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We introduce a Bayesian approach to multiple testing. The method
is an extension of the false discovery rate (FDR) method due to
Benjamini and Hochberg (1995). We also examine the empiri-
cal Bayes approach to simultaneous inference proposed by Efron,
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1 Introduction

There has been renewed interest in simultaneous inference due to the abun-

dance of large, complex data sets. As a motivating example, consider genetic

microarrays. Suppose there are two groups (treatment and control) and m

genes. The data, after non-trivial pre-processing, take the following form:

Control Treatment
gene 1 X11 X12 · · · X1k Y11 Y12 · · · Y1k
gene 2 X21 X22 · · · X2k Y21 Y22 · · · Y2k
...

...
...

...
...

...
...

...
...

...
...

...
...

...
gene m Xm1 Xm2 · · · Xmk Ym1 Ym2 · · · Ymk

Each row is a gene and each column is a microarray. Typically, m is around

5,000, and newer arrays will have as many as 50,000 genes. Each data point

represents the expression level of the gene. This is a measure of how active

the gene is, i.e. how much protein is being produced by that gene. Let Hi = 1

if the treatment changes the distribution of the expression level for gene i

and Hi = 0 otherwise. We want to test

Hi = 0 versus Hi = 1 for i = 1, . . . ,m.

The microarray example is a prototype; the ideas that follow apply more

generally. The key feature is that m is large but k is small.

2 Modern Frequentist Multiple Testing

Let Pm = (P1, . . . , Pm) where Pi is a p-value for testing hypothesis Hi. Mul-

tiple testing methods involve choosing a threshold T = T (Pm) and rejecting

all hypotheses whose p-values are less than T . The most common methods

are uncorrected testing: reject Hi = 0 if Pi < α; and family-wise corrected

testing such as the Bonferroni method: reject Hi = 0 if Pi < α/m.

Uncorrected testing does not adequately control false positives. Bonfer-

roni and its relatives control the probability of a single error which is too strict
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for large m. Two recent methods that avoid these extremes are the false dis-

covery rate (FDR) method and the empirical Bayes testing (EBT) method.

The FDR method is due to Benjamini and Hochberg (1995) – hereafter re-

ferred to as BH – and has since been extended by many others including

Benjamini and Yekutieli (2002), Storey (2001) and Genovese and Wasser-

man (2001a, 2001b). The EBT method is due to Efron, Tibshirani, Storey

and Tusher (2001). Of course, empirical Bayes is not new but the particular

way that Efron et. al. use empirical Bayes for multiple testing has new twists.

We would also like to mention that interesting connections between FDR and

Bayes are discussed in Storey (2001).

2.1 A Model for Multiple Testing

Let (P1, H1), . . . , (Pm, Hm) be independent pairs such that Pi | Hi = 0 ∼
Uniform(0, 1) and Pi | Hi = 1 ∼ Ξi for some cdf Ξi which is stochastically
smaller than the uniform cdf U(t) = t. Let Pm = (P1, . . . , Pm) and H

m =

(H1, . . . , Hm). We further assume thatHi ∼ Bernoulli(a) and that the Ξ′
is are

random distribution functions drawn from some distribution L. The model
may be written as

H1, . . . , Hm ∼ Bernoulli(a)

Ξ1, . . . ,Ξm ∼ L(dξ)
Pi|Hi = 0,Ξi = ξi ∼ Uniform(0, 1)

Pi|Hi = 1,Ξi = ξi ∼ ξi.

The marginal distribution of Pi is

P1, . . . , Pm ∼ G = (1− a)U + aF (1)

where

F (t) =

∫
ξ(t)dL(ξ). (2)

In the nonparametric case we leave L unspecified and hence F is arbitrary
except for the stochastic dominance condition.

The restriction to p-values is not necessary. In general, we let Di =

(Xi1, . . . , Xik, Yi1, . . . , Yik) denote all the data associated with Hi and we let
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Vi be some one-dimensional summary statistic or test statistic derived from

Di. The marginal model for Vi is R = (1− a)R0 + aR1.

Example 2.1 (Normal Example). An example that will be useful for

illustrative purposes is the following. Let Vi ∼ N(θi, 1) where θi = 0 when

Hi = 0 and where θi = θ when Hi = 1. Here, θ is an unknown parameter.

Using a common (but unknown) alternative for each hypothesis makes this a

toy example.

2.2 FDR

The Benjamini-Hochberg (BH) procedure rejects all null hypotheses for which

Pi ≤ T ≡ P(j) where

j = max

{
0 ≤ i ≤ m : P(i) ≤ α

i

m

}
, (3)

and 0 ≡ P(0) < P(1) < · · · < P(m) denote the ordered p-values. BH (1995)

proved that

E (FDR) ≤ (1− a)α ≤ α, (4)

where FDR is the realized false discovery rate, the number of false rejections

divided by the number of rejections.3 The BH result is remarkable: it holds

regardless of how many nulls are true and regardless of the distribution of

the p-values under the alternatives. In fact, they proved the stronger result

sup
hm,ξm

EJ(hm,ξm)(FDR) ≤ α

where the supremum is over all binary vectors hm, all vectors of distribution

functions ξm = (ξ1, . . . , ξm),

J(hm, ξm) =
m⊗

i=1

U1−hiξhi

i .

3BH call E(FDR) the false discovery rate. We call FDR the realized false discovery rate
and E(FDR) the expected false discovery rate.
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There is an alternative way of viewing the Benjamini and Hochberg pro-

cedure due to Storey (2002) and Genovese and Wasserman (2001, 2002).

Consider rejecting all p-values less than some fixed threshold t. Genovese

and Wasserman define the realized false discovery rate process by

Γ(t) =

∑
i I(Pi ≤ t)(1−Hi)∑

i I(Pi ≤ t) +
∏

i I(Pi > t)
, 0 ≤ t ≤ 1 (5)

where the second term in the denominator forces Γ(t) to be 0 when there are

no rejections. Regarded as a function of the threshold t, this is a stochastic

process. Typically,
∏

i I(Pi > t) is exponentially small and hence,

Γ(t)≈
∑

i I(Pi ≤ t)(1−Hi)∑
i I(Pi ≤ t)

d
=
Binomial(m, (1− a)t)

Binomial(m,G(t))
.

Thus, E[Γ(t)] = Q(t) +O(m−1/2) where

Q(t) =
(1− a)t

G(t)
. (6)

If we want the expected FDR to be less than α, this suggests choosing a

threshold t∗ defined by

t∗ = max{t : Q(t) ≤ α}. (7)

It will then follow that E(Γ(t∗)) = Q(t∗) + O(m−1/2) ≤ α + O(m−1/2). Un-

fortunately, t∗ ≡ t∗(G, a) is a function of G and a which are unknown. An

obvious thing to do is to find estimates Ĝ and â for G and a and then use

the threshold t̂ = t∗(Ĝ, â). To be more explicit,

t̂ = max{t : Q̂(t) ≤ α}. (8)

where

Q̂(t) =
(1− â)t

Ĝ(t)
.

If we use the conservative estimator â = 0, then we get back the Benjamini

and Hochberg procedure, as pointed out by Storey (2001). More power can

be obtained by taking a less conservative estimator for a such as

â =
Ĝ(1/2)− 1

2

1− 1
2
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which was suggested by Storey (2002). Other estimators of a are considered in

Storey (2001) and Genovese and Wasserman (2001b). Since t̂ is obtained from

(8) instead of (7), it is not obvious that E[Γ(t̂)] ≤ α+O(m−1/2). After all, Γ(t̂)

is a random process Γ(·) evaluated at a random point t̂ and, moreover, Γ(·)
and t̂ are correlated. However, Genovese and Wasserman (2001) showed that

E[Γ(t̂)] ≤ α+O(m−1/2) does hold assuming reasonable regularity conditions.

A close inspection of their proof reveals that this result will continue to hold

without the assumption of independence as long as the empirical distribution

Ĝ is a consistent estimator of G.

The above procedures control the expected FDR. Genovese and Wasser-

man (2001) introduced confidence thresholds which control the realized FDR.

Given c and α, a random variable T = T (Pm) is level (c, α) confidence thresh-

old if P (Γ(T ) < c) ≥ 1−α. In this paper, we introduce Bayesian procedures
that control expected and realized FDR.

On the V scale, assuming that rejections correspond to large values of V ,

then all the above discussion applies with

Q(v) =
(1− a)(1−R0(v))

(1−R(v))
. (9)

2.3 EBT

The empirical Bayes approach for multiple testing, due to Efron et al (2001),

works as follows. First, suppose that a and f = F ′ are known. Then, Bayes’

theorem yields

P (Hi = 0|Pm) = P (Hi = 0|Pi) =
1− a

g(Pi)
≡ q(Pi) (10)

where g(t) = (1 − a) + af(t). (The density under the null is f0(t) = 1.) In

terms of V , we have q(Vi) = (1− a)r0(Vi)/r(Vi) where r0 = R′
0 and r = R′.

When a and f are not known, we proceed as follows. Let ĝ be an estimate

of g. Since f(t) ≥ 0 for all t, it follows that g(t) ≤ 1 − a for all t. Hence,

a ≥ 1−min g(t) which suggests the estimator â = 1−min ĝ(t). Finally, define

q̂(Pi) ≡
1− â

ĝ(Pi)
=
mint ĝ(t)

ĝ(Pi)
.
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On the V scale we get â = 1− infv r̂(v)/r0(v) and

q̂(Vi) =
minv

r̂(v)
r0(v)

r̂(Vi)
.

A similar approach is used in Efron et. al. (2001). Actually, when r0 and a

are unknown, it is no longer the case that Hi is conditionally independent of

Vj for j 6= i so one should compute P (Hi = 0|V m) rather than P (Hi = 0|Vi).
However, P (Hi = 0|Vi) can be regarded as an approximation to P (Hi =

0|V m).

An issue not addressed by Efron et. al. – that we will address in this

paper – is the accuracy of q̂. This is important since the cases of interest are

when Vi are large and the accuracy of q(Vi) will then be driven by the tails

of r̂.

2.4 Thresholds or Posterior Probabilities?

Should we report P (Hi = 0|V m) or should we choose a threshold T to have a

given FDR? Reporting P (Hi = 0|V m) is informative and intuitive but does

not control the number of false positives. On the other hand, choosing an

FDR-threshold automatically controls the errors but we lose the quantifica-

tion of the strength of evidence provided by P (Hi = 0|V m). Our recommen-

dation is to compute both. This provides the experimenter with the best of

both worlds.

The FDR and the posterior probability are related. Consider a fixed

threshold T (Pm) ≡ t on the p-value scale. Recall that E(Γ(t)) ≈ Q(t) =

(1 − a)t/G(t) and P (Hi = 0|Pm) = q(t) = (1 − a)/g(t). Suppose that G is

concave, as it is is most problems. Then we have the following FDR-EBT

relation:

tg(t) ≤ Q(t)

q(t)
=
tg(t)

G(t)
≤ 1.

Now, consider a Bayesian who chooses to reject whenever q(t) is less than

some probability β. This defines a threshold rule TB(P
m) = q̂−1(β). Under

appropriate conditions, T
p→ q−1(β) = t∗ and thus, asymptotically, Q(T ) ≈

Q(t∗) = βtg(t)/G(t) ≤ β since G(t) ≥ tg(t). From an FDR perspective,
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the Bayesian is being conservative. Storey (2001) and Efron et. al. (2001)

discuss other relationships between Bayes and FDR. In particular, note that

Q(t) = P (H = 0|P ≤ t).

Example 2.2. Return to the toy example. Figure 1 shows Q and q and

illustrates the conservativeness of the using the posterior probability to define

the rejection threshold.

As we shall see, even if we want to focus on FDR instead of empirical

Bayes, we will still need to use the quantity q. Hence, the accuracy of q̂ is of

importance from either point of view.

3 Asymptotic behavior of the q̂ process

The Bayesian who wants to report posterior probabilities must use q̂ in place

of q since a and g are unknown. Moreover, the confidence threshold methods

we describe later also depend on knowing q. The implications of having to

estimate q are best understood by examining the asymptotics of q̂ viewed as

a stochastic process. For simplicity, first assume that a is known. In what

follows we work on the V scale. As a direct consequence of the functional

delta method we have the following result.

Theorem 3.1. Let r̂(v) be an estimator of r(v). Suppose that

mα(r̂(v)− r(v))Ã W

for some α > 0, where W is a mean 0 Gaussian process with covariance

kernel τ(v, w). Then

mα (q̂(v)− q(v))Ã Z (11)

where

Z(v)
d
= −(1− a)r0(v)W (v)

r2(v)
.

Hence, Z is a Gaussian process with mean 0 and covariance kernel

Kq(v, w) =
(1− a)2τ(v, w)r20(v)r

2
0(w)

r(v)4r(w)4
. (12)
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To explore this further, we need to say something specific about r̂. We

consider two cases: parametric models and kernel density estimators.

In the parametric case, q(v) = (1−a)r0(v)/((1−a)r0(v)+arθ(v)) and let
us assume that θ is a scalar parameter. Let θ̂ be a regular,

√
n-consistent esti-

mator of θ and let q̂(v) = (1−a)r0(v)/((1−a)r0(v)+arθ̂(v)). The asymptotic
standard error of q̂(v) is

sev = se(θ̂)q(v)(1− q(v))| ˙̀θ(v)|

where se(θ̂) is the standard error of θ̂ and `θ(v) = log rθ(v). In the case where

V ∼ N(θ, σ2),

sev =
σ√
m
q(v)(1− q(v))|v − θ|.

Since we are especially interested in cases where q(v) is small, it is more

relevant to consider the relative error

relv =
sev
q(v)

= se(θ̂)(1− q(v))| ˙̀θ(v)|.

In the Normal case,

relv =
σ√
m
(1− q(v))|v − θ|.

In the tails, 1− q(v) ≈ 1 and hence relv ≈ σ√
m
|v− θ|. This suggests that q̂(v)

is reliable in a neighborhood of order
√
m around θ.

Now consider kernel density estimation:

r̂(v) =
1

m

m∑

i=1

1

hm
K

(
v − Vi
hm

)

where K is a kernel and hm is the bandwidth. The usual choice of band-

width hm = O(m−1/5) yields an asymptotically biased estimator and hence

(11) fails. Assume, therefore, that we undersmooth the density estimate, for

example hm = O(m−1/4). The asymptotic variance of r̂(v) is c2r(v)/(mhm)

where c2 =
∫
K2(v)dv. Hence, the standard error q̂(v) is

sev =
c q(v)√
mhmr(v)
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with relative error

relv =
c√

mhmr(v)
.

In particular, when hm = 1/m
β, the relative error is

relv =
c

m(1−β)/2
√
r(v)

.

This will be small when

r(v) >
c′

m1−β

for some c′, suggesting unreliability in the tails as expected.

Example 3.1. Figure 2 shows the relative error when r(v) = .5N(0, 1)+

.5N(1, 1). The solid line is for a kernel density estimator (with β = 1/4) and

the dashed line is under the parametric model. The shapes of the curves show

the striking difference between the two in the tails.

When estimation of a is taken into account, things get more complicated.

Recall that

q̂(v) =
mint

r̂(t)
r0(t)

r̂(v)
.

In general, q̂ is not a Hadamard differentiable function of r̂ making it difficult

to get a limit law without further assumptions. Results will be reported

elsewhere.

4 Bayesian FDR

Let Γ = {Γ(t) : 0 ≤ t ≤ 1} denote the entire realized FDR process. From
the Bayesian point of view, the posterior of Γ is completely determined by

the posterior for Hm. Recall that Vi ∼ (1 − a)R0 + aR1 where R1 depends

on unknown parameters θ. In the nonparametric case, θ could be infinite

dimensional. Let ψ = (a, θ). Note that the Hm are conditionally independent
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Figure 2: Relative error in estimating q̂. Solid line: nonparametric.
Dashed line: parametric.
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given V m and ψ. If Vi is sufficient, H
m are conditionally independent given

V m and ψ. Let ψ̂ be a consistent estimator of ψ. Then,

P (Hm = hm|V m) =

∫
P (Hm = hm|V m, ψ)f(ψ|V m)dψ

≈ P (Hm = hm|V m, ψ̂)

=
∏

i

P (Hi = hi|Vi, ψ̂)

≈
∏

i

(1− q̂(Vi))
hi q̂(Vi))

1−hi .

It follows that a simple method for generating random draws of Γ from

the (approximate) posterior is:

Hi ∼ Bernoulli(1− q̂(Vi)), i = 1, . . . ,m

set Γ(v) =

∑
i I(Vi > v)(1−Hi)∑

i I(Vi > v) +
∏

i I(Vi < t)
.

Theorem 4.1. Let Γ̃ ∼ Γ|V m. Suppose that q is known. Under appro-

priate regularity conditions we have that

Γ̃(v)|V m ≈ N

(∑
i I(Vi > v)q(Vi)∑

i I(Vi > v)
,

∑
i I(Vi > v)q(Vi)(1− q(Vi))

(
∑

i I(Vi > v))2

)

≡ N
(
µq(v), τ

2
q (v)

)
.

When q is unknown, the limiting posterior is a mixture of normals, namely,

Γ̃(v)|V m ≈
∫
N
(
µq(v), τ

2
q (v)

)
d(q|V m).

Example 4.1. Figure 3 is based on 100 observations with a = .5 and

θ = 3. The first panel shows 1000 draws from the posterior for Γ. The second

panel shows q̂ as a function of v. Figure 4 shows the posterior for Γ(2) and

the Normal approximation for this posterior.
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Figure 4: Posterior of Γ(1) from simulation and the Normal approximation.
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4.1 Controlling Posterior FDR

Rather than controlling E(FDR), a Bayesian would prefer to control E(FDR|V m).

Define

TBayes = sup{t : E(Γ(t)|V m) ≤ α}.
By definition, E(Γ(TBayes)|V m) ≤ α} and clearly this rejects as many hy-
potheses as possible while controlling E(FDR|V m).

Bayesian confidence thresholds are obtained as follows. Let

T = sup{t : P (Γ(t) > c|V m) < α}. (13)

It follows that P (Γ(T ) < c|V m) ≥ 1 − α and hence T is a (c, α) posterior

confidence threshold. But is T is a frequentist confidence threshold? If so, this

represents an important instance of agreement between Bayes and frequentist

in a testing scenario. We explore this in the next section.

Example 4.2. Let α = .05. TBayes can be obtained directly from the

posterior simulation and turns out to be 3.08. On the other hand, with c = .1

and α = .05, the confidence threshold is 4.0.

5 Bayes-Frequentist Agreement

For parameter estimation, it is well known that Bayes and frequentist in-

ferences agree asymptotically. For example, consider the Welch-Peers (1995)

theorem. If θ is scalar and cn is chosen to satisfy P (θ < cn|Dn) = 1−α, then
Pθ(θ ∈ (−∞, cn]) = 1− α +O(n−1/2). Moreover, if the Jeffreys prior is used

then Pθ(θ ∈ (−∞, cn]) = 1−α+O(n−1). Extensions of this result abound. In
this sense, Bayesian and frequentist inference have achieved a certain unifi-

cation. Testing has resisted such unification. However, in the multiple testing

case using FDR we have the following.

Theorem 5.1 (Bayes-Frequentist Agreement). Fix t > 0. Let cm
be such that

P (Γ(t) ≤ cm|V m) = 1− α.

Then, P (Γ(t) ≤ cm) = 1− α +O(m−1/2).
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A stronger result is that the law of the whole process agrees.

Theorem 5.2. Let c be any finite constant. L(Γ|V m) be the law of {Γ(v) :
v ∈ [−c, c]} under the posterior. Let LP (Γ) be the frequentist law of {Γ(v) :
v ∈ [−c, c]} under P . Under appropriate regularity conditions,

d(L(Γ|V m),LP (Γ)) = oP (1)

where d is the Prohorov metric.

The latter result guarantees confidence threshold agreement. That is:

Theorem 5.3. Let T be defined as in (13). Then,

P (Γ(T ) ≤ c) ≥ 1− α + oP (1).

REMARK: Despite the agreement, there is an interesting difference be-

tween the Bayesian and frequentist approaches. Genovese and Wasserman

(2001) shows that there are frequentist confidence thresholds that do not

require one to estimate q. On the other hand, it appears that the Bayesian is

compelled to estimate q. In the nonparametric case, this might be a serious

disadvantage for the Bayesian approach.

REMARK: One could argue that the agreement we have shown is not in

the same spirit as the disagreements in testing that have been much discussed.

Specifically, we have not focused on measures of evidence in favor of or against

a hypothesis. Whether the discussion should be framed this way in multiple

testing is an interesting question.

6 False Confidence Rates

In some cases, focusing attention on sharp null hypotheses may be inappro-

priate. Instead, interval nulls or confidence intervals may be more relevant.

In the microarray example, we may be interested in genes whose expression
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levels have changed by a factor of 2. If θi denotes the difference on a log-scale,

this means we are interested in genes for which |θi| > log 2.
More generally, suppose that we call an effect θi interesting if |θi| > δ for

some fixed δ > 0. Let Ci = (ai, bi) be a level 1− β confidence interval for θi.

Let us declare that the ith case is significant if Ci∩(−t, t) = ∅ where t is some
threshold to be chosen. Let Ri be the indicator for the event {Ci∩(−t, t) = ∅}
and let ∆ = (−δ, δ). We define the false confidence rate to be

Λ(t) =

∑
iRi I(θi ∈ ∆)∑

iRi

.

We would like to choose T and β so that E(Λ(T )) ≤ α. It seems natural to

choose β = α which leaves the problem of choosing T . Assume that θi ∼ F

for some arbitrary F and that Vi ≈ N(θi, σn). Then,

Λ(t) =

∑
iRi I(θi ∈ ∆)∑

iRi

≈
∫ ∆
−∆ P (Ri = 1|θ)dF (θ)

P (Ri = 1)

≤
∫ ∆
−∆ dF (θ)

[
1− Φ

(
t−∆
σn
− zα/2

)]

P (Ri = 1)

≤

[
1− Φ

(
t−∆
σn
− zα/2

)]

P (Ri = 1)

≈

[
1− Φ

(
t−∆
σn
− zα/2

)]

P̂ (Ri = 1)
(14)

where

P̂ (Ri = 1) =
1

m

∑

i

Ri.

We then select T to be the largest value of t for which the right hand side

of (14) is less than α. The procedure can also be based on Vi alone without

the use of a confidence intervals. Bayesian and frequentist versions of this

procedure will be discussed elsewhere.
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7 Microarray Example

Data were obtained on 5355 mouse genes from 3T3L1 (fat) cells over 24

hours after application of Troglitazone which is used to treat diabetes and

obesity. The experiment was carried out by Dave Peters and Rob O’Doherty

at the University of Pittsburgh. A full analysis of the data will be reported by

our group elsewhere. For each gene we have 18 measurements over time. For

each gene we computed its median expression level over time and recorded

the sign of each measurement as being above or below its median. Let Vi be

the longest run of 1’s or -1’s. In this case V has a discrete distribution on

{1, . . . , 18}. The null r0 is know exactly. Figure 5 shows the p-values and 100
draws from the posterior of the Γ process. It is interesting that there is a

very steep change in the posterior of Γ between v = 7 and v = 9. This is

much easier to visualize from the posterior draws of Γ than from the p-value

plot.

8 Conclusion

As experiments and data sets get increasingly complex, simultaneous infer-

ence becomes more important and more common. We have discussed several

frequentist and Bayesian methods for dealing with multiple testing problems

that arise in these settings. We also briefly discussed interval estimation ver-

sions. Extensions are underway to deal with various complications. For ex-

ample, dependence has been addressed in Benjamini and Yekutieli (2002),

Storey and Tibshirani (2002) and Farcome, Genovese and Wasserman (2002).

However, dependence can be complex and Bayesian hierarchical models may

be useful here.
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