is a 2-saddle,Sb < f (s) < Se}
3: for all s ∈ S do
4: va = Max{i|s is not simplified in MSCi}
5: vb = Max{i|ti < Mb − f (s)}
6: vc = Max{i|s connects distinct Maxima in MSCi}
7: Sver[s] = Min(va, vb, vc)
8: end for
9: Sort S by Sver

10: Ssel = Empty Set
11: for all s ∈ S do
12: i = Sver[s]
13: ma, mb = Maxima connected to s in MSCi
14: if Mb < f (ma), f (mb) < Me then
15: insert (s, Sver[s]) in Ssel
16: end if
17: end for
18: return Ssel

The version index va is the finest Morse-Smale complex version in which the 2-
saddle s survives. In other words, s is canceled in MSCva+1 but not in MSCva . This
is pre-computed by examining the cancellation sequence. The version index vb cor-
responds to the last Morse-Smale complex version at which the 2-saddle s connects
two maxima, both with function value less than Me. This is possible because in suc-
cessive versions of the Morse-Smale complex, the maxima connected to a 2-saddle
via the same arc form an increasing sequence in terms of their function value. Thus,
in the version where the absolute difference in function value of the last canceled
pair is less than Mb − f (s), the 2-saddle s still possibly connects two maxima with
function value less than Me. The version index vc is the last Morse-Smale complex
version at which the 2-saddle s separates distinct maxima. In other words, it is not
a strangulation in MSCvc . As a consequence of the cancellation preconditions, once
a strangulation is created by a 2-saddle, it may be destroyed only by canceling the
2-saddle with a 1-saddle. Thus there exists a maximal version index vc after which
the 2-saddle remains connected to a single maximum. The version index vc is −1
when the 2-saddle is a strangulation in the initial Morse-Smale complex. In this case,
the 2-saddle is not considered in further steps and is removed from S. Again, this is
easily pre-computed for each 2-saddle by examining the cancellation sequence.

The 2-saddles in the set S are sorted based on their version indices. This is done
to optimize switching between the required Morse-Smale complex versions. Next,
each 2-saddle s in S is checked to see if it separates two maxima within the maxima
density range [Mb, Me]. The list of 2-saddles that fulfill all of the above criteria is
returned together with the associated version number of each 2-saddle. This above
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list of 2-saddles is used to extract the filament geometry. Specifically, the ascending
manifold of each 2-saddle is extracted from the corresponding version of the Morse-
Smale complex. This may be done efficiently using the cancellation merge DAG data
structure discussed by (Gyulassy et al. 2012).

In some situations, it is desirable to perform some simplification to eliminate
Poisson noise introduced due to meshing the domain. In these cases, a global simpli-
fication specifically for noise elimination, can be optionally introduced. Specifically,
Algorithm 1 returns only those 2-saddles that survive in hierarchical Morse-Smale
complex versions above a specified threshold Ts, where Ts is specified as a normal-
ized fraction of the range of log-density values (normalized to [0, 1]). Ts is set to
0.0 unless specifically mentioned. Similar to the inputs of Algorithm 1, Ts may be
updated during run-time.

4.4 Model Description
In this section, we briefly describe the models used to test our filament detection rou-
tine. These are the Voronoi evolution models and ΛCDM cosmological simulations.

The Voronoi models provide us with vital quantitative information on the sensi-
tivity of Felix to anisotropic filamentary patterns in the galaxy distribution. To this
end it is of key importance that the Voronoi models have an a-priori known pop-
ulation fraction in different morphological elements: clusters, filaments, walls and
voids. This makes them perfect test models for evaluating success and failure rates
of the various identification methods.

Although they involve filaments with a broad distribution of densities, the Voronoi
models do not incorporate the multi-scale web-like patterns seen in realistic cosmo-
logical scenarios. To assess this aspect of the cosmic mass distribution, we turn to
simulations of structure formation in the standard ΛCDM cosmology. Implicitly
these include all relevant physical and dynamical processes of the evolving cosmic
dark matter distribution. However, as we have no control over all aspects of the
emerging mass distribution in ΛCDM simulations, for testing purposes they are not
as informative as Voronoi models 4

4.4.1 Voronoi evolution models
The Voronoi evolution models are a class of heuristic models for cellular distribu-
tions of galaxies that mimics the evolution of the Megaparsec universe towards a
weblike pattern. They use Voronoi tessellations as a template for distribution of mat-
ter and related galaxy population (van de Weygaert & Icke 1989; van de Weygaert
1991; Weygaert 2007), and its subsequent evolution.

In these models, one begins by fixing an underlying Voronoi skeleton, defined
by a small set of randomly distributed nuclei in the simulation box. One then super-
poses a set of N randomly distributed particles on this skeleton. The resulting spatial

4In the literature, several studies use simplistic models using Voronoi tessellations. The models we use
here are considerably more sophisticated, and represent a rather realistic depiction of the cosmic web in
void-dominated cosmologies, (see e.g. van de Weygaert & van Kampen (1993); Sheth & van de Weygaert
(2004); Weygaert (2007); Aragon-Calvo & Szalay (2013)).
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(a) (b) (c)

Figure 4.6 Density rendering of the snapshots in the Voronoi evolution time-series: (a) is the least
evolved stage with almost 50 percent particles located in the Voronoi cells, (b) at a medium stage of
evolution, while (c) is the most evolved stage of the model.

distribution of particles in the model is obtained by projecting the initially random
distribution of particles on to the faces, edges, and nodes of the Voronoi tessellation.
This results in a pattern in which one can distinguish four structural components:
field particles located in the interior of Voronoi cells, wall particles within and around
the Voronoi faces, filament particles within and around the Voronoi edges and cluster
particles within and around the Voronoi nodes.

One particular class of Voronoi clustering models are the Voronoi kinematic mod-
els, which seek to approximate the dynamical evolution of the large scale cosmic
mass distribution. These models involve a continuous flow of galaxies towards the
nearest wall, along a filament at the wall’s edge, and subsequently towards the final
destination, a vertex of the Voronoi tessellation. This motion is regulated by the in-
crease of mean distance between the galaxies, an expression of void expansion and
evacuation as a function of time.

The Voronoi models used in our experiments have 262, 144 particles distributed
along the vertices, edges, faces and cells of the Voronoi skeleton in a box of side-
length 200h−1Mpc. The skeleton is generated by 32 randomly placed nuclei in the
box. For the least evolved stage, most of the particles are in the cells, while for the
most evolved stage, most of the particles are located in and around clusters. Table 4.1
presents the percentage distribution of particles in the various structural elements,
as it changes with time. Stage 1 (dataset A) is the least evolved, while Stage 3 (dataset
C) is the most evolved. The particles in and around the nodes, edges, and walls are
Gaussian distributed around these elements, characterized by a thickness scale R f

which is the standard deviation of the distribution. For our models, R f = 2h−1Mpc.
Figure 4.6 shows the density rendering of the Voronoi kinematic datasets used for
evaluating Felix.

4.4.2 ΛCDM cosmological simulations
The ΛCDM simulations are fully physical models that trace the distribution and evo-
lution of dark matter in the universe based on current understanding of real physical
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cell wall filament cluster
A 29.88% 43.57% 22.20% 4.33%
B 9.82% 32.13% 38.62% 19.42%
C 3.5% 16.50% 28.70% 51.30%

Table 4.1 The relative abundance of particles in each structural element throughout
the course of evolution.

laws. Dark matter is the gravitationally dominant matter component in the Universe
and constitutes the major fraction of matter. As it is known to only interact gravita-
tionally, modeling the behavior of dark matter is computationally fast and efficient.
Such dark matter simulations form one of the principal tools towards understanding
the evolution of the matter distribution in the Universe.

The cosmological simulations that we used follow the standard ΛCDM cosmol-
ogy. In this model, the matter content of this Universe is dominated by collisionless
cold dark matter (CDM) particles. The biggest contribution to the energy content of
this Universe comes from dark energy, in the form of the cosmological constant Λ
(see (Komatsu et al. 2009)), which drives its accelerated expansion at the current
epoch.

To present the results of our visual exploration framework, we use the Cosmo-
grid simulations (Ishiyama et al. 2013). It is a suite of simulations in a box of size
21h−1Mpc, each differing in the number of particles. The particular simulation we
use for our study comprises of 5123 particles. This is a relatively small scale in the
context of the cosmic web. The mass resolution achieved is 8.21× 106M�. The ini-
tial conditions are setup at z = 65 using the Zel’dovich approximation (Zel’dovich
1970). The log-density field is available on a 128× 128× 128 structured grid.

Particularly characteristic in the evolving mass distribution of the Cosmogrid
simulation is the large central under-density, surrounded by a range of smaller voids
near its outer edge. In combination with its extremely high spatial resolution and
state-of-the-art dynamic range, this renders the Cosmogrid simulation uniquely suited
as a testbed for a case study of the internal structure of voids. It was precisely this
circumstance that formed the rationale behind its exploitation in a previous study of
the formation of dark halos along tenuous void filaments (Rieder et al. 2013).

4.5 Results and Discussion

In this section, we demonstrate and discuss the salient features and potential appli-
cations of Felix. First, we evaluate the filaments extracted using Felix and compare
with those extracted using MMF, SpineWeb, and DisPerSE using the Voronoi kine-
matic datasets. Next, we present a visual exploration of the filaments in the Cosmo-
grid simulation. The methods described above were implemented and tested on a
computer system with an Intel Xeon(R) 2.0 GHz CPU and 8GB of RAM.
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4.5.1 Filaments in the Voronoi model: a comparison
Here we present an analysis of the filamentary structures extracted using Felix, and
compare the results with the techniques detailed above. The comparison study con-
cerns the analysis results obtained for the set of heuristic Voronoi evolution models
described above. Since they are input parameters, in these models the classification
of galaxies as void, wall, filament, and cluster are known a-priori. Following the
application of one of the detection techniques we may then examine the validity and
authenticity of the extracted structures by direct comparison with the true identity
of a galaxy.

For the comparison study, we define two measures. One quantifies the true de-
tection rate of a method, the other the false identifications. We classify all galaxies
within a distance d from the extracted structures to be filament and cluster particles
and the others to be void and wall galaxies. For a given set of structures extracted
from a given dataset and a distance d, the true positive classification rate TPd is de-
fined as

TPd =
# filament and cluster galaxies correctly classified

# filament and cluster galaxies
.

Similarly, the false positive classification rate FPd is defined as

FPd =
# filament and cluster galaxies incorrectly classified

# filament and cluster galaxies
.

A large separation between these two measures indicates good discriminatory
power of the classifier, and thus the proximity of relevant galaxies to the extracted
structures.

As we discuss in more detail below, the Felix’s true and false detection rates
are comparable, and in some situations better, than those obtained by DisPerSE,
SpineWeb and Nexus/MMF. A brief description of SpineWeb, and Nexus/MMF is
also provided. As the DisPerSE methodology is closely related to Felix, in the fol-
lowing paragraphs, we briefly describe it and contrast it against Felix.

Felix
Figure 4.7 shows the extracted filaments for the Voronoi kinematic datasets A, B,
and C using Felix. The input density range parameters for Algorithm 1 are selected
interactively, using the visualization information of the procedure. Each update is
accomplished within 2-3 seconds. This enables interactive visual feedback so that
parameters may be adjusted further in subsequent iterative steps.

Comparison A: Felix and DisPerSE
DisPerSE (Sousbie 2011; Sousbie et al. 2011) is a closely related structure finder that
also uses the Morse-Smale complex of the logarithm of the density field. It sim-
plifies the Morse-Smale complex using Topological Persistence. The function val-
ues are normalized by the rms of the density field fluctuation with respect to the
mean, and the significance level for simplification is quoted in this unit. Felix is
closely related to DisPerSE as both use the Morse-Smale complex of the log-density
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(a) (b) (c)

Figure 4.7 Filamentary structures extracted from datasets A, B, and C of the Voronoi evolution time-
series using Felix with parameters for Algorithm 1 set as follows: (a) [Sb, Se] = [10−1.6, ∞] and [Mb, Me] =
[10−0.1, ∞], (b,c) [Sb, Se] = [10−1.6, ∞] and [Mb, Me] = [100, ∞]. Filaments are shown as orange tubes along
with a volume rendering of the log-density field. The dense knot like structures show filaments within
cluster-like regions.

field and involve feature extraction from it. DisPerSE defines significant features as
only those that remain unsimplified using the user defined significance threshold.
It ignores the density range characteristics of the extracted features. A significant
consequence is that filaments within void-like regions and cluster like regions are
ignored/simplified away. If they are retained, then the mixing of features causes
visual clutter. Furthermore, the significance parameter selection is a fixed constant
and visual interaction plays no role in its selection. In contrast, given the ubiquity of
filaments in various density regimes, Felix allows for density ranged based probes
into filaments, within clusters and voids. Furthermore, the visual interactive aspect
allows for user engagement in parameter selection, which is crucial for the set of
features identified. Another difference is that Felix uses simplification only for noise
removal and not feature identification.

In this experiment, we demonstrate the consequences of not correlating the den-
sity characteristics for filament extraction. Specifically, we demonstrate that the fila-
ments extracted using Felix are more spatially proximal to filament and cluster par-
ticles in the Voronoi Kinematic simulation. Furthermore, we show that tuning the
significance parameter is not a sufficient mechanism to extract the desired filaments
in this dataset. In the next experiment, we demonstrate the exploration of filaments
within high-density cluster like regions and low-density void like regions. Such a
delineation, coupled with the visual exploration process, is not possible using Dis-
PerSE.

The recovery and failure rates for the Voronoi kinematic models A, B, and C are
shown in Figure 4.9. The TPd and FPd of the Felix filaments are plotted in the top-left
panel, the ones for DisPerSE can be found in the top right-hand panel (1σ signif-
icance threshold), bottom left-hand panel (3σ significance threshold) and bottom-
right panel (5σ significance threshold).

Felix shows good recovery rates for all datasets, particularly around d = 3h−1Mpc.
For the least evolved configuration A, and for locations where structures are least
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(a) (b) (c)

Figure 4.8 Filamentary structures extracted from datasets A, B and C of the Voronoi evolution time-
series using DisPerSE with significance level of 5σ. Filaments are shown as orange tubes along with a
volume rendering of the log-density field. The inset pictures show identified filaments that are within
wall-like and void-like regions of the Voronoi kinematic datasets.

distinct, Felix still obtains moderately good recovery rates. The results for DisPerSE
with simplification thresholds 1σ and 3σ are comparable: at short distances the true
detection rate is slightly lower than that of Felix, while at larger distances it performs
marginally better. The situation is slightly different in the case of DisPerSE with a 5σ
simplification threshold. In the case of the more strongly evolved B and C datasets,
DisPerSE and Felix have similar false detection rates FPd, while the true detection
rates TPd of Felix are consistently higher.

For the lesser evolved datasets A and B, the false detection rates FPd for Dis-
PerSE quickly increase to rather large values. For simplification thresholds of 1σ
and 3σ it even surpasses values of unity. This may indicate that in certain circum-
stances an automatic detection of filaments from the Morse-Smale complex runs the
risk of over-determining the population of filaments, even after considerable sim-
plification. While the problem is not so acute in the most evolved stage C, where
the morphologies are well separated, direct simplification strategies may not always
succeed in properly classifying all filament, wall and void regions in the more mod-
erately evolved stages A and B.

Figure 4.8 shows the filaments in the three Voronoi models detected by DisPerSE,
with a simplification threshold of 5σ. In comparison with the structures in Figure 4.7,
the knot like structures present in clusters are absent. This leads to the cluster par-
ticles being far away from the filament end points, and thus the reduced TPd rates
of DisPerSE. In contrast, Felix’s ranged query allows us to retain only the filaments
in cluster like regions and those that connect these cluster like regions, leading to
better TPd rates. Also, many filaments found by DisPerSE are within the wall-like
and void-like regions of the Voronoi Kinematic simulation. Some examples are high-
lighted using insets in Figure 4.8. Again these are filtered out by Felix’s ranged query,
which is not directly possible in DisPerSE. The inclusion of such structures in Dis-
PerSE leads to its higher FPd rates.

These findings suggest that a structure identification strategy based on a direct
simplification procedure of the Morse-Smale complex should be applied with care to
the density regimes being studied. Specifically, the superior classification rate pro-
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Figure 4.9 Classification recovery rates for Voronoi kinematic datasets A, B, and C. Top left: Felix; top
right: DisPerSE, 1σ significance level; bottom left: DisPerSE, 3σ significance level, and (bottom right)
DisPerSE with a 5σ significance level. False positive rates greater than 1.0 are clipped and respective
values are shown.

files confirm that, using Felix, we can easily extract filaments that are spatially more
proximal to the cluster and filament particles in the Voronoi Kinematic datasets. This
issue is not easily addressed by the significance threshold of DisPerSE. In contrast,
Felix provides an intutive density based handle to extract the desired features. Also,
the possibility of having FPd value larger than 1 in extreme situations is indicative of
over-detection of filaments. This is potentially cumbersome for the analysis of gen-
uine cosmological simulations and observational surveys. In more complex realistic
circumstances, cosmic structure involves features over a wide range of densities and
scales and structural morphologies that are not as well separated as in the simpler
Voronoi models.
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Dataset TPd FPd

A Felix(d = 3h−1Mpc) 0.67 0.36
A DisPerSE(5σ, d = 3h−1Mpc) 0.59 0.31

B Felix(d = 3h−1Mpc) 0.84 0.13
B DisPerSE(5σ, d = 3h−1Mpc) 0.69 0.11

Nexus/MMF 0.85 0.13

C Felix(d = 3h−1Mpc) 0.90 0.05
C DisPerSE(5σ, d = 3h−1Mpc) 0.78 0.05

SpineWeb 0.87 0.10

Table 4.2 Recovery rates of galaxies within 3h−1Mpc of structures extracted using
Felix compared with Nexus/MMF, SpineWeb, and DisPerSE (5σ significance level).

Comparison B: Felix and SpineWeb
Spineweb (Aragón-Calvo et al. 2010) is also a technique based on Morse theory and
exploiting the singularity structure of the density field. It exploits the fact that the
watershed transform naturally outlines the basins around the local minima of the
density field and directly defines the topological structure of the field, and as such
forms a direct and practical tool for its analysis in terms of Morse theory. In this
sense, SpineWeb is a direct development of the Watershed Void Finder WVF of
(Platen et al. 2007), which introduced the definition of voids in terms of watershed
basins.

As a preprocessing step, SpineWeb uses DTFE (Schaap & van de Weygaert 2000a;
van de Weygaert & Schaap 2009a) to compute the density field on a regular grid
from the given particle distribution. SpineWeb subsequently identifies the spine of
the web as the regions that are excluded from the watershed basins. A given location
in this spine is classified as belonging to a filament if it has three distinct void regions
in its neighborhood. A region is classified as belonging to a wall if it has two and no
more distinct void regions in its neighborhood.

For the comparison of the Felix and Spineweb (Aragón-Calvo et al. 2010), we
use a Voronoi Evolution model realization that is comparable to the advanced state
of dataset C. We use the test result reported in Aragón-Calvo et al. (2010) with re-
spect to the model that has a similar percentage of particles in the four morpholog-
ical features. In these model realizations, the clusters, filaments and walls have a
Gaussian density profile with a scale of Rg = 1h−1Mpc. The spine has an effective
width d = 2Rg as the identified structures are thickened by 1 voxel, with a size of
Rg = 1h−1Mpc.

For this configuration, Aragón-Calvo et al. (2010) report true and false detection
rates of TPd = 0.87 and FPd = 0.10 (see Table 4.2). Felix attains the same recovery
rate of TPd = 0.87 at a smaller distance d = 3h−1Mpc = 1.5Rg. For the same con-
figuration, the failure rate parameter, FPd = 0.05, is comparable to that reported for
Spineweb. By comparison, at d = 2Rg, for Felix the recovery rates are TPd = 0.93
and FPd = 0.07.

In summary, these results appear to suggest that Felix performs as well as SpineWeb.
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Comparison C: Felix and Nexus/MMF
The Nexus/MMF Multi-scale Morphology filter (Aragón-Calvo et al. 2007b; Cautun
et al. 2013) identifies the morphology of regions on the basis of the ratio of the eigen-
values of the Hessian of the density field (MMF, Aragón-Calvo et al. (2007b)) or of
fields that have a physical relation to the evolution and formation of the web-like
structure in the cosmic mass distribution (Nexus,(Cautun et al. 2013)). The exact
conditions for the classification as cluster, filament, wall and void can be found in
(Aragón-Calvo et al. 2007b; Cautun et al. 2013).

A key aspect of Nexus/MMF is its explicit multi-scale nature. The density field
is translated into a four-dimensional scale space map by convolving the density field
with a Gaussian filter over a large range of different scales. The morphological iden-
tity of a give location is determined on the basis of a set well-defined morphological
filters that compare the corresponding Hessian signature over a stack of convolved
images in scale space.

As a result, we obtain a “scale-free” morphological assessment, in the sense that
each region gets a unique classification tag based on a criterion that determines the
most dominating morphology across the chosen range of scales.

Since Nexus/MMF concerns a formalism based on a scale space analysis, the
parameters of detection do not have a direct correspondence with topology based
techniques like DisPerSE, SpineWeb, and Felix.

We use dataset B for a comparison with Nexus/MMF. This dataset is similar to
the least evolved dataset used by Aragón-Calvo et al. (2007b) in an evaluation of
the MMF, the original density field based Nexus/MMF implementation. For similar
values of the detection rate TPd, both Felix and MMF have identical failure rates FPd.
This indicates that both procedures have a comparable detection behavior.

4.5.2 Filament Exploration
In this section we discuss the application of Felix to explore different classes of fila-
ments from cosmological simulations. The ability to filter filaments on a combination
of morphological and density properties is helpful in situations where we wish to fo-
cus on, for example, the properties of galaxies residing in filaments in low-density
void regions or in the high-density outskirts of clusters. This ability of Felix to iden-
tify a specified population of intravoid filaments or cluster inflow channels provides
us with a microscopic instrument that allows a detailed and systematic exploration
of the fine structure in the hierarchy of cosmic structure. Felix is able to zoom in on
such regions and delineate their detailed infrastructure.

As the criteria for the identification of filaments and other web-like features still
differ substantially between the various available techniques, the visual interaction
aspect of Felix is a major practical asset in obtaining a proper user-defined selection
of filaments. To this end, we may also point out that available automatic detection
techniques may produce significant spurious results, which may substantially influ-
ence the results of targeted studies as the one illustrated here. A telling example of
this has been discussed in the previous section.

Figures 4.10a and 4.10c present volume renderings of a 3D region of the Cosmo-
grid dataset ranging from z-coordinates 69 to 105. The bounding box of the dataset
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Figure 4.10 Exploring filaments in high-density cluster-like environments and low-density void like
regions in the Cosmogrid dataset. The selected region, comprising of a 3D region of z-slices from 69
through 105, contains filamentary structures in both types of environments. Volume rendering of the
density field with opacity adjusted to highlight filaments in (a) high density cluster-like regions, and
(c) low density void-like regions. (b) Filaments within high density cluster-like regions extracted with
parameters [Sb, Se] = [100, 109.6] and [Mb, Me] = [102.3, 109.6]. (d) Filaments within low density void-like
regions extracted with parameters [Sb, Se] = [10−2.5, 100.5] and [Mb, Me] = [100.5, 103.5]. For both sets of
filaments, the value of Ts is set to 0.05.

is 128 × 128 × 128. This region is selected as it contains a large void like region
surrounded by a large number of high density regions. The transfer function opac-
ities have been adjusted to highlight the filament like structures in cluster-like and
void-like regions respectively. The hierarchical Morse-Smale complex computation
and the filament selection are executed on the entire dataset. The resulting filaments
and volume rendering are clipped to the above mentioned region of interest. The
filament selection parameters of algorithm 1 are adjusted interactively, via a visual-
ization step (see accompanying video). Each selection query takes approximately 1
second to process. The subsequent extraction of filament geometry depends on the
number of selected 2-saddles. This takes approximately 4 seconds. Thus, the query
framework may be used to interactively change parameters and visually correlate
the set of extracted features with the underlying density distribution.
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The filament selections obtained following the application of the interactive pro-
cedure are illustrated Figures 4.10b and 4.10d. Each shows filaments in a differ-
ent environmental density regime. Figure 4.10b shows filaments that exist near and
within the high density cluster like regions. These are the filaments that form the
spine of the cosmic web. Figure 4.10d shows filaments within void-like regions. The
combination of density criteria and interactive visualization enables us to zoom in
on this system of intra-void filaments. They are the faint residuals of the smaller-
scale filaments that constituted the spine of the cosmic web at earlier cosmic epochs,
and as such represent a direct manifestation of the hierarchical buildup of cosmic
structure. At the current epoch, the intra-void filaments appear to define a different
pattern than the prominent filamentary bridges between clusters of galaxies. As a
result of the tidal influence of surrounding large-scale mass concentrations they are
conspicuously aligned along a direction correlated with the main axis of the embed-
ding void.

4.5.3 Additional Cosmogrid experiment
In this section we discuss an additional application of Felix to explore three classes
of filaments from the Cosmogrid simulation (Ishiyama et al. 2013). Figure 4.11a
presents a snapshot of the particle distribution in a region of the simulation. Here, we
use the 5123 particle realization, which achieves a mass resolution of 8.21× 106M�.
The initial conditions are set up at z = 65 using the Zel’dovich approximation
(Zel’dovich 1970). The region has been chosen such that it is characterized by a
wide density range, multiple structural morphologies and low visual confusion. The
particle distribution is used as input for computing a tetrahedral domain using a pe-
riodic triangulation and the density field is computed using the DTFE methodology
(Schaap & van de Weygaert 2000a; van de Weygaert & Schaap 2009a).

The filament selections obtained following the application of the interactive pro-
cedure are illustrated in three panels. Each shows filaments in a different environ-
mental density regime. Figure 4.11b shows filaments that exist near and within the
high density cluster like regions, Figure 4.11c shows filaments within void-like re-
gions and Figure 4.11d shows filaments that stretch all the way from cluster to void
like regions. The latter are the filaments that form the spine of the cosmic web.

4.6 Volume rendering enhancement
In this section, we describe an application of our framework to suppress the opacity
of regions spatially far removed from filamentary features of interest, which leads to
a feature based volume rendering enhancement.

4.6.1 Volume Rendering
We use volume visualizations of the density field to aid selection of parameters for
Algorithm 1. The geometry of the selected filaments using Algorithm 1 is super-
imposed upon a volume rendering of the density field. Based on the visualization
of the extracted filaments and the density volume rendering, the parameters may
be adjusted so that the structures correspond with the density volume rendering.
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;
(a) (b)

(c) (d)

Figure 4.11 Three classes of filaments extracted from the Cosmogrid dataset. (a) Particle distribution
shown along with a volume rendering of the DTFE density. (b) Filaments within cluster like regions
extracted with parameters [Sb, Se] = [105, 108] and [Mb, Me] = [108, 1012]. The highlighted region shows
the retention of intricate topological structures within a large cluster region. (c) Filaments within void
like regions extracted with parameters [Sb, Se] = [100, 105] and [Mb, Me] = [100, 105]. Shown in the inset
is a cluster like region within which filamentary structures are filtered away as desired by the query to
the framework. (d) Filaments that stretch from cluster like regions all the way down to void like regions
using parameters [Sb, Se] = [103, 1011] and [Mb, Me] = [109, 1011]. The highlighted region shows a single
filament passing through the large cluster like region with intricate topological details filtered out by the
framework.

Figure 4.7 shows an example of the overlay of the volume visualization with the se-
lected structures. Direct volume rendering of the density is often not effective for
visualization because of the formation of clusters at multiple scales. Furthermore,
these clusters are often spatially far removed from the features of interest.

4.6.2 Methodology
Direct volume rendering of the cosmological density fields is often not effective for
visualization because of the formation of clusters at multiple scales. Furthermore,
these clusters are often spatially far removed from features of interest. Figure 4.12a
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shows the visual clutter caused in a cosmic web density field. Here, we discuss an
application of Felix to suppress the opacity of regions spatially far removed from
filamentary features of interest, which leads to a feature based volume rendering
enhancement. The input to our modified algorithm is the set of selected features, in
addition to the density field and a transfer function that translates density values to
color and opacity.

We modify the HAPT(Maximo et al. 2010) algorithm for enhancing the volume
rendering of the density field defined on tetrahedral meshes. The HAPT algorithm
projects tetrahedra in visibility order, while blending their raster pixels in a back-to-
front order. The color and opacity of each raster pixel of a tetrahedron is given by the
volume integral, which integrates color and opacity values along view rays as they
enter and exit the tetrahedron. Moreland & Angel (2004) propose a linearized form
of the integral for efficient evaluation and acceptable quality. The integral resolves
into a linear expression with one non-linear term obtained from a pre-integrated ta-
ble. A key advantage of this method is that the input required for each view ray
is the color and opacity value at the end points of each view ray along with the
length of the view ray through the tetrahedron. In the HAPT algorithm, the den-
sity at the vertices of the tetrahedron are first linearly interpolated to the endpoints
of the view-ray tetrahedron intersection and then translated to color and opacity
values using the transfer function. In an analogous manner, we first compute the
distance of the vertices from the selected set of features. This may be efficiently com-
puted using a kd-tree (Bentley 1975) in O(n log n) time, where n is the number of
vertices. Then, this distance is linearly interpolated to each end point of each view-
ray tetrahedron intersection . The interpolated distance value at each end point of the
view-ray tetrahedron is then used as an argument of a Gaussian to compute corre-
sponding secondary opacity values. These secondary opacity values are multiplied
by the opacity values obtained from the transfer function. The variance is used as a
distance control parameter, where a lesser variance results in the suppression of the
opacity of features that are spatially far removed from the selected set of features.
The remainder of the HAPT algorithm is retained unchanged.

4.6.3 Subhaloes Dataset
For presenting the results of our volume enhancement routine, we use a large scale
simulation in a box of 300h−1Mpc, that uses 5123 particles described in details in (Bos
et al. 2012; De Boni et al. 2011). The particles have a mass resolution of 4.43× 109M�,
and the initial conditions are set up at z = 60. For this experiment, we use the dark
matter haloes instead of the particles. The halos consist of dark matter particles that
clump together to form gravitationally bound, often virialized objects. The mean
halo mass at z = 0 is 1.1 × 1012M�, with a halo mass range of 4.9 × 1011 − 7.9 ×
1014M�.

The dark matter haloes fairly accurately trace the patterns of the underlying mass
distribution. We detect the haloes using one of the standard halo finding algorithms
SUBFIND (Dolag et al. 2009). The first basic step involves the friends-of-friends
method for finding halos. Particles are assigned to a group when they are within
some linking length of any other particle in the group. This step is augmented by
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(a) (b) (c)

Figure 4.12 Extracting filamentary features from the 300h−1Mpc ΛCDM dataset and enhancing the
volume rendering. (a) Volume rendering of the density field. (b) Filaments selected by Algorithm SE-
LECT2SADDLES with [Sb, Se] = [e−4.0, ∞] and [Mb, Me] = [e1.0, ∞] retains the filaments in high density
regions. The intricate filamentary structure within a predominantly high density region is highlighted
in the inset. (c) An enhancement produced by the volume rendering procedure applied to the selected
filaments.

a sophisticated sequence of criteria for identifying gravitationally bound subclumps
within the halo, ultimately producing a sample of halos and their subhalos in the
simulated dark matter distribution.

4.6.4 Results
In this section, we illustrate the use of the volumetric enhancement routine in pre-
senting a three-dimensional impression of the web-like network. The routine sup-
presses the depiction of components far removed from filaments of interest. One
potential application of the enhancement algorithm is as a noise removal tool that
is able to render the density field in the vicinity of structures of interest. This will
help substantially towards elimination of the visual confusion and of possibly less
interesting structures in the process.

For the experiment shown in figure 4.12, we use the the 300h−1Mpc ΛCDM
dataset described above. This large-scale simulation provides a nice setting to il-
lustrate the ability of the volume enhancement method. The dataset contains a
multitude of structures spanning a wide range of density values that usually evoke
a significant visual confusion. This may be clearly appreciated from the lefthand
frame 4.12a. The subsequent filament selection and volume enhancement are shown
in figure 4.12b. It provides a better appreciation of the spine of the filamentary net-
work.

4.7 Conclusion
We have presented a Topology based Framework, named Felix, to probe filament
structure in the large scale universe. The framework is particularly designed to
probe filamentary structures in different density regimes, and optimally preserve
structural detail in regimes of interest. While other cosmic structure analysis tools
do not include a facility to select web-like features according to tailor-made aspects
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and characteristics, this is precisely the mission of the Felix procedure. We directed
Felix towards a case study of the the filamentary infrastructure and architecture of
cosmic voids and demonstrated that it successfully extracts the network of tenuous
filaments pervading their interior (van de Weygaert & van Kampen 1993; Sheth &
van de Weygaert 2004; Weygaert 2007; Aragon-Calvo & Szalay 2013) .

In an accompanying study, we plan to exploit the Felix facility to study the physi-
cal characteristics of the extracted samples of intra-void filaments. This also involves
their halo and subhalo population, their gas content, and the relation of these with
the embedding voids and surrounding large-scale mass distribution. This will be of
key importance towards understanding the formation and evolution of void galax-
ies (van de Weygaert et al. 2011; Kreckel et al. 2011, 2012) and specifically that of
the issue of the missing dwarf galaxies (Peebles 2001). In addition, following the
recognition that void architecture represents a potentially sensitive probe of dark en-
ergy and dark matter and a keen test of modified gravity theories (Ryden & Melott
1996; Schmidt et al. 2001; Park & Lee 2007a; Lavaux & Wandelt 2010; Bos et al. 2012;
Lavaux & Wandelt 2012; Clampitt et al. 2013; Sutter et al. 2014b), the filament sam-
ples extracted by Felix will be subjected to a systematic study of their dependence
on cosmological parameters.

As an immediate extension, we plan to use Felix with other scalar fields such
as the tidal force field. Another possible direction is the visualization and analysis
of the hierarchy of voids, walls, and filaments in cosmological datasets. Interactive
visual exploration of these intricate structural networks remains a challenging and
largely unexplored problem of major significance.
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Discussions and Conclusions

Cosmology has entered the era of big data in the last decade. With the advent of
new ground-based as well as space telescopes in commission or scheduled to be
commision, the amount of data is in the order of petabytes and exabytes. On the
one hand the PLANCK mission and the PLANCK satellite are furnishing us with an
unprecedented detailed measurement of the temperature ianisotropies in the Cos-
mic microwave background. On the other hand, ground based redshift surveys and
telescopes like the Large Synoptic Survey Telescope (LSST) commisioned under the
Dark Energy Survey (DES) project will trace billions or remote galaxies and provide
multiple probes for the mysterious dark matter and dark energy. These surveys and
telescopes are just a few to name in the plethora of missions planned to launch a co-
ordinated attack on some of the recently discovered mysteries spewed at us. One of
the most interesting among them is the realization that the Universe is expanding at
an accelerating pace rather than slowing down. This has called for a renewed inter-
est in the nature of dark energy and its properties. The recent influx of massive data
in cosmology and related disciplines, calls for new methods of data analysis tailored
to harness and extract the relevant information from the massive data in a systematic
fashion.

Topological anaysis of cosmological datasets has a long history, and has been one
of the principal pillars of investigation in the cosmological community for decades.
This has mainly been achieved by describing and analyzing the features of the cos-
mic mass distrubution through Eluer characteristic, genus and Minkowsk function-
als. There use also has been more heuristic in nature mainly aimed at discriminating
between various models of cosmic mass distribution. While they have supplied a
wealth of information on the nature of the topology and morphology of the cosmic
mass distribution, there is a motivativation to introduce new topological methods
for analysis, that tie into the salient features of the structure seen in the cosmos.
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This thesis is motivated by recognizing the limitations of the existing methods
in describing topology, to introduce new measures that are able to harness the topo-
logical information of the cosmic mass distribution in a greater detail. Topologi-
cal data analysis, in particular persistence based analysis, of structural patterns has
gained interest across various disciplines like medical imaging, cartography, agri-
culture etc., motivated by the similarity in the nature of the probelms approached.
Morse theory and persistence based approach has also picked up interest in the cos-
mological community in the last few year, and has been applied to develop recipes
for detecting and describing the structural patterns seen in the Cosmos. Noteworthy
of metion among such methods are the SpineWeb formalism and the DiSperSe for-
malism (Aragón-Calvo et al. 2010; Sousbie 2011). These formalisms however have
focussed solely within the scope of pattern recognition.

This thesis is a culmination of an interisciplinary collaboration beween the fields
of cosmology, mathematics and computer science. On the front of cosmology, it has
aimed to expand the scope of the analysis based on topological formalisms emanat-
ing from Morse theory, homology and persistence of the cosmic mass distribution.
This has been through a comprehensive approach of integrating the quantitative
topological analysis of models of cosmic mass distribution in terms of persistence
and homology, with the more traditional approach of structure identification and de-
tection. On the mathematical side, it has attempted to explore the general properties
and characteristics of persistence homology and persistence diagrams. The proper-
ties of peristence diagrams are a topic of active research in the topo-mathematical
community (Bubenik 2012). While the thesis has succeeded in establishing an em-
pirical probabilistic view of persistence homology and diagrams through the intro-
duction of the concepts of intensity and intensity maps, an analytical and theoretical
framework has yet to be established. It is noteworthy to remember in this context is
that a full analytical description of persistence may not be an easy challange, as has
aptly been recognized in the wider mathematical community.

5.1 Future directions

This thesis has endeavoured to introduce new formalisms for analyzing the topol-
ogy of the cosmic mass distribution. The focus has been mostly on understanding
what such a description might have to offer over the existing methods in terms of
analysis. To this end,, it has concentrated on mostly the analysis of heuristic bench-
marking models of cosmic mass distribution, including Voronoi models, Poisson
distributions and soneira-Peebles model, which mimic certain aspects of the mass
distribution seen in the large scales structure of Universe. We demonstrate that in-
tensity maps and Betti numbers are successfully able to segregate the topological
signals from different morphologies and density regimes. It has also presented a hi-
erarchical topological analysis of Gaussian random fields, in keeping with the view
that such fields describe the density perturbations in the early Universe to very high
accuracy. In parallel, a related outcome of the work for this thesis has resulted in an
interactive semi-automatic structure detection software.

At the end of this thesis, there are a number of follow up investigations that
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come to mind. We list here a possible, but not exhaustive, set of directions that seem
promising.

5.1.1 Persistence characterization of the anisotropies in CMB
A persistence based characterization of the anisotropies in the Cosmic Microwave
Background, as provided by the latest measurements from the PLANCK satellite
would be one of the ideal follow up exercise. This would be in view of measur-
ing topological signals of deviations from the prediction of Gaussian initial condi-
tions. Persistent topology is by far the most detailed and sophisticated topological
formalism used in the context of Cosmology, and as such presents itself as the most
ideal topological tool to handle the extraordinary detailed measurements of CMB
performed by PLANCK.

Preliminary investigations show that the intensity and ratio maps of gaussian
and non-gaussian models show very different characteristics. In particular, we no-
tice strong localised pockets of high activities in the topological space for the non-
gausssian cases, compared to the gaussian ones. I wish to devote a part of my post-
doctoral research towards developing and applying statistical tools towards charac-
terizing these topological signals, with an aim to distinguish real topological signa-
tures from noise. In view of this, it will be interesting to carry out statistical con-
fidence analysis to establish a benchmark for topological noise. In view of model
comparison, it would also be interesting to design optimal statistical tests to con-
strain theoretical models against the observational data.

5.1.2 Probabilistic description of persistence
We have established empirically that the persistence landscapes are well behaved if
the underlying distributions that they stem from are well behaved , as e.g. spatial
stochastic processes, of which the gaussain random fields are an example (Chapter 2
and Chapter 3). We are the first to show that the topological landscapes converge,
and are stable, when averaged over many realizations of a stochastic process.

It would be an important excercise to develop a probabilistic and statistical de-
scription of persistence topology. The properties of persistence diagrams ere itself
of active interest to the mathematical community Bubenik (2012). Introduction of
persistence intensity maps as an empirical description is a significant step towards
it. The probabilistic description of these landscapes could play aan important role
in describing and detecting signatures of promordial non-Gaussianties in the CMB
as well as the large scale Universe. The problem, however, is complex, and many
specialists in the field of topology are actively seeking to provide a solution to it.

5.1.3 Persistence(Homology) of the large scale Universe
In this thesis, we present a topological characterization of Gaussian random fields,
with a view to understand the nature of fluctuations in the primordial Universe.
A logical exercise to follw up would be to analyize the topology of the large scale
Universe, using computer simulations, as well as the data available from the red-
shift surveys of galaxy distribution in the Cosmos. Within this exercise, it will be
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infiormative to comapare the topology of various models of mass distribution in the
Universe, as for example, emanatiing from the standard LCDM pardigm, as well as
other models of structure formation in the Universe.

5.1.4 Filament catalogues of the large scale Universe.
Having tested the robustness of the filament finding software on test models and
simulations, an interesting exercise would be to apply it to simulations of the stan-
dard LCDM model and other dark energy models like Ratra-Peebles, SUGRA etc.
Bos et al. (2012) to produce mock filamentary catalogs. In a related quest, towards
comparing the topology and properties of matter distribution in the Universe, it
would also be interesting to produce filament catalogs from the latest data release
from Slaon Digital Sky Survey (SDSS), and from that of the recently launched Large
Synoptic Syntetic Telescope (LSST) data. These catalogs will have an option of query-
ing for the properties of the associated galaxies they host, in view of investigating the
formation and evolution of galaxies vis-a-vis the large scale environment they reside
in.

5.1.5 Dark Energy and Cosmic Voids
With the recent discovery that Universe is accelarating in its exapnsion rather than
slowing down, the quest to identify and characterize the nature of dark energy has
gained momemtum. Projects like the Dark Energy Survey (DES) have recently been
launched, with the specific aim of looking for signatures of dark energy at an un-
precedented level of detail.

It is believed that the most likely candidates for exhibiting the signature and in-
fluence of dark energy are the cosmic voids. In view of this, it will be interesting to
mak a systematic topological study of void characteristics. This is especially interest-
ing, in view of the fact that topology, perhaps, is the only method that defines a void
uniquely and unambiguously, without a choice of any free paprameter. All the other
existing routines of void detection in cosmology always involve one or more user
defined free parameter, leaving much scope for error in the interpretation of results.
Since topological voids are uniquely defined and characterize, they will represent
the most error free characterization of voids. We propose to investigate the topolog-
ical characteristics of voids, through the persistence and ratio landscapes and Betti
numbers, comparing different dark energy models, in view of ultimately comparing
them to the topology of observational data to constrain the different DE models. Pre-
liminary investigations indicate a strong imprint of different DE prescriptions on the
topological characteristics of voids, and it would be interesting to follow this line of
investigation more comprehensively.
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A
Topology

A.1 Minkowski functionals
Suppose we have a solid body, M, whose boundary is a smoothly embedded surface
in R3. This surface may be a sphere or have holes, like the torus, and it may consist
of one or several connected components, each with its own holes. Similarly, we do
not require that M is connected. Write Mr for the set of points at distance r or less
from M. For small values of r, the boundary of Mr will be smoothly embedded in
R3, but as r grows, it will develop singularities and self-intersections. Before this
happens, the volume of Mr can be written as a degree-3 polynomial in r,

vol Mr = Q0 + Q1r + Q2r2 + Q3r3 . (A.1)

The Qi are known as the Minkowski functionals of M, which are important concepts
in integral geometry. For a d-dimensional manifold M there are (d + 1) Minkowski
functionals. Minkowski functionals were first introduced as measures of the spa-
tial cosmic mass distribution by Mecke et al. (1994) and have become an important
measure of clustering of mass and galaxies (Schmalzing & Buchert 1997; Schmalzing
et al. 1999; Sahni et al. 1998). In mathematics, they are closely related to concepts like
the Quermassintegrals, mixed volumes, and Killing-Lipschitz curvatures Li(M) in differ-
ential geometry. These names relate to different geometric interpretations of the Qi,
and in most cases involve a different ordering and normalization.

With respect to Killing-Lipschitz curvatures, we may observe that the expression
above is the 3D version of Weyl’s tube formula (Adler 1981). It is the general expression
for the volume of the set of points that are at a distance ≤ r from an object M in d-
dimensional space in terms of the Killing-Lipschitz curvatures (Adler & Taylor 2010;



Taylor & Adler 2009; Bobrowski & Borman 2012),

vol Mr =
d

∑
0

rd−iωd−iLi(M) . (A.2)

In this expression ωn is the volume of an n-dimensional unit sphere1. From this, we
immediately find the identity between the Killing-Lipschitz curvatures Ld−n and the
corresponding Minkowski functionals Qn,

Qn = Ld−n/ωn . (A.3)

In terms of their interpration in the three-dimensional context, following Equa-
tion A.1, we see that Q0 is the volume of M, Q1 is the area of its boundary, Q2 is
the total mean curvature, and Q3 is one third of the total Gaussian curvature of the
boundary. These interpretations suggest that the Minkowski functionals are essen-
tially geometric in nature, and they are, but there are strong connections to topolog-
ical concepts as well. The key connection is established via the Euler characteristic,
χ(S), of a surface S. We will discuss the latter notion shortly (see next subsection)
but for now we just mention that the Euler characteristic – traditionally denoted as
χ – is equal to 2 minus twice the number of holes. For example, the sphere has χ = 2
and the torus has χ = 0. If the boundary of M consists of k components with a to-
tal of h holes, then we have χ = 2(k − h). The connection between the topological
characteristics of a manifold and its geometrical properties is stated by the famous
Gauss-Bonnet theorem. For a connected surface S in R3, the Gauss-Bonnet theorem
asserts that the total Gaussian curvature of a closed, is 2π times the Euler character-
istic χ(S),

χ(S) =
1

2π

∮ (
1

R1R2

)
dS , (A.4)

where R1 and R2 are the principal radii of curvature at each point of the surface. For
the situation sketched above, a boundary of manifold M consisting of k components
with a total of h holes, it tells that the total Gaussian curvature will be equal to 4π(k−
h). Finally, Q3 = 4π

3 (k− h), i.e.

Q3 =
2π

3
χ(S)

L0 =
1
2

χ(S) . (A.5)

For example, the Gaussian curvature of a sphere with radius r is 1/r2 at every point.
Multiplying with the area, which is 4πr2, we get the total Gaussian curvature equal
to 4π, which is independent of the radius. This agrees with χ = 4π(k − h) given
above since k− h = 1 in this case.

Important for our purpose is the observation that Minkowski functionals can be

1for the 3D situation, the relevant values of ωk are ω0 = 1, ω1 = 2, ω2 = π and ω3 = 4
3 π



expressed in terms of Euler integrals. The Crofton intersection formula of integral
geometry (Crofton 1868) encapsulates a very profound statement on the length of
curves, area of surfaces and a plethora of interesting geometric properties in terms
of an integral over lower-dimensional intersecting hyperplanes. In a sense, it is the
generalization of the famous Buffon’s Needle problem (Ramaley 1969). The specific
version of Crofton’s formula pertaining to integrals over the Euler characteristic is
known as Hadwiger’s Formula (Hadwiger 1957; Adler & Taylor 2010). To evaluate
the k-th Minkowski functional of a d-dimensional manifold M, one has to consider
the Euler characteristic of the intersection of k-dimensional hyperplanes Sk with M,
χ(Sk ∩M). The value of the Minkowski functional Qk(M) is equal to the integral of
the Euler characteristic χ(Sk ∩M) over the space E d

k of all conceivable hyperplanes
Sk (Schmalzing & Buchert 1997),

Qk(M) =
ωd

ωd−kωk

∫
Ed

k

dµk(Sk) χ(Sk ∩M) , (A.6)

with the normalization constants ωj are the volumes of j-dimensional unit spheres.

A.2 Euler characteristic and genus
Suppose now that we have the boundary of M triangulated, using v vertices, e edges,
and t triangles. Named after Leonhard Euler (Euler 1758), the Euler characteristic of
the surface is the alternating sum of the number of simplices:

χ = v− e + t . (A.7)

It does not depend on the triangulation, only on the surface. For example, we can
triangulate the sphere with 4 vertices, 6 edges, and 4 triangles, like the boundary of
the tetrahedron, which gives χ = 4− 6 + 4 = 2. Alternatively, we may triangulate it
with 6 vertices, 12 edges, and 8 triangles, like the boundary of the octahedron, which
again gives χ = 6− 12 + 8 = 2.

As mentioned above, the Euler characteristic of a connected, closed surface with
h ≥ 0 holes is χ = 2− 2h. To make this more concrete, we formalize the number of
holes of a closed, connected surface to its genus, denoted as g = h. It is defined as
the maximum number of closed curves we can draw on the surface such that cutting
along them leaves the surface in a single connected piece. For example, for a sphere
we have g = 0, and for a torus we have g = 1. If we now drop the assumption that
the surface is connected, we get the Euler characteristic and the genus by taking the
sum over all components. Since χi = 2− 2gi for the i-th component, we have

χ =
k

∑
i=1

χi =
k

∑
i=1

(2− 2gi) = 2k− 2g . (A.8)

We see that a minimum amount of topological information is needed to translate
between Euler characteristic and genus. This is different from what the cosmologists



have traditionally called the genus, which is defined as g̃ = − 1
2 χ. Relating the two

notions, we get g = k + g̃. We will abandon both in this paper, g̃ because it is re-
dundant, and g because it is limited to surfaces. Indeed, the Euler characteristic can
also be defined for a 3-dimensional body, taking the alternating sum of the simplices
used in a triangulation, while the genus has no satisfactory generalization beyond
2-dimensional surfaces.

The Gauss-Bonnet theorem (eq. A.4) and Crofton’s formula (eqn. A.6) underline
the key position of the Euler characteristic at the core of the topological and geomet-
ric characterization of manifolds. The Euler characteristic establishes profound and
perhaps even surprising links between seemingly widely different areas of mathe-
matics (Adler & Taylor 2010). While in simplicial topology Euler’s polyhdron for-
mula states that it is the alternating sum of the number of k-dimensional simplices
of a simplicial complex (eq. A.7), its role in algebraic topology as the alternating sum
of Betti numbers is expressed by the Euler-Poincaré formula (see eq. A.9 in the next
subsection). Even more intricate is the connection that it establishes between these
topological aspects and the singularity structure of a field, which is the realm of differ-
ential topology. In particular interesting is the relation established by Morse theory of
the Euler characteristic being equal to the alternating sum of the number of different
field singularities, ie. of maxima, minima and saddle points. Finally, its significance
in integral geometry is elucidated via Crofton’s formula (eq A.6), which establishes
the fact that Minkowski functionals are integrals over the Euler characteristic.

A.3 Homology and Betti numbers
While the Euler characteristic can distinguish between connected, closed surfaces in
R3, it has no discriminative power if applied to 3-manifolds, which is the most direct
generalization of surfaces to the next higher dimension. Indeed, Poincaré duality
implies χ = 0 for all 3-manifolds. Fortunately, we can write the Euler characteristic
as an alternating sum of more descriptive topological invariants named after Enrico
Betti (Betti 1871). To introduce them, we find it convenient to generalize the space
M by dropping most limitations, such as that it be embedded or even embeddable
in R3. Letting the intrinsic dimension of M be d, we get d + 1 possibly non-zero
Betti numbers, which traditionally are denotes as β0, β1, . . . , βd. The relationship to
the Euler characteristic is give by the Euler-Poincaré Formula:

χ = β0 − β1 + β2 − . . . (−1)dβd. (A.9)

This relation holds in great generality, requiring only a triangulation of the space,
and even this limitation can sometimes be lifted. In this paper, we only consider
subspaces of the 3-torus: M ⊆ X. For this case, only β0, β1, β2, and β3 are possibly
non-zero, and we have β3 6= 0 only if M = X, in which case β3 = 1. The first three
Betti numbers have intuitive interpretations: β0 is the number of components, β1 is
the number of loops, and β2 is the number of shells in M. Often, it is convenient to
consider the complement of M, which shows β0 − 1 gaps between the components,
β1 tunnels going through the loops, and β2 voids enclosed by the shells.

A formal definition of the Betti numbers requires the algebraic notion of a ho-



mology group. While a serious discussion of this topic is beyond the scope of this
paper, we provide a simplified exposition and refer to texts in the algebraic topology
literature for details (see e.g. Munkres 1984).

For simplicity, we assume a triangulated space and we use the coefficients 0 and
1 and addition, modulo 2. A p-chain is a formal sum of the p-simplices in the trian-
gulation, which we may interpret as a subset of all p-simplices, namely those with
coefficients 1. The sum of two p-chains is again a p-chain. Interpreted as sets, the
sum is the symmetric difference of the two sets. Note that each p-simplex has p + 1
(p-1)-simplices as faces. The boundary of the p-chain is then the sum of the bound-
aries of all p-simplices in the chain. Equivalently, it is the set of (p-1)-simplices that
belong to an odd number of p-simplices in the chain. We call the p-chain a p-cycle
if it is the boundary of a (p+1)-chain. Importantly, every p-boundary is a p-cycle.
The reason is simply that the boundaries of the (p-1)-simplices in the boundary of
a p-simplex contain all (p-2)-simplices twice, meaning the boundary of the bound-
ary is necessarily empty. To get homology, we still need to form classes, which we
do by not distinguishing between two p-cycles that together form the boundary of a
(p + 1)-chain.

To get the group structure, we add p-cycles by taking their symmetric difference
or, equivalently, by adding simplices modulo 2. Homology classes can now be added
simply by adding representative p-cycles and taking the class that contains the sum.
The collection of classes together with this group structure is the p-th homology group,
which is traditionally denoted as Hp. Finally, the p-th Betti number is the rank of this
group, and since we use modulo 2 arithmetic to add, this rank is the binary logarith-
mic of the order: βp = log2 |Hp|. We note that modulo 2 arithmetic has multiplicative
inverses and therefore forms what in algebra is called a field. For example, arithmetic
with integers is not a field. Whenever we use a field to construct homology groups,
we get vector spaces. In particular, the groups Hp defined above are vector spaces,
and the βp are their dimensions, as defined in standard linear algebra.

In our study, we forward Betti numbers for the characterization of the topological
aspects of the cosmic mass distribution. In this context, we should also appreciate
the significance of the observation that Minkowski functionals may be written as
Euler integrals, expressed by Hadwiger’s formula (eqn. A.6). Wintraecken (2012) re-
cently demonstrated that Betti numbers, as opposed to Minkowski functionals, can-
not be expressed in terms of integrals over the Euler characteristic. The importance
of this finding for our purpose is that Betti numbers contain topological information
which is different and complementary to that contained in Minkowski functionals
and genus, and that an analysis of their characteristics will shed new light on the
connectivity of the different morphological elements of the cosmic web.

A.4 Morse theory

In Morse theory, we consider a compact manifold Xν,and a generic smooth function
on this manifold. In the context of this paper, the manifold is the 3-torus and the
function is a density distribution, $ : X → R. Assuming $ is smooth, we can take
derivatives, and we call a point x ∈ X critical if all partial derivatives vanish. Corre-



Figure A.1 Density rendering of the superlevel set of a 2-dimensional cross section
of the voronoi wall models, illustrating chains and cycles. We focus our attention
on the structures traced by the black lines. For high superlevel set values, in the left
panel, the structure traced by the broken D-shape does not form a loop. The multiple
broken segments are all chains. For lower superlevel set, the structures thicken and
the individula segments merge together to form a loop, a 1-dimensional cycle.

spondingly, $(x) is a critical value of the function. All points of X that are not critical
are regular points, and all values in R that are not the function value of critical points
are regular values. Finally, we call $ generic if all critical points are non-degenerate in
the sense that they have invertible Hessians. In this case, critical points are isolated
from each other, and since X is compact, we have only finitely many critical points
and therefore only finitely many critical values. The index of a non-degenerate critical
point is the number of negative eigenvalues of the Hessian. Since X is 3-dimensional,
we have 3-by-3 Hessians and therefore only four possibilities for the index. A mini-
mum of $ has index 0, a maximum has index 3, and there are two types of saddles, with
index 1 and 2.

The significance of the critical points and their indices becomes apparent when
we look at the sequence of growing superlevel sets: Xν = $−1[ν, ∞), for 0 ≤ ν < ∞.
If ν > µ are regular values for which [µ, ν] contains no critical value then Xν and
Xµ are topologically the same, the second obtained from the first by diffeomorphic
thickening all around. If [µ, ν] contains the critical value of exactly one critical point,
x, then the difference between the two superlevel sets depends only on the index of
x. If x has index 3 then Xµ has one more component than Xν, and that component
is a topological ball. If x has index 2, then Xµ can be obtained from Xν by attaching
an arc at its two endpoints and thickening all around. This extra arc can have one of
two effects on the homology of the superlevel set. If its endpoints belong to different
components of Xν, then Xµ has one less component, while otherwise Xµ has one



more loop. If x has index 1, then Xµ can be obtained from Xν by attaching a disk,
which has again one of two effects on the homology groups. Finally, if x has index 0
then Xµ is obtained by attaching a ball. In all cases but one, this ball fills a void, the
exception being the last ball that is attached when we pass the global minimum of $.
At this time, the superlevel set is completed to Xµ = X.

A.5 Persistence homology
In Morse theory, we learned that each critical point either increases the rank of a ho-
mology group by one, or it decreases the rank of another group by one. Equivalently,
it gives birth to a generator of one group or death to a generator of another group.
Our goal is to pair up births with deaths such that we can talk about the subsequence
in the filtration over which a homology class exists. This is precisely what persistent
homology accomplishes. The hierarchical definition of topology that emerges due
to taking the path of filtration is ideally suited to describe the topology of the mass
distribution in the Universe, on account of it being hierarchical in nature as well.

To describe how this is achieved, we map each superlevel set in the filtration to
the direct sum of its homology groups. With this construction, we capture the ho-
mology classes of all dimensions as once, and we simplify the notation by making it
unnecessary to write the dimension in the subscript. Recall that between two consec-
utive critical values, the homology of the superlevel sets is constant. It therefore suf-
fices to pick one regular value within each such interval. Writing r0 > r1 > . . . > rn
for these regular values and Hi for the direct sum of all homology groups of the
superlevel set Xri = $−1[ri, ∞),we get a sequence of homology groups:

H0 → H1 → . . .→ Hn,

where H0 = 0 and Hn is the homology group of X. The arrows represent homo-
morphisms induced by the inclusion between superlevel sets. Assuming coefficients
in a field, as before, we have a sequence of vector spaces with linear maps between
them. These maps connect the groups by telling us where to find the cycles of a
homology group within later homology groups. Sometimes, there are new cycles
that cannot be found as images of incoming maps, and sometimes classes merge to
form larger classes, which happens when we get chains that further wash out the
difference between cycles.

We are now more specific about these connections. Letting γ be a class in Hi, we
say γ is born at Hi and dies entering Hj if

– γ is not in the image of Hi−1 in Hi;

– the image of γ is not in the image of Hi−1 in Hj−1, but it is in the image of Hi−1
in Hj.

Letting ri−1 > νi > ri and rj−1 > νj > rj be the critical values in the relevant
intervals, we represent γ by (νi, νj), which we call a birth-death pair. Furthermore, we
call pers(γ) the persistence of γ, but also of its birth-death pair.

To avoid any misunderstanding, we note that there is an entire coset of homology
classes that are born and die together with γ, and all these classes are represented



by the same birth-death pair. Calling the image of Hi in Hj−1 a persistent homology
group, we note that its rank is equal to the number of birth-death pairs (νb, νd) that
satisfy νb ≥ νi > νj ≥ νd. They represent the classes that are born at or before Hi and
that die entering Hj or later.



B
Computation

The geometric and topological concepts outlined in Appendix A have all matured to
a stage at which we have fast software to run on simulated and observed data. In
this section, we describe the principles of these algorithms, and we provide sufficient
information for the reader to understand the connection between the mathematics,
the data, and the computed results.

The computational framework of our study involves three major components.
One concerns the definition and calculation of the density field on which we apply
the field’s filtration. A directly related issue is the representation of the density field
in the homology calculation, ie. whether we retain its representation by density es-
timates at the original sampling points or whether we evaluate it on the basis of a
density image on a regular grid. The procedure for constructing the filtration is dif-
ferent in each case, and we detail them in Section B.1 and Section B.2. The algorithm
used to implement the actual homology computation is the core of our study, and
is same for both the filtration defined on particles or a filtration defined on image
data. The third major aspect of our study concerns the representation of the results
of the homology computation. The principal analytical tools of our study consist of
intensity maps and Betti numbers, which form the visual representation and summary
of the persistent homology of the analyzed data samples.

B.1 Density filtration from point samples
We use DTFE (Schaap & van de Weygaert 2001; van de Weygaert & Schaap 2009b;
Cautun & van de Weygaert 2011) to construct a piecewise linear scalar-valued den-
sity field from a particle distribution. The DTFE formalism, whose details are out-
lined in appendix F.0.6, involves the computation of the Delaunay triangulation of



Model # particles # simplices Tri. (s) Pers. (s)
Poisson 500,000 14,532,164 10.15 6414.16
Cluster 262,144 7,491,308 81.48 12.58

Filament 262,144 7,346,712 77.76 402.36
Wall 262,144 7,345,520 5.26 555.46

Voronoi
Kinematic 262,144 7,409,364 5.93 125.33

Stage 3
Soneira-
Peebles 531,441 14,300,836 162.42 168.15
ζ = 9.0

Table B.1 Parameters of computation for the various models described in this paper.
All computations are performed on an Intel(R) Xeon(R) CPU @ 2.00GHz. Columns
1 & 2 present the models described in the later sections, and the number of par-
ticles used for the computation. Column 3 gives the total number of simplices of
the Delaunay triangulation. Columns 4 & 5 give the time required to compute the
triangulation and persistence respectively, in seconds.

the particles in X, the determination of tessellation based density estimates and the
subsequent piecewise linear interpolation of the density values at the Delaunay ver-
tices, ie. the sample points, to the higher dimensional simplices, yielding a field
$ : X→ R.

For the calculation of the Delaunay tessellation, we use software in the CGAL
library. We use the 3-torus option of CGAL, which is the the periodic form of the
original data set in a cubic box, which is accomplished by identifying and glueing
opposite faces of the box.

Table B.1 presents the noteworthy parameters of computations for a single re-
alization of the different models used in the results section of this paper. Naming
the models in Column 1, we see the number of particles and simplices in the Delau-
nay triangulation in Columns 2 and 3 (also see Okabe et al. 2000; van de Weygaert
1994), and the number of seconds needed to compute the Delaunay triangulation
and the persisten pairs in Columns 4 and 5. Apparently, the number of particles
is not strongly correlated with the time it takes to construct the Delaunay triangula-
tion. Indeed, the algorithm is also sensitive to other parameters – such as the number
of simplices in the final triangulation or ever constructed and destroyed during the
runtime of the algorithm – that depend on how the particles are distributed in space.

In a second step, we compute the DTFE density value for each vertex, u, of the
Delaunay triangulation. The DTFE density value at the vertices is the inverse of the
volume of its star. The star consists of all simplices that contain u as a vertex (see
Figure B.1 for an illustration) , and we assign one over this volume as the density
value to u. Finally, we use piece-wise linear interpolation to define $ : X→ R.

Evidently, we should ask ourselves in how far the results of the homology anal-
ysis are dependent on the density estimator used. In Section 2.9 we present a com-



parison between the results of our homology analysis obtained using the DTFE den-
sity estimate and that using the spatially adaptive SPH density estimates (see Ap-
pendix F.0.7), demonstrating that the results based on DTFE and on SPH are largely
consistent.

B.2 Density filtration of fields on a regular grid

A first step towards computing persistence of a field ρ sampled on a regular cubical
grid is the construction of a triangulation on the sample voxels. The components of
a triangulation - vertices, edges, faces and tetrahedra - define a simplicial complex
whose topological characteristics are equivalent to that of the sampled field. It is not
possible to construct a unique triangulation K from a regular cubical grid of sample
voxels. This is because a cubical grid suffers from degeneracies caused by corners
common to eight and not four voxels, and the edges shared by four and not three
faces.

Bendich et al. (2010) provide an algorithm for constructing triangulations of im-
ages represented on regular voxel grids. The algorithm solves the degeneracy arising
from the regular grid by slightly perturbing the grid cells leading to a deformed grid
where the corners are shared by four voxels, and the edges by three voxels. This
transformation defines the elements of the dual triangulation uniquely – the vertices
of this triangulation are defined by voxel centers, the edges are defined by the centers
of the voxels which share a common face, the triangles by the centers of the voxels
which share a common edge, and the tetrahedra by the centers of the voxels which
share a common corner.

In a second step of the algorithm, the field values at the vertices in the triangu-
lation are used to interpolate the values on the higher dimensional simplices, much
akin to that used in the DTFE formalism developed by Schaap & van de Weygaert
(2000b) (also see (Bernardeau & van de Weygaert 1996; van de Weygaert & Schaap
2009b)). This results in a continuous linearly extrapolated simplicial field - ie. a field
defined on the edges, faces and tetrahedra of the resulting simplicial complex - that
preserves the topology of the original density field (see (Pranav et al. 2013)). Of cru-
cial importance is the fact that the choice of interpolation - linear, or constant - has
no effect on topology. In this paper we we use a piece wise constant interpolation:
ρ(σ) = max[ρ(τ)|τ ⊂ vertex ofσ].

B.3 Field sampling

To further process the density field towards its topological analysis, we may follow
a range of field sampling strategies. The most suggestive option is to take the raw
DTFE field, including all details of the discretely sampled field. In the context of our
study, we mostly follow this Raw DTFE sampling strategy. The particular nature of
the discretely sampled density field involves a complication. Because the number
density of the sample points represents a measure of the value of the density field
itself, the DTFE density field has a much higher spatial resolution in high density
regions than in low density regions. This might be a source of a strong bias in the re-



trieved topological information, given that most of this will focus on the topological
structure of the high-density regions.

To alleviate a density bias in the topological analysis, one may invoke a range of
strategies. One option is to sample the density field on a regular grid. In other words,
to create an image of the DTFE density field reconstruction. Details of the image
construction are described in appendix F.0.6. It has the advantage of representing a
uniformly sampled density field, with a uniform spatial resolution dictated by the
voxel size of the image. The homology analysis of such a gridbased image involves
a few extra complications, the details of which are most extensively discussed in the
follow-up study analyzing the homology of Gaussian random fields (see Chapter 3).
In appendix 2.9 we have compared the results of the homology analysis involving
this DTFE image sampling strategy with those obtained following the Raw DTFE sam-
pling strategy.

Another strategy to moderate the bias towards high-density regions is to use the
singularity structure of the piecewise linear density field, and use the persistence of
singularity pairs to remove insignificant topological features. This natural feature-
based smoothing of the density field has been described extensively by Edelsbrunner
et al. (2003), and has been applied in studies of cosmic structures in Chapter 4.

B.4 Topology through critical points and filtrations.
As mentioned in the paragraph on Morse theory, the superlevel set does not change
topology as long as ν does not pass a critical value of the function, and this is also true
for piecewise linear functions, except that we need to adjust the concept of critical
point. Here we do the obvious, looking at how $ varies in the link, of a vertex. The
link consists of all faces of simplices in the star, that do not themselves belong to
the star (Edelsbrunner & Harer 2010, Chapter VI). Indeed, the topology can change
only when ν passes the value of a vertex, so it suffices to consider only one (regular)
value between any two contiguous vertex values. To describe this, we let n be the
number of vertices in the triangulation, and we assume νi = $(ui) < νi+1 = $(ui+1)
for 1 ≤ i < n.1 We thus consider superlevel sets at the regular values in the sequence

r0 > ν1 > r1 > ν2 > . . . > νn > rn.

Constructing these superlevel sets and computing their homology individually would
be impractical for the data-sets we study in this paper. Fortunately, there are short-
cuts we can take that speed up the computations while having no effect on the com-
puted results. The first short-cut is based on the observation that Xν has the same
homotopy type as the subcomplex Kν of the triangulation K of X that consists of all
vertices with $(ui) ≥ ν and all simplices connecting them. There is a convenient
alternative description of Kν. Define the upper star of a vertex u as the collection of
simplices in the star for which u is the vertex with smallest density value (see fig. B.1
for the upper star of a regular vertex, a 1-saddle, a 2-saddle an a maximum). Then Kν

1It is unlikely that the estimated density values at two vertices are the same, and if they are, we can
pretend they are different, eg. by simulating a tiny perturbation that agrees with the ordering of the
vertices by index; see eg. (Edelsbrunner 2001, Section I.4).



Figure B.1 Figure illustrating the upper star of a regular vertex, minimum, saddle
and maximum, respectively in top-left, top-right, bottom-left, bottom-right panels.
The star of a vertex is consists of all the simplices incident to it. The shaded simplices
in pink have a function value higher than the vertex.

is the union of the upper stars of all vertices with $(ui) ≥ ν. This description is com-
putational convenient because it tells us that Kri+1 can be obtained from Kri simply
by adding the simplices in the upper star of ui+1. We say the superlevel sets can be
computed incrementally, and we will be careful to follow this paradigm in every step
of our computational pipeline. This incremental construction of the superlevel sets is
equivalent to constructing the upper-star filtration, which is an essential pre-cursor
to computing persistence homology which we describe next.



B.5 Persistence homology
Next, we sketch the algorithm that computes the persistent homology of the se-
quence of superlevel sets. We begin with a linear ordering of the simplices in K
that contains all Kν as prefixes. To describe it, let ui = σji , σji+1, . . . , σji+1−1 be the
simplices in the upper star of ui, sorted in increasing order of dimension. Setting
j1 = 1 and m = jn+1 − 1, this linear ordering of the simplices is σ1, σ2, . . . , σm. It
has the property that each simplex is preceded by its faces, which implies that ev-
ery prefix, Kj = {σ1, σ2, . . . , σj}, is a simplicial complex. We require this property so
that every step of our incremental algorithm is well defined. It should be clear that
Kνi = Kj for j = ji+1 − 1.

Algorithm 2 MATRIX REDUCTION

1: R = ∆
2: for j = 1 to m do
3: while there exists j0 < j with low(j0) = low(j) do
4: add colum j0 to column j
5: end while
6: end for

B.5.1 Boundary matrix and its reduction
The persistence algorithm is easiest to describe as a matrix reduction algorithm,
with the input matrix being the ordered boundary matrix of K.2 Specifically, this
is the m-by-m matrix ∆ whose rows and columns correspond to the simplices in the
mentioned linear ordering. Specifically, the j-th column records the boundary of σj,
namely ∆i,j = 1, if σi is a face of σj and the dimension of σi is one less than that of σj,
and ∆i,j = 0, otherwise. Symmetrically, the i-th row records the star of σi. The per-
sistence algorithm transforms ∆ into reduced form, in which every row contains the
lowest non-zero entry of at most one column. Making sure that we do not permute
rows, and we add columns strictly from left to right, the lowest non-zero entries in
the reduced matrix correspond to the birth-death pairs of the density field – precisely
the information we are after. To describe the transformation, we write low(j) = i if
i is the maximum row index of a non-zero entry in column j, and we set low(j) = 0
if the entire column is 0. Algorithm 2 presents the algorithm for such a reduction.
Section 2.3.3 illustrates these concepts and steps through an example.

The search for the fastest algorithm to reduce an ordered boundary matrix is an
interesting question of active research in the field of computational topology. Most
known algorithms use row and column operations, like in Gaussian elimination,
which takes time proportional to m3 in the worst case. A fortunate but largely not
understood phenomenon is the empirical observation that some of these algorithms

2We hasten to mention that storing this matrix explicitly is too costly for our purposes. Instead, we use
the triangulation as a sparse matrix representation, and we implement all steps of the matrix reduction
algorithm accordingly. However, for the purpose of explaining the algorithm, we maintain the illusion of
an explicit representation of the matrix.



Figure B.2 Figure illustrating the transition from the birth-death to the mean age-
persistence plane. If the coordinates of a point in panel (a) are (b,d), the coordinates
in panel (b) are (d+b,d-b). The Betti numbers can be read off from the persistence
diagrams. The contribution to the Betti numbers for a level set ν comes from all the
persistent dots that are born before ν and die after ν – in other words, the shaded
region in panel (a) anchored at (ν, ν). The shaded region transforms in panel (b) to
a V-shaped region anchored at (ν + ν, 0). The arms of the V have slope −1 and 1
respectively.

are significantly faster than cubic time for most practical input data. This is lucky but
also necessary since we could otherwise not compute the results we present in this
paper. The time to compute the persistence pairs for different models is displayed in
Column 5 of Table B.1.

B.6 Persistence Diagrams
Given the reduced boundary matrix, we generate the birth-death pairs of $ from the
lowest non-zero entries in the columns. Specifically, for every non-zero i′ = low(j′),
the addition of σi′ gives birth to a homology class that dies when we add σj′ . If σi′

is in the upper star of ui, and σj′ is in the upper star of uj, then we get (νi, νj) as
the corresponding birth-death pair. It is quite possible that i = j, namely if both
simplices belong to the same upper star, in which case we talk of a still-birth. We
draw this birth-death pair as the point (νi, νj) in the birth-death plane. Alternatively,
we can also draw them as (νi + νj, νj − νi) in the plane. This amounts to a scaling
by a factor of

√
2 and a rotation of coordinates by 45 degrees clock-wise. This is

our preferred representation of the persistence diagrams throughout this paper. An
illustration of the transformation is depicted in Figure B.2. Drawing all points repre-
senting p-dimensional homology classes gives the p-th persistence diagram of $, which



we denote as Dgmp($). Recall that the second coordinate is the persistence, and be-
cause a still-birth has zero persistence, it is drawn right on the horizontal axis. The
persistence is a measure of significance of the feature represented by a birth-death
point, and still-births are artifacts of the representation of $ and have indeed no sig-
nificance. The first coordinate is the sum of birth- and death-values, and we refer to
half that coordinate as the mean age. It gives information about the range of density
values the corresponding feature is visible.3

Persistence diagrams contain more information than the Betti numbers. Indeed,
we can read the p-th Betti number of the superlevel set for ν as the number of points
of Dgmp($). The contribution to the Betti numbers for a level set ν comes from all
the dots in the persistence diagram corresponding to cycles that are born before ν
and die after ν – in other words, the shaded region in panel (a) anchored at (ν, ν) in
Figure B.2. The shaded region transforms appropriately in panel (b) to a V-shaped
region anchored at (ν, 0) on the horizontal axis. The arms of the V have slope−2 and
2 respectively. Another useful property is the stability of the diagram under small
perturbations of the input. Specifically, the diagram of a density function, $′, that
differs from $ by at most ε at every point of the space, has bottleneck distance at
most ε from Dgmp($); see (Cohen-Steiner et al. 2007). This implies that every points
of Dgmp($

′) is at distance at most ε from a point in Dgmp($) or from the horizontal
axis.

3Almost every homology class that is ever born will also die at finite time, but there are eight excep-
tions, namely the classes that describe the 3-torus itself. They are not relevant for the study in this paper,
and we do not draw them in the diagrams.



C
Stochastic Random Fields

The cosmic density perturbation field is a realization of a stochastic random field.
A random field, f , on a spatial volume assigns a value, f (x), to each location, x, of
that volume. The fields of interest are smooth and continuous 1. The stochastic
properties of a random field are defined by its N-point joint probabilities, where N can
be any arbitrary positive integer. To denote them, we write x = (x1, x2, · · · , xN) for
a vector of N points and f = ( f1, f2, . . . , fN) for a vector of N field values. The joint
probability is

Prob[ f (x1) = f1, . . . , f (xN) = fN ] = PX(f)df , (C.1)

which is the probability that the field f at the locations xi has values in the range fi
to fi + d fi, for each 1 ≤ i ≤ N.

In cosmological circumstances, we use the statistical cosmological principle, which
states that statistical properties of e.g. the cosmic density distribution in the Universe
are uniform throughout the Universe. It means that the distribution functions and
moments of fields are the same in each direction and at each location. The latter
implies that ensemble averages depend only on one parameter, namely the distance
between the points.

Important for the cosmological reality is the validity of the ergodic principle. The
Universe is unique, and its density distribution is the only realization we have of the
underlying probability distribution. The ergodic principle allows us to measure the
value of ensemble averages on the basis of spatial averages. These will be equal to
the expectations over an ensemble of Universes, something which is of key signif-
icance for the ability to test theoretical predictions for stochastic processes like the
cosmic mass distribution with observational reality.

1In this section, the fields f (x) may either be the raw unfiltered field or, without loss of generality, a
filtered field fs(x). A filtered field is a convolution with a filter kernel W(x, y), fs(x) =

∫
dy f (y)W(x, y).



C.1 Gaussian Random Fields

The primordial density field is, to high accuracy, a Gaussian random field. A Gaus-
sian random field is an example of a stochastic process. Given a parameter space T,
a stochastic process f over T is a collection of random variables

{ f (t) : t ∈ T} . (C.2)

f is a (N, d) random field if T is a set of dimension N and f (t) are vector-valued
with dimension d. In the scope of this paper, we are interested in scalar random
fields defined in R3. In this case, N = 3 and d = 0. Finally, f is a gaussian random
field if f (t) are gaussian distributed.

For a Gaussian random field, the joint probabilities for N = 1 and N = 2 determine
all others (see Adler 1981; Adler & Taylor 2010; Bardeen et al. 1986). Specifically, the
probability density functions take the simple form

PX(f) = C · exp
[
−fM−1fT/2

]
, (C.3)

where C = 1/[(2π)N(detM)]1/2 normalizes the expression, making sure that the
integral of PX(f), over all f ∈ RN , is equal to 1. Here, we assume that each 1-point
distribution is Gaussian with zero mean. The matrix M−1 is the inverse of the N× N
covariance matrix with entries

Mij = 〈 f (xi) f (xj)〉 , (C.4)

in which the angle bracket denotes the ensemble average of the product, over the
2-point probability density function. In effect, M is the generalization of the variance
of a 1-point normal distribution, and we indeed have M = [σ2

0 ] for the case N = 1.
Equation (C.3) shows that a Gaussian random is fully specified by the autocorre-

lation function, ξ(r), which expresses the correlation between the density values at
two points separated by a distance r = |r|,

ξ(r) = ξ(|r|) ≡ 〈 f (x) f (x + r)〉 . (C.5)

In other words, the entries in the matrix are the values of the autocorrelation function
for the distance between the points: Mij = ξ(rij), with rij = ‖xi − xj‖ . For a multi-
scale Gaussian density field, its structure can be characterized in a more transparent
fashion in terms of the Fourier transform of the correlation function, the power spec-
trum P(k). It specifies the mean square of the fluctuations of the Fourier components
f̂ (k) of the field f (x),

f (x) =
∫ dk

(2π)3 f̂ (k) e−ik·x , (C.6)

via the relation

〈 f̂ (k) f̂ (k′)〉 = (2π)3/2 P(k) δD(k− k′) , (C.7)



where δD(k) is the Dirac delta function and the

C.1.1 Number distribution of peaks in Gaussian random fields

Bardeen et al. (1986) derive the marginal number distribution of peaks for Gaussian
random fields, as a function of the dimensionless density threshold ν

Npk(ν) dν =
1

(2π)2R3
?

e−ν2
G(γ, γν). (C.8)

Here, the function G(γ, γν) is a fitting function given by

G(γ, w) =
w3 − 3γ2w +

[
B(γ)w2 + C1(γ)

]
exp

[
−A(γ)w2]

1 + C2(γ) exp [−C3(γ)w]
. (C.9)

The various coefficients are given by

A =
5/2

9− 5γ2

B =
432

(10π2)(9− 5γ2)5/2

C1 = 1.84 + 1.13(1− γ2)5.72

C2 = 8.91 + 1.27 exp(6.51γ2)

C3 = 2.58 exp(1.05γ2). (C.10)

For the power law power spectrum, the parameters γ and R? are related to the
various moments of the power spectrum, value of the spectral index n and the co-
moving filtering radius R f as

γ =
〈k2〉
〈k4〉1/2

=
σ2

1
σ2σ0

=
n + 3
n + 5

R? =
√

3
σ1

σ2

=

(
6

n + 5

)1/2
R f . (C.11)



C.2 Gaussian random fields: Minkowski functionals, Euler charac-
teristic, and genus

The goal of this sub-section is to present a brief account of the known topological
characteristics of Gaussian random fields in terms of the existing decriptors in use,
namely Minkowski Functionals, Euler Characteristic and genus.

C.2.1 Euler characteristic and genus
The Gauss-Bonnet Theorem relates the total Gaussian curvature κ of a connected 2-
dimensional manifold surface to either their genus g or the Euler characteristic χ,
suggesting that the knowledge of either κ, g or χ is sufficient to compute the others:

C = 4π(1− g) = 2πχ. (C.12)

Gott et al. (1986) derive a closed form analytical expression for the expected value of
κ to arrive at expected analytic equation of g in case of Gaussian random fields

g(ν) = − 1
8π2

(
〈k2〉

3

)3/2

(1− ν2)e−ν2/2, (C.13)

where ν = δ/σ. Here, δ is the over- or under-density at a spatial location and σ
is the rms of the density fluctuation field.
Often in cosmological literature (Doroshkevich 1970; Bardeen et al. 1986), the dis-
tinction between Euler characteristic and genus is blurred. Indeed, the expression of
genus used in cosmology (Gott et al. 1986; Hamilton et al. 1986) is the same as the
standard expression of Euler characteristic (Adler 1981).

C.2.2 Minkowski Functionals
There are (d+ 1) Minkowski functionals defined for a d-dimensional manifold(Mecke
et al. 1994; Schmalzing & Buchert 1997; Schmalzing et al. 1999; Sahni et al. 1998).
Predominantly geometric in nature, the first four Minkowski functionals (d ≤ 3)
are respectively the volume, surface area, integrated mean curvature and the Gaus-
sian curvature. For Gaussian random fields, the first four Minkowski functionals
have known analytical epressions as a function of the superlevel sets of rms density
threshold ν (Tomita 1993; Schmalzing & Buchert 1997)

Q0(ν) =
1
2
− 1

2
Φ
(

1√
2

ν

)
,

Q1(ν) =
2
3

λ√
2π

exp
(
−1

2
ν2
)

,

Q2(ν) =
2
3

λ2
√

2π
ν exp

(
−1

2
ν2
)

,

Q3(ν) =
λ3
√

2π
(ν2 − 1) exp

(
−1

2
ν2
)

. (C.14)



where λ =
√
|ξ”(0)|/[2πξ(0)], and the function Φ(x) =

∫ x
0 dte(−t2) is the standard

error function.
The functional Qspace3(ν) in (C.14) and the equation for genus in (C.13) differ

only by a factor. This is not surprising, as the fourth Minkowski functional can also
be formulated as an integral of the Gaussian curvature, which is related to Euler
characteristic and genus via the Gauss-Bonnet́ Theorem. In fact, Crofton’s inter-
section formula (Crofton 1868) goes further and establishes that all the Minkowski
functionals can be formulated as appropriate integrals of Euler characteristic (Pranav
et al. 2013). Evidently, Euler characteristic is the more fundamental quantity, and is
the bridge between geometry and topology (Adler & Taylor 2009).





D
Voronoi Clustering Models

Voronoi clustering models are heuristic models for cellular spatial patterns which
use the geometric (and convex) structure of the Voronoi tessellation (Vorono”i 1908;
Okabe et al. 2000) to emulate the cosmic matter distribution van de Weygaert & Icke
(1989); van de Weygaert (1991, 2002). They offer flexible templates for cellular pat-
terns and are easy to tune towards a specific spatial cellular morphology. This makes
them very suitable for studying clustering properties of nontrivial geometric spatial
patterns. Unless otherwise specified, the seeds of the tessellation usually involve a
set of Poisson distributed points.

The Voronoi models use Voronoi tessellations for defining the structural frame
around which matter assembles as cosmic structure emerges and grows. Particles
are distributed within this skeleton by assigning them to one of the four distinct
structural components of a Voronoi tessellation. The interior of Voronoi cells is iden-
tified with void regions, the Voronoi cell faces with walls, the edges with filaments and
the vertices with cluster nodes. What is usually described as a flattened “superclus-
ter” consists of an assembly of various connecting walls in the Voronoi foam, while
elongated “superclusters” of “filaments” usually include a few coupled edges. Ver-
tices are the most outstanding structural elements, corresponding to the very dense
compact nodes within the cosmic web where one finds the rich clusters of galaxies.

Among a variety of possible Voronoi clustering realizations, two distinct yet com-
plementary classes of models are the most frequently used ones, the structurally
rigid Voronoi Element Models and the evolving Voronoi evolution models. Both the
Voronoi Element Models and the Voronoi Evolution Models are obtained by pro-
jecting an initially random distribution of N sample points/galaxies onto the walls,
edges or vertices of the Voronoi tessellation defined by M nuclei.



D.0.3 Voronoi element models
“Voronoi element models” are fully heuristic models. They are user-specified spatial
galaxy distributions within the cells (field), walls, edges and vertices of a Voronoi tes-
sellation. Pure Voronoi element Models place their model galaxies exclusively in either
walls, edges or vertices.

The practical implementation of the Voronoi model consists of an initial random
distribution of N particles in a box of volume V with periodic boundary conditions
(ie. a 3-torus). The initial spatial distribution of these N galaxies within the sample
volume V is purely random, their initial locations xn0 (n = 1, . . . , N) defined by
a homogeneous Poisson process. A random distribution of M nuclei defines the
geometric structure of the Voronoi tessellation.

The initially randomly distributed model particles are projected onto the relevant
Voronoi wall, Voronoi edge or Voronoi vertex or retained within the interior of the
Voronoi cell in which they are located, according to a process which is the asymptotic
limit of the prescription outlined in equation D.2 (see van de Weygaert et al. 2011).
The model walls, filaments and nodes are not infinitely thin, but have a Gaussian
density profile with a user-specified width. Following their projection onto wall,
filament or vertex, the particles are randomly displaced according to this profile.

The versatility of the Voronoi element model also allows combinations in which
field (cell), wall, filament and vertex distributions are superimposed. These com-
plete composite particle distributions, Mixed Voronoi element Models, include particles
located in four distinct structural components. The characteristics of the patterns
and spatial distribution in the composite Voronoi Element models can be varied and
tuned according to the fractions of galaxies in in Voronoi walls, in Voronoi edges, in
Voronoi vertices and in the field. These fractions are free parameters to be specified
by the user.

D.0.4 Voronoi evolution models
The second class of Voronoi models is that of the Voronoi Evolution models. They
attempt to provide weblike galaxy distributions that reflect the outcome of realistic
cosmic structure formation scenarios. They are based upon the notion that voids play
a key organizational role in the development of structure and makes the Universe
resemble a soapsud of expanding bubbles Icke (1984). While the galaxies move away
from the void centres, and stream out of the voids towards the sheets, filaments and
clusters in the Voronoi network the fraction of galaxies in the voids (cell interior),
the sheets (cell walls), filaments (wall edges) and clusters (vertices) is continuously
changing and evolving. The details of the model realization depends on the time
evolution specified by the particular Voronoi Evolution Model.

Within the class of Voronoi Evolution Models the most representative and most
frequently used are the Voronoi kinematic models. They form the idealized and asymp-
totic description of the outcome of hierarchical gravitational structure formation pro-
cess, with single-sized voids forming around depressions in the primordial density
field. This is translated into a scheme for the displacement of initially randomly
distributed galaxies within the Voronoi skeleton. Within a void, the mean distance
between galaxies increases uniformly in the course of time. When a galaxy tries to



enter an adjacent cell, the velocity component perpendicular to the cell wall disap-
pears. Thereafter, the galaxy continues to move within the wall, until it tries to enter
the next cell; it then loses its velocity component towards that cell, so that the galaxy
continues along a filament. Finally, it comes to rest in a node, as soon as it tries to
enter a fourth neighbouring void.

As for the Voronoi element models, the Voronoi kinematic models are based on
the displacement of a sample of N particles, or model galaxies, with an initial ran-
dom distribution. In practice, these are distributed in a box of volume V with pe-
riodic boundary conditions (ie. a 3-torus). The initial spatial distribution of these
N galaxies within the sample volume V is purely random, their initial locations xn0
(n = 1, . . . , N) defined by a homogeneous Poisson process. A set of M nuclei or
expansion centres within the volume V corresponds to the cell centres, or “expan-
sion centres” driving the evolving matter distribution. The nuclei have locations ym
(m = 1, . . . , M). The first step of the formalism is to determine for each galaxy n the
Voronoi cell Vα in which it is initially located.

The path xn along which a galaxy moves within the Voronoi skeleton depends on
how far it has moved away from its initial location xn0. For a specific galaxy n this
path may consist of the following sequence,

• cell displacement sα radially directed away from the expansion centre jα

• wall displacement sαβ within the Voronoi wall Σαβ,
Σαβ defined by the nucleus jα and its natural neighbour jβ

• edge displacement sαβγ along the Voronoi edge Λαβγ,
Λαβγ defined by jα and its natural neighbours jβ and jγ .

This path is encapsulated in the equation,

xn = yα + snα + snαβ + snαβγ

(D.1)
= yα + snαênα + snαβênαβ + snαβγênαβγ ,

where the unity vectors ênα, ênαβ and ênαβγ specify the direction of galaxy’s path
within a Voronoi cell, a Voronoi wall or Voronoi edge.

While the galaxy’s location in the Voronoi element models (see section D.0.3) is
restricted to one of the components of the Voronoi skeleton, the Voronoi kinematic
model is characterized by an evolving global “void” expansion factor R(t) which
dictates whether a galaxy has entered a wall, proceeded towards a filament or has
arrived within a vertex/cluster node. At any one cosmic epoch each galaxy n is
displaced according to R(t). At first, while still within the cell’s interior, the galaxy
proceeds radially from its expansion centre jα, moving along the radial cell path
emanating from its nucleus,

snα(t) = xn(t) − yα

= R(t) |xn0 − yα| ênα . (D.2)



During this stage the wall and edge path factors snαβ = snαβγ = 0, while the mean
distance between the particles increases uniformly with expansion factor R(t). Once
the galaxy tries to enter an adjacent cell jβ and reaches a Voronoi wall, i.e. when

R(t) |xn0 − yα| > υn (D.3)

the gravity of the wall, aided and abetted by dissipational processes, will slow down
its motion. Subsequently, the velocity component perpendicular to the cell wall dis-
appears and the galaxy continues to move within the wall along the direction of
ênαβ. This continues until it reaches the corresponding Voronoi edge, after which it
moves along the direction ênαβγ. Finally, it will reach the Voronoi vertex towards
its move, which represents the cluster node where it will culminate its cosmic jour-
ney. As in the case of the Voronoi element models, the walls, filaments and nodes in
the Voronoi kinematic models have a Gaussian density profile, with a user-specified
width. To effect this profile, following their arrival in wall, filament or vertex node,
the particles are randomly displaced according to the specified profile. For further
details of the complete formalism for generating these spatial distributions can be
found in van de Weygaert et al. (2011).

The resulting evolutionary progression within the Voronoi kinematic scheme is
that of an almost featureless random distribution, via a wall-like and filamentary
morphology towards a distribution in which matter ultimately aggregates into con-
spicuous compact cluster-like clumps. Figure 2.16 provides an impression of the
evolutionary progression.



E
Soneira-Peebles model.

The Soneira-Peebles model is an analytic self-similar spatial point distribution which
was defined for the purpose of modelling the galaxy distribution, such that its sta-
tistical properties would be tuned to reality (Soneira & Peebles 1978). An important
property of the Soneira-Peebles model is that it is one of the few nonlinear models
of the galaxy distribution whose statistical properties can be fully and analytically
evaluated. This concerns its power-law two-point correlation function, correlation
dimension and its Hausdorff dimension. Here we shortly specify the main charac-
teristics of the Soneira-Peebles model, for an extensive description of the fractal-like
properties of the Soneira-Peebles model we refer to (Martinez 1990) and (van de
Weygaert & Schaap 2009b).

The Soneira-Peebles model is specified by three parameters (for an illustrated
descriptions see van de Weygaert & Schaap (2009b)). The starting point of the model
is a level-0 sphere of radius R. At each level-m a number of ψ subspheres are placed
randomly within their parent level-m sphere: the level-(m+ 1) spheres have a radius
R/ζ where ζ > 1, the size ratio between parent sphere and subsphere. This process
is repeated for L successive levels, yielding ψL level-L spheres of radius R/ζL. At
the center of each of these spheres a point is placed, producing a point sample of ζL

points. While this produces a pure singular Soneira-Peebles model, usually a set of
these is superimposed to produce a somewhat more realistically looking model of
the galaxy distribution, an extended Soneira-Peebles model.

E.0.5 Self-similarity
The Soneira-Peebles model involves a hierarchy of structures of varying densities
and characteristic scales, with the higher level spheres corresponding to high density
structures of small scale and the lower level spheres corresponding to low density



structures of larger scale. As each sphere is constructed in the same way, the resulting
point distribution is self-similar and forms a bound fractal. The fractal geometry of
a point set is often characterized by the fractal dimension D, which is defined as

D = lim
r→0

log N(r)
log(1/r)

(E.1)

Here N(r) is the number of non-empty cells in a partition of constant cell size r. If
the Soneira-Peebles model would contain an infinite amount of levels, the resulting
point distribution would have fractal dimension

D = (log ψ)/(log ζ) . (E.2)

One important manifestation of the self-similarity of the defined Soneira-Peebles
distribution is reflected in the power-law two-point correlation function. For M di-
mensions it is given by

ξ(r) ∼ r−γ ,
(E.3)

γ = M−
(

log ψ

log ζ

)
for

R
ζL−1 < r < R .

The parameters ψ and ζ may be adjusted such that they yield the desired value for
the correlation slope γ.



F
Density Estimators

In the cosmological reality, a density field is discretely sampled by galaxies, or by
particles in computer simulations. This discrete distribution is subsequently trans-
lated into a continuous density field, based on the key assumption that the discrete
point distribution represents a fair discrete sampling of the underlying density field.
There is a large array of techniques available for obtaining density estimates from
a discrete particle distribution. Key references on the corresponding problems and
solutions include those by Ripley (1981). An extensive and systematic survey of
available mathematical methods in an astronomical context can be found in a set of
publications by Lombardi & Schneider (2001); Lombardi (2002); Lombardi & Schnei-
der (2003).

In this appendix we focus on two formalisms. This study is mainly based on
the use of the Delaunay Tessellation Field Estimator (DTFE). In addition, we have
compared the obtained topological results with that of a spatially adaptive kernel
estimator used in Smooth Particle Hydrodynamics.

F.0.6 DTFE, the Delaunay Tessellation Field Estimator
DTFE - the Delaunay Tessellation Field Estimator - exploits three properties of Voronoi
and Delaunay tessellations. The first is the sensitivity of the tessellation cell size to
the local point density. The DTFE method uses this fact to define a local estimate of
the density, on the basis of the inverse of the volume of the tessellation cells. Equally
important is their sensitivity to the local shape of the point distribution, which al-
lows them to trace anisotropic features. Finally, it uses the adaptive and minimum
triangulation properties of Delaunay tessellations to use them as adaptive spatial
interpolation intervals for irregular point distributions.



In the first step of the DTFE procedure, a local density estimate $i is computed at
each point i of the point sample. The value is the (normalized) inverse of the volume
V(Wi) of the corresponding contiguous Voronoi cell or star,Wi. The star consists of all
Delaunay simplices that contain ~xi as a vertex. In D dimensions the DTFE density
estimate at each sample point i is given by:

$i =
(1 + D)

V(Wi)
. (F.1)

DTFE subsequently interpolates the values of these density field estimates fi = $i
over the volume of the sample. This produces a piecewise linear interpolation of
the field, in which the Delaunay tessellation is used as interpolation grid. The field
gradient∇ f is defined to be constant over the volume of each Delaunay tetrahedron,
with its value directly and uniquely determined from the (1 + D) field values f j at
the sample points constituting the vertices of a Delaunay simplex.

Given the location~r0,~r1,~r2 and~r3, of the four points forming the Delaunay tetra-
hedra’s vertices, and the field value estimates at these locations, f0, f1, f2 and f3, the
gradient ∇̂ f follows from the inversion

∇̂ f =



∂ f
∂x

∂ f
∂y

∂ f
∂z


= A−1


∆ f1

∆ f2

∆ f3

 ; A =


∆x1 ∆y1 ∆z1

∆x2 ∆y2 ∆z2

∆x3 ∆y3 ∆z3

 (F.2)

where the coordinate distance between the tetrahedral vertices is represented by
∆xn = xn − x0, ∆yn = yn − y0 and ∆zn = zn − z0, and the corresponding dif-
ferences between the vertex field values is given by ∆ fn ≡ fn − f0 (n = 1, 2, 3).

Once the value of ∇ f for each Delaunay tetrahedron has been determined, it is
straightforward to determine the DTFE field value f̂ (~x) for any location ~x by means
of straightforward linear interpolation within the Delaunay tetrahedron m in which
~x is located (eqn. F.2),

f̂ (~x) = f̂ (~xi) + ∇̂ f
∣∣
m · (~x−~xi) . (F.3)

In many practical situations we need a DTFE reconstructed field sampled on a
grid. The created DTFE image may be then be used for further analysis. To this
end, the DTFE density field value is sampled at each gridpoint of the grid. Formally,
this should involve the DTFE density field value averaged over the corresponding
gridcell. That value could be determined geometrically, although a more practical
implementation involves the averaging over the interpolated field values (eqn. F.3)
over a number or randomly placed points in a gridcell (e.g. Cautun et al. 2013). In
a number of practical circumstances, a reasonable shortcut is to limit the field value
calculation to that at the grid location. This offers a reasonable approximation for



gridcells which are smaller or comparable to that of intersecting Delaunay cells, on
the condition that the field gradient within the cell(s) is not too large.

F.0.7 SPH kernel density estimates
In the previous appendix, we have described in some detail the technical aspects of
DTFE. DTFE produces volume-weighted density estimates that adapt themselves to
the local number density and geometry/shape of the particle distribution. The ma-
jority of conventionally applied techniques produce mass-weighted estimates. They
usually involve a suitably weighted sum over discretely sampled field values, in-
volving kernel weight functions W(x, y). One may directly appreciate that such con-
volutions produce mass-weighted estimates by converting the discrete sum into an
integral over Dirac delta functions (see van de Weygaert & Schaap 2009b),

f̂ (x) =
∑N

i=1 f̃i W(x− xi)

∑N
i=1 W(x− xi)

=

∫
dy f (y)W(x− y) ∑N

i=1 δD(y− xi)∫
dy W(x− y) ∑N

i=1 δD(y− xi)
(F.4)

=

∫
dy f (y) ρ(y)W(x− y)∫

dy ρ(y)W(x− y)
.

Both rigid grid-based convolution schemes as well as a convolution formalism in-
volving a spatially adaptive technique produce a mass-weighted average.

One particularly interesting example of the latter are the adaptive density func-
tions used in Smooth Particle Hydrodynamics (SPH) codes (Hernquist & Katz 1989;
Monaghan 2005; Springel 2008, see e.g.). The basic feature of the SPH procedure
for density estimation consist of the convolution of the discrete particle distribution
with a user-specified kernel function W that adapts itself to the local point density.
For a sample of N particles, with masses mj and locations rj, the density estimate
ρSPH at the location ri of particle i is given by

ρ(ri) =
N

∑
j=1

mj W(ri − rj, hi) , (F.5)

in which the kernel resolution is determined through the smoothing scale hi. In
general, the scale hi is set by the local particle density. In many applications, the
smoothing length hi is chosen such that the sum involves a specific number of M
nearest neighbours, usually in the order of M ≈ 40.

The functional dependence of the kernel W is nearly always spherically summet-
ric, so that it is the function of |ri − rj| only. One possibility would be the use of
Gaussian kernels W whose width h would be set by the local number density. More
elaborate schemes, such as described by Monaghan (2005), use spline kernels. A



more advanced SPH scheme, introduced by Hernquist & Katz (1989), uses a sym-
metrized form of Eq. F.5. In general, the variants of SPH density estimates produce
comparable results.



G
Skew-normal distribution

The skew-normal distribution with the skewness parameter α is given by(O’Hagan &
Leonard (1976); Azzalini (1985))

f (x) = 2φ(ν)Φ(αν). (G.1)

Here,

φ(ν) =
1√
2π

e−
ν2
2 . (G.2)

is the standard normal distribution. The function

Φ(ν) =
∫ x

−∞
φ(t)dt

=
1
2

[
1 + erf

(
ν√
2

)]
, (G.3)

is the cumulative distribution function, in which erf(x) is the error function. Note that
one recovers the familiar normal distribution when the skewness parameter α = 0.
he absolute value of skewness increases as the absolute value of α increases. Note
that the skewness parameter α is different than the skewness, i.e. the third moment
of the distribution

γ1 = µ3/σ3. (G.4)



By definition, a curve has positive skewness if it has a more prominent tail for in-
creasing values of ν, and a negative skewness when its balance is shifted towards
decreasing values of ν.

To account for the location of the peak and the width of the curve, one usually
makes the transformation

x→ x− ξ/ω, (G.5)

where ξ and ω are the location and scale parameters respectively.
The probability distribution function with location ξ, scale ω and skewness parame-
ter α becomes

f (x) =
2
ω

φ

(
ν− ξ

ω

)
Φ
(

α

(
ν− ξ

ω

))
. (G.6)

Introducing the amplitude parameter A0, this takes the form

f (ν) =
A0

ωπ
e−

(ν−ξ)2

2ω2

∫ α
(

ν−ξ
ω

)
−∞

e−
t2
2 dt. (G.7)
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