
1

Computing Consecutive-Type Reliabilities

Non-Recursively

Galit Shmueli

The author is with the Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213-3890 USA

(e-mail: galit.shmueli@cmu.edu)

August 29, 2001 DRAFT



2

Abstract

The reliability of consecutive-type systems has been approached from different angles. We present

a new method for deriving the generating functions and reliabilities of various consecutive-type systems.

Our method, which is based on Feller’s run theory, is easy to implement, and leads to both recursive

and non-recursive formulas for the reliability. The non-recursive expression is especially advantageous for

systems with numerous components. We show how the method can be extended for computing generating

functions and reliabilities of systems with multi-state components as well as systems with statistically

dependent components. To make our theoretical derivations practical to practitioners, we include short

computer programs that do the non-recursive computations yielding the reliabilities of such systems.

Keywords

Consecutive systems, system reliability, recurrence relations, partial fraction expansion, non-recursive

reliability.

I. Notation

S Operative component

F Failed component

p Probability of a failed component

q 1− p

Rn Reliability of a system with n components

ut,i Probability that pattern i is completed on the tth component

Ui(s) generating function of ut,i

G(s) Reliability generating function

WT Waiting time

GWT (s) Waiting time generating function

si ith root of the polynomial in the generating function’s denominator

S Number of possible states of a component

λ Probability of a failed component given that the previous component failed.

II. Introduction

Consecutive-k-out-of-n and similar systems usually have a higher reliability than series

systems, and are less expensive than parallel systems (Chao et al., 1995).

Within the consecutive-type family, we consider the reliability of systems with linearly

arranged components, which are labeled 1, 2, ..., n. Usually, the breakdown of the system is

August 29, 2001 DRAFT



3

reached by progressive transitions through several levels of deterioration (Koutras, 1996).

In other words, components break down successively, until a critical number of failed

components k causes the system to fail. We focus on three well-known consecutive-type

systems:

1. Consecutive-k-out-of-n:F systems, which fail when k consecutive components fail.

2. m-consecutive-k-out-of-n:F systems, which fail when m non-overlapping groups of k

consecutive components fail.

3. r-within-consecutive-k-out-of-n:F systems, which fail when r (r < k) components fail

within a window of k consecutive components.

These definitions describe the relation between the component failures and the system

failure. Methods for evaluating the reliability, its generating function, and long-run behav-

ior in such systems lead to either approximations or exact values. Two major approaches

have been the combinatorial approach (Derman et al., 1982; Aki & Hirano, 1984) and

the Markov chain embedding approach (Chao & Lin, 1984; Fu, 1987; Koutras, 1996). A

comprehensive review is given by Chao et al. (1995). In all cases, the expression for the

reliability is recursive in n, the number of components.

In this paper we introduce a new method for computing the exact reliability (and its gen-

erating function) for systems with on/off or multiple-outcome components. Our method

leads to both a recursive and a non-recursive expression for the reliability. We illustrate

how to obtain a recursive expression for the reliability, but focus on the method that leads

to a non-recursive expression, which is especially desirable for systems with a large number

of components.

In section III we describe the method and use it to derive expressions for the reliability

of the three consecutive-type systems mentioned above.

Next, we apply our method to systems that have components that do not exhibit a simple

on/off behavior, but rather have multiple outcomes. This means that each component can

be in one of S states (S ≥ 2). We consider the two cases where either the states are

ordered (e.g., gradual degradation), or they are mutually exclusive (e.g., different types of

failure). When S = 2 our results reduce to the ordinary on/off component structure.

Some properties of consecutive-type systems with multi-state components exist in the

August 29, 2001 DRAFT



4

literature: Haim & Porat (1991) gave mean values and bounds for consecutive-k-out-

of-n systems with ordered multi-state components. Fu (1996) used the Markov-chain

embedding method for computing probabilities that are associated with multi-state trials,

which are related to consecutive-k-out-of-n:F and m-consecutive-k-out-of-n:F systems. In

section IV we show how our method is applied to consecutive systems with these two

types of multi-state components. Section V addresses systems with statistically dependent

components. We include short computer programs that yield the reliability throughout

the different sections. Concluding remarks are given in section VI.

III. A New Method for Obtaining the Reliability of Consecutive-Type

Systems

Our method is based on Feller’s (1968) theory for runs. The method consists of five

steps, which lead to the reliability probability and generating functions:

Step 1: Specify all the component-patterns that cause the system to fail (For example, in

a simple series system, the pattern that causes the entire system to fail is a failure of a

single component).

Step 2: Write a recursive relation for the probability that each pattern is completed on

the tth component (denoted by ut).

Step 3: Multiply each equation by st and sum over t to infinity. Denote by Ui(s) =
∑∞

t=0 stut the generating function of ut, for each pattern i (i = 1, . . . , a).

Step 4: Solve the set of a linear equations to obtain Ui(s), and combine the solutions to

get the reliability generating function, G(s), by using the formula

G(s) =

[
(1− s)

(
a∑

i=1

Ui(s)− a + 1

)]−1

, (1)

where a is the number of distinct failure-causing patterns.

In some cases the reliability is the probability that a specific pattern does not occur

more than m times within n components. The generating function in such cases is closely

related to that of the waiting time for the mth occurrence of the pattern in an infinite

series of Bernoulli trials. In particular, the reliability is equal to the probability that the

mth occurrence of the pattern is after n trials. Denote by WT the waiting time for the mth

occurrence of the pattern, and its probability generating function by GWT . The relation

August 29, 2001 DRAFT



5

between the generating functions of the reliability and the waiting time is given by

G(s) =
1− GWT

1− s
(2)

(Feller, p. 265). This relation is used for systems such as the m-consecutive-k-out-of-n

system.

The procedure that was described above (steps 1-4) leads to generating functions of

a special form, namely, rational functions. In many cases this ratio of polynomials is

very complicated, and the ordinary way of obtaining the reliability by differentiation is

laborious. One alternative is to use a combinatorial method (Stanley, 1994) that leads to a

recursive formula for the reliability. However, a recursive expression means that computing

the reliability of a system with n components involves computing all the reliabilities of

similar systems with 1, 2, . . . , n − 1 components. We suggest a different technique, that

is suitable for rational functions and leads to a non-recursive expression for the system

reliability:

Step 5: Expand the rational generating function into partial fractions (Feller, 1968).

This method is especially advantageous for systems with many components, as it involves

fewer computations.

The partial fraction expansion method proceeds as follows: The generating function is

expressed as a ratio of polynomials G(s) = N(s)
D(s)

, that do not have common roots. Next,

the ratio is expanded into partial fractions:

G(s) =
∑

i

mi∑

j=1

ρij

(si − s)j
(3)

where si are the distinct roots of D(s), each of multiplicity mi, and ρij are functions of

the roots. Using an adequate infinite geometric series, G(s) can then be expressed as

G(s) =
∞∑

n=0

Rns
n (4)

where Rn is the required reliability, and is a function of si and ρij (for more details, see

appendix A and Shmueli & Cohen, 2000). The partial fraction expansion method, which

was proposed by Feller for rational generating function, did not lead to exact probabilities

due to computational difficulty. However, today many standard software packages (e.g.

August 29, 2001 DRAFT



6

Matlab, Maple, and Mathematica) have a partial fraction expansion procedure, which

yields very accurate numerical reliabilities for the above roots and the constants. We take

advantage of these advances to make Feller’s theoretical method practical.

In the next subsections we apply our method to several consecutive-type systems and

obtain an expression for their reliabilities and generating functions. We also give simple

and efficient computer programs that yield numerical results for a given system.

A. Consecutive-k-out-of-n:F Systems

In consecutive-k-out-of-n:F systems, the component-pattern that causes the system to

fail is a sequence of k failures, which we denote by FF . . . F︸ ︷︷ ︸
k times

. We denote the probability

that this pattern will be completed on the tth component by ut (t = k, . . . , n). A recurrence

relation for ut is given by (Feller, 1968):

ut = pk − put−1 − p2ut−2 − · · · − pk−1ut−k+1 (5)

where p = Pr(F ) and u0 = 1. To obtain U(s), the generating function of ut, we multiply

by st and sum from zero to infinity. The reliability generating function is then

G(s) = [(1− s)U(s)]−1 =
1− (ps)k

1− s + qpksk+1
(6)

A recursive formula for the reliability (as a function of n) can then be obtained directly,

since the generating function is a rational function (Stanley, 1994). In this case the

expression is given by

Rn =





1 , 0 ≤ n < k

1− pk , n = k

Rn−1 − qpkRn−k−1 , n > k

(7)

To obtain a non-recursive formula, which is especially advantageous for systems with

many components, we use partial fraction expansion. Expanding the generating function

(6), leads to the expression for the reliability

Rn =
k+1∑

i=1

ρi

sn+1
i

(8)

August 29, 2001 DRAFT



7

where s1, . . . , sk are the k distinct roots of the polynomial 1−s+qpksk+1 with the additional

root sk+1 = 1/p, and ρi are given by

ρi =
(1− (psi)

k)/(1− psi)

Πi6=i′(si − si′)
(9)

In practice, this can be computed directly by using a partial fraction procedure that exists

in many standard software packages. To illustrate the simplicity of such a procedure, we

present a short program in Matlab that evokes the residue function (which computes the

roots si and coefficients ρi) and uses it to compute the system reliability for a consecutive-

k-out-of-n:F system:

[R, P, K] = residue( [-p^k,zeros(1,k-1),1] ,

[(1-p)*p^k,zeros(1,k-1),-1,1] )

sum = 0;

for ( i = 1:k+1 )

sum = sum + R(i) / P(i)^(n+1) ;

end

Reliability = abs(sum) ;

(replace k, p, and n above with the required numerical values). This simple program can

be easily modified for use with any other software package that has a partial fraction

expansion procedure.

B. m-consecutive-k-out-of-n:F Systems

The reliability in this case is derived through the relation to the waiting time for the

mth pattern of k consecutive failed components in an infinite series of Bernoulli trials (for

more details, see appendix B). The generating function is given by:

G(s) =
(1− s + qpksk+1)m − (ps)mk(1− ps)m

(1− s)(1− s + qpksk+1)m
(10)

Since it is still a rational function, we can obtain the reliability using one of the two

methods discussed above. In this case it is easier to obtain a non-recursive formula, as

the roots of the denominator are 1 and the same roots as the consecutive-k-out-of-n:F

August 29, 2001 DRAFT



8

case (excepts now, they are of multiplicity m). In this case, the generating function is

expanded into an expression of the form given in (3), and the reliability is then expressed

as the sum:

Rn =
m∑

j=1

(−1)j

(
n + j − 1

n

)
k+2∑

i=1

ρij

sn+j
i

(11)

Where s1, . . . , sk+1 are the roots computed in the previous subsection, with the addition

of the root sk+2 = 1, and ρij are functions of the roots. Like in the consecutive-k-out-

of-n case, a practical method for computing this expression is by using a built-in partial

fraction expansion procedure in a standard software package. Below is an example of a

program in Matlab that yields the reliability of a m-consecutive-k-out-of-n:F system:

s = sym(’s’);

NumCoeffs = sym2poly( (1-s+(1-p)*p^k *s^(k+1))^m- (p*s)^(k*m)*(1-p*s)^m);

DenomCoeffs = sym2poly ( (1-s)*(1-s+(1-p)*p^k *s^(k+1))^m );

[R, P, K] = residue( NumCoeffs, DenomCoeffs )

sum2 = 0

for ( j = 1:m )

mult = (-1)^j * factorial(n+j-1) / (factorial(n)*factorial(j-1)) ;

sum1 = 0;

for ( i = j:m:m*(k+1)+1 )

sum1 = sum1 + R(i) / P(i)^(n+j) ;

end

sum2 = sum2 + mult * sum1 ;

end

Reliability = sum2 ;

(replace k, p, and n above with the required numerical values).

C. r-within-consecutive-k-out-of-n:F Systems

In this case, the component-types that cause the system to fail include all the possibilities

of r failed components within a “window” of k consecutive components. For simplicity,

we illustrate the method for r = 2 and k > 2 (two failed components within a window

August 29, 2001 DRAFT



9

of k consecutive components). There are k − 1 patterns that cause the system to fail:

FF, FSF, FSSF, . . . , FS...SF . We denote by ut,1, ut,k−1 the probabilities that each of the

above patterns is completed on the tth component, respectively. Recurrence relations for

these probabilities are

ut,1 = p2 − p
k−1∑

i=1

ut−1,i for n ≥ 2

ut,2 = p2q − pq
k−1∑

i=1

ut−2,i for n ≥ 3

...

ut,k−1 = p2qk−2 − pqk−1
k−1∑

i=1

ut−2,i for n ≥ k (12)

In order to find the generating functions of ut,i, which are defined as

Ui(s) =
∞∑

t=0

ut,is
t (13)

we multiply the equations in (12) by st and sum to infinity. Summing the k− 1 equations

and equating the left and right sides leads to the following equation

k−1∑

i=1

Ui(s)− (k − 1) =
p2 ∑k−2

j=1(qs)
j

1− s
− ps

k−2∑

j=1

(qs)j
k−1∑

i=1

Ui(s). (14)

Rearranging this expression and using (1) we obtain the reliability generating function:

G(s) =
1 + ps

∑k−2
j=0(qs)

j

1− qs− pqk−1sk
=

1− s(q − p)− pqk−1sk

1− 2qs + q2s2 − pqk−1sk + pqksk+1
(15)

A non-recursive expression can be computed using a partial fraction expansion software

procedure, such as the following Matlab program:

[R, P, K] = residue( [-p*(1-p)^(k-1),zeros(1,k-2),2*p-1,1] ,

[p*(1-p)^k,-p*(1-p)^(k-1),zeros(1,k-3),(1-p)^2,-2*(1-p),1] )

sum = 0;

for ( i = 1:k+1 )

sum = sum + R(i) / P(i)^(n+1) ;

end

August 29, 2001 DRAFT



10

Reliability = abs(sum) ;

(replace p, k and n above with the required numerical values).

This general method can be applied to any value of r. For the popular case k = r + 1,

it involves the solution of a linear equation system of rank (k− 1). For small to moderate

values of k, this can be done symbolically, using a symbolic software package (e.g. Maple

or Mathematica). For k > r + 1 and for large values of r and k, the numerical value of p

should be plugged into the equations, and the system solved numerically.

D. Deriving the Reliability for General Failure Patterns

The method described in the beginning of this section can be applied to any type of

failure pattern/s, which cause a system to fail. For example, for a system that fails if the

pattern FSFS occurs, we write a recurrence relation for um (the probability that FSFS

is completed on the mth component). Using the generating function of um, the reliability

generating function can be obtaind from equation (1), and an expression for the reliability

derived.

IV. Reliability of Systems with Multi-state components

Our method can be used to obtain the reliability of systems with multi-state components.

The only difference from the binary case, where each component is either on or off, is in

specifying the component-patterns that lead to the system failure (step 1).

We deal with two types of relations between the possible component states:

1. Exclusive states, where each component can be in one state only.

2. Inclusive, gradual states. Each state is included in the next state.

For simplicity, we illustrate the application of our method to a system with three-state

components. We use the following notation:

S The component is on

FI The component failed by type I failure

FII The component failed by type II failure

August 29, 2001 DRAFT



11

A. Exclusive Types of Failures

A simple example is a system with three-state components, where the temperature of the

components can vary. Within a certain temperature range the component is operational

(state 1), while above or below that, the component fails. In this case a component can

either fail because it is below the required temperature (state 2) or because it is above

the required temperature (state 3). The states are therefore mutually exclusive. Consider

a consecutive-k-out-of-n system with mutually exclusive three-state components. Here

the system fails when there exist k1 consecutive failed components of type I, or k2 failed

components of type II. Each component can either be operational (S), failed by type I

(FI) or failed by type II (FII). Denote the probabilities of a failure of type I and II by p1

and p2, respectively. The probability of an operational component is then 1− p1 − p2.

For this system, the two distinct component-patterns that cause system failure are

FIFI . . . FI︸ ︷︷ ︸
k1 times

and FIIFII . . . FII︸ ︷︷ ︸
k2 times

. Following steps 2-4, we obtain the reliability generating

function:

G(s) =

[
1− (p1s)

k1

] [
1− (p2s)

k2

]

1− s + q1p
k1
1 sk1+1 + q2p

k2
2 sk2+1 − pk1

1 pk2
2 sk1+k2 − pk1

1 pk2
2 (1− p1 − p2)sk1+k2+1

(16)

A non-recursive calculation of the system reliability, that is based on expanding (16)

into partial fractions can be obtained via a simple program, such as the following Matlab

program:

s = sym(’s’);

NumCoeffs = sym2poly( (1-(p1*s)^k1)*(1-(p2*s)^k2) );

DenomCoeffs = sym2poly ( 1-s+(1-p1)*p1^k1 *s^(k1+1) + (1-p2)*p2^k2 *s^(k2+1) -

-(p1*s)^k1 * (p2*s)^k2 - p1^k1 * p2^k2 * (1-p1-p2)^(k1+k2+1) );

[R, P, K] = residue( NumCoeffs, DenomCoeffs )

sum = 0;

for ( i = 1:k1+k2+1 )

sum = sum + R(i) / P(i)^(n+1) ;

end

August 29, 2001 DRAFT



12

Reliability = abs(sum) ;

(replace k1, k2, p1, p2, and n above with the required numerical values).

This method is general and can be applied to various consecutive-type systems, with

components that can have any fixed number of mutually exclusive states.

B. Gradual Degradation

A simple example for this type of system is one where each component can be perfectly

operative (S), have a minor failure (FI), or a major failure (FII). Each of these three

states is considered to be inclusive of the previous state. In other words, the degree of the

failure is gradual, from non-existent to totally failed with a medium in-between state.

Let us assume that the system fails following a run of k2 type II (major) failed com-

ponents, or a run of k1 failed components of either type I or II (major/minor). In many

cases it makes sense to assume that k1 > k2. For example, a system with k1 = 3 and

k2 = 2 fails iff it consists of two successive major-failed components (FIIFII), or three

consecutive failed components of any type (FIFIFI , FIFIFII ,FIFIIFI ,or FIIFIFI). Note

that combinations such as FII , FII , FI are excluded from the second set. Since these five

patterns are mutually exclusive, step 1 is completed. Following steps 2,3, and 4 will lead

to the generating function and reliability of this system.

V. Dependent Failures of Components

The five-step method described in Section III can be adapted for cases where failures of

components are statistically dependent on the state of preceding components. Except for

step 2, i.e. creating the recurrence relations, the rest of the steps remain unchanged. To

illustrate how the dependence in incorporated into the recurrence relations, we look at a

single-step Markovian dependence. This means that the failure of component t depends

on the state of component t−1. Denoting by Xt the state of the tth component, we specify

the conditional probability of a failure by

Pr(Xt = F | Xt−1 = F ) = λ (17)

and the unconditional probability of a failure by Pr(Xt = F ) = p. For a Consecutive-k-

out-of-n:F System, we already showed that the failure causing pattern is a sequence of k

August 29, 2001 DRAFT



13

successive failures. The recurrence relation for ut in this case is then

ut = pλk−1 − λut−1 − λ2ut−2 − · · · − λk−1ut−k+1 (18)

Following steps 3 and 4 leads to the generating function

G(s) =
1− (λs)k

1− s + (p− λ)λk−1sk + qλksk+1
(19)

which can then be expanded to obtain the probability function. Note that when λ = p

this reduces to the statistically independent case.

The same method can be used for dependence of higher order, by defining the relevant

conditional probabilities and incorporating them into the recurrence relations.

VI. Concluding Remarks

We have presented a new method that gives exact expressions for the reliability and

its generating functions for consecutive-type systems. The method consists of creating

recurrence relations and solving a set of linear equations that lead to an expression for

the reliability generating function. The reliability is then obtained by partial fraction

expansion, which is a standard procedure in many software packages. The short programs

included in this paper are written in Matlab, but they are simple enough to be modified

into other languages.

Using a non-recursive formula for computing the reliability of a consecutive-type system

is advantageous over recursive formulas for large systems. In comparison to the n (=num-

ber of components) computations that the recursive formulas require, the non-recursive

formula only requires the computation of the roots of a polynomial of order k. In large

systems, the magnitude of n is much larger than that of k.

Our method can be used for many generalizations, including systems with multi-state

components or statistically dependent components. The five-step reasoning is general and

suitable for any type of component-patterns that cause system failure.

Appendix

I. Expanding G(s) into partial fractions

In order to expand a rational generating function into partial fractions, it is first ex-

pressed as an infinite geometric series. If the roots of the denominator are of multiplicity

August 29, 2001 DRAFT



14

1, then G(s) is expressed as the sum:

G(s) =
∑

i

ρi

(si − s)
=

∑

i

ρi

si

· 1

1− s/si

=
∑

i

ρi

si

∞∑

n=0

(
si

s

)n

=
∞∑

n=0

∑

i

ρi

sn+1
i

sn (20)

Since the reliability generating function is defined as
∑∞

n=0 Rnsn, using (20) the reliability

itself is given by

Rn =
∑

i

ρi

sn+1
i

(21)

If the roots of the denominator are of multiplicity m > 1, then the generating function

is expanded using a different geometric series:

G(s) =
∑

i

m∑

j

ρij

si − s)j
=

∑

i

m∑

j=1

(−1)j · ρij

sj
i

· 1

(1− s/si)j
= (22)

=
∑

i

m∑

j=1

(−1)j · ρij

sj
i

∞∑

n=0

(
n + j − 1

n

) (
si

s

)n

= (23)

=
∞∑

n=0

m∑

j=1

(−1)j

(
n + j − 1

n

) ∑

i

ρij

sn+j
i

· sn

which then gives the reliability

Rn =
m∑

j=1

(−1)j

(
n + j − 1

n

) ∑

i

ρij

sn+j
i

(24)

II. The relation between waiting times and the m-consecutive-k-out-of-n

system reliability

To obtain the reliability generating function for the m-consecutive-k-out-of-n:F system,

we use a shortcut that is based on the relations between two sets of generating functions.

First, we find the generating function for the waiting time for the first sequence of k

consecutive failures in a Bernoulli series (GWT (s)), using the relation (2) to the consecutive-

k-out-of-n reliability generating function (G(s)):

GWT (s) = 1− (1− s)G(s) =
(ps)k(1− ps)

1− s + qpksk+1
(25)

Next, we relate this generating function to that for the waiting time for the mth sequence

of k consecutive failures in a infinite series of Bernoulli trials, denoted by Gm
WT (s). Since

the waiting time for the mth sequence is a convolution of m waiting times for the first

such sequence, the relation between the two generating functions is

Gm
WT (s) = [GWT (s)]m (26)

August 29, 2001 DRAFT



15

Finally, the the m-consecutive-k-out-of-n:F reliability is related to waiting time for the

mth sequence of k consecutive failures in Bernoulli trials through (2), thus yielding the

expression in (10):

G(s) =
1− Gm

WT (s)

1− s
=

(1− s + qpksk+1)m − (ps)mk(1− ps)m

(1− s)(1− s + qpksk+1)m
(27)

References

[1] Aki, S. & Hirano, K., “Lifetime Distribution and Estimation Problems of Consecutive-k-out-of-n:F

Systems”, Ann. Inst. Statist. Math., 48,no. 1, pp. 185-199, 1996.

[2] Chao, M. T., Fu, J. C., and Koutras, M. V., “Survey of Reliability Studies of Consecutive-k-out-

of-n:F & Related Systems”, IEEE Transactions on Reliability, 44,no. 1, pp. 120-127, 1995.

[3] Chao, M. T. and Lin, G. D., “Econimical Design of Large Consecutive-k-out-of n:F Systems,” IEEE

Transactions on Reliability, vol. R-33, pp. 411-413, 1984.

[4] Derman, C., Liberman, G. J., and Ross, S., “On the Consecutive-k-out-of n:F System,” IEEE

Transactions on Reliability, vol. R-31, pp. 57-63, 1982.

[5] Feller, W., “An Introduction to Probability Theory and Its Applications”, vol. I, John Wiley &

Sons, Inc., 1968.

[6] Fu, J. C., “On Reliability of a Large Consecutive-k-out-of-n:F System with (k-1)-step Markov

Dependence,” IEEE Transactions on Reliability, vol. R-36, No. 1, pp. 75-77, 1987.

[7] Fu, J. C., “Distribution Theory of Runs and Patterns with a Sequence of Multi-State Trials,”

Statistica Sinica , vol.6, pp. 957-974, 1996.

[8] Koutras, M. V., “On a Markov Chain Approach for the Study of Reliability Structures”, J. Appl.

Prob., 33, pp. 357-367, 1996.

[9] Shmueli, G. and Cohen, A., “Run-Related Probability Functions Applied to Sampling Inspection,”

Technometrics, 42, no. 2, pp. 188-202, 2000.

[10] Stanley, R. P., Enumerative Combinatorics, (Vol. I), Wadsworth & Brooks/Cole Advanced Books

& Software, 1994.

Galit Shmueli is a Visiting Assistant Professor at the Department of Statistics at Carnegie-

Mellon University, Pittsburgh, PA. She received her Ph.D. in Statistics from the Israel Institute

of Technology in 2000. Her research interests include industrial applications that are based

on runs, and creating Web applications for statistical methods that are used in industry.

August 29, 2001 DRAFT


