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oneered by Benjamini and Hochberg (1995). We develop a frame-
work in which the False Discovery Proportion (FDP) – the num-
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treated as a stochastic process. After obtaining the limiting dis-
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investigate methods for estimating the p-value distribution.
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Notation Index

The following summarizes the most common recurring notation and indicates

where each symbol is defined.

Symbol Description Section Page

m Total number of tests performed 2.1 5

Pm Vector of p-values (P1, . . . , Pm) 2.2 6

Hm Vector of hypothesis indicators (H1, . . . , Hm) 2.2 6

P(i) The ith smallest p-value; P(0) ≡ 0 9

M0 Number of true null hypotheses 2.2 7

M1 Number of false null hypotheses 2.2 7

a Probability of a false null 2.2 6

F, f Alternative p-value distribution (cdf,pdf) 2.2 7

G, g Marginal distribution (cdf, pdf) of the Pis 2.2 7

Ĝ Generic Estimator of G 3 11

Gm Empirical cdf of Pm 3 11

U Uniform cdf 2.2 7

Γ FDP process 2.5 9

Ξ FNP process 2.5 9

εm Dvoretzky-Kiefer-Wolfowitz nghd. radius 13 11

Q Asymptotic mean of Γ 2.5 10

Q̃ Asymptotic mean of Ξ 2.5 10

We use 1{. . .} and P{. . .} to denote respectively the indicator and proba-

bility of the event {. . .}; subscripts on P specify the underlying distributions

when necessary. We also use E to denote expectation, and Xm Ã X to de-

note that Xm converges in distribution to X. We use zα to denote the upper

α-quantile of a standard normal.

3



1 Introduction

Among the many challenges raised by the analysis of large data sets is the

problem of multiple testing. In some settings, it is not unusual to test thou-

sands or even millions of hypotheses. Examples include function magnetic

resonance imaging, microarray analysis in genetics, and source detection in

astronomy. Traditional methods that provide strong control of familywise

error often have low power and can be unduly conservative in many applica-

tions.

Benjamini and Hochberg (BH 1995) pioneered an alternative. Define the

False Discovery Proportion (FDP) to be the number of false rejections di-

vided by the number of rejections. The False Discovery Rate (FDR) is the

expected FDP. BH (1995) provided a distribution-free, finite sample method

for choosing a p-value threshold that guarantees that the FDR is less than a

target level α. The same paper demonstrated that the BH procedure is often

more powerful than traditional methods that control familywise error.

Recently, there has been much further work on FDR. We shall not attempt

a complete review here but mention the following. Benjamini and Yekutieli

(2001) extended the BH method to a class of dependent tests. Efron, Tibshi-

rani and Storey (2001) developed an empirical Bayes approach to multiple

testing and made interesting connections with FDR. Storey (2001, 2002) con-

nected the FDR concept with a certain Bayesian quantity and proposed a

new FDR method which has higher power than the original BH method.

Finner and Roters (2002) discuss the behavior of the expected number of

type I errors. Sarkar (2002) considers a general class of stepwise multiple

testing methods.

Genovese and Wasserman (2002) showed that, asymptotically, the BH

method corresponds to a fixed threshold method that rejects all p-values less

than a threshold u∗, and they characterized u∗. They also introduced the False

Nondiscovery Rate (FNR) and found the optimal threshold t∗ in the sense of

minimizing FNR subject to a bound on FDR. The two thresholds are related

by u∗ < t∗, implying that BH is (asymptotically) conservative. Abramovich,

Benjamini, Donoho and Johnstone (2000) established a connection between

FDR and minimax point estimation. (An interesting open question is whether
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the asymptotic results obtained in this paper can be extended to the sparse

regime in the aforementioned paper where the fraction of alternatives tends

to zero.)

In this paper, we develop some large-sample theory for false discovery

rates and present new methods for controlling quantiles of the false discovery

distribution. An essential idea is to view the proportion of false discoveries as

a stochastic process indexed by the p-value threshold. The problem of choos-

ing a threshold then becomes a problem of controlling a stochastic process.

Although this stochastic process is not observable, we will show that it is

amenable to inference.

The main contributions of the paper include the following:

1. Development of a stochastic process framework for FDP;

2. Investigation of estimators of the p-value distribution, even in the non-

identifiable case;

3. Proof of the asymptotic validity of a class of methods for FDR control;

4. Two methods for constructing confidence envelopes for the False Dis-

covery process and the number of false discoveries.

5. New methods, which we call confidence thresholds, for controlling quan-

tiles of the false discovery distribution.

2 Preliminaries

2.1 Notation

Consider a multiple testing situation in which m tests are being performed.

Suppose M0 of the null hypotheses are true and M1 = m−M0 null hypotheses

are false. We can categorize the m tests in the following 2×2 table on whether

each null hypothesis is rejected and whether each null hypothesis is true:

H0 Not Rejected H0 Rejected Total

H0 True M0|0 M1|0 M0

H0 False M0|1 M1|1 M1

Total m − R R m
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We define the False Discovery Proportion (FDP) and the False Nondiscovery

Proportion (FNP) by

FDP =


M1|0
R

if R > 0

0, if R = 0,

(1)

and

FNP =


M0|1

m − R
if R < m

0 if R = m.

(2)

The first is the proportion of rejections that are incorrect, and the second

– the dual quantity – is the proportion of non-rejections that are incorrect.

Notice that FDR = E (FDP), and following Genovese and Wasserman (2002),

we define FNR = E (FNP). See also Yekutieli and Benjamini (1999). Storey

(2002) considers a different definition of FDR, called pFDR for positive FDR,

by conditioning on the event that R > 0 and discusses the advantages and

disadvantages of this definition.

2.2 Model

Let Hi = 0 (or 1) if the ith null hypothesis is true (false) and Let Pi denote

the ith p-value. Define vectors Pm = (P1, . . . , Pm) and Hm = (H1, . . . , Hm).

Let P(1) < · · · < P(m) denote the ordered p-values, and define P(0) ≡ 0.

In this paper, we use a random effects (or hierarchical) model as in Efron

et al (2001). Specifically, we assume the following for 0 ≤ a ≤ 1:

H1, . . . , Hm ∼ Bernoulli(a)

Ξ1, . . . , Ξm ∼ LF
Pi|Hi = 0, Ξi = ξi ∼ Uniform(0, 1)

Pi|Hi = 1, Ξi = ξi ∼ ξi

where Ξ1, . . . ,Ξm denote distribution functions and LF is an arbitrary prob-

ability measure over a class of distribution functions F . It follows that the

6



marginal distribution of the p-values is

G = (1 − a)U + aF (3)

where U(t) denotes the Uniform(0,1) cdf and F (t) =
∫

ξ(t)dLF(ξ). Except

where noted, we assume that G is strictly concave with density g = G′.

Remark 2.1. A more common approach in multiple testing is to use

a conditional model in which H1, . . . , Hm are fixed, unknown binary values.

The results in this paper can be cast in a conditional framework but we find

the random effects framework to be more intuitive.

Define M0 =
∑

i(1−Hi) and M1 =
∑

i Hi. Hence, M0 ∼ Binomial(m, 1 − a)

and M1 = m − M0.

2.3 The Benjamini-Hochberg and Plug-in Methods

The Benjamini-Hochberg (BH) procedure is a distribution free method for

choosing which null hypotheses to reject while guaranteeing that FDR ≤ α

for some pre-selected level α. The procedure rejects all null hypotheses for

which Pi ≤ P(RBH), where

RBH = max

{
0 ≤ i ≤ m : P(i) ≤ α

i

m

}
. (4)

BH (1995) proved that this procedure guarantees

E (FDP | M0) ≤ M0

m
α ≤ α, (5)

regardless of how many nulls are true and regardless of the distribution of the

p-values under the alternatives. (When the p-value distribution is continuous,

BH shows that the first inequality is an equality.) In the context of our model,

this result becomes

FDR ≤ (1 − a)α ≤ α. (6)

Genovese and Wasserman (2002) showed that, asymptotically, the BH

procedure corresponds to rejecting the null when the p-value is less than u∗

where u∗ is the solution to the equation G(u) = u/α, in the notation of the
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current paper. This u∗ satisfies α/m ≤ u∗ ≤ α for large m, which shows that

the BH method is intermediate between Bonferroni (corresponding to α/m)

and uncorrected testing (corresponding to α). They also showed that u∗ is

strictly less than the optimal p-value cutoff.

Storey (2002) found an estimator F̂DR(t) of FDR for fixed t. One can then

define a threshold T by finding the largest t such that F̂DR(t) ≤ α. Indeed,

this is suggested in equation (13) of Storey (2002), although he does not

explicitly advocate this as a formal procedure. It remains an open question

whether FDR(T ) ≤ α. We address this question asymptotically in Section 5.

The threshold T chosen this way can also be viewed as a plug-in estimator.

Let

t(a,G) = sup

{
t :

(1 − a)t

G(t)
≤ α

}
. (7)

Suppose we reject whenever the p-value is less than t(a,G). From Genovese

and Wasserman (2002) it follows that, asymptotically, the FDR is less than

α. The intuition for (7) is that (1 − a)t/G(t) is, up to an exponentially

small term, the FDR at a fixed threshold t. Moreover, if G is concave, this

threshold has smallest asymptotic FNR among all procedures with FDR less

than or equal to α (cf. Genovese and Wasserman, 2002). We call t(a,G) the

oracle threshold. The standard plug-in method is to estimate the functional

t(a,G) by T = t(â, Ĝ) where â and Ĝ are estimators of a and G. Let Gm

be the empirical cdf of Pm. Storey showed that TBH = t(0, Gm) yields the

BH threshold. Storey further showed that the threshold T = t(â0, Gm) has

higher power than the BH threshold, where

â0 = max

(
0,

Gm(t0) − t0
1 − t0

)
and t0 ∈ (0, 1). Clearly, other estimators of a and G are possible and we shall

call any threshold of the form T = t(â, Ĝ) a plug-in threshold.

We describe alternate estimators of a in Section 3.2. Storey (2002) pro-

vided simulations to show that the plug-in procedure has good power but did

not provide a proof that it controls FDR at level α. We settle this question

in Section 5 where we show that under weak conditions on â the procedure

asymptotically controls FDR at level α.
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2.4 Multiple Testing Procedures

A multiple testing procedure T is a mapping taking [0, 1]m into [0, 1], where

it is understood that the null hypotheses corresponding to all p-values less

than T (Pm) are rejected. We often call T the threshold.

Let α, t ∈ [0, 1] and 0 ≤ r ≤ m, and recall that P(0) ≡ 0. Let Ĝ

and ĝ be generic estimates of G and g = G′, respectively. Similarly, let

P̂ {H = h|P = t} denote an estimator of P{H = h|P = t}.
Some examples of multiple testing procedures will illustrate the generality

of the framework:

Uncorrected testing TU(Pm) = α

Bonferroni TB(Pm) = α/m

Fixed threshold at t Tt(P
m) = t

Benjamini-Hochberg TBH(Pm) = sup{t : Gm(t) = t/α} = P(RBH)

Oracle TO(Pm) = sup{t : G(t) = (1 − a)t/α}
Plug In TPI(P

m) = sup{t : Ĝ(t) = (1 − â)t/α}
First r T(r)(P

m) = P(r)

Bayes’ Classifier TBC(Pm) = sup{t : ĝ(t) > 1}
Regression Classifier TReg(P

m) = sup{t : P̂{H1 = 1 | P1 = t} > 1/2}

2.5 FDP and FNP as Stochastic Processes

An important idea that we use throughout the paper is that the FDP, re-

garded as a function of the threshold t, is a stochastic process. This observa-

tion is crucial for studying the properties of procedures.

Define the FDP process

Γ(t) ≡ Γ(t, Pm, Hm) =

∑
i 1{Pi ≤ t} (1 − Hi)∑

i 1{Pi ≤ t} + 1{all Pi > t} , (8)

where the last term in the denominator makes Γ = 0 when no p-values are

below the threshold. Also define the FNP process

Ξ(t) ≡ Ξ(t, Pm, Hm) =

∑
i 1{Pi > t} Hi∑

i 1{Pi > t} + 1{all Pi ≤ t} . (9)

9



The FDP and FNP of a procedure T are Γ(T ) ≡ Γ(T (Pm), Pm, Hm) and

Ξ(T ) ≡ Ξ(T (Pm), Pm, Hm). Let

Q(t) = (1 − a)
t

G(t)
(10)

Q̃(t) = a
1 − F (t)

1 − G(t)
. (11)

The following lemma is a corollary of Theorem 1 in Storey (2002). We

provide a proof to make this connection explicit.

Lemma 2.1. Under the mixture model, for t > 0,

E Γ(t) = Q(t) (1 − (1 − G(t))m)

E Ξ(t) = Q̃(t) (1 − G(t)m)

The second terms on the right-hand side of both equations differ from 1 by

an exponentially small quantity.

Proof. Let Im = (I1, . . . , Im) where Ii = 1{Pi ≤ t}. Note that if i 6= j,

then Hi is independent of Ij given Im. From Bayes’ theorem,

P{1 − Hi = 1 | Im} = P{Hi = 0 | Im}
=

P{Hi = 0}P{Pi ≤ t | Hi = 0}
P{Pi ≤ t} Ii +

P{Hi = 0}P{Pi > t | Hi = 0}
P{Pi > t} (1 − Ii)

=
(1 − a)t

G(t)
Ii +

(1 − a)(1 − t)

1 − G(t)
(1 − Ii)

= Q(t)Ii +
(
1 − Q̃(t)

)
(1 − Ii).

Thus, E (Ii(1 − Hi) | Im) = Q(t)Ii and E ((1 − Ii)Hi | Im) = Q̃(t)(1 − Ii). It

follows that

E (Γ(t) | Im) = Q(t)

∑
i

Ii∑
i

Ii +
∏

i

(1 − Ii)
= Q(t) 1{some Pi ≤ t}
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E (Ξ(t) | Im) = Q̃(t)

∑
i

(1 − Ii)∑
i

(1 − Ii) +
∏

i

Ii

= Q̃(t) 1{some Pi > t} .

Hence, taking expectations,

E Γ(t) = Q(t) (1 − (1 − G(t))m)

E Ξ(t) = Q̃(t) (1 − G(t)m) ,

which proves the claim. ¤

One of the essential difficulties in studying a procedure T is that Γ(T ) is

the evaluation of the stochastic process Γ(·) at a random variable T . Both

depend on the observed data, and in general they are correlated. In particular,

if Q̂(t) estimates FDR(t) well at a each fixed t it does not follow that Q̂(T )

estimates FDR(T) well at a random T . The stochastic process point of view

provides a suitable framework for addressing this problem.

3 Estimating the P-value Distribution

Recall that, under the mixture model, P1, . . . , Pm have cdf G(t) = (1−a) t+

a F (t). Let Ĝ denote an estimator of G. Let Gm denote the empirical cdf of

Pm. We will use the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality: for any

x > 0,

P{||Gm(t) − G(t)||∞ > x} ≤ 2e−2mx2

(12)

where ||F − G||∞ = sup0≤t≤1 |F (t) − G(t)|. Given α ∈ (0, 1), let

εm ≡ εm(α) =

√
1

2m
log

(
2

α

)
(13)

so that, from DKW, P{||Gm(t) − G(t)||∞ > εm} ≤ α.

Several improvements on Gm are possible. Since G ≥ U , we replace any

estimator Gm with max{Gm(t), t}. When G is assumed to be concave, a

better estimate of G is the least concave majorant (lcm) GLCM,m defined
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to be the infimum of the set of all concave cdf’s lying above Gm. Most p-

value densities in practical problems are decreasing in p which implies that

G is concave. We can also replace GLCM,m with max{GLCM,m(t), t}. The DKW

inequality and the standard limiting results still hold for the modified versions

of both estimators. We will thus use Ĝ to denote the modified estimators in

either case. We will indicate explicitly if concavity is required or if the LCM

estimator is proscribed.

Once we obtain estimates â and Ĝ, we define

Q̂(t) =
(1 − â)

Ĝ(t)
. (14)

3.1 Identifiability and Purity

Before discussing the estimation of a, it is helpful to first discuss identifi-

ability. For example, if a is not identifiable, there is no guarantee that the

estimate used in the plug-in method will give good performance. The results

in the ensuing subsections show that despite not being completely identified,

it is possible to make sensible inferences about a.

Say that F is pure if ess inft f(t) = 0 where f is the density of F . Let OF

be the set of pairs (b,H) such that b ∈ [0, 1], H ∈ F and F = (1− b)U + bH.

F is identifiable if OF = {(1, F )}.
Define

ζF = inf{b : (b,H) ∈ OF},
F =

F − (1 − ζF )U

ζF

,

aF = a ζF .

We will often drop the subscript F on aF and ζF . Note that G can be de-

composed as

G = (1 − a)U + a F

= (1 − a)U + a[(1 − ζ)U + ζF ]

= (1 − aζ)U + a ζF

= (1 − a)U + a F .
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Purity implies identifiability but not vice versa. Consider the following ex-

ample. Let F be the Normal (θ,1) family and consider testing H0 : θ = 0

versus H1 : θ 6= 0. The density of the p-value is

fθ(p) =
1

2
e−nθ2/2

[
e−

√
nθΦ−1(1−p/2) + e

√
nθΦ−1(1−p/2)

]
.

Now, fθ(1) = e−nθ2/2 > 0 so this test is impure. However, the parametric

assumption makes a and θ identifiable when the null is false. It is worth

noting that fθ(1) is exponentially small in n. Hence, the difference between a

and a is small. Even when X has a t-distribution with ν degrees of freedom

fθ(1) = (1+nθ2/ν)−(ν+1)/2. Thus, in practical cases, a−a will be quite small.

On the other hand, one sided tests for continuous exponential families are

pure and identifiable.

The problem of estimating a has been considered by Efron et al (2001)

and Storey (2002) who also discuss the identifiability issue. In particular,

Storey notes that G(t) = (1 − a)t + aF (t) ≤ (1 − a)t + a for all t. It then

follows that, for any t0 ∈ (0, 1),

0 ≤ a0 ≡ G(t0) − t0
1 − t0

≤ a ≤ a ≤ 1. (15)

Thus, an identifiable lower bound on a is a0. The following result gives precise

information about the best bounds that are possible.

Proposition 3.1. If F is absolutely continuous and stochastically dom-

inates U , then

ζ = 1 − inf
t

F ′(t) and a = 1 − inf
t

G′(t).

If F is concave then the infima are achieved at t = 1. For any b ∈ [ζ, 1] we

can write G = (1 − ab)U + abFb where Fb = (F − (1 − b)U)/b is a cdf and

F ≤ Fb.
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3.2 Estimating a

Here we discuss estimating a. Related work includes Schweder and Spjøtvoll

(1982), Hochberg and Benjamini (1990), Benjamini and Hochberg (2000),

and Storey (2002).

We begin with a uniform confidence interval for a.

Theorem 3.1. Let

a∗ = max
t

Ĝ(t) − t − εm

1 − t
. (16)

Then [a∗, 1] is a uniform, 1 − α confidence interval for a, that is,

inf
a,F

Pa,F{a ∈ [a∗, 1]} ≥ 1 − α, (17)

and if one restricts Ĝ to be the empirical distribution function, then for each

(a, F ) pair

Pa,F{a ∈ [a∗, 1]} ≤ 1 − α + 2
∞∑

j=1

(−1)j+1
(α

2

)j2

+ O

(
(log m)2

√
m

)
, (18)

where the remainder term may depend on a and F . Because a ≥ a, [a∗, 1] is

a valid, finite-sample 1 − α confidence interval for a as well.

Proof. The inequality (17) follows immediately from DKW because

G(t) ≥ Ĝ(t) − εm for all t with probability at least 1 − α. The sum on

the right-hand side of (18) follows from the closed-form limiting distribution

of the Kolmogorov-Smirnov statistic, and the order of the error follows from

the Hungarian embedding. To see this, note that

a < a∗ =⇒ a
√

m < max
t

√
m

Gm(t) − G(t)

1 − t
+
√

m
G(t) − t

1 − t
− εm

√
m

1 − t

=⇒ a
√

m < max
t

√
m

Gm(t) − G(t)

1 − t
+
√

ma − εm

√
m

1 − t

=⇒ 0 < max
t

√
m

Gm(t) − G(t)

1 − t
− εm

√
m

1 − t

=⇒ 0 < max
t

√
m (Gm(t) − G(t)) − εm

√
m

=⇒ ‖√m (Gm(t) − G(t)) ‖∞ > εm

√
m.
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Hence,

P{a < a∗} ≤ P
{‖√m (Gm(t) − G(t)) ‖∞ > εm

√
m

}
. (19)

Next, apply the Hungarian embedding (van der Vaart 1998, p. 269):

lim sup
m→∞

√
m

(log m)2
‖√m (Gm − G) − Bm‖∞ < ∞ a.s.,

for a sequence of Brownian bridges Bm. Recall the distribution of the Kolmogorov-

Smirnov statistic:

P{‖B‖∞ > x} = 2
∞∑

j=1

(−1)j+1e−2j2x2

,

for a generic Brownian bridge B. The result follows by taking Taking x =√
mεm. In the concave case, the lcm can be substituted for Ĝ and the result

still holds since, by Marshall’s lemma, ‖ĜLCM,m − G‖∞ ≤ ‖Ĝm − G‖∞. ¤

Proposition 3.2 (Storey’s Estimator). Fix t0 ∈ (0, 1) and let

â0 =

(
Gm(t0) − t0

1 − t0

)
+

.

If G(t0) > t0,

â0
P→ G(t0) − t0

1 − t0
≡ a0 ≤ a,

and √
m

(
â0 − G(t0) − t0

1 − t0

)
Ã N

(
0,

G(t0)(1 − G(t0))

(1 − t0)2

)
.

If G(t0) = t0, √
mâ0 Ã 1

2
δ0 +

1

2
N+

(
0,

t0
1 − t0

)
,

where δ0 is a point-mass at zero and N+ is a positive-truncated Normal.

A consistent estimate of a is available if we assume weak smoothness con-

ditions on g. For example, one can use the spacings estimator of Swanepoel

(1999) which is of the form 2rm/(mVm) where rm = m4/5(log m)−2δ and Vm

is a selected spacing in the order statistics of the p-values.
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Theorem 3.2. Assume that at the value t where g achieves its minimum

g′′ is bounded away from 0 and ∞ and Lipschitz of order λ > 0. For every

δ > 0, there exists an estimator â such that

m(2/5)

(log m)δ
(â − a) Ã N(0, (1 − a)2).

Proof. Let â be the estimator defined in Swanepoel (1999) with rm =

m4/5(log m)−2δ and sm = m4/5(log m)4δ. The result follows from Swanepoel

(1999, Theorem 1.3). ¤

Remark 3.1. An alternative estimator is â = 1− mint ĝ(t) where ĝ is a

kernel estimator.

Now suppose we assume only that G is concave and hence, g = G′ is

decreasing. Hengartner and Stark (1995) derived a finite-sample confidence

envelope [γ−(·), γ+(·)] for a density g assuming only that it is monotone.

Define

âHS = 1 − min
{
h(1) : γ− ≤ h ≤ γ+

}
.

Theorem 3.3. If G is concave and g = G′ is Lipschitz of order 1 in a

neighborhood of 1, then (
n

log n

)1/3

(âHS − a)
P→ 0.

Also, [1− γ+(1), 1− γ−(1)] is a 1−α confidence interval for a for 0 ≤ α ≤ 1

and all m. Further,

inf
a,F

P
{
a ∈ [1 − γ+(1), 1]

} ≥ 1 − α

where the infimum is over all concave F ’s.

Proof. Follows from Hengartner and Stark (1995). ¤

16



3.3 Estimating F

It may be useful in some cases to estimate the alternative mixture distribution

F . There are many possible methods; we consider here projection estimators

defined by

F̂m = arg min
H∈F

||Ĝ − (1 − â)U − âH||∞, (20)

where â is an estimate of a. The appendix gives an algorithm to find F̂m.

It is helpful to consider first the case where a is known, and here we

substitute a for â in the definition of F̂m.

Theorem 3.4. Let

F̂m = arg min
H∈F

||Ĝ − (1 − a)U − aH||∞.

Then,

||F − F̂m||∞ ≤ 2||G − Ĝ||∞
a

a.s.→ 0.

Proof.

a||F − F̂m||∞ = ||aF − aF̂m||∞
= ||(1 − a)U + aF − (1 − a)U − aF̂m||∞
= ||G − (1 − a)U − aF̂m||∞
= ||G − Ĝ + Ĝ − (1 − a)U − aF̂m||∞
≤ ||Ĝ − G||∞ + ||Ĝ − (1 − a)U − aF̂m||∞
≤ ||Ĝ − G||∞ + ||Ĝ − (1 − a)U − aF ||∞
= ||Ĝ − G||∞ + ||Ĝ − G||∞.

The last statement follows from the uniform consistency of Ĝ. ¤

When a is unknown, the projection estimator F̂ is consistent whenever

we have a consistent estimator of a. Recall that in the identifiable case, a = a

and F = F .

17



Theorem 3.5. Let â be a consistent estimator of a. Then,

||F̂m − F ||∞ ≤ ||Ĝ − G||∞ + |â − a|
a

P→ 0.

Proof. Let δm = ||Ĝ − (1 − â)U − âF̂ ||∞. Since F̂ is the minimizer,

δm ≤ ||Ĝ − (1 − â)U − âF ||∞
= ||Ĝ − G + (â − a)U − (â − a)F ||∞
≤ ||Ĝ − G||∞ + |â − a|
P→ 0.

We also have that

δm ≥
∣∣∣||Ĝ − (1 − â)U − âF ||∞ − â||F − F̂ ||∞

∣∣∣ .

Since δm and ||Ĝ− (1− â)U − âF ||∞ P→ 0 by the above and â
P→ a, it follows

that ||F − F̂ ||∞ P→ 0. Moreover,

||F − F̂ ||∞ ≤ ||Ĝ − G||∞ + |â − a|
a

.

¤

4 Limiting Distributions

In this section we discuss the limiting distribution of Γ and Q̂. Let

Λ0(t) =
1

m

m∑
i=1

(1 − Hi)1{Pi ≤ t} and Λ1(t) =
1

m

m∑
i=1

Hi1{Pi ≤ t} .

and, for each c ∈ (0, 1) define

Ωc(t) = (1 − c)Λ0(t) − cΛ1(t) =
1

m

∑
i

Di(t)

18



where Di(t) = 1{Pi ≤ t} (1 − Hi − c). Let

µc(t) = E D1(t) = (1 − a)t − cG(t).

Let (W0,W1) be a continuous, two-dimensional, mean zero Gaussian process

with covariance kernel Rij(s, t) = Cov(Wi(s),Wj(t)) given by

R(s, t) =

[
(1 − a)(s ∧ t) − (1 − a)2st −(1 − a)s aF (t)

−(1 − a)t aF (s) aF (s ∧ t) − a2F (s)F (t)

]
. (21)

Theorem 4.1. Let W be a continuous, mean zero Gaussian process with

covariance

KΩ(s, t) = (1 − a)(1 − c) [(1 − c)(s ∧ t − (1 − a)st) + ac(tF (s) + sF (t))] +

ac [cF (s ∧ t) − acF (s)F (t)] . (22)

Then √
m(Ωc − µc) Ã W.

Proof. Let

Zm(t) =
√

m(Ωc(t) − µc(t)) and Z∗
m(t) =

√
m(Ω∗

c(t) − µ̂c(t))

for t ∈ [0, 1]. Let

(Wm,0(t),Wm,1(t)) ≡ (
√

m(Λ0(t) − (1 − a)t),
√

m(Λ1(t) − aF (t))).

By standard empirical process theory, (Wm,0(t),Wm,1(t)) converges to (W0,W1).

The covariance kernel R stated in equation (21) follows by direct calculation.

The result for Ωc is immediate since Ωc is a linear combination of Λ0 and Λ1.

¤

Theorem 4.2 (Limiting Distribution of FDP Process).

For t ∈ [δ, 1] for any δ > 0, let

Zm(t) =
√

m (Γm(t) − Q(t)) .

Let Z be a Gaussian process on (0, 1] with mean 0 and covariance kernel

KΓ(s, t) = a(1 − a)
(1 − a)stF (s ∧ t) + aF (s)F (t)(s ∧ t)

G2(s) G2(t)
.

Then Zm Ã Z on [δ, 1].
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Remark 4.1. The reason for restricting the theorem to [δ, 1] is that the

variance of the process is infinite at zero.

Proof. Note that Γm(t) = Λ0(t)/(Λ0(t) + Λ1(t)) ≡ r(Λ0, Λ1) where Λ0

and Λ1 are defined as before, r(·, ·) maps `∞ × `∞ → `∞ where `∞ is the

set of bounded functions on (δ, 1] endowed with the sup norm. Note that

r((1− a)U, aF ) = Q. It can be verified that r(·, ·) is Fréchet differentiable at

((1 − a)U, aF ) with derivative

r′((1−a)U,aF )(V ) =
aFV0 − (1 − a)UV1

G2

where U(t) = t, V = (V0, V1). Hence, by the functional delta method (van

der Vaart 1998, Theorem 20.8),

Zm Ã r′((1−a)U,aF )(W ) =
aFW0 − (1 − a)UW1

G2
,

where (W0,W1) is the process defined just before equation (21). The covari-

ance kernel of the latter expression is KΓ(s, t). ¤

Remark 4.2. A Gaussian limiting process can be obtained for FNP (i.e.,

Ξ(t)) along similar lines.

The next theorems follow from the previous results followed by an appli-

cation of the functional delta method.

Theorem 4.3. Let Q̂(t) = (1 − a)t/Ĝ(t). For any δ > 0,

√
m(Q̂(t) − Q(t)) Ã W

on [δ, 1], where W is a mean 0 Gaussian process on (0, 1] with covariance

kernel

KQ(s, t) = Q(s) Q(t)
G(s ∧ t) − G(s)G(t)

G(s) G(t)
.
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Theorem 4.4. Let Q̂(t) = (1 − a)t/Ĝ(t). We have

√
m(Q̂−1(v) − Q−1(v)) Ã W

where W is a mean 0 Gaussian process with covariance kernel

KQ−1(u, v) =
KQ(s, t)

Q′(s)Q′(t)

= (1 − a)2 u v
G(s ∧ t) − G(s)G(t)

[1 − a − ug(s)] [1 − a − vg(t)]

with s = Q−1(u) and t = Q−1(v).

Theorem 4.5. Let Q̂(t) = (1− â0)t/Ĝ(t) where â0 is Storey’s estimator.

Then √
m(Q̂(t) − Q(t)) Ã W

where W is a mean 0 Gaussian process with covariance kernel

K(s, t) =
t2

(1 − t0)2G2(s)G2(t)

× (G(s)G(t)t0(1 − t0) + G(t)(1 − G(t0))R(s, t0) +

G(s)(1 − G(t0))R(t, t0) + (1 − G(t0))
2R(s, t))

where R(s, t) = s ∧ t − st.

5 Asymptotic Validity of Plug-in Procedures

Let Q̂−1(c) = sup{0 ≤ t ≤ 1 : Q̂(t) ≤ c}. Then, the plug-in threshold

TPI defined earlier can be written TPI(P
m) = Q̂−1(α). Here we establish the

asymptotic validity of TPI in the sense that E Γ(T ) ≤ α+ o(1). First, suppose

that a is known. Define

Q̂a(t) =
(1 − a)t

Ĝ(t)
(23)

to be the estimator of Q when a is known.
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Theorem 5.1. Assume that a is known and let Q̂ = Q̂a. Let t0 = Q−1(α)

and assume G 6= U . Then,

√
m(TPI − t0) Ã N(0, KQ−1(t0, t0))√

m(Q(TPI) − α) Ã N(0, (Q
′
(t0))

2KQ−1(t0, t0)),

and

E Γ(TPI) = α + o(1).

Proof.

The first two statements follow from Theorem 4.4 and the delta method.

For the last claim, let 0 < δ < t0, write T = TPI and note that

|Γm(T ) − α| ≤ |Γm(T ) − Q(T )| + |Q(T ) − α|
≤ sup

t
|Γm(t) − Q(t)|1{T < δ} +

sup
t

|Γm(t) − Q(t)|1{T ≥ δ} + |Q(T ) − α|
≤ 1{T < δ} + sup

t≥δ
|Γm(t) − Q(t)| + |Q(T ) − α|

= 1{T < δ} +
1√
m

sup
t≥δ

|√m(Γm(t) − Q(t))| + |Q(T ) − α|

= OP (m−1/2).

Because 0 ≤ Γm ≤ 1, the sequence is uniformly integrable, and the result

follows. ¤

Next, we consider the case where a is unknown and possibly non-identifiable.

In this case, as we have seen, one can still construct an estimator that is con-

sistent for some value a0 < a.

Theorem 5.2 (Asymptotic Validity of Plug-in Method).

Assume that G is concave. Let T = t(â, Ĝ) be a plug-in threshold where Ĝ

is the empirical cdf or the LCM and â
P→ a0 for some a0 < a. Then,

E Γ(T ) ≤ α + o(1).
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Proof. First note that the concavity of G implies that Q(t) = (1 −
a)t/G(t) is increasing. Let δ = (a−a0)/(1−a) so that (1−a0)/(1−a) = 1+δ.

Then,

Q̂(t) =
(1 − â)t

Ĝ(t)
=

1 − â

1 − a0

(1 + δ)Q̂a(t) = (1 + oP (1))(1 + δ)Q̂a(t)

where Q̂a is defined in equation (23). Hence,

T = Q̂−1(α) = Q̂−1
a

(
α

1 + δ
+ oP (1)

)
≤ Q̂−1

a (α + oP (1)) = Q̂−1
a (α) + oP (1).

Because Q̂−1 a.s.→ Q−1
a0

and because Q−1
a0

(α) ≤ Q−1
a (α), the result follows from

the argument used in the proof of the previous theorem using Qa0 in place

of Qa. ¤

Recall that the oracle procedure is defined by TO(Pm) = Q−1(α). This

procedure has the smallest FNR for all procedures that attain FDR ≤ α up

to sets of exponentially small probability (cf. Genovese and Wasserman 2001,

p. 506). In the non-identifiable case, no data-based method can distinguish a

and a, so the performance of this oracle cannot be attained. We thus define

the achievable oracle procedure TA0 to be analogous to TO with (1−a)t/G(t)

replacing Q. The plug-in procedure that uses the estimator â described in

Theorem 3.2 asymptotically attains the performance of TAO in the sense that

E Γ(TPI) = α + o(1) and E Ξ(TPI) = E Ξ(TAO) + o(1).

6 Confidence Envelopes for FDP

Because the distribution of the FDP need not be concentrated around its

expected value, controlling the FDR does not necessarily offer high confidence

that the FDP will be small. As an alternative, we develop methods in this

section for making inferences about the FDP process.

A 1− α confidence envelope for the FDP process is a random function Γ

on [0, 1] such that

P
{
Γ(t) ≤ Γ(t) for all t

} ≥ 1 − α.
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In this section we give two methods for constructing such a Γ, one asymptotic,

one exact in finite samples. See also Harv̊onek and Chytil (1983); Hommel

and Hoffman (1987); and Helperin, Lan, and Hamdy (1988).

Besides being informative in its own right, a confidence envelope can be

used to construct thresholds that quantiles of the FDP distribution. We call

T a 1 − α confidence threshold if there exists a statistic Z such that

P{Γ(T ) ≤ Z } ≥ 1 − α.

We consider two cases. In the first, called rate ceiling confidence thresholds,

we take Z to be a pre-specified constant c (the ceiling). The thresholds we de-

velop here are derived from a confidence envelope Γ as the maximal threshold

such that Γ ≤ c. In the second, called minimum rate confidence thresholds,

the threshold is derived from Γ by T = argmint Γ(t) and Z = Γ(T ).

When a is known, it is possible to construct an asymptotic rate ceiling

confidence threshold directly.

Theorem 6.1. Let tc = Q−1(c) and let KΩ(s, t) be the covariance kernel

defined in (22). Assume that F 6= U . Define

tc,m ≡ tc,m(α) = tc −
zα√
m

√
KΩ(tc, tc)

1 − a − cg(tc)
.

Then

P{Γ(tc,m) ≤ c} = 1 − α + O(m−1/2).

Proof. We have

P{Γ(tc,m) ≤ c} = P{Ωc(tc,m) − µ(tc,m) ≤ −µ(tc,m)}

= P

{
√

m
Ωc(tc)√
KΩ(tc, tc)

≤ −
√

mµ(tc,m)√
KΩ(tc, tc)

}
+ o(1),

from Lemma 6.1. It suffices, in light of Theorem 4.1 and Lemma 6.1 below,

to show that

−√
m

µ(tc,m)√
KΩ(tc, tc)

→ zα.
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Now µ(tc) = (1 − a)tc − cG(tc) = 0 since Q(tc) = c. Hence,

µ(t) = (t − tc)µ
′
(tc) + o(|t − tc|)

= (t − tc)(1 − a − cg(tc)) + o(|t − tc|).

Hence,

µ(tc,m) = (tc,m − tc)(1 − a − cg(tc)) + o(m−1/2).

The result follows from the definition of tc,m. ¤

Lemma 6.1. Let tc = Q−1(c), and assume 0 < tc < 1. If tc,m − tc =

O(m−1/2), Ωc(tc,m) − µ(tc,m) = Ωc(tc) + oP (m−1/2). Thus, if um = vm−1/2 +

o(m−1/2) for some v,

P{Ωc(tc,m) ≤ µ(tc,m) + um} − P{Ωc(tc) ≤ um} = o(1).

Proof. Note that µ(tc) = (1 − a)tc − cG(tc) = 0 and that

|Ωc(tc,m) − Ωc(tc)| ≤ max{c, 1 − c}m−1
∑

i

|1{Pi ≤ tc,m} − 1{Pi ≤ tc} |

≤ |Ĝ(tc,m) − Ĝ(tc)|

which is Binomial(m, |G(tc,m) − G(tc)|)/m and has variance of order m−3/2.

Hence,

Ωc(tc,m) − µ(tc,m) − Ωc(tc)

= Ωc(tc,m) − µ(tc,m) − Ωc(tc) − (µ(tc,m) − µ(tc)) + (µ(tc,m) − µ(tc))

= OP

(
1

m3/4

)
− µ(tc)

= OP

(
1

m3/4

)
= oP

(
1√
m

)
.

The second claim is immediate. ¤

However, when a is unknown there is a problem. When plugging in a

consistent estimator of a that converges at a sub-
√

m rate, the error in â is

of larger order than tc − tc,m. Using an estimator, such as Storey’s estimator,
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which converges at a 1/
√

m rate but is asymptotically biased, causes overcov-

erage because the asymptotic bias dominates. Interestingly, as demonstrated

in the next subsection, it is possible to ameliorate the bias problem, but not

the rate problem, with appropriate conditions. Thus, a “better” estimator of

a need not lead to a valid confidence threshold.

6.1 Asymptotic Confidence Envelope

In this section, we show how to to obtain an asymptotic confidence envelope

for Γ, centered at Q̂. Throughout this subsection, we use Ĝ based on the

empirical distribution function, not the LCM.

For reasons explained in the last subsection, we use Storey’s estimator

rather than the consistent estimators of a described earlier. That is, let â0 =

(Ĝ(t0) − t0)/(1 − t0) be Storey’s estimator for a fixed t0 ∈ (0, 1). Then,

Q̂(t) =
(1 − â0)t

Ĝ(t)
=

1 − Ĝ(t0)

1 − t0

t

Ĝ(t)
.

To make the asymptotic bias in Storey’s estimator negligible, we make

the additional assumption that F depends on a further parameter ν = ν(m)

in such a way that

Fν(t) ≥ 1 − e−νc(t) (24)

for some c(t) > 0, for all 0 < t < 1. The marginal distribution of Pi becomes

Gm = (1 − a)U + aFν(m).

This assumption will hold in a variety of settings such as the following:

1. The p-values Pi are computed from some test statistics Zi that involve

a common sample size n, where the tests all satisfy the standard large

deviation principle (van der Vaart, 1998 p. 209). In this case, ν = n.

2. As in the previous case except that each test has a sample size ni drawn

from some common distribution.

3. Each test is based on measurements from a counting process (such as

an astronomical image) where ν represents exposure time.
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Under these assumptions, we have the following

Theorem 6.2. Let tm be such that tm → 0 and mtm/(log m)4 → ∞. Let

wα/2 denote the upper α/2 quantile of max0≤t≤1 B(t)/
√

t where B(t) denotes

a standard Brownian bridge. Let

∆m = max

{
2(1 − â0)wα/2,

√
2

1 − t0

√
log

(
4

α

)}
. (25)

Define

Γ(t) = min

{
Q̂(t) +

∆m

√
t√

mĜ(t)
, 1

}
. (26)

Assume that
ν(m)

log m
→ ∞ (27)

as m → ∞. Then,

lim inf
m→∞

P
{
Γ(t) ≤ Γ(t) for all t ≥ tm

} ≥ 1 − α. (28)

Proof. Let

N(t) =
M1|0(t)

m
=

1

m

m∑
i=1

(1 − Hi)1{Pi ≤ t} .

Note that E (N(t)) = (1 − a)t and Cov(N(t), N(s)) = (1 − a)2(s ∧ t − st).

By Donsker’s theorem
√

m(N(t) − (1 − a)t) Ã (1 − a)B(t) where B(t) is

a standard Brownian bridge. By the Hungarian embedding, there exists a

sequence of standard Brownian bridges Bm(t) such that

N(t) = (1 − a)t +
(1 − a)Bm(t)√

m
+ Rm(t)

where

Rm ≡ sup
t

|Rm(t)| = O

(
(log m)2

m

)
a.s.

Let

V (t) = (1 − â0)t +
∆m

√
t√

m
. (29)
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Now,

P{N(t) > V (t) for some t ≥ tm}
= P

{
(1 − a)t +

(1 − a)Bm(t)√
m

+ Rm(t) > (1 − â0)t +
∆m

√
t√

m
for some t ≥ tm

}
= P

{
max
t≥tm

(√
m(â0 − a)

√
t + (1 − a)

Bm(t)√
t

+

√
mRm√

t

)
> ∆m

}
≤ P

{
max
t≥tm

(
√

m|â0 − a|√t) >
∆m

2

}
+ P

{
(1 − a) max

t≥tm

Bm(t)√
t

>
∆m

2

}
+ O

(
(log m)2

√
tm

√
m

)
. (30)

The last term is o(1) since mtm/(log m)4 → ∞.

Let

a0 =
G(t0) − t0

1 − t0
= a

Fν(m)(t0) − t0
1 − t0

.

Then,

a − a0 = a
1 − Fν(m)(t0)

1 − t0
≤ e−ν(m)c(t0)

1 − t0
.

By assumption, we can write

ν(m) =
sm log m

c(t0)

for some sm → ∞. Hence, a−a0 = O (m−sm) . In particular, a−a0 = o
(

1√
m

)
.

Hence,

√
m|â0 − a| ≤ √

m|â0 − a0| +
√

m|a0 − a| =
√

m|â0 − a0| + o(1).

Thus,

P

{
max
t≥tm

(√
m|â0 − a|√t

)
>

∆m

2

}
= P

{√
m|â0 − a| >

∆m

2

}
= P

{√
m|â0 − a0| >

∆m

2

}
+ o(1)
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= P

{√
m|Ĝ(t0) − Gm(t0)|

1 − t0
>

∆m

2

}
+ o(1)

= P

{
|Ĝ(t0) − Gm(t0)| >

∆m(1 − t0)

2
√

m

}
+ o(1)

≤ 2 exp

{
−m

2∆2
m

4

(1 − t0)
2

m

}
+ o(1)

≤ α

2
+ o(1) (31)

by the DKW inequality and the definition of ∆m.

Fix ε > 0. Since â0
a.s.→ a0, we have, almost surely, for all large m, that

∆m

2(1 − a)
≥ 2(1 − â0)wα/2

2(1 − â)
=

1 − â0

1 − a
wα/2 =

1 − â0

1 − a0

(1 + o(1)) wα/2 ≥ wα/2−ε.

Let Wm(t) = Bm(t)/
√

t. Then, for all large m,

P

{
(1 − a) max

t≥tm
Wm(t) >

∆m

2

}
= P

{
max
t≥tm

Wm(t) >
∆m

2(1 − a)

}
≤ P

{
max
t≥tm

Wm(t) > wα/2 − ε

}
≤ P

{
max
0≤t≤1

Wm(t) > wα/2 − ε

}
= P

{
max
0≤t≤1

Wm(t) > wα/2

}
+P

{
wα/2 − ε < max

0≤t≤1
Wm(t) ≤ wα/2

}
=

α

2
+ P

{
wα/2 − ε < max

0≤t≤1
Wm(t) ≤ wα/2

}
.

Since ε is arbitrary, this implies that

lim sup
m→∞

P

(
(1 − a) max

t≥tm
Wm(t) >

∆m

2

)
≤ α

2
. (32)
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From (31), (32) and (30) we conclude that

lim sup
m→∞

P(N(t) > V (t) for some t ≥ tm) ≤ α.

Notice that Γ(t) = N(t)/Ĝ(t). Hence, N(t) ≤ V (t) implies that

Γ(t) ≤ V (t)

Ĝ(t)
= Γ(t).

The conclusion follows. ¤

Both types of confidence thresholds can now be defined from Γ. For ex-

ample, pick a ceiling 0 < c < 1 and define Tc = sup{t ≥ tm : Γ(t) ≤ c}
where Tc is defined to be 0 if no such t exists. The proof of the following is

then immediate from the previous theorem.

Corollary 6.1. Tc is an asymptotic rate-ceiling confidence threshold

with ceiling c.

It is also worth noting that we can construct a confidence envelope for

the number of false discoveries process M1|0(t).

Corollary 6.2. With tm as in the above theorem and V (t) defined as

in equation (29),

lim inf
m→∞

P
{
M1|0(t) ≤ mV (t) for t ≥ tm

} ≥ 1 − α. (33)

6.2 Exact Confidence Envelope

In this section, we will construct confidence thresholds that are valid for finite

samples.

Let 0 < α < 1. Given V1, . . . , Vk, let ϕk(v1, . . . , vk) be a non-randomized

level α test of the null hypothesis that V1, . . . , Vk are drawn iid from a

Uniform(0, 1) distribution. Define pm
0 (hm) = (pi : hi = 0, 1 ≤ i ≤ m)

and m0(h
m) =

∑m
i=1(1 − hi) and

Uα(pm) =
{
hm ∈ {0, 1}m : ϕm0(hm) (p

m
0 (hm)) = 0

}
.
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Note that as defined, Uα always contains the vector (1, 1, . . . , 1).

Let

Gα(pm) = {Γ(·, hm, pm) : hm ∈ Uα(pm)} (34)

Mα(pm) = {m0(h
m) : hm ∈ Uα(pm)} . (35)

Then, we have the following theorem which follows from standard results on

inverting hypothesis tests to construct confidence sets.

Theorem 6.3. For all 0 < a < 1, F , and positive integers m,

Pa,F{Hm ∈ Uα(Pm)} ≥ 1 − α (36)

Pa,F{M0 ∈ Mα(Pm)} ≥ 1 − α (37)

Pa,F{Γ(·, Hm, Pm) ∈ Gα} ≥ 1 − α (38)

Pa,F{Γ(Tc) ≤ c} ≥ 1 − α, (39)

where

Tc = sup {t : Γ(t; hm, Pm) ≤ c and hm ∈ Uα(Pm)} . (40)

In particular,

Γ(t) = sup {Γ(t) : Γ ∈ Gα(Pm)} , (41)

is a 1−α confidence envelope for Γ, and Tc is a 1−α rate ceiling confidence

threshold with ceiling c. In fact,

inf
a,F

Pa,F

{
Γ(t) ≤ Γ(t), for all t

} ≥ 1 − α.

Remark 6.1. If there is some substantive reason to bound M0 from

below, then Gα will have a non-trivial lower bound as well. In general, because

Uα always contains (1, 1, . . . , 1), the pointwise infimum of functions in Gα will

be zero.

Remark 6.2. At first glance, computation of Uα would appear to require

an exponential-time algorithm. However, for broad classes of tests, including

the Kolmogorov-Smirnov test, it is possible construct Uα in polynomial time.
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Remark 6.3. The choice of test can be important for obtaining a good

confidence envelope. A full analysis of this choice is beyond the scope of

this paper; we will present such an analysis in a forthcoming paper. In the

examples below, we use the test derived from the second order statistic of a

subset of p-values.

Remark 6.4. A similar construct yields a confidence envelope on the

process M1|0(t).

6.3 Examples

Example 1. We begin with a re-analysis of Example 3.2 from BH (1995). BH

give the following 15 p-values

.0001 .0004 .0019 .0095 .0201 .0278 .0298 .0344

.0459 .3240 .4262 .5719 .6528 .7590 1

and at a 0.05 level, Bonferroni rejects the first three null hypotheses and the

BH method rejects the first four.

Because m is small, we construct only the exact confidence envelope for

this example. Figure 1 shows the upper 95% confidence envelope on the

FDP for these data using the second order statistic of any subset as a test

statistic for the exact procedure. Notice first that the confidence envelope

never drops below 0.05. Second, while the BH threshold T = P(4) = 0.0095

guarantees an FDR ≤ 0.05, we can claim that P
{
Γ(P(4)) > 0.25

} ≤ 0.05,

but this also true for the larger threshold P−
(11) = 0.4262−, which will have

higher power. The minimum rate 95% confidence threshold has T = 0.324

and Z = Γ(T ) = 0.111.

Example 2. We present a simple, synthetic example, where m = 1000,

a = 0.25, and the test-statistic is from a Normal(θ, 1) one-sided test with

H0 : θ = 0 and H1 : θ = 3.

Figure 2 compares the true FDP sample path with the 95% confidence

envelopes derived from the exact and asymptotic methods. For small values

of the threshold, the exact envelope almost matches the truth, but for larger

values, it becomes more conservative. The asymptotic envelope remains above

but generally close to the truth. The asymptotic and exact envelopes cross
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at an FDP level of about 0.05. The rate ceiling confidence thresholds with

ceiling 0.05 and level 0.05 are 0.00062 for the asymptotic and 0.00046 for the

exact. The minimum rate confidence threshold for the exact procedure has

T = 0.00039 and Z = 0.011.

Appendix: Algorithm for Finding F̂m

Here, we restrict our attention to the case in which we take F̂ as piecewise

constant on the same grid as G. When F is concave, the algorithm works in

the same way with the sharper piecewise linear approximation.

Step 0. Begin by constructing an initial estimate of F that is a cdf. For

example, we can define H to be the piecewise constant function that takes

the following values on the Pis

H(P(i)) = max
j≤i

Ĝ(P(j)) − (1 − â)P(j)

â
.

Step 1. Identify the segment with the biggest absolute difference between

Ĝ and (1 − â)U + âH.

Step 2. Determine how far and in what direction (up or down) this seg-

ment can be moved while keeping H a cdf and minimizing ||Ĝ− (1− â)U +

âH||∞.

Step 3. If the segment can be moved, move it and go to Step 1. Else go

to Step 4.

Step 4. If no segment can be moved to reduce ||Ĝ − (1 − â)U + âH||∞,

STOP.

If the current segment is part of a contiguous block of segments where one

segment in the block can be moved to reduce ||Ĝ− (1− â)U + âH||∞, move

the segment at the end of the contiguous block of segments that provides the

greatest reduction in ||Ĝ − (1 − â)U + âH||∞. Go to Step 1.
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Figure Captions

Figure 1. Plot of Γ(t) versus t for Example 1, where Γ is derived from the

exact method of Section 6.2. The leftmost dot on the horizontal axis is the

BH threshold; the rightmost dot is a confidence threshold with the same

ceiling.

Figure 2. Plot of the true Γ sample paths and Γ for the exact (cf. Section

6.2) and asymptotic (cf. Section 6.1) methods for the data in Example 2. The

envelopes are shown here only for small thresholds. The truth is the lowest

curve over the entire domain. The exact envelope begins near 1, dips toward

the truth, and then rises sharply. The asymptotic envelope is the other curve.
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Figure 2:
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