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ABSTRACT

We describe a Bayesian approach to infer phylogeny and ancestral genome arrangements on the
basis of genome arrangement data using a model in which gene inversion is the sole mechanism of
change. A Bayesian approach provides a means to quantify the uncertainty in the phylogeny and in
the ancestral genome arrangements. We describe a method of sampling phylogenies from the posterior
distribution via Markov chain Monte Carlo (MCMC) that is computationally feasible for large data
sets. We compare and contrast this MCMC approach with methods which reconstruct maximum par-
simony phylogenies from genome arrangement data and demonstrate several advantages of a Bayesian
approach to this problem. Furthermore, we have found that our sampler has discovered many genome
rearrangement scenarios that require fewer gene inversions on a Campanulaceae cpDNA data set than

other published reconstructions which were thought to be most parsimonious.



1 Introduction

Phylogenetic inference on the basis of molecular sequence data is an active area of research with a long
history. Swofford et al. (1996) is an excellent review of the field with descriptions of many methods for
phylogenetic tree reconstruction including distance-based methods such as neighbor-joining, maximum
parsimony, and maximum likelihood, and extensive references to other published work in the field.
More recently, Bayesian approaches have been investigated by many authors (Rannala and Yang, 1996;
Yang and Rannala, 1997; Mau et al., 1999; Larget and Simon, 1999; Li et al., 2000). Huelsenbeck et al.
(2001) addresses the recent impact of Bayesian methods on evolutionary biology.

The above methods depend on finding homologous genes from the taxa of interest and aligning
the sites accurately. For distantly related taxa, proper alignment of DNA sequences can be highly
uncertain and very problematical due to insertions and deletions that change the gene lengths and
very long periods of time for multiple nucleotide substitutions to accumulate. Phylogenetic inference
methods that jointly handle uncertainty in the alignment as well as the phylogeny are in their infancy
and are rather unsatisfactory. Consequently, methods that assume alignment to be accurate exaggerate
the certainty of the inferences.

Processes that rearrange entire genomes are thought to be much rarer than processes that affect
genetic data at the sequence level, so genome arrangements may be more informative about deep evo-
lutionary relationships than analyses of sequence level data. Recent advances in large-scale sequencing
are providing genome arrangement data, spurring efforts to develop methodologies to analyze the data
to infer both phylogeny and ancestral genome arrangements.

Genome arrangements are represented abstractly as signed permutations, where each permutation
element represents either a gene or a block of genes. Elements of the same sign correspond to genes
located on the same strand. Gene inversions are rearrangement events that correspond to reversals of
signed permutations, where the reversal changes both the order and the signs of the affected elements.
Circular genomes with n + 1 gene blocks may be represented as signed permutations of length n by
choosing an arbitrary reference gene and reading the remaining genes around the circle.

The very simplest type of analysis attempts to reconstruct the genome rearrangement events that

separate two genome arrangements. Hannenhalli and Pevzner (1995) found the first polynomial time



algorithm for computing the reversal distance between any two arrangements. Kaplan et al. (1999)
and Bader et al. (2001) simplified and improved it.

There has been more effort put forth recently toward the development of methods to infer phylogeny
and ancestral genome arrangements among three or more species. The most studied approach is
based on the principle of maximum parsimony: reconstructions that involve the smallest possible
number of genome rearrangements are sought. Most parsimonious reconstructions are thought to be
the most likely explanations of the true evolutionary past. This framework of analysis begins with
the pairwise distance between genome arrangements. This distance can be defined in different ways.
The breakpoint distance between two genome arrangements counts the number of adjacent pairs of
genes in one arrangement that are not present in the other. This distance is not directly a function
of any presumed mechanism for rearrangement. The reversal distance counts the minimal number of
gene inversions necessary to transform one arrangement into another. Additional distances could be
defined by allowing other types of rearrangement, such as gene transposition. In the present work we
restrict consideration to unichromosomal genome arrangements and processes that rearrange genomes
on a single chromosome.

Cosner et al. (2000b) describes the Maximum Parsimony for Rearranged Genomes Problem as
the search for a tree and genome arrangements at the internal nodes to minimize the sum of the
pairwise distances over branches of the tree. If the distance measure counts breakpoints, an optimal
tree is called a minimum-breakpoint tree. Sankoff and Blanchette (1998) and M. Blanchette (1999)
describe a computational method to search for minimum-breakpoint trees. Cosner et al. (2000b) and
Moret et al. (2001) describe subsequent improvements to this approach which increase the speed of
finding minimum-breakpoint trees substantially, and also allow searches for most parsimonious trees
that minimize the total number of gene inversions. The Multiple Genome Rearrangement Problem
(Bourque and Pevzner, 2002) is the same problem in the special case where gene inversions are the
only rearrangement mechanism. Solutions to this problem are most parsimonious in that they require
the smallest number of total changes, or the smallest number of rearrangement events when the distance
measure counts rearrangements.

In previous work, we have approached the problem of phylogenetic inference from genome arrange-



ments from a very different perspective. Simon and Larget (2001) describe a Bayesian approach to the
problem that was limited to small simulated data sets. Our recent work (Larget et al., in press) solves
the computational difficulties that limited our previous approach and describes a Bayesian method
of inference that is computationally tractable for genuine data sets. The types of inference possible
in a Bayesian analysis are very different from those made within the maximum parsimony framework.
Specifically, our analyses include calculations of uncertainty in both the inferred ancestral sequences and
the phylogeny. The remainder of this paper compares a Bayesian approach with maximum parsimony

as applied to several example data sets.

2 RESULTS

We first show that arrangements that are closer in reversal distance are not necessarily more likely.
Assume that we have a small artificial genome with nine genes arranged in a circle, so the arrangements

are represented by signed permutations of size eight. Consider these two examples:

p=(83,7,1,-5,—-4,-6,2) and po=(2,3,4,5,6,8,1,7). (1)

The first permutation requires four reversals to sort, the second five. While it might be supposed that
the first permutation would be more likely than the second if a random number of random reversals with
mean equal to the actual distance of the first permutation from the identity (i.e. four) were applied to
the identity permutation, this turns out not to be the case. Applying a Poisson(4) distributed number
of random reversals to the identity permutation with all possible reversals being equally likely, the
second arrangement is more than twice as likely as the first. The reason is that there is but a single
sequence of four reversals that sorts the first permutation while there are 200 sequences of reversals of
length five that sort the second. Table 1 contains counts of the number of short sorting sequences for

the two permutations.

[Table 1 should appear about here.]

There are a total of 36 possible reversals for permutations of length eight. The probability of

achieving these permutations after applying a Poisson(4) distributed number of random reversals to



the identity permutation may be calculated by conditioning on the realized number of reversals.

P(exactly k reversals) x (# of sorting sequences of p of length k)

oo
P(identity to p) = Z
k=0

(2)

(total # of sequences of length k)

Truncating this sum at k& = 7, the probability of p; is approximately 2.8 x exp(—4) x 4*/(36)* while the
probability of ps is approximately 6.5 x exp(—4) x 4*/(36)*, more than twice as large. This indicates
that the most parsimonious reconstructions may not be the most likely, and that methods that account

for multiple sorting sequences may be more accurate.

Herpes virus example. Bourque and Pevzner (2002) reanalyzes a small virus data set studied
in Hannenhalli et al. (1995) with Herpes simplex virus (HSV), Epstein-Barr virus (EBV), and Cy-
tomegalovirus (CMV). The unrooted tree relating these viruses contains a single internal ancestral
node with edges to each of the three leaves. Hannenhalli et al. (1995) reduce the gene arrangements
to signed permutations of seven gene blocks and find two most parsimonious rearrangement scenarios
that each require seven total rearrangements. Bourque and Pevzner (2002) do not block the genes with
common arrangements in the three viruses, and analyze three signed permutations of length 25, finding
a single rearrangement scenario with seven total rearrangements.

In our analysis, we use Updates 1 and 2 from the Markov chain Monte Carlo method described in
Larget et al. (in press) to sample the possible rearrangement scenarios. Under a model we describe
below in the Methods section, we are able to compute the posterior distribution of the ancestral
sequence. Figure 1 shows these results. In this example, there is an 86 percent probability that the true
rearrangement history is one of the most parsimonious reconstructions with seven total rearrangements.
Additionally, the two possible ancestral arrangements in these most parsimonious reconstructions have
a combined posterior probability of 90 percent because they can also occur in reconstructions with
more than seven total events. Six different ancestral arrangements account for nearly 99 percent of the

posterior probability.

[Figure 1 should appear about here.]

Human, Fruit Fly, and Sea Urchin mitochondrial arrangements. Sankoff et al. (1996) and

Bourque and Pevzner (2002) analyze the mitochondrial genome arrangements of human, sea urchin,



and fruit fly. We use the full mitochondrial arrangements in Boore (2001) with 37 genes leading to
signed permutations of length 36. The other authors blocked some genes to find shorter permutations
of length 33. Bourque and Pevzner (2002) report a single most parsimonious reconstruction that
requires a total of 39 reversals. We find that there are at least 80 unique ancestral arrangements
consistent with the most parsimonious reconstructions (and there are may be more). Figure 2 shows
the posterior distribution for the total number of gene inversions. Interestingly, we calculate the
posterior probability that the true tree has a most parsimonious reconstruction scenario to be only
about one percent. Without restriction to most parsimonious reconstructions, we need nearly 7000

different ancestral arrangements to account for 90 percent of the posterior probability.

[Figure 2 should appear about here.]

Campanulaceae chloroplast genome arrangements. Cosner et al. (2000a,b), Moret et al. (2001),
and Bourque and Pevzner (2002) analyze a data set of chloroplast genome arrangements with 105
markers from twelve Campanulaceae genera plus the outgroup tobacco. These arrangements are in
Table 2. (Cosner et al. (2000a) and Cosner et al. (2000b) contain several typographical errors in
reporting these genome arrangements. The arrangements in Table 2 are consistent with the data set

available on the Web site of one of the authors of these papers.)

[Table 2 should appear about here.]

This data problem is more complicated than the previous examples because there is considerable
uncertainty in the true phylogeny as well as in the ancestral arrangements. For thirteen taxa, there are
13,749,310,575 possible unrooted binary trees. Based on a heuristic search of part of the tree space,
Moret et al. (2001) reports 216 most parsimonious trees, each of which requires 67 total gene inversions.
Using a different heuristic search method, Bourque and Pevzner (2002) reports a single tree with 65
total gene inversions indicating that Moret et al. (2001) was incorrect.

In our analysis, we find the posterior distribution of the tree topology to be rather dispersed.
The most likely tree topologies, of which there are several hundred, have posterior probabilities of

approximately 0.4 percent each. We need over 180 tree topologies to account for 50 percent of the



posterior probability, over 390 to account for 90 percent, over 420 to account for 95 percent, and over
480 to account for 99 percent. Summarizing this uncertainty with a single tree topology is inadequate.
Furthermore, the posterior probability that the true tree has a most parsimonious reconstruction is
only 22 percent. The distribution is: 64 reversals, 22 percent; 65 reversals, 61 percent; 66 reversals, 13
percent; 67 or more reversals, 3 percent. (Percentages do not sum to 100 percent because of round-off
error.)

We find 180 different tree topologies that require only 64 inversions, fewer than the 65 inversions in
Bourque and Pevzner (2002) and the 67 in Moret et al. (2001). These 180 tree topologies have similar
structure. Labels in the following description follow Table 2. In each case, the following subclades
appear and are grouped as a single clade we label X: 1, [2,3], 4, and [8,9]. The fifteen possible rooted
tree topologies of these four subclades each appear the same number of times in the 180 trees. The clade
we label Y includes X, 5, 6, and 7 is in all 180 tree topologies. Only four of the fifteen possible tree
topologies are present in equal number: ((X,5),(6,7)); (((X,5),7),6); (((5,7),X),6); and (((5,7),6),X).
Finally, there are three possible ways to combine the clades X, Y, and [10,11]. These each appear the
same number of times. Each of the 180 tree topologies we found that require only 64 inversions is
characterized by the choices from among the 15, 4, and 3 subtree topologies respectively. Our sampler

found no other tree topologies that required 64 or fewer inversions.

3 DISCUSSION

The best case for maximum parsimony methods is in the case when the most parsimonious reconstruc-
tion is very likely to be correct. Then a biologist interpreting the results has a good basis with which to
start. For example, in the herpes virus example, one ancestral arrangement has a substantial amount
of posterior probability and is not too bad of a summary by itself. But if individual most parsimonious
reconstructions are very unlikely, there is a high degree of uncertainty about which reconstruction is
correct. In the human, fruit fly, sea urchin example, there is tremendous uncertainty in the ances-
tral arrangement. We found 80 different ancestral arrangements consistent with most parsimonious
reconstructions and their combined posterior probability is small. Furthermore, in this example it is

very likely that the true rearrangement scenario is not one of the most parsimonious reconstructions.



To report a single ancestral arrangement in this case is highly misleading. The real difficulty is that
maximum parsimony methods provide no warning when the single reconstruction selected has low
probability of being correct.

By contrast, Bayesian methods report a full posterior distribution on the space of possible trees.
If one of those is very likely (whether it is most parsimonious or not), that fact will be evident from
the distribution. If there are many, roughly equally likely trees or ancestral arrangements, that also
will be evident. We submit that Bayesian analyses are more likely to be useful to biologists than are
maximum parsimony methods because accounting for and quantifying uncertainty is important.

The Bayesian analyses have other virtues as well. Because the Markov chain Monte Carlo sampler
spends the bulk of its time on trees of high probability, it coincidentally can find better maximum
parsimony trees than found by other computational approaches for some data sets. For example, in the
Campanulaceae data set, we found trees with 64 inversions, while programs searching for trees with few
inversions reported no better than 65 inversions. We expect that other researchers interested in finding
most parsimonious reconstructions may find stochastic search based on MCMC to be more efficient
than current heuristic optimization methods. Bourque and Pevzner (2002) describe the Campanulaceae
data set with its 13 taxa as “one of the most challenging genome rearrangement data sets”. Larget
et al. (in press) successfully applies the Bayesian approach used in this paper to a data set with 19
taxa, a problem in which the tree space is more than 460 million times as large.

A Bayesian approach has other benefits. First, it is possible to incorporate gracefully other sources
of information. This information may come from previous studies on other data. Furthermore, it
is straightforward in principle to extend our current model by adding other mechanisms of genome
rearrangement or to use prior information about inversion hot spots to remove the assumption that
all possible inversions are equally likely. Extending the approach to the multichromosomal data sets

described in Bourque and Pevzner (2002) should also be possible.

4 METHODS

We assume a very simple model of genome rearrangement, with gene inversion as the sole mechanism.

We assume that the evolutionary relationships among the taxa in our analysis are described by a



phylogeny in which each speciation event results in two lineages. We do not assume a molecular clock,
so the overall rate of gene inversion may be different for different lineages. Our prior distribution is that
all unrooted tree topologies are equally likely. Branches of the unrooted tree have independent lengths
selected from a Gamma distribution. Given a branch length, a Poisson number of gene inversions with
this mean are realized. Their locations on the branch are independent and uniformly distributed at
random. Given that a gene inversion occurs, we assume that all possible gene inversions are equally
likely. The likelihood of the observed data conditional on the tree topology, branch lengths, and
inversion scenario, is simply an indicator function that the data is consistent with the tree topology and
the order of the specific gene inversion events on each branch. We are able to integrate out analytically
the specific dependence on the branch lengths and the absolute locations of the gene inversions.

The state space for our Markov chain consists of the tree topology, the gene inversion counts on each
branch, and the relative order in which the specific inversions occur constrained to be consistent with
the observed arrangments. We propose changes in this state space by cycling through three different
updates. The first update changes the inversion scenario on the three branches adjacent to an internal
node. The second update changes the inversion scenario on a single branch. The third changes the tree
topology and modifies the inversion scenario on two of the affected branches. Larget et al. (in press)

contains a full description of the computational details of this approach.
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Herpes virus data

Arrangement

(1-16) (T9-17) (20-23) (25-24)

(1-16) (20-17) (21-25)

(1 11) (13 12) (16 14) (25 24) (17 23)

Ancestral arrangements

Cum. Prob. Arrangement

Virus
HSV:
EBV:
CMV:
Label Prob.
Al: 0.627
A2: 0.276
A3: 0.039
Ad4: 0.033
Ab: 0.007
A6: 0.007

0.627 (1-25)

0.903 (1 23) (25 24)

0.943  (1-16) (20-17) (21-25)

0.975 (1 16) (19 17) (21 23) (25 24)
0.983  (1-16) (20-17) (21-23) (25-24)
0.989  (1-16) (19-17) (21-25)

Posterior distribution of total number of inversions

Number of inversions Probability

7 0.861
8 0.104
9 0.032
10+ 0.003

Figure 1: The first table shows the genome arrangements of the three viruses. The second table

contains a summary of the posterior distribution on the space of possible arrangements for the ancestral

node. Nearly 99 percent of the posterior probability is concentrated on only six of the 22°25! possible

arrangements.
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0.14

0.12

0.101

0.08;

Probability

0.061

0.04

0.021

0.0-

39 41 43 45 47 49 51 53 55 57 59

Total number of gene inversions

Figure 2: Histogram of the probability distribution of the total number of inversions in

the human, fruit fly, sea urchin example.
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# of sorting sequences

Permutation Distance 4 5 6 7
p1 4 1 8 791 9,918
D2 5 0 200 2,668 147,282

Table 1: Numbers of sorting sequences. For the signed permutations in Equation 1, the second
column lists the minimal number of reversals to sort, and the remaining columns contain the number

of distinct sorting sequences by length.
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Label ~Genera Arrangement

1 Trachelium  (1-15) (76-56) (53-49) (37-40) (35-26) (44—41) (45-48) (36) (25-16) (90-84)
(77-83) (91-96) (55-54) (105-97)

2 Campanula  (1-15) (76-56) (53—49) (39-37) (40) (35-26) (24—41) (45-48) (36) (25-16)
(90 84) (77 83) (91 96) (55 54) (105 97)

3 Adenophora  (1-15) (76-56) (53—49) (39-37) (28-35) (40) (26-27) (34—41) (45-48) (36)
(25-16) (90-84) (77-83) (91-96) (55-54) (T05-97)

4 Symphyandra (1 15) (76 56) (39 37) (49 53) (40) (35 26) (44 41) (45 48) (36) (25 16)
(90-84) (77-83) (91-96) (55-54) (T05-97)

5 Legousia (1-4) (9-15) (76-56) (27—26) (14—41) (45-48) (36-35) (25-16) (90—84) (77-83)
(91-96) (5-8) (55-53) (105-98) (28-34) (10-37) (49-52) (97)

6 Asyneuma (1-15) (76-61) (56-53) (60-57) (27—26) (44—41) (45-48) (36-35) (25-16) (39-84)
(77 83) (90 96) (105-98) (28-34) (40-37) (49-52) (97)

7 Triodanus (1-15) (76 56) (27-26) (34-41) (45-48) (36-35) (25-16) (89-84) (77-83) (90-96)
(55-53) (105-98) (28-34) (40-37) (49-52) (97)

8 Wahlenbergia  (1-11) (60-56) (53—49) (37-40) (35-28) (12-15) (76-61) (27-26) (34—41) (45-48)
(36) (54) (25-16) (90-84) (77-83) (91-96) (55) (105-97)

9  Merciera (1-10) (49-53) (28-35) (10-37) (60-56) (11-15) (76-61) (27-26) (14—41) (45-48)
(36) (54) (25-16) (90-85) (77-84) (91-96) (55) (105-97)

10 Codonopsis  (1-8) (36-18) (I5-9) (40) (56-60) (37—39) (4—41) (45-53) (16-17) (54-55)
(61-76) (96—77) (105-97)

11 Cyananthus  (1-8) (28) (36-29) (27-26) (40) (56-60) (37-39) (25-9) (14—41) (45-48)
(55-49) (61-96) (105-97)

12 Platycodon  (1)(8)(2 5) (29 36) (56 50) (28 26) (9) (19 45) (41 44) (37 40)
(16-25) (10-15) (57-59) (6-7) (60-96) (T05-97)

13 Tobacco (1 105)

Table 2: Campanulaceae arrangements. Chloroplast genome arrangements of twelve genera of
Campanulaceae and the outgroup tobacco are displayed in maximal gene blocks relative to the out-
group tobacco. The notation (37-40) stands for the sequence 37, 38, 39,40 while the notation (44—41)
represents the sequence —44, —43, —42, —41 with similar notation for single genes. This data is at

http://www.cs.utexas.edu/users/stacia/ismb2000/.
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