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Abstract

To determine the genetic etiology of complex diseases, a common study design is to recruit

affected sib/relative pairs (ASP/ARP) and evaluate their genome-wide distribution of identical by

descent (IBD)-sharing using a set of highly polymorphic markers. Other attributes or environmen-

tal exposures of the ASP/ARP, which are thought to affect liability to disease, are sometimes col-

lected. Conceivably these covariates could refine the linkage analysis. Most published methods for

ASP/ARP linkage with covariates can be conceptualized as logistic models in which IBD-status of

the ASP is predicted by pair-specific covariates. We develop a different approach to the problem

of ASP analysis in the presence of covariates, one that extends naturally to ARP under certain con-

ditions. For ASP linkage analysis, we formulate a mixture model in which a disease mutation is

segregating in only a fraction� of the sibships, with1�� sibships being unlinked. Covariate infor-

mation is used to predict membership within groups; in this report, the two groups correspond to the

linked and unlinked sibships. For an ASP with covariate(s)Z = z and multilocus genotypeX = x,

the mixture model is�(z)g(x;�)+ [1��(z)]g0(x), in whichg0(x) follows the distribution of geno-

types under the null IBD distribution andg(x;�) allows for increased IBD sharing. Two mixture

models are developed. The ‘Pre-clustering’ model uses covariate information to form probabilistic

clusters and then tests for excess IBD-sharing independent of the covariates. The ‘Cov-IBD’ model

determines probabilistic group membership by joint consideration of covariate and IBD values. Sim-

ulations show that incorporating covariates into linkage analysis can enhance power substantially. A

feature of our conceptualization of ASP linkage analysis, with covariates, is that it is apparent how

data analysts might evaluate covariates prior to the linkage analysis, thus avoiding the loss of power

described by Leal and Ott [2000] when data are stratified.

Key Words: clustering algorithms, mixing distribution, score statistics, likelihood ratio, asymptotic

distributions
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Introduction

Risch [1990a,b,c], in a seminal series of papers, laid out the theoretical basis and empirical advan-

tages of affected sib pair (ASP) and affected relative pair (ARP) methods for linkage analysis of

complex diseases. Since then, a large number of ASP/ARP studies have been initiated to determine

the genetic underpinnings of complex diseases. Unfortunately, many complex diseases have turned

out to be complex indeed, and the vast majority of these studies have produced ambiguous results.

ASP/ARP methods, while inherently robust to different disease models [Risch, 1990b], are not nec-

essarily powerful approaches for disease gene mapping. Consequently auxiliary data to improve

power should be sought whenever possible.

An excellent example of critical auxiliary data is age-of-onset for both breast cancer and Alzheimer’s

disease. Both of these diseases have early onset forms that are strongly genetic, and late onset forms

that are determined by a combination of environmental and genetic factors. If one were to analyze a

cohort of ASP who have breast cancer or Alzheimer’s disease for linkage, then age-of-onset would

be a critical covariate. In fact, if age of onset had not been taken into account, linkage to BRCA1

would have been missed because the overall LOD score was negative [Hall et al., 1990].

Type 2 diabetes and prostrate cancer offer examples in which covariates may be critical. For

type 2 diabetes, Ghosh et al. [2000] utilized fasting insulin, fasting glucose and body-mass index

(BMI) when performing an ordered-subsets analysis [Hauser et al., 1998] of genome scan data. For

prostrate cancer, Goddard et al. [2001] utilized Gleason score, age at onset, male-to-male transmis-

sion, and number of first-degree relatives to enhance their power to detect linkage; see also Schaid

et al. [2001].

In addition to the ordered-subsets analysis [Hauser et al., 1998], there are numerous other meth-

ods available to analyze ASP linkage data with covariates. The most recent work traces to Rice [Dorr

et al., 1997; Rice et al., 1999], Greenwood and Bull [1997, 1999a], Olson [1999] and Goddard et al.

[2001]. Their models share the underlying feature that IBD-status of the ASP is regressed against

the covariates; in the Discussion, we contrast the essential features of our models with their recent

work.

The framework for our models, which are developed for ASP but extend to ARP under certain

conditions, can be understood by appealing to pedigree analysis under a genetic heterogeneity model

[Smith, 1963; Ott, 1983; Matise and Weeks, 1993]. Under heterogeneity, it is assumed a certain

portion� of the pedigrees demonstrate linkage between markers in the vicinity of a disease gene.

The remaining fraction of families,1��, have the disease for some other reason. For a polymorphic
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marker in the region of interest, the likelihood of a set of pedigrees is maximized with respect to the

recombination fraction� and the heterogeneity parameter�.

For complex disease, we assume ASP in the sample differ with respect to sources of liability.

Some ASP share a particular source of liability in common - polymorphisms in the same gene - while

other ASP do not share that source of liability. By analogy to the linkage heterogeneity model, those

ASP who share a common source of liability are ’linked’ whereas the remainder are ’unlinked’.

Covariates can convey information regarding which ASP have common sources of liability and

therefore are more likely to be in the linked group. This information can be incorporated into a

test for linkage using the linkage heterogeneity framework. All ASP are used in the analysis, but

their contribution to the likelihood of linkage is weighted by their probability of being in the linked

group. Based on this principle, Schaid et al. (2001) develop a parametric mixture model; we develop

a similar approach that utilizes a non-parametric mixture model.

By analogy to the analysis of breast cancer ASP, age-of-onset for each ASP largely would deter-

mine group membership to either the linked or unlinked group; conditional on group membership,

the IBD distribution follows the null distribution (unlinked group) or an alternative distribution ex-

hibiting enriched IBD-sharing (linked group). Each ASP is assigned a probability of group mem-

bership via the mixing parameter�(Z). When examining a locus that is unlinked, the parameter of

the linked distribution can default to the unlinked status, even if the covariates separate the families

into two clusters.

To motivate our model, we continue with the example of age-of-onset for breast cancer. As

described more fully later, we have generated a portion� of ASP that exhibit age-of-onset like that

of families carrying a BRCA1-like mutation; for the remaining(1 � �) ASP, the age-of-onset is

similar to that for families not carrying early-onset mutations. From these data we drew 200 ASP

at random from our simulated data, with each ASP meeting the condition that the age-of-onset of

the proband be� 65 years. Plotting the ASP’s ages-of-onset against each other, with the smaller

value on the abscissa (Fig. 1a), we can see some tendency for ASP to cluster at earlier ages-of-onset.

The clustering is made more obvious by the symbols, which denote ASP sharing of a BRCA1-like

mutation by a ‘+’. Simple cluster analysis yields two intuitive clusters (labeled ‘*’ and ‘o’ in Fig.

1b). For the total of 200 ASP (Fig. 1a), 59 or 29.5% share a mutation at the BRCA1-like gene.

For the cluster labeled by ‘*’ in Figure 1b, which is the cluster of interest based on the biology of

breast cancer [e.g., Claus et al., 1990], the fraction of ASP sharing the mutation is 47.3% of 110

ASP. This cluster is more homogeneous, and more likely to yield a noteworthy linkage signal. In

fact, it contains all but 9 of the ASP that share the BRCA1-like mutation. Clearly age-of-onset, the
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covariate, provides a powerful signal regarding membership in the linked and unlinked group, and

this is the kind of information our mixture models exploit.

In this manuscript, we introduce two mixture models for ASP linkage analysis with covari-

ates. One model completely ignores IBD status of the ASP, using only the covariate information for

clustering; the other model uses both sources of information. Both models use multipoint IBD infor-

mation for linkage by using the output from convenient linkage packages such as GENEHUNTER

[Kruglyak et al., 1996] and ASPEX [Jorgenson et al., 1999]. Given this IBD information, imple-

menting the models is straightforward and yields quite powerful inference when the covariates carry

information about membership into “linked” and “unlinked” groups.

Definition of notation and likelihood

In this article we focus on ASP, which are assumed to be independent. In a future article we plan

to extend the model to more complex family structures. Supposen families are collected, each with

a single ASP. For each pair, we observe multilocus marker dataXi, typically from a genome scan,

and a set of covariatesZi, so that the completely observable data are(Xi; Zi), i = 1; :::; n. With

parents genotyped for a set of fully-informative markers spanning positiond, IBD-sharingYi at

positiond is also observable; however, theYi are treated as unobservable because the requirement of

fully informative, dense markers is generally not met. Writef0(y) for the trinomial model for IBD-

sharing under the null hypothesis of no linkage, which has probabilities of(1=4; 1=2; 1=4) mapping

onto IBD-status(0; 1; 2) respectively. Consistent with the Risch [1990b] parameterization, we write

the trinomial under the alternative model of linkage asf(y;�) with probabilities[1=(4�); 1=2; 1=2�

1=(4�)] mapping onto(0; 1; 2) IBD respectively [Holmans, 1993; Kong and Cox, 1997]. Here�

corresponds to Risch’s [1990a]�s, the recurrence risk ratio for the sibling of an affected individual,

defined additively. When placed in the mixture model framework we develop herein, it has the

advantage of meeting the usual triangle constraints for ASP allele sharing [Holmans, 1993].

Assume a polymorphism at positiond has an impact on liability for disease and on covariate

values, and that a fraction of the sample has the disease due to the effect of the polymorphism (in

part or in total). As described in the introduction, we will refer to the ASP as ‘linked’ whenC = 1

and ‘unlinked’ whenC = 0. ClearlyC is unobservable.

For a particular ASP, define�(z) as the probability thatC = 1 based on the observed covariates

Z. The likelihood of observingY = y for a sib pair with covariatesZ = z is h[y;�; �(z)] =

�(z)f(y;�) + [1� �(z)]f0(y).
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The likelihood for the observable quantity isp[x;�; �(z)] =
P

y Pr(X = xjY = y)h[y;�; �(z)].

The weighting functionPr(X = xjY = y) can be obtained using various programs, such as GENE-

HUNTER [Kruglyak et al., 1996] and ASPEX [Jorgenson et al., 1999], which compute the re-

verse conditional,p(yjx), assuming� = 1 [see Fig. 1, Kruglyak et al., 1996]. Thus the desired

quantity is obtained via Bayes theoremp(X = xjY = y) = p(yjx)g0(x)=f0(y), whereg0(x)

denotes the marginal probability of observing the multilocus genotype configurationX = x, as-

suming� = 1. Now the full likelihood can also be expressed as a mixture model,p[x;�; �(z)] =

�(z)g(x;�) + [1� �(z)]g0(x), in whichg(x;�) = g0(x)
P

y p(yjx)f(y;�)=f0(y).

We consider two approaches to estimation and testing. In one approach,� is estimated using the

covariates only, and clusters are determined without regard for IBD information. We call this thepre-

clusteringmodel because weights for membership into the linked/unlinked clusters are determined

before any linkage analysis. Alternatively, the likelihood could be jointly maximized with respect to

weights for group membership and IBD-sharing. We call this theCov-IBDmodel.

Testing for Linkage

Before discussing specific models and tests, it will be useful to discuss the distribution of test statis-

tics for mixture models and how it applies to our linkage setting. Testing for linkage is equivalent

to testing� = 1. Define the log-likelihood asl[�; �(z)] =
P

i log p[xi;�; �(zi)]. Under the null

hypothesis the log-likelihood reduces tol(1) =
P

i log g0(xi). Notice that the log-likelihood-ratio,

LR[�;�] =
X
i

log

(
�(zi)

"X
y

p(yjxi)
f(y;�)

f0(y)

#
+ [1� �(zi)]

)
; (1)

does not depend upongo(x).

Let �̂ be the maximum likelihood estimate (MLE) for�, which is constrained to be greater than

or equal to1. If �(z) were known, then the likelihood-ratio test is approximately distributed as a

one-sided�2

1
test, i.e., a1=2 : 1=2 mixture of a�2

0
, which is a point mass at 0, and a�2

1
. When�(z)

is unknown the likelihood ratio test does not follow the simple limiting distribution given above;

the actual null distribution involves the supremum of a Gaussian process [Ghosh and Sen, 1985,

Chakravarti et al., 1987 or Chernoff and Lander, 1995]. In practice the test has low power to detect

deviations from the null hypothesis.

A similar problem arises in the context of the linkage heterogeneity model. Both Liang and

Rathouz [1999] and Lemdoni and Pons [1995] offer solutions to obtain simple limiting distributions.

Liang and Rathouz [1999] achieve this end by simply pre-specifying the quantity� = ~�, based upon

6



considerations external to the linkage distribution. Lemdoni and Pons [1995] note that the likelihood

ratio test is well behaved provided� does not approach zero. To avoid this problem, they bound�

from below by an arbitrary constant. Even with the constraint, notice that the data can still support

the null hypothesis when̂� � 1.

Pre-clustering Model.

In this section, assume weights for group membership are determined prior to any linkage analysis.

To obtain a simple test statistic, Liang and Rathouz [1999] propose a novel score test in which they

replace� by an arbitrary pre-specified quantity,0 < ~� � 1. In a similar spirit, we propose a

related likelihood ratio test with stochastic weights~�(zi), which depend upon the covariateszi. The

likelihood ratio test,~� = 2LR[~�; ~�], is evaluated at~�, the quantity that maximizes (1) with~�(zi)

replacing�(zi). Under the null hypothesis,~� also has the one-sided�2

1
limiting distribution given

above (see Appendix).

Cov-IBD Model

With a model-based clustering approach, one could jointly maximize the likelihood with respect to

the mixing distribution and the IBD distribution. For the linkage heterogeneity model, Lemdoni and

Pons [1995] developed a modified likelihood-ratio test in whichl(�; �) is maximized over(�; �)

with the constraint that� is bounded from below by an arbitrary small positive constant. Given

this slight modification to the usual likelihood ratio test, these authors demonstrate that their test

possesses the one-sided�2

1
limiting distribution given above.

When extended to the setting of ASP with covariates,the limiting distribution becomes somewhat

more complicated. As in Schaid et al.’s [2001] linkage heterogeneity model, let�(z; �) be the

logistic probability thatC = 1 based on the (possibly vector valued) covariates,Z, and parameters

�; i.e.,�(z; �) = exp(�T z)=1 + exp(�T z).

The full log-likelihood is a function of two sets of parameters:l(�; �) =
P

i logf�(zi; �)g(xi;�)+

[1� �(zi; �)]g0(xi)g. Define(�̂; �̂) as the parameters that jointly maximize the likelihood with the

constraint,̂� � 1. The idea behind this approach is that the covariates serve to define a partition of

the families into two sets: one that fits the null distribution,g0(�); and one that permits an excess of

IBD sharing as defined byg(�;�). From this viewpoint it is clear that the Pre-clustering and Cov-

IBD approaches are somewhat different, but aiming toward the same purpose: the former clusters
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the covariates, while the latter clusters the unobservable responses using the covariates to predict

this partition.

Define�̂ = 2fl(�̂; �̂)�l(1)g as the likelihood ratio test in which� is bounded from below. Based

on our simulation study it appears that the distribution of�̂ can be well approximated in the tails by a

mixture of�2’s distribution, provided�(z; �̂) is constrained to be greater than some arbitrary small

constant. For one covariate, a reasonable approximation is1

2
�2

0
+ 1

2
�2

2
for tail probabilities 0.05-

0.0001. Likewise, for two covariates, a reasonable approximation is1

2
�2

0
+ 1

2
�2

3
for tail probabilities

0.05-0.0001. More accurate estimates of the p-values require producing simulated data under the

null (SIMULATE, see Acknowledgements for URL), while leaving the covariates unchanged.

While both the Pre-clustering model and the Cov-IBD models rely on estimated weights, the

Pre-clustering model determines these weights without the benefit of the IBD status. Consequently,

a bonus from the Cov-IBD model is that it provides estimates of the effect of covariates that are

associated with the linked group. Thus it can be used as a discovery tool for risk factors that are

genetically based as well as a discovery tool for the genetic factor itself. See Roeder et al. [1999]

and Jones et al. [2000] for an application of models of this general form in a different context. On

the other hand, the Pre-clustering method utilizes the covariate information without the cost of any

extra DF.

Because the Cov-IBD model requires the joint maximization of several parameters, this method

will potentially be subject to numerical instability unless the user exercises care. See Finch et al.

[1989] for discussion of the inherent difficulties in maximizing the likelihood for mixture models.

Simulations

This section illustrates the performance of our method and how it changes with covariate informa-

tion. To create a heuristic example, we generate data that mimics breast cancer families in some

of its features. In particular, we generate a portion� of ASP that exhibit age-of-onset like that of

families carrying a BRCA1 mutation; for the remaining(1� �) ASP, the age-of-onset is similar to

that of families not carrying early-onset mutations.

To generate ASP due to a BRCA1-like mutation or other causes, we first create parents who carry

the mutation with probability equal to 0.006. We then generate a female sib pair with appropriate

Mendelian transmission of the BRCA1-like mutation, if present, and a tightly-linked, completely

informative marker. IBD status of the sib pair at the marker is therefore completely known. The

proband is chosen randomly from the sib pair. The youngest sibling is assigned an age between20
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and80 years, using a uniform probability distribution. The other sibling is2 to 6 years older; again

the age difference is randomly generated using a uniform distribution. The pairs’ affection status and

the age of onset are determined using cumulative life probabilities of affection provided by Iverson

et al. [2000] in their Figure 1. Sibling pairs are selected if they are ASP and the proband’s age of

onset is less thanU years, whereU varied from 35-65 by intervals of 10. For each ASP, the IBD

status, the age of onset and the BRCA1 carrier status are known. Because we select on the age of

the proband, we use the age of the non-proband as the covariate.

To evaluate the effect of utilizing covariates with the Pre-clustering method, we compare this test

to a test using all the observations (i.e., the Pre-clustering test using a weight of one for all ASP).

For each of the four scenarios we simulate 5000 data sets of sample sizen = 100 and 200 ASP. We

usemclustto cluster the age of onset data and to estimate the probability each observation is in the

cluster defined by younger age of onset. Clearly the covariates substantially enhance the power of

the test to detect linkage (Table 1). From the median estimated� for each analytical method, it is

also clear that the increased power obtains by increasing the weight attributed to those sibpairs more

likely to carry the BRAC1-like mutation.

We also test the Cov-IBD method on these data sets. For numerical stability, the age of onset

covariate is standardized by subtracting the mean age for the sample and dividing by the standard

deviation. To computê�, the intercept and slope for the logistic function of age, which determine

group membership, are bounded by (-6 to 6) and (-4 to 0) respectively to ensure that the probability

of group membership is for the linked group. These intervals also bound�(zi; �) away from zero.

Our results (Table 1) show the Cov-IBD model can be slightly more powerful than the Pre-clustering

method, apparently by extracting additional information about group membership from the IBD

status of the ASP.

To evaluate the type-I error rate of the tests we simulate 10,000 data sets of sample sizen =

100 under the null hypothesis of no linked families. The Pre-clustering method clearly attains its

asymptotic distribution and the Cov-IBD method is slightly conservative (Table 2).

Discussion

We describe methods to account for covariate information in affected sib pair (ASP) linkage anal-

ysis. Paraphrasing from Dawson et al.’s [1990] pioneering work on the same subject, the principle

underlying our proposed methods is that, if ASP are drawn from the same population with respect to

disease etiologyand if the covariate(s) carry information regarding etiology, then the covariate val-
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ues of the pairs should be similar. In this instance the covariate information can be used to discover

group membership. We assume there are two groups to be discovered: ASP who have the disease in

part or in total due to a polymorphism linked to a tested marker (‘linked’ group); and ASP who have

the disease for some other reason (‘unlinked’ group).

When evaluating traits as covariates, researchers may intuitively look for a variable that demon-

strates large correlation between ASP. While this correlation can be important, our methods focus

on a different feature of the data: Does the covariate provide evidence for heterogeneity within the

collection of ASP? In fact, our methods will only prove useful when the ASP are drawn from distinct

populations, due to different etiologies, that are partially or wholly discoverable from the covariates.

To account for covariates in ASP linkage analysis, we propose two mixture models, thepre-

clusteringandCov-IBD models. The basic form of the models is identical (Eq. 1), but they differ

in some key features. In the pre-clustering model, weights of membership in the linked and un-

linked groups are determined prior to any linkage analysis. Membership information, therefore,

comes only from the values of the covariates for ASP and, possibly, auxiliary information about

those covariates. Any form of probabilistic clustering can be used to derive the weights. Auxiliary

biological information can be invaluable because it will determine which group is of interest (i.e.,

potentially linked). We propose a likelihood ratio test for linkage for the pre-clustering model, in

which the prior probability a family is in the linked subset is estimated using a clustering model on

the covariates. Adapting the results of Liang and Rathouz [1999], we show the test has a simple,

limiting distribution. Moreover, it is simple to implement, making it a natural approach for genome

scans, and gives a substantial increase in power when compared with a likelihood ratio test that does

not utilize covariate information.

The Cov-IBD model is not as simple, but it is potentially more powerful because it fully utilizes

all the information in the model; however, it does so at a cost in DF. In this model, the probability

of membership in the linked and unlinked groups is again determined by the ASP covariate values

but, unlike the pre-clustering model, IBD values also contribute information for group membership.

Group membership is taken to be a latent variable in a logistic model, with the parameters of the

logistic model estimated indirectly from the full likelihood. In practice this method has three draw-

backs: (i) the likelihood ratio test does not have a simple approximate limiting distribution for tail

probabilities; (ii) the likelihood surface may possess multiple modes, and without a careful choice

of starting values, a standard optimization routine may fail to find the global maximum; and (iii),

an arbitrary lower bound on the missing weights is required and it requires some care to implement

correctly. Chen et al. [2001] offer an alternative solution that also attempts to circumvent the dif-
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ficulties encountered when conducting a likelihood ratio test for mixture models. Their solution

involves utilizing a penalized likelihood approach. Although the penalized likelihood appears to be

simpler to implement, it does not naturally incorporate constraints that force the desired cluster to

be the “linked” group. For this reason, we do not investigate this approach in this report.

Because ASP typically do not convey substantial IBD information to discriminate between

linked and unlinked groups, we do not expect Cov-IBD to perform substantially better than the

pre-clustering model: for multiple covariates, in fact, we expect it to perform worse. On the other

hand, for family structures with far greater IBD information, such as families with more than two

affected siblings, the Cov-IBD method should perform much better. We currently are exploring the

performance of Cov-IBD for nuclear families with more than two affected individuals.

It is permissible to investigate a large number of covariates,independent of IBD information,

to detect clustering without incurring a penalty in the size of the test for linkage. It is only when

the linkage analysis itself is performed multiple times that penalties for multiple testing must be

imposed. For instance, it is permissible to perform cluster analysis with many different covariates

to identify those covariates that potentially separate the data into homogeneous groups. However,

if the linkage analysis is performed many times with either method, then a Bonferroni correction

is appropriate. For this reason we recommend users investigate the covariates graphically using the

clustering methods described for the Pre-clustering model, even if ultimately the analysis will be

conducted using the Cov-IBD model. Otherwise, the analysis may ultimately loose power [Leal and

Ott 2000].

Schaid et al. [2001] also develop a mixture model for linkage analysis with covariates. Their

parametric linkage model has similarities to our models, especially Cov-IBD. The models are not

identical, however, and are in some ways complimentary: Schaid et al. focus on a test of whether

covariates discriminate between linked and unlinked pedigrees, given linkage; whereas our models

test for linkage allowing for heterogeneity, which is determined, in part or in total, by covariate

values.

Several other methods of ASP linkage analysis with covariates are available. The most recent

work traces to Rice [Dorr et al., 1997; Rice et al., 1999], Greenwood and Bull [1997, 1999a] and

Olson [1999]. Greenwood and Bull [1997, 1999a] and Olson [1999] formulate general conditional

multinomial logistic models useful even when IBD information is incomplete. Rice et al. [1999; see

also Dorr et al., 1997] uses transmission of alleles from parent to ASP to set up a natural logistic

model. For continuous covariates, the underlying assumption of all these models is that IBD-status

varies continuously with covariate values for the ASP. This assumption will be a good approximation
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to nature in some cases, but it will be hard to know, a priori, what those cases are. For a single, binary

covariate, such as exposure status, all of these models share features with the Cov-IBD model.

The method of ordered-subsets analysis [Hauser et al., 1998] takes a less formal approach to

incorporating covariates into the analysis. With this approach families are ranked according to their

mean sibship value for the quantitative trait of interest. Starting with the family at the extreme value

for the covariate, the maximum lod score is computed for all ordered-subsets of families. The final

result is the maximum lod score for the subset yielding the maximum value of the test statistic over

all subsets. To account for multiple testing, a permutation test is performed. This approach is similar

in spirit to both methods presented in this article.

In contrast to ordered subsets, pre-clustering has the advantage of allowing for a specific com-

parison, and therefore greater power if that group is well chosen. It also has the advantage of a

known asymptotic distribution for the test statistic. Ordered subsets has the advantage of facilitated

exploration of variables in a data-driven, hypothesis generating framework, in the situation in which

a priori there is not one or even a few obvious clusterings on which to base an analysis. Cov-IBD has

the advantage of allowing for multiple covariates simultaneously, while ordered subsets can quickly

and easily be carried out without worry about convergence and boundary issues, and can be used on

general pedigrees without the need to break families into relative pairs. Further, ordered subsets can

be used easily with any additive linkage statistic.

A major strength of the mixture models we describe, at least for some covariates, is that they

approximately model the process generating the data, by focusing upon a linked subset. Another

strength of these models is that they make explicit what attributes of the data are of interest. For

these mixture models, researchers who are trying to discover the genetic basis of complex disease

should be looking for distinct groups in the data, as determined by the covariates.

Olson [1999] extends the conditional logistic framework to account for ARP as well as ASP by

assuming Risch’s [1990b] likelihood model for allele-sharing. Our mixture models also can be ex-

tended to ARP following Olson’s lead. In fact, the generalization is mathematically straightforward,

involving substitution of the null and alternative ASP allele-sharing distributions with those appro-

priate for particular ARP. The biological meaning of the extension, however, may not be so simple.

In particular, for ARP we would be cautious about covariates that are biological traits because the

trait realizations could be affected by age, period or cohort differences, which may not be easily

captured by clustering models. The same problem arises for the logistic models.

Our methods have been developed under the assumption of a single ASP per family. When

a few families in the sample have more than two affected siblings, which is a common situation,
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it seems sensible to break these families into all possible ASP and treat the pairs as if they were

independent. For the models we present, this treatment is only slightly biased [Greenwood and Bull,

1999b], so the true p-values will be very close to their nominal values. When a large fraction of the

families have more than two affected siblings, a different approach is desirable. A more ambitious

extension to our model, which we are pursuing, allows for families with arbitrary pedigrees using

a nonparametric likelihood. Clearly IBD sharing within larger families will be more informative in

determining the linkage status of families than IBD status from a single relative pair. We anticipate

that in this setting the Cov-IBD model is likely to far outperform the pre-clustering method.
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Appendix: Pre-Clustering Asymptotics
We prove that~� � �2

1
when ~� is unrestricted. The mixture of�2’s result is obtained as a

direct application of Self and Liang [1987]. Throughout we use_f to mean the derivative off

with respect to�. After plugging in~�(zi) for �, the pseudo-likelihood is of the formlogL(�) =P
i log[~�(zi)g(xi;�)+(1�~�(zi))g0(xi)]. The score for� equalsU(�) =

P
i ~�(zi) _g(xi;�)=p[xi;�; ~�(zi)]:

We require thatU(�) is an unbiased estimating equation for� when� = 1, but this follows directly

by interchanging the order of differentiation and integration:E[U(1)] = 0. The variance of the score

at� = 1 is approximately equal ton�2, where�2 is defined as�2 = 1

n

P
i ~�(zi)

2 f _g(xi; 1)=g0(xi)g
2 :

By the central limit theorem,n�1=2U(1) ! N(0; �2). We define~� as the quantity obtained from

maximizing(1), where~�(zi) replaces�(zi) in the likelihood. For the proof, we approximate~� by the

one-step estimator. Taking a Taylor series expansion ofU(1) at~�we getU(1) � U(~�)�(~��1) _U(1).

Note thatU(~�) = 0 by definition of the MLE. Because the variance of the score equals the ex-

pected value of the negative derivate of the score we obtain� _U(1) = n�2. We can conclude

n1=2(~� � 1) � n�1=2U(1)=�2. Finally, we expand~� about� = 1 to obtain the asymptotic distri-

bution of the score statistic:~� �
h
n1=2(~�� 1)

i
2

�2. It follows that when~� is restricted to� 1, ~�

converges in distribution to a one-sidedX 2

1
.
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Table 1. Power Comparisons for Likelihood Test without Preclustering (I), Likelihood

Ratio Test with Pre-clustering (II) and Cov-IBD Test (III).

Age at Method Median Median Power Power
Onsety p-value � level= 0:01 level= 0:001

n = 100
35 I 0.000 2.17 0.952 0.798

II 0.000 4.09 0.966 0.849
III 0.000 6.44 0.971 0.872

45 I 0.002 1.69 0.719 0.402
II 0.000 2.88 0.831 0.563
III 0.000 5.52 0.830 0.553

55 I 0.016 1.44 0.428 0.165
II 0.005 2.17 0.610 0.302
III 0.005 5.44 0.594 0.283

65 I 0.051 1.30 0.238 0.067
II 0.017 1.83 0.415 0.157
III 0.015 4.62 0.435 0.160

n = 200
35 I 0.000 2.14 0.999 0.994

II 0.000 4.22 1.000 0.998
III 0.000 5.96 1.000 0.998

45 I 0.000 1.67 0.964 0.842
II 0.000 2.82 0.989 0.938
III 0.000 5.41 0.992 0.945

55 I 0.001 1.44 0.771 0.478
II 0.000 2.16 0.912 0.711
III 0.000 5.33 0.925 0.744

65 I 0.010 1.30 0.497 0.207
II 0.001 1.84 0.749 0.459
III 0.001 4.45 0.735 0.495

y Maximum age at onset of proband
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Table 2. Type-I error rate of Pre-clustering and Cov-IBD tests based on 10,000 simula-

tions from sibpair samples of sizen = 100.

Age at Method Median Median Nominal Significance Level
Onsety p-value � level= 0:05 level= 0:01 level= 0:001

35 Pre-cluster 0.5 1 0.0510 0.0093 0.0009
Cov-IBD 0.5 1 0.0496 0.0081 0.0011

65 Pre-cluster 0.5 1 0.0513 0.0115 0.0014
Cov-IBD 0.5 1 0.0488 0.0092 0.0004
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Figure Captions

Figure not available on-line.

Figure 1. Simulated age-of-onset data (the covariate) for affected sib-pairs (ASP) who present with

a breast-cancer like disease. (a) ‘+’ represents ASP due to a BRAC1-like mutation, ‘-’ represent sib

pairs affected due to other causes. (b) Clustering of ASP into two groups by age-of-onset, in which

‘*’ equals the early age of onset group.
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