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Abstract

We present an iterative Markov chain Monte
Carlo algorithm for computing reference priors
and minimax risk for general parametric fami-
lies. Our approach uses MCMC techniques based
on the Blahut-Arimoto algorithm for computing
channel capacity in information theory. We give
a statistical analysis of the algorithm, bounding
the number of samples required for the stochastic
algorithm to closely approximate the determinis-
tic algorithm in each iteration. Simulations are
presented for several examples from exponential
families. Although we focus on applications to
reference priors and minimax risk, the methods
and analysis we develop are applicable to a much
broader class of optimization problems and iter-
ative algorithms.
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inputs and outputs of the channel (Shannon, 1948).

For each concept—reference priors, minimax risk, and
channel capacity—one is interested in a distribup6(9)

that maximizes the mutual information between the “input”
random variable and the “output” random variablg™.

In the case of channel capacity, an iterative algorithm for
determiningp* when © is discrete was proposed in the
early 1970s, independently by R.Blahut (Blahut, 1972a)
and S. Arimoto (Arimoto, 1972). The Blahut-Arimoto al-
gorithm enables the practical computation of capacity and
rate distortion functions for a wide range of channels. (The
papers together won the IEEE Information Theory Best Pa-
per Award in 1974.) In contrast, very little work has been
carried out on the closely related problems of computing
reference priors and minimax risk for parametric families,
where the input© is typically continuous. In Bayesian
analysis and decision theory, the primary work that has
been done in this direction concerns only the asymptotic
behavior as: — oo, wheren is the number of trials that
yield the outpufy™™ (Clarke & Barron, 1994) and this anal-
ysis is applicable only in special cases.

In this paper we present a family of algorithms for com-

- . uting channel capacity, reference priors and minimax risk
of the fundamental problems of statistics, machine Iearr:a-p g pactty P

. . . o . for general parametric families by adapting the Blahut-
mg,_and |nfo'rmat|on thgory. In §tat|st|cs, refergngg P Arimoto algorithm to use Markov chain Monte Carlo
ors in Bayesian analysis are derived from maximizing a_(MCMC) sampling. In order to compute reference priors or

g|stt_ance nvl;ahasurteh between th? %rlor gnd pt?]Ste”O: d'lsmr’ninimax risk for a statistical learning problem, where the
utions. en the measure 1S based on the mutlal Ny, mete s often a high-dimensional random variable,

fo;ma?;on fbetwc;eeln the} parametgrs ar?d the predllcuons °R1e Blahut-Arimoto algorithm requires the computation of
a family of modeis, reterence pr|?rs ave SevPfra,,prgperTntractabIe integrals. Numerical methods would, in many
ties that make them attractive as “non-informative” priors,

for which an experiment yields the greatest possible infor cases, be computationally difficult, and do not take into ac-
. . . ._~"count the probabilistic nature of the problem. However, we
mation (Bernardo & Smith, 1994). In machine learning, P P

how that the recursive structure of the algorithm leads to

the Bayes risk and minimax risk under log-loss are centrag natural MCMC extension. The MCMC approach to this
quantities used to measure the relative performance of ON5roblem, as well as our analysis of it, applies to other al-

line Ibea;nmg ?I?o;t'hnss (Haul:stsrller, 1297?'. ]lc\/llnlm?X ”bSk gorithms such as generalized iterative scaling for log-linear
can be formulated in terms of the mutual information be- -\ (Darroch & Ratcliff, 1972).

tween the strategies of players in a two-person game. In
information theory, the capacity of a noisy channel is givenAbstracting the problem slightly, we are concerned with it-
by the maximum, over all distributions on the messages t@rative algorithms on probability distributions. The general
be communicated, of the mutual information between the



situation is that there is some optimization problem the information capacity with the engineering notion of ca-
pacity, as the largest rate at which information can be re-

p* = argminO(p) liably sent over the channel; see, for example, (Cover &
pECCA Thomas, 1991).
for which an iterative algorithm of the form In a statistical setting, the channel is replaced by a paramet-
ric family Q(y | 0), for6 € © C R™. We view the model
ptY = Tp) as an “expert”, distributed according tg¢). The expert
generates a sequence of labgls= y1,...,y,, indepen-

is derived, and proven to satisfim; ... p() = p*, inan  dently and identically distributed accordingd(y | §). A
appropriate sense. Often the exact computatidfypff re-  statistician, who does not have access to the expert, predicts
quires evaluation of an unwieldy integral or a large sum.the ¢-th label using an estimaiy, | y'~*) that is formed
In this case, one can often employ Monte Carlo method$ased upon the previous labels. Thigk at time ¢ to the

to approximate the integral, or to sample from the desiredtatistician, assuming that the expert parametét is ©,
distribution. However, in doing so, itis not clear that the re- j5 defined to be

sulting stochastic iterative algorithm will converge, or how

many samples need to be drawn in each iteration. Ther;;(6*) £

methods and analysis we develop here in the context of e it § Qlye|6%)

reference priors help to address these questions for a much / QT (¥ 07)Q(y: |07) log —=——~ dy
e . s yr plyely'=1)

broader class of iterative algorithms and optimization prob-

lems. The cumulative risk for the first n labels is defined as
In the following section we review the relationship between o o ’
channel capacity, minimax risk, and reference priors. In Rup(0%) = Y rip(0%) = D(Q3- | P)

Section 3 we present the main algorithm. A full analysis t=1

of the algorithm is quite technical and out of the scope Ofynere the second equality follows from the chain rule for
the cgrrent paper. Howgver, in Se_ctlon_ 4_we present th?he Kullback-Leibler divergence.

core ideas of the analysis, which gives insight into the al-

gorithm’s properties, and the number of samples required/iewing the expert as an adversary, the statistician might
for each iteration of MCMC in order to ensure global con- choose to minimize his worst-case risk. Playing this way,
vergence. One of the key ideas lies in the use of “comthe value of the game is theinimax risk

mon randomness” across iterations to avoid the accumula- N

. . . minimax  def . *

tion of stochastic error. Section 5 presents several exam- Ry = inf sup R, 5(67)

ples of the algorithm applied to standard exponential fam- P oreo

ily models. While the examples are simple, even in theseand a distributions that achieves this value is calledrsn-
cases the finite-sample reference priors are unknown anamax strategy.

Iytically, and the simulations reveal interesting properties. h . h.th is ch .
However, our approach will be of the greatest use for high—In t e.Bay.esg:m approach, the expertis ¢ osen according to
dimensional inference problems. the prior distributiorp(#), and then the statistician attempts

to minimize his average risk. The value of this game is the

Bayes risk
2 Reference Priorsand Minimax Risk

The concepts of channel capacity, reference priors, and ? Jo

minimax risk are intimately related, and form important It is easy to show that a Bayes strategy for the log-loss is
connections between information theory, statistics, and ma@iven by the predictive distribution

chine learning. In information theory, a communication

channel is characterized by a conditional probability dis- n n

tribution Q(y | ) for the probability that an input random Q") = /@p(G)Q(y |6) o

variable X is received ag”. The information capacity of

the channel is defined as the maximum mutual information hus, the Bayes risk is equal to the mutual information be-
over all input distributions: tween the parameter and the observations:

Bayes __ n
c % max I(X,)Y) RS = 1(©,Y")
PEAX
There turns out to be a simple relationship between the
whereA y is the simplex of all probability distributions on Bayes risk and the minimax risk, first proved in full gen-

the inputX € X. Shannon’s fundamental theorem equateserality by Haussler (1997).



Theorem (Haussler, 1997) The minimax risk is equalto 3 An Iterative MCMC Algorithm

the information capacity:

Although our methods apply to both the continuous and
discrete cases, we begin by thinking of a classification
problem and assuming that= ) is discrete, taking a small
where the supremum is over alle Ae. Moreover, the  number of values. In order to calculate the minimax risk or

minimax risk can be written as a minimax with I’eSpeCt th reference pnor fora parametnc fam{l@(y | 6)}96@1 we

minimax
R n,p

= supRB""y&s = supl(©,Y")
P

Bayes strategies: are required to maximize the mutual information
Rmnlmax _ f Rn 0* 0

15 o B poes(#) = > / (y10) 1og L1 45
yeY Q(y)

wherepg.yes denotes the predictive distribution (Bayes strat-
egy) forp € Ag. as a function op € Ag. We start with an arbitrary initial
distributionp(®) € Ag, and set = 0. In the iterative step,

In Bayesian analysis, it is often desirable to use “objec- the Blahut-Arimoto algorithm updates?) by setting

tive” or “non-informative” priors, which encode the least

amount of prior knowledge about a problem. In such a set- Qy|0)
ting, even moderate amounts of data should dominate thep'""™(6) o p(0)exp | > Q(y|0)log 00()
prior information. In this paper we address the computa- yey

tional aspects of non-informative priors defined using an, nere
information-theoretic criterion.

_ Q) = [ 50) @ty |0)d0
In the reference prior approach (Bernardo, 1979; Berger ]
et al., 1989; Bernardo & Smith, 1994), one considers araind where the constant of proportionality is given by
increasing numbet of independent draws fro®(y | 6),

and defines thé-reference prior m;, as Z41) _ / 20 (6) exp Z Qy|6)log 222%29))
T = argmax [(0,Y") © yey y
pElAp

where We can rewrite the recursion of the Blahut-Arimoto algo-

rithm in terms of log-likelihood ratios as follows:
ky _
(@ Y = . | p(t)(e) | p(t—l)(e)
0, = lo +
/ / E(y* 1) log LW 10) " | % ay* a0 &0 (9) g “*U(sb)

Bernardo (1979) proposes the&ference prior as the limit = (Y gQ(t 1) (Y gQ(t D(y)

Yy
() = lim ”’Ef)) Applying this relation recurswely, we obtain
k—oo T (Ao
®) (g

when this exists, wherd, is a fixed set. In the case where log p(t) ((¢)) = tH(Y |¢) —tH(Y |0)

© C R and the posterior is asymptotically normal, the 4 o

reference prior is given by Jeffreys’ rule:(0) o h(a)%, — (s)

whereh(6) is the Fisher information T 2;} (y9) - Qy[6) ZologQ (%)

ye 5=
/ Q(y|0) ( 55 log Q(y | 9)) whereH (Y | 9) is the entropy.

Thus, we see that theth iteratep(t) has a convenient expo-

In the case of finite:, however, very little is known about Nential form. This leads naturally to an MCMC algorithm
the k-reference priorrs,. For exponential families, Berger for estimating the maximum mutual information distribu-
et al. (1989) show that the-reference prior is dinite, tion, from which we can calculate a minimax strategy. For
discretemeasure. However, determining this measure an@ givent > 0, suppose that we have samples

alytically appears difficult. In fact, even for the simple PIOIPIO) PIG)

case of a Bernoulli trial, while it is easy to show that o a

m1(0) = m(1) = 4, the priorm is unknown fork > 1,  from the current distribution. From this sample, we esti-
prompting Berger et al. (1989) to remark that “Solving for mate thet-th predictive distribution by

m, IS not easy. Numerical solution is needed for larger N,

In the following sect.|on we propose an |teraf[|ve M.C'ZMC @(t) (y) = 1 ZQ(?/ | 91@))

approach to calculatingy for general parametric families.



MCMC Blahut-Arimoto
Input: Parameter spad®, label spac&’, and model)(- | 9)
Problem: Sample fronp* = arg max, I(p, Q)
Initialize: Letp(® € Ag be arbitrary, with initial sample(”, 61", ..., 6%); sett = 0, W(-D(y) =0
lterate:
1L LetQW(y) = & Y Qyle)
2. Letw(t)(y) = W(tfl)( )+ log Q) ()

3. sample("t) 5. 9*1) by applying MCMC to the likelihood ratios
t+1)(p .
P
log <t+1>(‘) = (t+ 1) (HY[¢)—HY[0)+ > (Qylo) - Qy|0) W (y)
(¢) =
Neta (t+1)
Rmini 1 t+1) Qy|0;")
4. Let Ryinimax — Qy| 95 )log L0
Nes ; Z;} QU (y)

5.t—t+1
Output: Sampleg”, 6\" ... 95\2

Figure 1: MCMC version of the Blahut-Arimoto algorithm

Define a different approach that makes use of the Kolmogorov-
W (y) & Zlo 0 (y Smirnpv distance. and. uses common rf_:mdomness in the
8 sampling across iterations, resulting in improved bounds
on the number of samples required. Although the analysis
A new sampley{™") Gét“), ... ,9%;11) is then calculated, becomes more technical, here we make some simplifying
using, for example, a Metropolis-Hastings algorithm, fromassumptions and demonstrate the key ideas. We will report
the likelihood ratios the more general analysis in a future publication.
p(t+1)(0)
log D () = (t+1)HY[¢) - H(Y|0)) 4.1 Usingacentral limit theorem
+ > (Qul¢) - Q| 0)) WO (y) In then-th step of the algorithm, we want samples from
yeY

The algorithm is summarized in Figure 1. Note that the al- (n+1) B DH () — O\W
gorithm requires only)(]|)|) storage. Note also that since P (6) o exp | =(n+ 1JH(®) ZQ(y\ W)
1(0,Y) = 1(©,5) for any sufficient statisti¢, the com-

putation can be often simplified. This is important in com- h _ )1 M) _
putingI(©, Y'*) for exponential families, as the number of where W (y) 2o log (v) and Q©)(y)

trials k gets large. Jo Qy10)p')(6) db. Instead we have samples from the

approximation

4 Analysisof the Algorithm

y g 1/5("+1)(0)o<exp< (n+1)H ZQy\Q )
In this section we outline two statistical analyses of the al-
gorithm. First, we present an argument that makes use ofa ~_ N N
central limit theorem to compare the iterative MCMC algo- With W( ) = YiologQ¥(y) and withQ)(y) =
rithm to the deterministic version. This argument appears— ZZ 1 Q(y6;), wheref,,..., 0y, is a sample from
to be difficult to make fully rigorous; the main problem (), Thus, we have
is control of the stochastic error. However, the argument
gives insight into the expected dependence on the num- pO)  po) L C0.0)

ber of samples required in each iteration. We then present (o) )



with Given a starting vectop(® we get a sequencg!’) =

- Tp],p® = TpW),.... Thus,p™ = T"[p(®)] where
C(0,¢) = =Y (Qy|0) = Qy|4)) (W(y) =W (y)) 77 denotes the-fold composition off’ with itself.

Y
LetUy,..., Uy be iid random variables that are uniformly

Fixing ¢, we'll show thatC'(6) ~ A(6)Z whereA(¢) isan ~ distributed on[0, 1], and letp € A. Fori =1,...,N
explicit function ofd andZ ~ A/(0,1). Thus, in each it- 9€fineX; as follows: X; = 6, if U; € [0,p1), X; = 02
eration the algorithm samples using the true (but unknownif Ui € [P1:p1 4+ pa), .o, Xy = 05 it Ui € [p1 +

density with Gaussian noise added in the exponent. ~+Pm-1,1]. ThenXy, ..., Xy are iid draws fronp. Let
. _ _ . p = (p1,...,Pm) be the empirical distribution, that is,
Using Metropolis-Hastings to implement the MCMC ;. _ y-1 SN I(X; = 6;) is the proportion ofX;’s

yields samples that are not independent, however a centrglya| tod,. To avoid accumulation of stochastic error, we

limit theorem comes from reversibility; see, for example e the sam#, ..., Uy to do all random number genera-
(Robert & Casella, 1999). Hence, we have that tion during the algorithm.
/N, (@(s) _ M(s)) s N(0, A®) Notice that drawingX,..., Xy ~ p may be regarded

as applying an operatdi to p. Specifically, define
Un(p) = p. Settingg® = p©), the stochastic version
computing the sample variance. We can then write
q© Un, G x, gV Un, g x, ¢ ... Un, G

t
c) = Z (g(@(s)) _ g(M(s))) In practice, we only obsernv@), ... G, After n steps,
5=0 the algorithm yieldsi™ = [Uy o T]" o Uy (p(?)) where

Uy o T denotes the composition of the two operators.

Let d be the Kolmogorov-Smirnov distance dn
d(p, q) = max |P(z) — Q(z)|

:—1
u(y)) whereP(x) = 3., p; andQ(z) = 3", ¢;. We shall

y=1

o~

k
> AQu4(y) logu(y) + AQg,4(k) log (1 -
y=1

assume thaf” satisfies the following Lipschitz condition:
Now, by thes-method, we have that there exists a finit@ > 0 such that, for every, ¢ € A,
(s ) d(T'pl, Tlg])) < Bd(p,q).
VN (9QW) = g(M)) ~ N (0,02) | .
In practice,T” may need to be modified near the boundary
whereo? = Vg7 A®) Vg. In summary, we have of A to make this condition hold.
Cl6) ~ N(0,72(6)) Igforem. Assume thal” satisfies the Lipschitz condition.
2
wherer?(6) = Y°._, m02(6), and wheres2(6) is com- N > w(f/a)
puted in terms of the sample variance and an explicit funCWhere 2e

tion of 6.

To keep the variancer? bounded, we require that
Y N1 < co. Taking a sample size oV, = O(s?)
will ensure this. Then

ntl .
o T B
" n+l  ifB=1.

Pri(p™ e C,) >1—a

4.2 Using the Kolmogor ov-Smirnov distance where i
Co = {p: Ip—a™ | <}
For simplicity, we now take® = {61,...,0,,} to be fi-

nite, and we assume the sampling is done by independent
simulation. Proof. Let G(c) = c for ¢ € [0,1] be the cumulative

. . distribution function for the Uniforr(0, 1) distribution and
Let A be the simplex of probabilities 08, and letT : let Gn(c) = N1 ng:1 I(U; < ¢) be the empirical distri-

AI - hA Pe the mapping defined by the Blahut-Arimoto , i, fynction. Lets = €/vn. By the Dvoretzky-Kiefer-
algorithm: Wolfowitz inequality,

T[p](0) < p(0) exp <Z Q(y|0)log %) Pr ( Sl[z)pl] |G(c) — Gn(c)| > 6) < e 2N



From the definition ob, we see that the right hand side is used with a uniform proposal distribution, and was run for
less than or equal ta. Hence, on a sedl y of probability 10,000 steps in each iteration.
atleastl — a, we havesup, ¢ 1 |G(c) — Gn(c)| < 4. On

Ay we have thasup, . » d(p. p) < 6. Therefore, Figures 5, 6, and 7 give example simulations for the nega-

tive binomial, Poisson, and normal (known variance). For

- ~ the Poisson and normal, it can be seen that restricting the
@V, p®) < d@V,qM) +d(gW,pW) . o aeita el
) (1)) parameter to a compact interval results in accumulation o
< d+d(gp the reference prior on the boundary. Figure 8 shows the
= §+d(T[G), TP result of constraining the variance, introducing a Lagrange
< 8+ Bd(G?, p®)y multiplier into the exponential model (Blahut, 1972a). In
— 54 B85=06(1+40) this case, the limiting distribution must be Gaussian (Cover

& Thomas, 1991).
Continuing recursively in this way, we see that, with prob-
ability at leastl — «, d((j(")7p(")) <OA+[+---4p0") = 6 Summary
0y, = €. 0O
We have presented a stochastic version of the Blahut-
Arimoto algorithm applied to the problem of computing
reference priors and minimax risk. While a detailed analy-
sis of the algorithm is technical, an analysis under simpli-
fying assumptions indicates that if the number of samples
Extending the proof to the continuous case is not very diffi-grows quadratically in the iteration number, then the algo-
cult although the operatdr needs to be extended so that it rithm will closely approximate the full deterministic algo-
applies to discrete and continuous distributions. The onlyithm. The main limitation of the algorithm for computing
complication in extending the result to the MCMC case isk-reference priors is the complexity & — oo. While
that the operatot/y is more complicated. Under appro- the use of sufficient statistics simplifies the computation, it
priate mixing conditions, blocks of observations of suffi- would be interesting to explore approximation techniques
ciently large sizeB3 act essentially like an independent se- for the expectations ok * that the algorithm requires.
quence sample sizZ€/B. We expect similar results to hold
with N/B in place of N. The details will be reported else-
where.

If 5 > 1 then the theorem implies thal must be expo-
nentially large in the number of steps However, if the
algorithm starts reasonably closertt, then we would ex-
pect( < 1in which caseV = O(n?).

We have focused on reference priors and the Blahut-
Arimoto algorithm, but our methods apply to a much larger
class of algorithms. In particular, they apply directly to
] o maximum likelihood estimation for exponential models us-
5 Examples: Exponential Families ing the Darroch-Ratcliff algorithm, as well as other alter-
nating minimization algorithms.
In order to demonstrate the algorithm empirically, we . s T
present several examples of computihgeference pri- Sequential Monte Carlo and “particle filtering” procedures

ors 7, for one-dimensional exponential families. While a1r|5,9e7|n ? number ?f other %roblim aregls. Befrzum| elt_ al.
for these families the limiting Jeffreys distribution is, of ( ), for example, consider the problem of sampling

course, well-known (see Figure 3), the finite sample diS_from a posterior distribution when the data arrives sequen-

tributions are unknown except far — 1. The simula- tially, and establish a variance estimate for a sequential
tions reveal interesting properties of theeference priors sampling importance-resampling (SIR) procedure that sug-

at the boundary oB, and suggest qualitatively how the fi- gest; a quadratic samplg size bound, as in our analysis of
nite sample case converges asymptotically. We emphasiz%ecuon 5. However, their approach does not remove the

that these examples are only illustrative; the significanceoromem of accumulation of stochastic error. In future work

of the approach lies in much more complicated modelingwe plan to investigate the usefulness of the Lipschitz bound

problems in higher dimension, and potentially in the esti-aPProach for such problems.
mation of priors for structural components of models.
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Figure 2: Histograms for the iterative MCMC algorithm with one Bernoulli trial.
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Figure 3: Jeffreys priors for simple exponential families.
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Figure 4: Histograms for 20 Bernoulli trials; the limiting distributionrig, .
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Figure 5: Negative binomial, with = 5 and one trial.
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Figure 6: Poisson, rate € [0, 5], 20 trials.
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Figure 8: Normal, mean zero, constrained variamte< 1




