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Summary

The determination of evolutionary relationships is a fundamental problem in evolutionary

biology. Genome arrangement data is potentially more informative than DNA sequence

data for inferring evolutionary relationships among distantly related taxa. We describe

a Bayesian framework for phylogenetic inference from mitochondrial genome arrangement

data using Markov chain Monte Carlo methods. We apply the method to assess evolutionary

relationships among eight animal phyla.
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1 Introduction

The idea that all living organisms are related through common descent is one of the fundamental or-

ganizing principles of modern biology. Consequently, the determination of evolutionary relationships

is one of the most important activities that evolutionary biologists carry out. Prior to the wide-spread

availability of massive collections of DNA sequence data freely available via computer networks and

desktop computers with specialized software to analyze this data, most phylogenies, branching tree

diagrams that display evolutionary relationships, were inferred by biologists on the basis of morpholog-

ical data and characteristics. It is fairly common for a phylogeny that is strongly supported through

an analysis of molecular data to be inconsistent with the traditional phylogeny based on morphologi-

cal data. To complicate matters, biologists have developed a large number of methods for producing

phylogenies from DNA sequence data, the results of which frequently con
ict. Each method has its

strong supporters and there is a lively debate in the biological literature arguing the relative merits of

various methods of phylogenetic inference.

Very few methods for producing phylogenies from DNA sequence data have a statistical foundation

that provides a framework for the assessment of uncertainty (Felsenstein, 1983). The maximum likeli-

hood approach to phylogenetic inference (Felsenstein, 1981) is one notable exception. Swo�ord et al.

(1996) provides an excellent overview of many commonly used methods for phylogenetic analysis from

aligned DNA sequence data. More recently, several authors have developed Bayesian approaches to

phylogenetic inference from DNA sequence data (Rannala and Yang, 1996; Yang and Rannala, 1997;

Mau et al., 1999; Newton et al., 1999; Larget and Simon, 1999; Li et al., 2000). Huelsenbeck et al.

(2001) is a recent review article that addresses the recent impact of Bayesian methods on evolutionary

biology.

There are, however, limitations to the usefulness of DNA sequence data to infer evolutionary rela-

tionships. Boore and Brown (1998) suggest several: selection, rapid rates of evolution, and alignment

ambiguities. Under selection, nucleotide substitutions at homologous sites in di�erent lineages could

have di�erent probabilities of propagating throughout a population. If the rate of evolution is very

rapid, sequences may diverge so quickly that very little phylogenetic information may remain. If a

large number of small-scale deletion and insertion events occur, there can be tremendous uncertainty
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in any attempt to align DNA sequences by homologous sites. Boore and Brown (1998) write

. . . a single, completely resolved, unambiguous tree of life based on sequence comparisons

seems unlikely to be realized.

Boore and Brown (1998) go on to suggest that gene order comparisons have several advantages, and that

mitochondrial genomes are especially useful in inferring phylogeny among distantly related animals.

What is mitochondrial DNA? Mitochondria are small organelles found outside the cell nucleus in

animals, plants, fungi, and protists. While most DNA in animals is located in chromosomes in the cell

nucleus, the mitochondria contain a relatively small circular ring of DNA. Mitochondrial DNA is doubly

stranded and the genes may be on either strand, although for some animals, all the genes are on the

same strand. Animal mitochondrial DNA has several characteristics that are highly conserved. Most

animal mitochondrial genomes contain about sixteen thousand nucleotide bases and contain the same

37 genes: 22 for transfer RNAs (tRNAs), two for ribosomal RNAs (large- and small-unit rRNA [rrnL

and rrnS, respectively]), and thirteen for proteins (NADH dehydrogenase subunits 1{6 and 4L [nad1{6

and nad4L], cytochrome oxidase subunits I{III [cox1{cox3 ], ATP synthase subunits 6 and 8 [atp6 and

atp8 ], and cytochrome b [cob]). There are a few known exceptions. Several nematodes and 
atworms

are missing the gene atp8 in the mitochondria and have only 36 genes. The brown sea anemone and

other individuals in the phylum Cnidaria have very unusual mitochondrial genomes, missing most of

the tRNAs while some of the other genes are not contiguous. These exceptions aside, it is interesting

and potentially informative that while the gene content is highly conserved, the order in which the

mitochondrial genes are arranged can vary among di�erent animal species. Unlike nuclear DNA, genes

are tightly compact, meaning that there are very small regions of non-coding DNA between genes. All

animal mitochondrial genomes contain one or more larger areas of non-coding DNA that is thought to

be involved in the regulation of replication and transcription.

Why are mitochondrial genome arrangements useful for phylogenetic inference? Boore

and Brown (1998) list several reasons why mitochondrial genome arrangement data has many advan-

tages over other types of genetic data for phylogenetic inference among animals. These reasons include:
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(1) mitochondrial gene content among all animals is nearly invariant; (2) there are a very large num-

ber of possible arrangements, so animals with shared arrangements are very likely to have common

ancestry; (3) there is near certainty that homologous genes can be identi�ed despite the substantial dif-

ferences in the DNA sequences among homologous mitochondrial genes in di�erent animal species; (4)

mitochondrial genome arrangement probably does not a�ect selection; and (5) genome rearrangements

are rare, even over long periods of evolutionary time.

In the early 1990s, complete mitochondrial genome arrangements were known for only about a

dozen di�erent species. Boore and Brown (1998) list 70 known arrangements in 1998. Helfenbein

et al. (2001) report 127 known sequences in 2001. The most recent version of the Mitochondrial Gene

Arrangement Source Guide (Boore, 2001) contains the complete mitochondrial genome arrangements

of the 231 di�erent species for which this was known and published by October 31, 2001. The rate at

which new data is being collected is increasing rapidly.

What are the mechanisms of mitochondrial genome rearrangement? Boore and Brown

(1998) describe several mechanisms of genome rearrangement. One mechanism is gene inversion. In

a single gene inversion event, a sequence of consecutive genes is inverted which changes both the

order of the genes and the strands on which the coding portions are located. Gene inversion is,

perhaps, the primary mechanism by which the large non-tRNA coding genes rearrange with each

other. A second mechanism for which there is evidence is a duplication/deletion sequence of events

where several consecutive genes are duplicated followed by loss of function and subsequent deletion

of a randomly chosen copy from each pair which may or may not lead to a di�erent arrangement.

This type of rearrangement may occur predominantly with tRNAs | genome arrangement di�erences

between marsupials and other mammals can be explained by one such event. While there may be

other mechanisms that move tRNAs to distant positions, these rearrangement mechanisms are not well

understood.

A mathematical representation of a genome arrangement: We can mathematically represent

a mitochondrial genome arrangement of n + 1 genes as a signed permutation of size n. To do so, we

select an arbitrary relabeling of the genes with the integers from 0 to n. Beginning at the reference
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gene in the direction of its transcription, the gene arrangement corresponds to a permutation of the

integers from 1 to n. The signs of elements in the permutation are positive or negative depending on

whether the genes are located on the same or di�erent strand as the reference gene, respectively.

Because we do not understand or know how to model e�ectively all of the possible mechanisms that

rearrange tRNAs, for the present study we consider only the mitochondrial genome arrangements of

the non-tRNA genes and we assume that gene inversion is the sole mechanism by which these genes

rearrange. A gene inversion manifests as a reversal in the signed permutation. Reversals change both

the order and sign of the a�ected elements. For example, reversing the third through the eighth ele-

ments of the signed permutation (1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14) results in the signed permutation

(1; 2;�8;�7;�6;�5;�4;�3; 9; 10; 11; 12; 13; 14).

There are complete mitochondrial genome arrangements known from individuals from nine separate

phyla (Boore, 2001). Within each phylum, we selected an individual for each unique arrangement of

non-tRNA coding genes that included the full complement of �fteen genes. The remaining data set,

shown in Table 1, contains nineteen species from eight phyla. Eighteen of the genome arrangements

are unique. One arrangement is common for birds and acorn worms. Table 2 displays the inversion

distance between each pair of species. The phyla in this data set are Chordata (vertebrates), Hemi-

choradata (acorn worms), Echinodermata (sea stars, brittle stars, sand dollars, sea urchins, crinoids,

and sea cucumbers), Brachiopoda (lamp shells), Mollusca (clams, snails, squids, and chitons), Annelida

(segmented worms), Arthropoda (arachnids, crustaceans, and insects), and Nematoda (roundworms).

2 A model of genome rearrangement

We assume a very simple model of mitochondrial genome rearrangement, with gene inversion as the

sole mechanism. We assume that the evolutionary relationships among the taxa in our analysis are

described by a phylogeny in which each speciation event results in two lineages. We do not assume a

molecular clock, so the overall rate of gene inversion may be di�erent for di�erent lineages. Our prior

distribution is that all unrooted tree topologies are equally likely. Branches of the unrooted tree have

independent lengths selected from a Gamma distribution. Given a branch length, a Poisson number

of gene inversions with this mean are realized. Given that a gene inversion occurs, we assume that all
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possible gene inversions are equally likely. There are 1�3�� � �� (2s�5) possible binary unrooted tree

topologies (Felsenstein, 1978) to relate s taxa. In our present study for the nineteen taxa we consider,

this count is over 6:3� 1018. Our inferences are based on the combination of ten independent samples

of the posterior. Further details of this model important to understand the details of our computation

are contained in the Appendix.

3 Example

The correct evolutionary relationships among several animal phyla are still unresolved. Several previous

papers have used mitochondrial genome arrangement data to draw conclusions about evolutionary

relationships among animal phyla that di�er from previous conclusions based on shared morphological

characteristics. Figure 1 is adapted from De Rosa (2001) and shows two competing versions of the

evolutionary relationships among animal phyla. The left tree is a traditional viewpoint supported

by shared morphological characteristics. The right tree has been hypothesized more recently and is

supported by molecular evidence.

We focus our attention on two con
icting aspects of these trees. The traditional phylogeny places

brachiopods closer to deuterostomes (echinoderms, hemichordates, and vertebrates) than to proto-

stomes (arthropods, annelids, and molluscs) and places molluscs as an outgroup to arthropods and

annelids (Hyman, 1940). In contrast, the new tree has brachiopods closer to the annelids and molluscs

than the deuterostomes and places arthropods as more distantly related than annelids and molluscs

(Halanych et al., 1995; Aguinaldo et al., 1997). We use the model described above to assess these

aspects in con
ict between these two trees. We do so by examining posterior probabilities of predicted

clades. A set of taxa form a clade in a tree if they comprise a complete subtree.

Are brachiopods more closely related to deuterostomes or protostomes? De Rosa (2001)

�nds that a close relationship between brachiopods and protostomes is \most probable", but \not

de�nitely conclusive". In our analysis, the deuterostomes appear together as a clade 39% of the time

and the echinoderms appear together 98% of the time. We tend to put humans closer to echinoderms

(68%) than to the domestic chicken and acorn worm (7%), but there is enough evidence in the data
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to substantially change a tiny prior probability that deuterostomes are a clade. However, we �nd no

clades with posterior probability of at least 5% that include any single brachiopod species with some

subset of the deuterostomes.

In contrast, we �nd many clades that include the brachiopods with the annelid and several mollusks.

All of these taxa except for the squid appear together 18% of the time. (We have diÆculty placing

the squid. We place it with the fruit 
y 13% of the time, with the hermit crab 14% of the time, and

with the acorn worm and chicken 10% of the time.) There are many clades with all three brachiopods

placed with the annelid and one or more molluscs. The brachiopods, the annelid, and the black chiton

appear together 28% of the time.

None of these posterior probabilities are large, but this is because the completely uninformative

prior we place on the tree topology includes very small prior probabilities that species from within the

same phylum would form a clade. This being said, we �nd it to be very probable that brachiopods

are more closely related to protostomes than to deuterostomes, adding evidence in favor of the new

phylogeny.

Are annelids and molluscs more closely related than arthropods? Boore and Brown (2000)

use mitochondrial genome arrangement data along with other evidence to conclude that molluscs and

annelids are sister taxa with arthropods as an outgroup. In the part of their analysis that is based

solely on gene arrangement data, they analyzed a single mollusc (K. tunicata), two annelids (the

common earthworm and another for which the non-tRNA arrangement is identical), as well as single

inferred ancestral sequences for chordates and arthropods. Using the minimum-breakpoint (Sanko�

and Blanchette, 1998; M. Blanchette, 1999), they �nd a best tree with 76 breakpoints consistent with

annelids and arthropods being most closely related. The next best tree has 80 breakpoints.

We do �nd several clades with relatively high posterior probability that include our single annelid

with one or more molluscs, usually with brachiopods present as well. The clade of the brachiopods, the

annelid, and the molluscs except for the squid appear together 18% of the time and a clade with two of

the brachiopods (Laqueus rubellus and Terebratalia transversa) along with the annelid and the molluscs

land snail and sea slug appear together 23% of the time. Common clades that appear at least 5% of

the time that include arthropods along with the annelid invariably have brachiopods and one or more
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mollusc present as well. We �nd that the right tree in Figure 1 with a clade of brachiopods, annelids,

and molluscs separate from arthropods to be more likely than one with annelids and arthropods as

sister taxa, but that this conclusion is not as �rm as the previous conclusion about the placement of

brachiopods.

4 Discussion

Comparisons to other methods: Statistical methods for phylogenetic inference from genome ar-

rangement data are in their infancy. The principle of parsimony says that the best tree is the one that

requires the smallest number of genome rearrangement events. Most papers that include phylogenetic

inferences from genome arrangement data use this principal in an informal manner, drawing conclusions

on the basis of shared arrangements that are evaluated by eye.

Other methods are more formal. By using the fast algorithms for computing pair-wise reversal

distances, it is possible to feed these genome-arrangement-based distance matrices into other methods

that produce phylogenies from distance matrices to infer trees. Pevzner (2000) and the references within

describe this approach. Sanko� and Blanchette (1998) describe a method that estimates phylogeny by

searching for arrangements at internal nodes that minimize the changes in breakpoint distance, while

Sanko� and Blanchette (1999) describe a method based on invariants of frequencies of site patterns.

The latter two methods are not based on any mechanism of gene rearrangement. Mechanisms such

as gene inversion, gene duplication/deletion, and gene transposition a�ect the breakpoint distance in

di�erent ways.

None of the alternative methods discussed here provide a framework for assessing uncertainty. The

best tree is simply accepted as being the best. Clustering methods are prone to poor inferences because

the sequence data is discarded | when two groups are joined, distance to other groups are not based

on the likely gene arrangement at the ancestor of the new group. The method described in Sanko�

and Blanchette (1999) uses all 37 genes, but is limited to �ve or fewer taxa, which greatly limits its

usefulness. Table 2 shows how distant individual species from the same phylum can be apart from each

other. Presumably the decision on which taxon to use to represent a particular phylum could greatly

a�ect the inference.
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To the best of our knowledge, the present work is the �rst to make phylogenetic inferences on

the basis of gene arrangements that also provides assessment of uncertainty. Our earlier work on

this problem (Simon and Larget, 2001) was limited to small arti�cial data sets. The computational

approach described in this paper is not limited by the number of genes or taxa.

The Bayesian approach is very useful in this application, especially since the most likely tree is not

very likely at all. A sample of trees drawn from the posterior distribution permits examination of which

parts of the tree are well-established, and which parts are more uncertain. It also permits calculation

of probabilities of biological hypotheses, such as those above.

Directions for further work: From a modeling perspective, the �rst extension of this work we

would make is to include duplication/deletion and transposition as well as inversion. These additional

mechanisms of rearrangement would require additional parameters for the relative speeds at which

each occurs, leading to an interesting extension of this work. It would also be useful to use the tRNAs

as well. A second modeling advance, to allow unequal probabilities for gene inversions of di�erent

lengths, must await further understanding of how gene inversion occurs at a molecular level to guide

the development of a more realistic model.

This work may also be advanced by incorporating additional information. We could do this by

jointly modeling gene arrangement processes with changes at the sequence level. We could also elicit

more informative priors from experts in evolutionary biology.

Finally, we believe that advances in visualizing and summarizing samples of trees would help in

this work. We should be able to infer ancestral genome arrangements, for example. This area is just

beginning; there are many contributions statisticians can make.
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6 Appendix: Calculation Details

This appendix contains the mathematical description of the model we use, a derivation of the posterior

distribution, descriptions of the Markov chain Monte Carlo proposals, and discussion of the mixing

properties of the method.

A mathematical description of the model. The mathematical representation of an unrooted

phylogeny for ` taxa includes an unrooted tree topology � and a vector of branch lengths � = f�ig, for

i = 1; : : : ; 2` � 3. The unrooted tree topology is a connected acyclic graph with ` labeled leaf nodes

(each of which is adjacent to one other node in the tree), `� 2 unlabeled internal nodes (each of which

is adjacent to three other nodes), and a total of 2`� 3 edges (branches). This type of tree results when

the root is removed from a rooted binary tree. We let T` represent the set of all such possible unrooted

tree topologies with ` leaves. Our prior is that the tree topology � is chosen uniformly at random from

T` and that the branch lengths � are independent and identically distributed from a Gamma(�; �)

distribution.

Each branch of the tree contains a list of reversals and their positions. The counts of reversals on

the branches, x = fxig, i = 1; : : : ; 2`� 3, are independent Poisson random variables with means equal

to the respective branch lengths. The jth reversal on the ith branch, rij, is located a distance uij from

the beginning node, chosen uniformly at random along the branch, and results in the reversal of the

interval from elements aij to bij in the signed permutation, where 1 � aij � bij � n. The set Mn

of possible reversals that act on permutations of size n has
�
n+1
2

�
= n(n + 1)=2 elements. A reversal

(a; b) 2Mn acts as below.

(�0; : : : ; �a�1; �a; : : : ; �b; �b+1; : : : ; �n�1)
(a;b)
�! (�0; : : : ; �a�1;��b; : : : ;��a; �b+1; : : : ; �n�1) (1)

Given (�; x; r) and the permutation at one leaf of the tree, the remaining observable leaf permutations

are determined. In fact, the permutations are determined at every point of the tree. Let D represent

the observable data, an array of permutations indexed by the leaf nodes.
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The prior distribution of these parameters is summarized here.

� � Uniform(T`) (2)

�i � i.i.d. Gamma(�; �) for i = 1; : : : ; 2`� 3 (3)

xij�i � i.i.d. Poisson(�i) for i = 1; : : : ; 2`� 3 (4)

rij jxi � i.i.d. Uniform(Mn) for i = 1; : : : ; 2`� 3, j = 1; : : : ; xi (5)

uij j�i; xi � i.i.d. Uniform(0; �i) for i = 1; : : : ; 2`� 3, j = 1; : : : ; xi (6)

The joint prior on these parameters is

p(�; �; x; r; u) =
1

jT`j

2`�3Y
i=1

g(�i)h(xij�i)

�
1

�i

�xi
�

1

jMnj

�xi

(7)

where

g(�i) =
��

�(�)
���1
i e���i (8)

and

h(xij�i) =
e��i�xi

i

xi!
(9)

The likelihood for D is an indicator if the observed data is consistent with the parameters and unob-

servable variables, p(Dj�; �; x; r; u) = 1f(�;x;r),!Dg.

Derivation of the posterior distribution: We are primarily interested in evaluating the posterior

distribution of the tree topology, p(� jD). We begin by expressing the unnormalized joint posterior

distribution of all of the parameters.

p(�; �; x; r; ujD) / p(�; �; x; r; u)p(Dj�; �; x; r; u) (10)

=
1

jT`j

2`�3Y
i=1

g(�i)h(xij�i)

�
1

�i

�xi
�

1

jMnj

�xi

1f(�;x;r),!Dg (11)

To simplify this, we integrate out � and u analytically, suppressing most of the derivation. The

remaining parameters are the tree topology and the ordered list of reversals on each branch.

p(�; x; rjD) /
1

jT`j

2`�3Y
i=1

1f(�;x;r),!Dg

Z 1

�i=0
g(�i)h(xij�i)

�
1

�ijMnj

�xi xiY
j=1

Z �i

uij=0
duij d�i (12)

=
1

jT`j
1f(�;x;r),!Dg

�
1

jMnj(1 + �)

�P2`�3
i=1 xi

�
�

�+ 1

��(2`�3) 2`�3Y
i=1

�(�+ xi)

xi!�(�)
(13)
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Finally, we ignore some factors that do not depend on � , x, or r.

p(�; x; rjD) / 1f(�;x;r),!Dg

�
1

jMnj(1 + �)

�P2`�3
i=1 xi 2`�3Y

i=1

�(�+ xi)

xi!�(�)
(14)

We sample from this unnormalized posterior p(�; x; rjD) using Markov chain Monte Carlo (Metropolis

et al., 1953; Hastings, 1970) to calculate p(� jD).

MCMC updates: We cycle through three updates, the �rst two of which leave the tree topology

unchanged but modify the reversal histories, while the third changes the tree topology and modi�es

the reversal histories to remain consistent. The Updates 1 and 3 are displayed in Figure 2 which also

de�nes the nomenclature used in the following description.

Update 1 begins by randomly picking an internal node of the tree and then randomly assigning labels

to the three edges. If there are r reversals on the path from node A to node B, there are r + 1

ways to partition these reversals on edges 1 and 2 without changing their relative order. One

of these partitions is chosen at random, which may change the induced signed permutation at

node O. Then, any reversals on edge 3 are deleted and a new sequence of reversals is generated

from node O to node C in the manner described below.

Update 2 begins by randomly picking any edge from the tree. The reversals on that edge are deleted

and a new sequence of random reversals is generated for the edge in a randomly chosen direction

as described below.

Update 3 begins by choosing an internal branch (edge 3 ) uniformly at random. Each adjacent node

then picks at random one of its other edges (edge 1 and edge 4 ). These edges and any subtree

extending beyond nodes A and C are then swapped, resulting in a new tree topology. The

reversals on edges 2, 3, and 5 remain the same. Reversals on the two swapped edges are deleted.

New reversal sequences are generated for edge 4 from the signed permutation at node E to node C

and for edge 1 from the signed permutation at node F to node A.

The breakpoint graph: Our mechanism for proposing a sequence of reversals that change the source

signed permutation s to the target t uses the breakpoint graph. We note that a set of reversals that
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acts on a signed permutation s to produce t will also act on st�1 to produce the identity permutation,

so, without loss of generality, we can consider the problem of �nding a sequence of reversals to sort

a signed permutation. See Pevzner (2000) and Kaplan et al. (1999) and references therein for a more

detailed description of the breakpoint graph and an algorithm to �nd a single minimal sequence of

reversals to sort a signed permutation. We wish to be able to propose any sequence that sorts the

signed permutation with minimal sequences being relatively likely.

Figure 3 shows an example of a breakpoint graph. We �nd it useful to represent a breakpoint graph

as a circle. Pevzner (2000) draws the breakpoint graph with the nodes along a line. The de�nitions

below are equivalent to those in Pevzner (2000), but are rephrased with the intention to add clarity.

The outer circle of numbers is a signed permutation where an element 0 has been added to connect

the beginning to the end of the permutation. This mirrors a mitochondrial genome arrangement

where 0 represents the reference gene. Figure 3 represents the arrangement of the crinoid relative

to human. The inner circle of numbers is an unsigned circular permutation determined by the outer

signed permutation. The element 0 is represented by 2n+ 1; 0 where there are n + 1 elements in the

outer circle. For the rest, the label i corresponds to 2i� 1; 2i if it has a positive sign and corresponds

to 2jij; 2jij � 1 if it has a negative sign. Each element of the inner circle is a node in the breakpoint

graph. In the example, the inner circle is an unsigned permutation of size 30 (of the integers from 0 to

29), twice as large as the number of genes we consider.

Breakpoints are represented by black edges along the inner circle that connect adjacent nodes

that are out of sequence, and so di�er in absolute value by more than one. The example has seven

breakpoints. The gray edges in the interior of the breakpoint graph connect nodes with even values to

nodes with values one larger when these nodes are not adjacent. The lines are oriented (solid) when

they are separated along the inner circle by an even number of positions and are unoriented (dashed)

otherwise. There are always equal numbers of black and gray edges. All nodes are either isolated or

part of a cycle of alternating black and gray edges.

Two cycles are connected if a gray edge from one crosses a gray edge from the other. The cycles of

the breakpoint graph are partitioned into connected components. A connected component is unoriented

if all edges of all of its cycles are unoriented and is oriented otherwise. Each cycle must have an even
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number of oriented edges.

A hurdle is an unoriented connected component that does not separate two other unoriented con-

nected components along the inner circle. A breakpoint graph contains a fortress if it has a special

con�guration of hurdles and other unoriented components that only arises in larger permutations than

those in the present study. In the example, there are two connected components, one of which is

unoriented. Each component is comprised of a single cycle. The cycle on the right is

(0 : 11 -u- 10 : 13 -u- 12 : 1 -u- ) (15)

and the cycle on the left is

(20 : 22 -u- 23 : 28 -o- 29 : 25 -u- 24 : 21 -o- ) (16)

where black edges are represented by colons, and oriented and unoriented gray edges are represented

by the symbols -o- and -u- respectively. The connected component on the right is a hurdle, while

that on the left is not.

The minimal number of reversals to sort a signed permutation is a function of the number of

breakpoints b, the number of cycles c, the number of hurdles h, and an indicator of a fortress f .

minimum distance = b� c+ h+ f (17)

The example could be sorted by 7� 2 + 1 + 0 = 6 reversals.

A reversal is called proper if it reduces b � c by one. However, all proper reversals do not reduce

the distance by one because they could introduce a hurdle (or a fortress). A reversal will be proper

if its end points are two breakpoints on the same cycle and these two breakpoints divide the oriented

gray edges of the cycle so that there are an odd number in each semi-cycle. In the example, there

are no proper reversals that act on the right cycle because any two breakpoints divide the cycle into

two semi-cycles with zero oriented edges and zero is not odd. In the left cycle, there are six ways to

choose two of the four breakpoints. Of these six reversals, the four proper reversals change: �11 to 11;

�12 to 12; �14;�13 to 13; 14; and �11;�12;�14;�13 to 13; 14; 12; 11. The �rst three of these proper

moves actually decrease the distance by one. The last adds a cycle but also adds a hurdle because the

remaining gray edges all become unoriented, so the distance remains unchanged.
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Proposing a sequence of reversals: Our basic approach is to iteratively add reversals until we

have a list that changes the source to the target and decide to stop. If the signed permutation st�1

is the identity permutation itself, we quit and end the sequence of reversals with probability q = 0:99.

Otherwise, we propose a random reversal from all possible. When we do not have the identity, we use

the breakpoint graph of the signed permutation st�1 to partition the set of all possible reversals into

three groups: proper reversals, improper reversals between breakpoints in the same cycle, and others.

If there is at least one proper reversal, we choose one uniformly at random with probability p = 0:99.

If there are no proper reversals or we have decided not to select one and there is at least one improper

reversal within a cycle, we choose one of these with probability p. If we have not yet selected a reversal,

we choose one of the others at random. We then iterate, adding another reversal to the sequence at

each step, until we stop. Table 3 shows the probabilities that a reversal of a given type is the next one

proposed. These probabilities are used in calculating acceptance ratios for the updates.

Computation details: We completed ten separate runs of 100,000,000 cycles through Updates 1,

2, and 3. The runs used di�erent streams of pseudo-random numbers and began at di�erent trees.

In each run, we sampled every 500th tree topology, retaining 200,000 tree topologies. A single run

required about three hours of CPU time on a machine with a 933 MHz Pentium III processor. We set

the parameters � = 0:5 and � = 0:25 so that our prior had a mean of two gene inversions per branch

with suÆcient variance so that branches with ten or more gene inversions were not too unlikely.

Trace plots of the loglikelihoods indicate that burn-in was rapid in all runs. We discarded the initial

25% of each run and retained a combined total of 1.5 million tree topologies. Clade frequencies for

most clades that appear relatively frequently are quite similar from run to run. For example, in the ten

independent runs the calculated posterior probabilities that the three echinoderms form a clade have a

mean of 0.978 and a standard deviation of 0.011, leading to an estimated Monte Carlo standard error of

less than 0.004. Almost all clades have estimated Monte Carlo standard errors substantially less than

one percent. There are a few exceptions. We expect that proposed changes in the tree topology that

include branches with longer reversal lists mix more slowly. Estimates of clade probabilities for clades

that include taxa that are a long distance from others had larger Monte Carlo errors. For example, the

calculated posterior probabilities that the brachiopods Laqueus rubellus and Terebratalia transversa
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form a clade had a mean of 0.803 and an estimated Monte Carlo standard error of 0.03.
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Phylum Species Permutation

Chordata Human 1 ! 14

Chordata Domestic Chicken 1 ! 8, 10, 9, 11 ! 14

Hemichordata Acornworm 1 ! 8, 10, 9, 11 ! 14

Echinodermata Sea star 6, 1 ! 5, 7 ! 11, �12, �14! �13

Echinodermata Sea urchin 6, 1 ! 5, 7 ! 11, 13 ! 14, 12

Echinodermata Crinoid 6, 1 ! 5, 7 ! 10, �11, �12, �14! �13

Brachiopoda Laqueus rubellus 10, 3, 8, �9, 5 ! 6, 4, 2, 14, 1, 12, 11, 13, 7

Brachiopoda Terebratalia transversa 10, 2, 4, 3, 8, 11, �9, 12 ! 13, 7, 6, 1, 5, 14

Brachiopoda Terebratulina retusa 1 ! 3, 11 ! 13, �9, 10, 6 ! 8, 4 ! 5, 14

Annelida Common earthworm 1 ! 2, 4, �9, 10, 3, 8, 6 ! 7, 11 ! 13, 5, 14

Arthropoda Cattle tick 1 ! 5, �13! �11, �8! �6, �9, 10, 14

Arthropoda Fruit 
y 1 ! 5, �8! �6, �9, 10, �13! �11, 14

Arthropoda Hermit crab 1, 5, 14, 2 ! 4, �8! �6, �9, 10, �13! �11

Arthropoda Wallaby louse 4, 13, 10, �7! �6, 14, �8, 1, �5, �12! �11, �3! �2, �9

Mollusca Squid 1, �8! �6, 2 ! 5, �10, 9, �13! �11, 14

Mollusca Black chiton 1! 3, �8! �6, �10, 9, �13! �11, 4 ! 5, 14

Mollusca Land snail 12, �9, 8, 13, 6, 10, 1, �2, �3, -11, �5! �4, 7, 14

Mollusca Sea slug 12, �9, 8, 13, 6, 10, 1, �2, �3, �11, �5, 7, �4, 14

Nematoda Trichinella spirallis 1, 13, �14, �8! �6, �9, 10 ! 12, 3 ! 4, 2, 5

Table 1: Mitochondrial genome arrangements of non-tRNA coding genes. Each mitochon-

drial genome is recorded as a permutation relative to the gene order in humans beginning after the gene

cox1 in the direction of its transcription. The coding to signed permutations uses the following trans-

lation: cox2=1, atp8=2, atp6=3, cox3=4, nad3=5, nad4L=6, nad4=7, nad5=8, nad6=�9, cob=10,

rrnS=11, rrnL=12, nad1=13, and nad2=14. Consecutive genes in the same order as in humans are

listed as a range. For example, 1! 3 means 1, 2, 3 and �8! �6 means �8;�7;�6. The tick species

here is rhiphicephalus sanguineus. All other known tick species non-tRNA coding gene arrangements

are identical to that in fruit 
ies. The land snail is Cepaea nemoralis. The other known land snail

non-tRNA coding gene arrangement is identical to the sea slug.
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Human 0

Chicken 3 0

Acornworm 3 0 0

Sea star 5 8 8 0

Sea urchin 6 9 9 1 0

Crinoid 6 8 8 1 2 0

L. rubellus 13 13 13 14 13 13 0

T. transversa 12 12 12 12 12 11 9 0

T. retusa 5 5 5 9 9 10 13 11 0

Earthworm 7 8 8 11 11 12 13 9 5 0

Cattle tick 4 4 4 8 8 9 13 11 3 7 0

Fruit 
y 3 4 4 7 7 8 13 11 3 7 3 0

Hermit crab 7 7 7 11 11 10 14 11 5 7 5 5 0

Wallaby louse 8 10 10 12 12 13 13 14 9 11 10 10 10 0

Squid 5 4 4 9 9 10 14 11 4 6 4 3 5 10 0

Black chiton 5 5 5 9 9 10 13 10 1 5 3 4 6 10 5 0

Land snail 12 12 12 12 13 12 13 12 12 10 11 12 13 14 12 11 0

Sea slug 12 13 13 14 14 14 13 12 12 12 11 12 13 13 12 11 3 0

T. spirallis 7 8 8 11 11 12 11 14 8 10 5 6 6 10 8 8 13 13 0

Table 2: Inversion distances. For each pair of taxa, the displayed count is the smallest number

of gene inversions necessary to change the mitochondrial genome arrangement from one taxon to the

other.
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Case Proper Improper within a cycle Others

a > 0 b > 0 c > 0 p=a (1� p)p=b (1� p)2=c

c = 0 p=a (1� p)=b |

b = 0 c > 0 p=a | (1� p)=c

c = 0 1=a | |

a = 0 b > 0 c > 0 | p=b (1� p)=c

c = 0 | 1=b |

b = 0 c > 0 | | 1=c

Table 3: Reversal proposal probabilities. In the table, a is the number of proper reversals, b is the

number of improper reversals between breakpoints of the same cycle, and c is the number of others.

The sum of these three is jMnj = 105 in the present study. The parameter p is set to be 0.99. The

expression in each cell is the probability that a speci�c reversal of the given type is proposed.
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Hemichoradata

Choradata

Figure 1: Two competing simpli�ed animal phylogenies. The phylogeny on the left is a tradi-

tional phylogeny based on morphological characteristics. The phylogeny on the right has been proposed

more recently on the basis of molecular data. The branching point that divides into three lineages,

Annelida, Mollusca, and Brachiopoda, indicates that the three possible binary trees relating these three

taxa are unresolved.
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Figure 2: Updates. The graph on the left is related to Update 1. It is a subtree and node O has been

randomly chosen. The other nodes may be either leaf nodes or internal nodes. Black dots on edges

represent reversals. The graph on the right side is used in the explanation of Update 3. Update 2 is

not pictured because it is trivial.
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Figure 3: Example breakpoint graph. The breakpoint graph here is used to help explain the

method for proposing reversals.
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