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Abstract

Two time series are considered in this paper: one is the volume of hard disk activity,

aggregated into half-hour periods, measured on a workstation, and the other is the volume

of internet requests made to a workstation. Both of these time series exhibit features typ-

ical of network traÆc data, namely, strong seasonal components and highly non-Gaussian

distributions. For these time series, a particular class of nonlinear state-space models is

proposed, and practical techniques for model-�tting and forecasting are demonstrated.

Keywords: censored time series, traÆc volume, general state-space models, Tobit models,
nonlinear dynamic models, Gibbs sampler.

1 Introduction

In this paper we consider two time series of traÆc volume, one of the volume in bytes of hard
disk access requests, and the other of the volume in bytes of internet server access requests, each
aggregrated over half-hour time intervals. These time series exhibit strong seasonal components,
and are also non-Gaussian, with a clear \saturation" e�ect at a lower bound.

In the engineering literature, authors such as R.H.R. Riedi and Baraniuk (1999) have used
multifractal wavelet models to study similar time series. Although popular, wavelet models
often fail to capture the saturation e�ect and the autocorrelation structure of internet traÆc
data. We model the time series using a class of so-called Tobit models, which, although well-
studied in econometrics, have received much less attention in other domains. The Tobit model
is a special case of a state-space model (For details on general state-space models, also known
as \dynamic models", see, e.g. West and Harrison, 1997; Kitagawa and Gersch, 1996; Brockwell
and Davis, 1991; Shumway and Sto�er, 2000), in which the state process is linear and Gaussian,
and the observation equation simply \truncates" a linear combination of the elements of the
state vector at a certain point. Because of their ability to capture saturation e�ects and
their exibility in capturing autocorrelation structure, Tobit models are ideal candidates for
modelling traÆc volume time series.

For estimation of Tobit model parameters, Lee (1999) has proposed a technique which relies
on the use of simulation to approximate likelihoods. Zeger and Brookmeyer (1986) have also
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developed nice methods of computing likelihoods or approximate likelihoods for the speci�c case
of censored Gaussian autoregressions (this is a sub-class of the family of Tobit models). To
avoid the problems associated with using approximate likelihoods, and to bypass the restriction
of working only with autoregressive processes, we adopt a Gibbs sampling approach, quite
similar to that proposed in Carlin et al. (1992), for purposes of both parameter estimation and
forecasting. This approach, at a slightly higher computational cost than simulated likelihood
methods, allows us to obtain better parameter estimates and forecasts.

The methods developed are readily extended to handle multivariate Tobit models, and hence
could potentially be used to analyze traÆc volume data collected from multiple interconnected
servers.

2 The Data

The �rst time series was collected from a hard disk of a Hewlett Packard workstation (named
hplajw and described in Ruemmler and Wilkes, 1993). During the time period from April 18,
1992 to Jun 27, 1992 (63 days), the size in bytes of each job read from the hard disk was
recorded, together with its arrival time, transferral time and the storage location (sector). The
job sizes in successive 30 minute intervals were then aggregated to form the time series shown
in Figure 1. Clearly, there are occasional periods of high usage, and the volume can never
be negative, e�ectively skewing the data to the right. The sample autocovariance function of
the data shows that seasonal components are present. The sinusoidal pattern with period 48
indicates a high correlation between points that are one day apart (48 lags � 30 minutes = 1
day), and another sinusoidal pattern with period 336 indicates high correlations between points
a week apart.

The second time series represents volume of HTTP (internet) requests to the WWW server in
the Computer Science Department at the University of Calgary, for the period from October
30, 1994 to April 2, 1995. Again, total request volumes in bytes in successive 30 minute
intervals were aggregated to form a time series. For clearer illustration, we add one to the time
series and take logs. The resulting series is shown in Figure 3 and its histogram and sample
autocorrelation function are given in Figure 4. The histogram shows that there is a roughly
Gaussian cluster of points, mixed in with a lot of additional points hitting the minimal value of
zero. The sample autocovariance indicates signi�cant correlation structure in the data. Again
there appear to be strong day-apart and week-apart correlations.

The disk-trace and HTTP-request time series are clearly non-Gaussian. They hit a minimal
value frequently. At the same time, the sample autocorrelation functions exhibit signi�cant
periodic structure. In the next sections, we introduce models for these two time series which
capture both of these properties.
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Figure 1: Log of the HP disk-trace data, aggregated in half-hour blocks.

3 The Class of Models

Motivated by the need to capture the saturation e�ect in the data, and also to retain a relatively
large class of possible autocovariance structures, we consider the following class of models
(known as Tobit models).

Let fXt 2 R
pg be a linear, causal stationary Gaussian time series with mean zero and autoco-

variance function X(h) = E
�
XtX

T
t+h

�
, satisfying the state equation

Xt+1 = FXt + Zt; fZtg � IIDN(0;�); (1)

where F is some p� p matrix and fZtg is an independent and identically distributed sequence
of multivariate normal random variables with mean (vector) zero and covariance matrix �.
Next let

Vt = �hT (hT�h)�1=2Xt + �; (2)

where h is a p-dimensional vector, � is the variance of Xt, that is, the covariance matrix
satisfying � = F�F T +�, and � is a constant. Vt is constructed in this manner so that it has
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Figure 2: Log HP disk trace data: histogram and sample autocorrelation function.

mean � and variance �2. Let the process fYtg be de�ned by

Yt = g(Vt); (3)

where

g(x) =

�
x; x > c
c; x � c;

(4)

for some constant c. Thus each Yt is a scaled and shifted linear combinations of the components
of Xt, passed through the \censoring" function g(�).

The processes fXtg and fVtg are unobserved, while the process fYtg is observed.

The model (1,2,3) e�ectively represents a generalization of the class of univariate linear Gaus-
sian time series, since as c approaches �1, g(�) approaches the identity function, and its
argument in (3) is simply a shifted and rescaled linear combination of the elements of the state
vector. Loosely speaking, the structure of the state equation (1) determines the autocorre-
lation structure of the time series and the observation equation (3) determines the marginal
distribution of the data. The obvious advantage of this model is its ability to capture the kind
of saturation exhibited in the time series shown in Figures 1 and 3. In the remainder of this
paper we show how parameter estimation and forecasting can be carried out for this class of
models, using the disk-trace and HTTP-request time series data to illustrate the techniques.

In what follows, it will be convenient to de�ne a class of \censored Gaussian" (abbreviated
as CG) distributions as follows. Suppose that V is a normally distributed random variable
with mean � and variance �2. Then we will say that the random variable W = g(V ) (recall
the de�nition (4)) has a censored Gaussian distribution with parameters �; �2 and c, and we
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Figure 3: Log of the HTTP-request volume plus one, aggregated in half-hour time units, from
Feb. 11th, 1995 to Apr. 2nd, 1995, top: the whole time series, bottom: the �rst four weeks.
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Figure 4: Histogram and sample autocorrelation function of the log HTTP-request time series.

will denote this by W � CG(�; �2; c). The observations Yt in our state-space model (1, 2, 3)
have exactly this kind of distribution, and hence can be regarded as a time series with CG
distributions.

We will also use �(�;�; �2) and �(�;�; �2) to denote, respectively, the density function and
cumulative density function of a Gaussian random variable with mean � and variance �2,
with the convention that if � and �2 are omitted, they are implicitly assumed to be 0 and 1
respectively.

We will denote the observations from a time series as fyi; i = 1; : : : ; ng, with the understanding
that depending on context, we could be referring to either of the two time series considered or
a generic unspeci�ed time series.

4 Model-Fitting and Forecasting

Our model-�tting procedure consists of two main steps. The �rst step is to apply a Box-
Cox transform to the data to ensure that the empirical distribution of the transformed series
is approximately a CG distribution. In carrying out this step, we obtain estimates of the
parameters �; �2 and c in the observation equation (3).

The second step is to determine the structure of a reasonable model for the data and estimate
its parameters. We determine the structure of the process fVtg by examining its autocovariance
function. Once we have determined the structure, we can either use a crude Yule-Walker-like
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method for estimation of parameters by matching sample and model autocovariances, or we
can use a more sophisticated likelihood-based method such as the Gibbs sampler. When the
Yule-Walker-like method is used, forecasts can be generated using particle �ltering or some
other nonlinear version of the Kalman �lter. In the case of Gibbs sampling, forecasts can be
obtained directly as part of the parameter estimation procedure.

4.1 Transformation of the Data

Under the model (1,2,3), the observations fYtg should have a CG distribution. The �rst
step is to �nd a transformation of the original data which ensures that it does indeed have
(approximately) a CG distribution. To make the problem simpler, we restrict attention to the
class of possible Box-Cox transformations de�ned by

b(x) =

�
(x� � 1)=�; � > 0
log(x); � = 0;

for values of � in the interval [0; 2].

It is not diÆcult to verify that a linear transformation of a CG random variable is also a CG
random variable, and, in fact, Y � CG(�; �2; c) can be written as

Y = aY � + b;

where Y � � CG(0; 1; c�) with
c� = a�1(c� b): (5)

Thus the �-quantile of Y is simply a times the �-quantile of Y �, plus b, and a plot of the
quantiles of Y � versus the quantiles of Y would form a straight line.

In light of this observation, the following measure of the deviation of the empirical distribution
of a time series fy1; : : : ; yng from a CG distribution is proposed. Let

my = min
i=1:::n

yi;

and let fy0i; i = 1; : : : ; n0g be the sub-series of fyjg containing exactly those elements which are
not equal to my. (Hence n

0 � n.) Let p1 = (n�n0)=n and choose c� = ��1(p1). Then plot the
sample �-quantiles of the series fyjg versus the �-quantiles of a CG(0; 1; c�) distribution, but
only for � 2 (p1; 1]. This is equivalent to plotting order-statistics of fy0j; j = 1; : : : ; n0g versus
the quantiles fqjg of the CG(0; 1; c

�) distribution given by

qj = ��1((1 � p1)(j � 0:5)=n0 + p1); j = 1; : : : ; n0:

If the data really did come from a CG distribution, then the resulting plot should be approxi-
mately a straight line.

By normalizing both the order statistics and the computed values fqjg so that the minimum
and maximum values on both axes are 0 and 1, respectively, our plot should connect the points
(0; 0) and (1; 1) in approximately a straight line. As a measure of deviation of the empirical
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Figure 5: Optimally transformed (� = 0:24) disk-trace data, along with the corresponding QQ
plot.

distribution from a CG distribution, the total area contained in the unit box [0; 1]� [0; 1] which
lies between the resulting normalized quantile-quantile plot and the line fy = xg is used. We
choose the transformation which minimizes this area.

Having de�ned the measure of deviation, it is a straightforward procedure to use a numerical
minimization routine to minimize the measure of deviation of transformed data with respect
to the parameter of the Box-Cox transformation.

Using the nlminb routine in S-Plus to carry out the numerical minimization, we obtain optimal
Box-Cox transform parameters � ' 0:38 for the HTTP-request data and � ' 0:24 for the disk-
trace data. Plots of the transformed data, along with the corresponding quantile-quantile plots
are given in Figures 5 and 6.

4.2 Estimating the Observation Equation Parameters

Once a transformation has been found, we proceed to estimate the parameters �; �2 and c in
the observation equation (3). One way of doing this is as follows.

First estimate c using the obvious choice, that is, the minimum observed value,

ĉ = min
i=1;:::;n

yi: (6)

Then let �y = 1
n

Pn
j=1 yi and ~y = 1

n

Pn
j=1 y

2
i be sample estimates of the �rst two moments of

the distribution of Yt. Given ĉ, we can write down expressions for the stationary mean and
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Figure 6: Optimally transformed (� = 0:38) HTTP-request data, along with the corresponding
QQ plot.

Time Series �̂ �̂2 ĉ

Disk-trace -2.2349 4982.3 26.578
HTTP-request 314.73 37589 -2.614

Table 1: Parameter estimates for the two transformed time series.

second moment of Yt, and set these equal to sample estimates, obtaining the pair of equationsZ 1

�1
g(x)�(x;�; �2)dx = �y (7)Z 1

�1
g(x)2�(x;�; �2)dx = ~y: (8)

We take the estimates �̂ and �̂2 to be the values of � and �2 which satisfy (7,8). (The solutions
to these equations can be obtained by numerical minimization of the sums of absolute values
of di�erences between the left and right-hand sides of the equations.)

Using this technique to construct observation equation parameter estimates for our two Box-
Cox-transformed time series, we obtain the estimates shown in Table 1.

4.3 Constructing the State Equation

Our next object is to build a model for the (unobserved) state process fXtg As a pre-cursor to
this, we will examine the autocorrelation function of fVtg.
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4.3.1 The Autocorrelation of fVtg

We �rst derive a relationship between the autocovariance functions V (�) and Y (�) of fVtg and
fYtg. Let

�Y = E [Yt] =

Z 1

�1
g(v)�(v;�; �2)dv (9)

and let f(x; y; �) denote the density of a bivariate normal random variable with mean (�; �)T

and covariance matrix �
�2 ��2

��2 �2

�
:

Then since (Vt; Vt+h)
T is bivariate normal with mean (�; �)T , and Cov(Vt; Vt+h) = �V (h) (this

follows directly from the fact that fXtg, and hence fVtg, are Gaussian processes), we can write

Y (h) = E [YtYt+h]� �2Y =

Z 1

�1

Z 1

�1
g(x)g(y)f(x; y; �V (h))dxdy � �2Y : (10)

Thus Y (h) is a function of only �V (h) (� and �2 are regarded as constants).

Using standard numerical integration techniques, the two-dimensional integral in (10) can
be approximated. Thus, it is possible to construct a mapping d from �V (h) to �Y (h) =
Y (h)=Y (0) (which applies regardless of the choice of h).

To be more precise, we �rst numerically integrate the expression on the right hand side
of (10), �xing �V (h) at values �:97;�:94; : : : ; 0:92; 0:95. This gives us estimates of Y (h)
when �V (h) = �:97; : : : ; 0:95. We also compute Y (0) = Var(Yt). Thus we have estimates
of �Y (h) = Y (h)=Y (0) for �V (h) = �0:97; : : : ; 0:95. We then �t fourth-degree polynomials
(for instance, by least-squares, using the lm command in Splus), to �nd �Y (h) as a function of
�V (h). In other words, we �nd a mapping d such that

�Y (h) ' d(�V (h)) = �0 + �1�V (h) + �2�V (h)
2 + �3�V (h)

3 + �4�V (h)
4:

The mappings constructed for the two transformed time series (based on the estimated param-
eters given in Table 1) are shown in Figure 7. The �tted polynomials are

d1(x) = 0:0002 + 0:5885x + 0:3408x2 + 0:0359x3 + 0:0252x4; (11)

for the disk-trace data and

d2(x) = 0:9857x + 0:0056x2 + 0:0057x3 + 0:0024x4; (12)

for the HTTP-request data. Note that d2(x) is not very di�erent from the identity function.
This makes sense since the cut-o� point c for the HTTP-request data is at a relatively low
quantile of the underlying normally distributed random variables Vt, and hence the e�ect of
applying the function g(�) to Vt is relatively small.

Now that we have constructed approximate mappings from the autocorrelation function of fVtg
to that of fYtg, we can proceed to apply the inverse mappings to the sample autocorrelation
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Figure 7: The mappings from the autocorrelation function �V (h) to the autocorrelation function
�Y (h): left: d1(�), the mapping for the disk-trace data, right: d2(�), the mapping for the HTTP-
request data. Solid lines represent �tted values and boxes mark points computed by numerical
integration.

functions of our transformed time series. This yields estimates �̂V (�) of the sample autocorre-
lation functions of the underlying processes fVtg (note that these are the same as the sample
autocorrelations of fhTXtg).

Figures (8) and (9) show the estimated sample autocorrelation functions �̂V (h) = d�11 (�̂Y (h))
for the disk-trace data and �̂V (h) = d�12 (�̂Y (h)) for the HTTP-request data.

4.3.2 Constructing a Model for fXtg

Having estimated the autocorrelation function of fVtg (which is the same as the autocorrelation
function of fXtg), the next task is to construct a model for the underlying state process fXtg
for each of our time series. At this point, the estimated autocorrelation function can be used
in the usual fashion to obtain an initial guess at the structure of the model.

The two estimated autocorrelation functions obtained (shown in Figures 8 and 9) exhibit
several key features. They both have a slowly damped sinusoidal component with period 48
(corresponding to one day), they also have another less obvious sinusoidal component with
period 336 (corresponding to one week). Both functions have additional rapidly decaying
positive correlation at small lags.

An AR(2) process with an autoregressive polynomial having complex conjugate roots has a
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Figure 8: The estimated sample autocorrelation �̂V (�) for the disk-trace data, plotted for lags
0 to 400. The sample autocorrelation of fYtg is shown with a dotted line.

damped sinusoidal autocovariance function, and an AR(1) with a positive autoregressive coef-
�cient has an exponentially decaying autocovariance function. Since the autocovariance func-
tion of a sum of independent stationary time series is the sum of the individual autocovariance
functions, it makes sense to try to model our process as the sum of two independent AR(2)
processes, and an AR(1) process (also independent of the two AR(2) processes).

To be precise, consider the case where fVtg is the sum of three independent time series,
fQtg; fRtg and fStg, which are the stationary solutions of the equations

Qt � �q1Qt�1 � �q2Qt�2 = Zq
t (13)

Rt � �r1Rt�1 � �r2Rt�2 = Zr
t (14)

St � �sSt�1 = Zs
t (15)

where fZq
t g; fZ

r
t g and fZs

t g are three independent sequences of independent and identically
distributed normal random variables, with mean zero and variances �21; �

2
2 and �

2
3, respectively.

Thus the argument to the function g(�) in the observation equation (3) will be the sum of the
AR(2) processes fQtg and fRtg as well as the AR(1) process fStg. The parameters �

q
1; �

q
2; �

r
1

and �r2 will be further constrained (as described below) so that the autocorrelations of fQtg and
fRtg have peaks at multiples of 48 and 336, respectively. The object is for fQtg to capture the
sinusoidal component of the autocorrelation function which has period 48, for fRtg to capture
the lower frequency sinusoidal component with period 336, and for the process fStg to account
for remaining autocorrelation at low lags.
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Figure 9: The estimated sample autocorrelation �̂V (�) for the HTTP-request data, plotted for
lags 0 to 400. The sample autocorrelation of fYtg is shown with a dotted line. For this time
series the two functions are virtually identical.

Notice that we are e�ectively using AR(2) models with constrained parameters to capture
daily and weekly patterns in the data. Another possibility would be to incorporate seasonal
components into our model, for instance, by replacing the observation equation (3) with Yt =
g(Vt + st), where st is a deterministic sequence or a harmonic function with period 48 or 336.
(This would also require adjustments to be made to the procedure for estimation of �; �2

described in Section 4.2.)

As long as the polynomials �q(z) = 1� �q1z � �q2z
2 and �r(z) = 1� �r1z � �r

2z
2 have complex

conjugate roots, i.e.

�q(z) = (1� r�1q e�i�qz)(1� r�1q ei�qz); and (16)

�r(z) = (1� r�1r e�i�rz)(1 � r�1r ei�rz); (17)

then the autocovariances Q(�) and R(�) of fQtg and fRtg can be written as

Q(h) = �qr
�h
q sin(�qh+  q)

R(h) = �rr
�h
r sin(�rh+  r);

where

�q =
�21r

4
q

(r2q � 1)(r4q � 2r2q cos(2�q) + 1)1=2 sin(�q)
;
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with

 q = arctan

 
r2q + 1

r2q � 1

!
tan(�q);

and analogous formulae apply for �r and  r.

To enforce our frequency requirements in the autocorrelation function, we restrict the polyno-
mials �q(�) and �r(�) by requiring �q = 2�=48 and �r = 2�=336.

Having de�ned the components, we can now write down our state space model as (1,2,3) with
Xt = (Qt; Qt�1; Rt; Rt�1; St)

T ,

F =

2
66664
�q1 �q2 0 0 0
1 0 0 0 0
0 0 �r1 �r2 0
0 0 1 0 0
0 0 0 0 �s

3
77775 ; � =

2
66664
�21 0 0 0 0
0 0 0 0 0
0 0 �22 0 0
0 0 0 0 0
0 0 0 0 �23

3
77775 ; (18)

and h = (1; 0; 1; 0; 1)T : The parameters �; � and c are replaced by their estimates as obtained
in Subsection 4.2. Note that since hTXt is normalized so that the variance of Vt is �

2, the
variances �2j can all be scaled by a constant without altering the model. In other words, only

the relative magnitudes are important. Therefore without loss of generality, �x �3 = 1� (�s)2,
so that the variance of St is equal to one, and regard only rq; rr; �

s; �1 and �2 as parameters.

4.4 Crude Parameter Estimation

One simple approach for estimating the unknown parameters rq; rr; �
s; �1 and �2 is to match

the autocorrelation of fVtg with the estimated sample autocorrelation �̂V (�) as computed in
Subsection 4.3.1. This is a nonlinear problem which in general cannot be solved analytically.
However, with the wide availability of software which performs numerical minimization, it is a
simple matter to choose parameters to minimize some measure of the di�erence between the
model and sample autocorrelation.

For our problem, it is easy to compute the autocovariance (and hence the autocorrelation) of
fhTXtg,

hTX(k) = Q(k) + R(k) + S(k);

given the parameters. Since fVtg is simply a scaled and shifted version of fhTXtg, we have
�V (k) = �hTX(k) = hTX(k)=hTX(0). Next, let us de�ne the error measure

e(rq; rr; �
s; �1; �2) =

400X
j=1

dj j�V (j) � �̂V (j)j; (19)

where d 2 (0; 1] is some damping factor and �̂V (�) is the inverse-mapped sample autocorrelation
described in Subsection 4.3.1. The damping factor d is used to assign higher importance to
lower lags of the autocorrelation. This is important since for purposes of short-range forecast-
ing, it is clearly better to have a good match at small lags and a poor match at large lags than
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Time Series �̂q1 �̂q2 �̂r1 �̂r2 �̂s

Disk-trace 1.98072 -0.99781 1.98868 -0.98905 0.55634
HTTP-request 1.97974 -.99683 1.96038 -0.96111 0.20587

Time Series �1 Var(Qt) �2 Var(Rt) �3 Var(St)

Disk-trace 0.005154 0.35621 0.001377 0.22928 0.6905 1.0000
HTTP-request 0.005758 0.30771 0.003646 0.23460 0.9576 1.0000

Table 2: Parameter estimates for the disk-trace and HTTP-request time series.

to have a good match at large lags and a poor match at small lags. Using numerical mini-
mization techniques, it is then possible to minimize the error as a function of the �ve unknown
parameters.

Using this technique, with a damping factor d = 0:99, we obtain the parameter estimates given
in Table 2. The corresponding model and (transformed) sample autocorrelation functions are
shown in Figures 10 and 11.
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Figure 10: Model (�tted) and (transformed) sample autocorrelations for the disk-trace data,
plotted for lags 0 up to 400. The sample autocorrelations are shown with a dotted line.

Once parameters have been estimated, forecasting can be carried out using a simulation-based
approach. Since the observation equation (3) is nonlinear, the Kalman �lter cannot be used for
�ltering and forecasting. However, recently developed sequential Monte Carlo methods (see,
e.g., Doucet et al., 2001, for a good overview of such methods) can be used to compute good
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Figure 11: Model (�tted) and (transformed) sample autocorrelations for the HTTP-request
data, plotted for lags 0 up to 400. The sample autocorrelations are shown with a dotted line.

approximations to �ltering and predictive distributions. In this paper we will not go further
into the details of these algorithms. Rather, we will revisit the problem of parameter estimation
and forecasting, using a more sophisticated likelihood-based procedure.

4.5 Parameter Estimation and Forecasting Using the Gibbs Sampler

In the previous section, we briey discussed model-�tting by minimizing a measure of the
di�erence between sample and true autocovariance functions. Even if it were possible to match
these functions exactly for some set of lags, the resulting estimators would typically be ineÆcient
relative to maximum likelihood estimates (see, e.g. Brockwell and Davis, 1991, Chapter 8).
Therefore, in this section, we consider a more computationally intensive procedure based on
the likelihood. Essentially, we adopt the approach of Carlin et al. (1992) to perform a Bayesian
analysis of the data. There are, however, several complications which prevent their method
from being applied directly to our problem. Hence we present a slightly modi�ed version of
their algorithm here.
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4.5.1 The Sampler

Let Y = fY1; : : : ; Yng denote the entire observation process and X� = f�X1; �X2; : : : ; �Xng,
� = �(hT�h)�1=2, denote the \scaled state process". Let � vector of parameters we wish to
estimate.

The Gibbs sampler was proposed by Carlin et al. (1992) for use in a wide-class of state-space
modelling problems. It provides a standard approach for constructing a Markov chain fMk =
(X (k); �(k)); k = 1; 2; : : :g whose limiting distribution is the posterior distribution p(X�; �jY ) /
p(Y;X�; �). Here X (k) is a set fX�

t
(k); t = 1; : : : ; ng representing a kth approximate sample

from the marginal posterior distribution of the scaled state process and �(k) represents a kth
approximate sample from the marginal posterior of the parameter vector. After an initial
burn-in period, samples (X (k); �(k)) from the chain can be regarded as approximate (non-
independent) draws from the desired posterior distribution.

Before formally stating the Gibbs sampling algorithm, we point out that

p(Y;X�; �) = Ic(Y;X
�)p(X�; �) = Ic(Y;X

�)p(X�j�)p(�);

where Ic(Y;X
�) is equal to one if if Yi = g(Vi) = g(hTX�

i + �) for i 2 f1; 2; : : : ; ng, and zero
otherwise. Furthermore,

p(X�; �) = p(X�
1 j�)

nY
i=2

p(X�
i jX

�
i�1);

where X�
1 j� � N(0; �2�) and, for i > 1, X�

i jX
�
i�1 � N(FX�

i�1; �
2�). Therefore it is a straight-

forward matter to compute the density p(Y;X�; �).

Our variation on the Gibbs sampler of Carlin et al. (1992) is as follows.
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Gibbs Sampling Algorithm

1. Set k = 1. Choose some initial state M1 = (X (1); �(1)) satisfying Ic(Y;X
(1)) = 1:

2. Replace k by k + 1. Set �(k) = �(k�1) and X (k) = X (k�1).

3. For i = 1; 2; : : : ; n � 1, replace the pair of vectors (X�
i
(k);X�

i+1
(k)) by a draw from its

conditional distribution, given Y , fX�
j
(k); j 6= i; j 6= i+ 1g, and �(k).

4. Update the components of �(k) one at a time. For each component �
(k)
i , carry out the

following (Metropolis-Hastings) procedure. Draw a proposal Z from a density gi(�
(k)
i ; �).

Compute

� =
p(Y;X (k); �0)gi(Z; �

(k)
i )

p(Y;X (k); �(k))gi(�
(k)
i ; Z)

;

where �0 is �(k) with its ith element replaced by Z. With probability min(1; �), replace
�(k) by �0.

5. Go back to Step 2.

(Note that we have abused terminology slightly since our Gibbs sampler includes Metropolis-
Hastings update steps for the components of �. For this to be a true Gibbs sampler, the
proposals in Step 4 should be drawn from the appropriate full-conditional distributions.)

There are two important di�erences between this algorithm and that of Carlin et al. (1992). The
�rst is that in Step 2, we draw from full-conditional distributions for blocks of two consecutive
scaled state vectors at a time. This is essential for the particular model structure (see (18)) that
we use; if we were to adopt the typical approach of updating only X�

i
(k) given Y;X�

j
(k); j 6= ig,

and �(k), then the resulting Markov chain would not be irreducible. The fact that we use
overlapping blocks does not matter, since each update still preserves the invariant (posterior)
distribution of the chain. The second di�erence is that the censored Gaussian distributions
in our model cannot be represented as scale mixtures of Gaussian distributions as required in
Carlin et al. (1992).

4.5.2 Sampling for Step 3

In spite of the fact that our observations are not scale mixtures of Gaussian random variables,
it is not diÆcult to implement the Gibbs sampler. The proposal distributions in Steps 4-6 are
chosen to be easy to sample from. The only real diÆculty in implementation of this algorithm
is drawing from the conditional distributions in Step 3.

There are three cases we need to consider in drawing from the conditional distributions in Step
3: the case where i = 1, the case where 1 < i < n� 2, and the case where i = n� 1.

For i = 1, we need to sample from (X�
1 ;X

�
2 ) given Y; � and fX�

j ; j > 2g. By the Markov
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property, this is the same as sampling from (X�
1 ;X

�
2 ) given Y1; Y2; �; and X

�
3 . Since fX�

t g is
a zero-mean Gaussian process, the joint distribution of (X�

1 ;X
�
2 ;X

�
3 ), given �, is multivariate

normal with mean (0; 0; 0) and variance

�2

2
4 � �F T �(F 2)T

F� � �F T

F 2� F� �

3
5 :

The matrices F and � depend on �. By a standard conditioning result for multivariate normal
distributions (see, e.g. Anderson, 1984, Theorem 2.5.1), the distribution of (X�

1 ;X
�
2 ) givenX

�
3 ; �

is then
(X�

1 ;X
�
2 )jX

�
3 ; � � N

�
m1; �

2V1
�
;

where

m1 =

�
�(F 2)T

�F T

�
��1X�

3 and V1 =

�
� �F T

F� �

�
�

�
�(F 2)T

�F T

�
��1

�
F 2�; F�

�
:

Hence to get a draw from the desired distribution, we simply need to draw from a multivariate
normal with mean m1 and variance �2V1, conditioned on the event

fg(hTX�
1 + �) = y1g \ fg(h

TX�
2 + �) = y2g:

It is relatively straightforward to do this - an algorithm is given in the Appendix.

For i = 2; : : : ; n� 2, we use a similar approach. This time we are interested in the conditional
distribution of (X�

i ;X
�
i+1) given X

�
i�1;X

�
i+2; Y and �. We begin by considering the distribution

(X�
i ;X

�
i+1;X

�
i+2jX

�
i�1; �) � N

0
@
2
4 FX�

i�1

F 2X�
i�1

F 3X�
i�1

3
5 ; �2

2
4 � �F T G13

F� �0 G23

GT
13 GT

23 �00

3
5
1
A ;

where G13 = �(F 2)T , G23 = F (�F T )F T +�F T , �0 = F�F T + �, and �00 = F�0F T + �.
Again using Theorem 2.5.1 of Anderson (1984), we get

(X�
i ;X

�
i+1)jX

�
i+2;X

�
i�1; � � N(mi; �

2V2);

where

mi =

�
FX�

i�1

F 2X�
i�1

�
+

�
G13

G23

�
�00�1(X�

i+2 � F 3X�
i�1);

and

V2 =

�
� �F T

F� �0

�
�

�
G13

G23

�
�00�1[GT

13; G
T
23]:

To draw from the desired distribution, we can again use the algorithm in the Appendix to draw
from a multivariate normal with mean mi and variance �2V2, conditioned on the event

fg(hTX�
i + �) = yig \ fg(h

TX�
i+1 + �) = yi+1g:

For i = n� 1, we have
(X�

i ;X
�
i+1)jX

�
i�1 � N(mi; V3);
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with

mi =

�
FX�

i�1

F 2X�
i�1

�
and V3 =

�
� �F T

F� �0

�
:

As in the previous two cases, the algorithm in the Appendix can be used to draw from this
distribution, conditioned on the event

fg(hTX�
i + �) = yig \ fg(h

TX�
i+1 + �) = yi+1g:

4.5.3 Forecasting

The Gibbs sampler is readily extended to give predictive distributions of Yn+1; Yn+2; : : :, given
Y1; : : : ; Yn. The basic idea is as follows. Let f > 0 be some forecast horizon. Since

p(Xn+1; : : : ;Xn+f jY ) =

Z
p(Xn+1; : : : ;Xn+f jY;X

�; �)p(X�; �jY )d(X�; �)

=

Z
p(Xn+1; : : : ;Xn+f jX

�
n; �)p(X

�
n; �jY )d(X

�
n; �); (20)

the method of composition can be used to draw a sample from p(Xn+1; : : : ;Xn+f jY ), by �rst
drawing a sample from p(X�

n; �jY ), and then, conditioned on this, drawing a sample from
p(Xn+1; : : : ;Xn+f jX

�
n; �). Our predictive sample for the observation process is then fYn+k =

g(�Xn+k + �); k = 1; 2; : : : ; fg:

Thus at the end of Step 3, we simply \simulate into the future" using the current value of X�
n
(k)

and �, The resulting simulation can be regarded as a draw from the predictive distribution
of Yn+1; : : : ; Yn+f , given Y1; : : : ; Yn. It is important to remember that draws at successive
iterations of k are not necessarily independent.

A convenient property of this approach is that forecasts are not based on some �xed (for in-
stance, maximum likelihood) estimate of model parameters. Rather, they take into account
uncertainty in parameter estimation, since the integral in (20) is taken over all possible param-
eter values �.

4.5.4 Results

In order to implement the Gibbs sampler for our problem, we use the �ve-dimensional parameter
vector � = (�1; : : : ; �5) speci�ed by rq = 1:01 + j�1j; rr = 1:01 + j�2j; �1 = exp(�3 � 2); �2 =
exp(�4 � 2); and �s = �5. This parameterization ensures that � can move freely in R5 and the
constraints rq � 1:01; rr � 1:01; �1 > 0; �2 > 0 will always be satis�ed. (The constraints rq > 1
and rr > 1 ensure that the processes fQtg and fRtg are stationary; using 1:01 instead of 1
prevents numerical overow/underow problems which can occur otherwise.) We choose a at
(improper) prior

p(�) = I(�1;1)(�4) = I(�1;1)(�
s):

(The restriction �4 2 (�1; 1) guarantees that the process fStg is stationary.) To update the

components of �, we use random walk proposal densities, so that gi(�
(k)
i ; �) is normally dis-
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tributed with mean �
(k)
i and variance �i, and we choose (after some experimentation to get

\good" mixing properties) �1 = �2 = �5 = 0:01 and �3 = �4 = 0:006:

Implementing the Gibbs sampler with these parameters for both the disk-trace and HTTP-
request data, we generate chains of length 11000, and discard the �rst 1000 iterates as \burn-
in" (see, e.g. Gilks et al., 1996, for discussion of the burn-in problem). The resulting posterior
distributions for our parameters are summarized, for the disk-trace data, and the HTTP-request
data, respectively, in the box-plots in Figures 12 and 13.
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Figure 12: Box-plots of Gibbs-sampled values of the parameters for the disk-trace data. Pa-
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Figure 13: Box-plots of Gibbs-sampled values of the parameters for the HTTP-request data.
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We also obtain approximations to predictive distributions using the method of Section 4.5.3.
Sorting our samples of size 10000 for each possible point in the future allows us to compute
estimates of the quantiles of the distributions. These sample quantiles are plotted, along with a
�nal portion of the observed data, for the disk-trace and HTTP-request time series, respectively,
in Figures 14 and 15. The forecasts, being obtained by simulation from the CG distribution,
clearly have the desired saturation property, and quantiles of the predictive distributions can
be obtained relatively accurately.

The three component processesQt,Rt and St can be examined periodically during the running of
the Gibbs sampler to assess goodness of �t. For our time series, we would expect the simulated
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processes fQtg and fRtg to look like AR(2) processes, and the simulated process fStg to look
like an AR(1). Examination of the sample autocovariance functions of these processes at several
points during the running of the Gibbs sampler demonstrates several common features for both
of our time series. Firstly, none of the three processes has negligible variance, although the
autocovariance of Rt (which has period 336) is damped so rapidly, that it could potentially
be replaced by an AR(1) process in order to reduce the complexity of the model. Secondly,
the process St does behave like an AR(1) in the sense that low-order autocorrelations are
approximately �S(h) = (�s)jhj: However, it also exhibits high correlation at lags 48, 96, and so
on, suggesting that Qt is not completely capturing the seasonal component of period 48, and
that other methods of dealing with seasonality might be more e�ective.
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Figure 14: Predictive distributions for the Box-Cox transformed disk-trace data, based on the
state-space model of Section 4.3.2. The forecast horizon is 48 half-hour units, or one day.

5 Concluding Remarks

We have demonstrated methods for construction of nonlinear state-space (Tobit) models for
the two traÆc volume time series we considered. The methods involve preliminary analysis of
the estimated autocorrelation function of the uncensored data, for the purpose of determining
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Figure 15: Predictive distributions for the Box-Cox transformed HTTP-request data, based on
the state-space model of Section 4.3.2. The forecast horizon is 48 half-hour units, or one day.

the structure of the state equation, followed by an application of a variant of the Gibbs sampler
of Carlin et al. (1992). While there are other available methods for working with the models we
consider, the Gibbs sampler has at least two advantages: it does not rely on approximations to
the likelihood, and it provides forecasts which take into account parameter uncertainty. The
Tobit models we �t match both the marginal distribution and the autocorrelation structure of
our time series relatively accurately.

In principle, exactly the same methods used in this paper can be used when observations fYtg
are multivariate, with individual components being censored, possibly at di�erent levels. This
simply involves (apart from constructing a more complex, probably higher-dimensional state
equation) sampling from Gaussian random variables with more conditioning constraints.

As has already been recognized by many authors, the Tobit model has a wide variety of potential
applications in modelling censored time series. In light of this, along with the previous remarks,
we believe that there is wide scope for potential application of the methods described in this
paper.
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7 Appendix

Here we describe a procedure for sampling from the conditional multivariate normal random
variables in Section 4.5.2.

The general problem is to draw from a p-dimensional multivariate normal distribution

X � N(�;�);

conditioning on the inequality constraints

H1X > k1;

where H1 is a q1 � p matrix and k1 is a q1-dimensional vector, and the equality constraints

H2X = k2; (21)

where H2 is a q2� p matrix and k2 is a q2-dimensional vector. (The multivariate relation holds
if and only if each of its components satis�es the relation.) We assume that q1 + q2 < p.

The �rst step is to construct a full-rank p� p matrix P with block structure

P =

2
4 P0
H1

H2

3
5 :

(This can be done using the Gram-Schmidt orthogonalization procedure.) Next we note that
PX � N(P�; P�P T ), and we partition

P� =

�
�1
�2

�
; P�P T =

�
Q11 Q12

Q21 Q22

�
;

where Q11 is a (p� q2)� (p� q2) matrix and �1 is a (p� q2)-dimensional vector.

The original set of equality constraints (21) is the same as the constraint that the bottom
q2-dimensional subvector of PX is equal to k2, so we set the last q2 elements of PX equal to
(the corresponding elements of) k2. Given this subvector, the top p� q2-dimensional subvector
of PX has a normal distribution with mean �0 and variance �0, where

�0 = �1 +Q12Q
�1
22 (k2 � �2) and �0 = Q11 �Q12Q

�1
22 Q21:
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The next step is to draw the �rst subvector of PX repeatedly from the N(�0;�0) distribution,
until its last q1 components are greater than the corresponding components of k1. (Various
tricks can be used here to reduce the expected number of draws required.)

Finally, the (conditional) draw of PX is premultipled by P�1 to obtain a sample from the
desired conditional distribution.
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