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ABSTRACT

This paper extends False Discovery Rates to random fields, where there are un-

countably many hypothesis tests. This provides a method for finding local regions

in the field where there is a significant signal while controlling either the propor-

tion of area or the number of clusters in which false rejections occur. We develop

confidence envelopes for the proportion of false discoveries as a function of the

rejection threshold. This yields algorithms for constructing a confidence superset

for the locations of the true nulls. From this we derive rejection thresholds that

control the mean and quantiles of the proportion of false discoveries. We apply

this method to scan statistics and functional neuroimaging.

Keywords: false discovery rates, multiple hypothesis test, random fields.

.1 INTRODUCTION

In this paper, we extend the False Discovery Rate (FDR), introduced by Benjamini and

Hochberg (1995), to random fields, where there are uncountably many hypothesis tests. Our

method produces a threshold that controls the fraction of errors, expressed as a ratio of

areas within the field’s domain. As in the standard multiple testing problem, controlling

the fraction of errors is an alternative to the traditional approach of strong control of the

familywise error rate. For the familywise approach in the context of random fields see, for

example, Cao and Worsley (1999), Siegmund and Worsley (1995) and Worsley (1994, 1995).

Another approach to using FDR in the case of spatial signals is given in Shen, Huang, and

Cressie (2002).

Consider a set S and a random field X = {X(s) : s ∈ S} on S with mean function

µ(s) = EX(s). We use the realized value of X to test the collection of one-sided hypotheses

H0,s : µ(s) = 0 versus H1,s : µ(s) > 0. (1)
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supported by NIH Grant R01-CA54852-07, NIH grant number MH57881, NSF Grant DMS-98-03433, ITR

0121671 and NSF Grant DMS-0104016.
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Let S0 = {s ∈ S : µ(s) = 0} denote the unknown set on which the null hypothesis is true.

Let λ denote Lebesgue measure on S, or counting measure if S is discrete. Following

Genovese and Wasserman (2001, 2003), we define the False Discovery Proportion (FDP)

process Γ = {Γ(t) : t ∈ R} by

Γ(t) =
λ(S0 ∩ {s ∈ S : X(s) ≥ t})
λ({s ∈ S : X(s) ≥ t}) . (2)

The FDR is then defined as E(Γ(t)) for each threshold t.

Our general goal is to choose a data-dependent threshold T that guarantees a bound on

some measure of error. We consider (i) controlling FDR when, for a pre-specified 0 < α <

1, we choose T such that E(Γ(T )) ≤ α (Benjamini and Hochberg, 1995), (ii) controlling

quantiles of the FDP distribution when, for pre-specified 0 < α < 1 and 0 < c < 1, we

choose T so that P(Γ(T ) ≤ c) ≥ 1 − α. Genovese and Wasserman (2001, 2003) call such a

T a confidence threshold. (They also consider a version in which c is itself data dependent).

One approach for constructing such thresholds is to find first a confidence envelope for the

FDP process Γ(t) defined in (2). For this, we use the strategy in Genovese and Wasserman

(2001, 2003) based on inverting a collection of goodness of fit tests. See also Genovese and

Wasserman (2003) where this idea is explored more fully in the standard multiple testing

problem.

Our strategy for finding a confidence envelope for Γ is as follows:

1. For every A ⊂ S, test at level α, the hypothesis,

H0 : A ⊂ S0 versus H1 : A 6⊂ S0, (3)

using the test statistic

X(A) = sup
s∈A

X(s). (4)

2. Let C denote all subsets A not rejected in the previous step. Our construction ensures

that C is closed under unions.

3. Define U =
⋃

A∈C A. The set U is a (1− α) confidence superset for S0, meaning that

P(U ⊃ S0) ≥ 1− α. (5)

4. Define

Γ(t) = sup
A∈C

λ(A ∩ {s ∈ S : X(s) ≥ t})
λ({s ∈ S : X(s) ≥ t}) =

λ(U ∩ {s ∈ S : X(s) ≥ t})
λ({s ∈ S : X(s) ≥ t}) , (6)

where the second equality follows because C is closed under unions. The curve Γ is a

confidence envelope, meaning that

P
(

Γ(t) ≤ Γ(t), for all t
)

≥ 1− α. (7)
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Given the confidence envelope Γ, define Tc = inf{t : Γ(t) ≤ c}. Then P(Γ(Tc) > c) ≤ α.

In Genovese and Wasserman (2001), Tc is called a (1−α) confidence threshold with ceiling c,

or a (c, α) threshold. An alternative is the minimum rate (1−α) confidence threshold, defined
in Genovese and Wasserman (2003) as Tm = argmint Γ(t), which satisfies P(Γ(Tm) > C) < α

with C = Γ(Tm). To control FDR, let c ∈ (0, α) and take T to be a 1−β confidence threshold

where β = (α− c)/(1− c). We show in Lemma 6 that EΓ(T ) ≤ α.

Our methods have strong connections to recent research related to controlling FDR in

standard multiple testing problems. Among the many contributions we mention the follow-

ing. Benjamini and Yekutieli (2001) extended the Benjamini-Hochberg method to a class

of dependent tests. Efron, Tibshirani, Storey and Tusher (2001) developed an empirical

Bayes approach to multiple testing and made interesting connections with FDR. Storey

(2001, 2002) connected the FDR concept with a certain Bayesian quantity and proposed a

new FDR method which has higher power than the original Benjamini-Hochberg method.

Finner and Roters (2002) discuss the behavior of the expected number of type I errors.

Sarkar (2002) considers a general class of stepwise multiple testing methods. Storey, Taylor

and Siegmund (2003) study FDR procedures in some generality.

.2 FINDING CONFIDENCE SUPERSETS FOR S0.

In this section, we describe a method for finding the set U , which is a confidence superset

for S0 as defined in (5).

The tail area for the test in (3) is defined for A ⊂ S0 by

p(z, A) = P(X(A) ≥ z). (8)

The following monotonicity properties of p(z, A) will be useful in what follows:

z1 < z2 implies p(z1, A) ≥ p(z2, A), for all A (9)

A1 ⊂ A2 implies p(z, A1) ≤ p(z, A2), for all z. (10)

These are immediate consequences of definitions (4) and (8).

Let x(A) denote the realized value of the test statistic X(A) in equation (4), thus the

p-value is p(x(A), A) = P(X(A) ≥ x(A)). We define the class C of all sets such that the null

hypothesis is retained by

C = {A ⊂ S : p(x(A), A) ≥ α} (11)

and U =
⋃

A∈C A as above.

Lemma 1 The class C is closed with respect to the union.

Lemma 2 For each A ⊂ S0, P(C 3 A) ≥ 1− α and hence P(U ⊃ S0) ≥ 1− α.
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Proofs are provided in Section 10.

It appears from the definition above that to carry out our strategy requires considering

every subset of S. However, in the next two subsections, we propose a procedure that

reduces the number of sets A for which p-values must be computed to a level that is feasible

in practice.

2.1 Finite multiple testing problems.

Because our strategy for random fields will involve solving a sequence of finite problems,

we first consider a coarser set of hypotheses based on a finite partition of S. The results in

this section also solve the problem of finding a confidence superset when S is finite.

Let S1, . . . , SN be a partition of S and let X(S1), . . . , X(SN ) denote the test statistic

values for those N elements. We make no assumptions about the dependence among these

statistics, but we assume that the null distribution of supj∈J X(Sj) can be computed for any

collection of indexes J ⊂ {1, . . . , N}.
The following strategy requires at most N steps even though it is equivalent to testing

all 2N unions of elements of the partition.

1. Compute all realized values of the test statistics x(Sj), for j = 1, · · · , N .

2. Sort the values of the single test statistics in decreasing order and denote them as

x(1) ≥ · · · ≥ x(N). Let S(j) be the partition element corresponding to the j-th ordered

test statistic x(j).

3. For k = 1, . . . , N do the following:

(a) Set Vk =
⋃N

j=k S(j).

(b) Compute p(x(k), Vk).

(c) If p(x(k), Vk) ≥ α: stop and set V ∗ = Vk.

(d) If p(x(k), Vk) < α: increase k by 1 and goto 3a.

The rationale for Steps 3c and 3d is that we are looking for the largest set A (union of sets

in the partition) with p(x(A), A) ≥ α. Thus, we stop as soon as Vk satisfies this condition

(Step 3c). Otherwise, if p(x(k), Vk) < α, then for each A such that S(k) ⊂ A ⊂ Vk we have

x(A) = x(k) and, from the monotonicity of p(x(k), ·),

p(x(A), A) = p(x(k), A) ≤ p(x(k), Vk) < α.

Hence all sets containing S(k) do not belong to C. As a consequence, we proceed in Step 3d

by removing S(k) from the set that we test next.
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Lemma 3 The output of the above algorithm, the set V ∗, equals the confidence superset U .

Remark 1 Under the assumption that the test statistics X(Sj) are independent and iden-

tically distributed, sorting the observed values x(Sj) is equivalent to sorting the p-values, of

the corresponding single test problems, in increasing order:

p(x(1), S(1)) ≤ p(x(2), S(2)) ≤ · · · ≤ p(x(N), S(N)).

Since the test statistics are iid, then p(x(k), Vk) = 1 −
[

1− p(x(k), S(k))
]N+1−K

. Using the

strategy described above, one will retain all the hypotheses S(k∗), · · · , S(N) where k∗ is the

first index such that p(x(k), Vk) ≥ α. Thus one rejects all the null hypotheses for which

p(x(k), S(k)) < p(x(k∗), S(k∗)), Where

k∗ = min
{

1 ≤ k ≤ N : p
(

x(k), S(k)}
)

≥ 1− (1− α)
1

N+1−k

}

. (12)

Figure 1 compares this procedure with the one proposed by Benjamini and Hochberg (1995)

that rejects all null hypotheses for which p(x(k), S(k)) ≤ p(x(BH), S(BH)), where:

BH = max
{

1 ≤ k ≤ N : p(x(k), S(k)) ≤ α
k

N

}

, (13)

or take BH = 0 if no such k exists.

The boundary is more conservative than Benjamini and Hochberg’s. This is to be ex-

pected, because this strategy searches for the largest set of hypotheses that would be retained,

with probability at most α, while Benjamini and Hochberg’s controls the FDR, or the ex-

pected value of the false discovery proportion. ¥

2.2 Testing infinitely many hypotheses.

We now turn to the case where there are infinitely many hypotheses. For each n ∈ N,

let Sn = {S1, · · · , SNn
} denote a partition of S. We consider partitions such that p-values

can be computed for each set and for their unions. Let Un denote the set in Lemma 3,

obtained from applying the strategy of Section 2.1 to Sn. The following results show that,

if the partitions are chosen properly, the limit of Un is a level α upper confidence set for So
0 ,

the interior of S0. We choose the partitions of S to be nested and degenerating, defined as

follows.

Definition 1 For each s ∈ S and each n ∈ N, let Sn,s be the partition element in Sn that

contains s. We say that the sequence of partitions Sn is degenerating if for each s ∈ S and

for each open neighborhood Os of s, the set Sn,s ⊂ Os for sufficiently large n.
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Applying the strategy described in Section 2.1 to each Sn, we obtain a sequence of sets

Un that converge to a confidence superset for So
0 , the interior of S0. Analogous to the above,

for each n we define

Cn =
{

A =
⋃

Sj∈Sn

Sj : p(x(A), A) ≥ α
}

, (14)

and take Un =
⋃

A∈Cn
A.

Lemma 4 The sequences Cn and Un are both increasing.

Theorem 1 If the sequence of partitions Sn is nested and degenerating, then limn Un is a

(1− α) confidence superset for So
0

P
(

lim
n
Un ⊃ So

0

)

≥ 1− α.

Also, P(U ⊃ S0) ≥ 1− α, where U is the closure of limn Un.

Remark 2 The proof of Theorem 1 rests on the monotonicity of Cn, as proved in Lemma

4. This makes the procedure more efficient. Once Un−1 is found, one can apply the above

algorithm to a partition of S \ Un−1. This gives all elements of Cn \ Cn−1 and Un = Un−1 ∪
⋃

A∈Cn\Cn−1
A. This is reminiscent of the tree hypothesis testing method in Benjamini and

Yekuteli (2003). ¥

Remark 3 This procedure is a continuous analogue of the P(1) test of Genovese and Wasser-

man (2003). ¥

.3 EXTRACTING THRESHOLDS

Once the confidence superset U is available, we can build the confidence envelope Γ

defined in (6). Here, we summarize briefly how thresholds are extracted from Γ.

Lemma 5 Let Γ be a (1− α) confidence band. Let T = inf{t : Γ(t) ≤ c}. Define T =∞ if

no such t exists. Then T is a (c, α) confidence threshold, i.e. P(Γ(T ) ≤ c) ≥ 1− α.

Lemma 6 Let c ∈ (0, α) and let β = (α− c)/(1− c). Let T be a (c, β) confidence threshold.

Then T is a level α FDR threshold, meaning that E(Γ(T )) ≤ α.
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Remark 4 Lemma 6 defines a family of procedures indexed by c ∈ (0, α). It would be

interesting to study the power of the procedure as a function of c though we do not pursue

this here. ¥

We can use the confidence superset U to control the number of false clusters instead of

their area; to our knowledge such a method does not presently exist. Decompose the level

set Lt = {s ∈ S : X(s) ≥ t} into its connected components C1t, . . . , Cktt. We call these the

level-t observed clusters. Let ε be a user-specified tolerance level. Say that a cluster C is

false at tolerance ε if
λ(C ∩ S0)

λ(C)
≥ ε. (15)

The false cluster proportion Ξ(t) is defined to be the number of false clusters above threshold

t divided by the total number of clusters above threshold t. Define the ε false cluster envelope

Ξ(t) by

Ξ(t) =
#
{

1 ≤ i ≤ kt :
λ(Cit∩U)
λ(Cit)

≥ ε
}

kt
(16)

where U is the (1− α) confidence superset defined in Section 2.

Lemma 7 If U is a (1− α) confidence superset for S0, then

P(Ξ(t) ≤ Ξ(t) for all t) ≥ 1− α. (17)

Similarly to Section 3, we can extract thresholds from Ξ that control the proportion of

false clusters. An example is given in Section 8.

.4 THE FALSE NONDISCOVERY RATE

The false nondiscovery proportion was introduced in Genovese and Wasserman (2001)

as the analogue of power in the FDR context. In the current setting, define the False

Nondiscovery Proportion (FNP) process by

Λ(t) =
λ(S1 ∩ {X < t})
λ({X < t}) (18)

where S1 is the complement of S0. The False Nondiscovery Rate (FNR) is E(Λ(t)). Our goal

in this section is to find a confidence band for Λ(t).

As in all power calculations, we need to restrict the alternatives to get non-trivial results.

For a fixed ε > 0, consider as alternative hypotheses the class of distributions

Pε =
{

P ∈ P : inf
s∈S1

µ(s) ≥ ε

}

.
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We want to find Λ(t) such that

P(Λ(t) ≤ Λ(t) for all t) ≥ 1− α, for all P ∈ Pε (19)

which is equivalent to

inf
P∈Pε

P(Λ(t) ≤ Λ(t) for all t) ≥ 1− α.

We use a strategy similar to that used earlier. For any A ⊂ S consider testing

H0 : A ⊂ S1 versus H1 : A 6⊂ S1. (20)

Suppose we have a test for (20) which is level at most α for every P ∈ Pε. Let A be the set

of non-rejected A. Then

Λ(t) = sup
A∈A

λ(A ∩ {X < t})
λ({X < t})

is a confidence band.

Theorem 2 Let Y = −(X − ε). Let Γ(t) denote the (1 − α) upper envelope obtained by

applying the procedure from Section 3 to the field Y . Let Λ = Γ. Then

inf
P∈Pε

P(Λ(t) ≤ Λ(t) for all t) ≥ 1− α.

.5 THE GAUSSIAN CASE.

Assume that S = [0, 1]d and that, under the null hypothesis, the test statistic X(s) is a

homogeneous Gaussian random field over S that has almost surely continuous paths, zero

mean and covariance structure

C(X(r), X(s)) = σ2ρ(r − s), (21)

where σ2 > 0 is the variance of X(s).

For applying the procedure described in Section 2, we need to define a nested and de-

generating sequence Sn of partitions. For each n ∈ N, we partition the set S into 2d·n

hypercubes, each with edge length 2−n:

Sn =

{

{

(s1, · · · , sd) ∈ S :
aj − 1

2n
≤ sj <

aj
2n
, j = 1, . . . d

}

, a ∈ {1, · · · , 2n}d
}

. (22)

The partitions in (22) are nested and degenerating.

We turn now to computing the the p-value functions p(z, A), defined in (8), for each

z ∈ R and for each set A, a finite union of hypercubes (22). Note first that, since the paths
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of X are continuous almost surely, the supremum of X, over any set, coincides with the

supremum over the closure of the same set.

A common method for approximating p(z, A) is to use the topological properties of

the level sets of the random field, especially their expected Euler characteristic (Piterbarg

1996, Theorem 5.1; Adler 1981, 1990, 2000; and Worsley 1994, 1995). We will consider,

instead, an approximation based on Theorem 7.1 in Piterbarg (1996). The reasons for using

this alternative approximation are explained in Section 6. Briefly, this choice is needed

when using the procedure of Section 2, where we tests hypotheses on sets that are union of

hypercubes (22) and that might fail to be convex. Our procedure requires monotonicity of

the tail area approximation which will fail for the Euler-based approximation. We take the

following definition from Piterbarg (1996).

Definition 2 A Gaussian random field X over A ⊂ Rd is locally stationary with quadratic

covariance if for any ε > 0 there exists δ > 0 such that for all s ∈ A there exists a matrix-

valued function Cs for which the field’s covariance structure satisfies

||(1− ε)(r − t)||2 ≤ 1− C(X(Csr), X(Cst)) ≤ ||(1 + ε)(r − t)||2, (23)

for all pairs r, t ∈ S with ||s− r|| ≤ δ, ||s− t|| ≤ δ.

If X is a homogeneous Gaussian field, the normalized field X/σ is locally stationary with

quadratic covariance if, for some matrix C

ρ(Cs) = 1− ||s||2 + o(||s||2) as s→ 0 (24)

or, equivalently, ρ(s) = 1− sTBs+ o(||s||2), where B = C−2.

Theorem 3 [Theorem 7.1 from Piterbarg (1996)] Let A ⊂ Rd be a closed set whose

boundary has zero Lebesgue measure and let X be a Gaussian field over A, with zero mean.

Assume also that X is locally stationary with quadratic covariance C(X(r), X(s)) and that

the matrix-valued function Cs is continuous in s and non-degenerate everywhere on A. Then

if C(X(r), X(s)) < 1 for all r 6= s ∈ A,

P
(

sup
s∈A

X(s) ≥ z

)

=

(
∫

A

| detCs|−1ds

)

π−
d
2 zd(1− Φ(z))(1 + o(z)) (25)

where Φ is the cdf of a standard normal.

Finite unions of closed hypercubes are closed sets with zero-measure boundary, thus

if (24) is satisfied, the following approximation for the p-value function is obtained from

Theorem 3:

p(z, A) = P
(

sup
s∈A

X(s)

σ
≥ z

σ

)

' π−
d
2

| detC|λ(A)
( z

σ

)d [

1− Φ
( z

σ

)]

. (26)
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In our applications, we deal with the homogeneous correlation function

ρ(s) =
a · exp(−sTBs) + c

a+ c
(27)

where sT denotes the transpose of s. The correlation structure (27) satisfies (24) for any

symmetric positive definite matrix B, and any nonzero constant a. In fact, if C = ( a
a+c

B)−
1

2

then (Cs)TB(Cs) = a+c
a
sT s = a+c

a
||s||2 and

ρ(Cs) =
a · exp(−a+c

a
||s||2) + c

a+ c = 1− ||s||2 + o(||s||2). (28)

Approximation (26) applied to a field with correlation (27) gives

p(z, A) ' π−
d
2

(

a

a+ c

)
d
2 √

detB λ(A)
( z

σ

)d

(1− Φ(z)). (29)

Remark 5 Approximation (26) is not a decreasing function of z over the whole real line. In

fact zd(1−Φ(z)) is increasing for z ∈ (0, z̄) and decreasing for z ≥ z̄, and the approximation

to p(z, A) in (26) behaves in the same way. But, we are considering level α tests, and

are interested in large values of z in the right tail of the distribution of the test statistic.

For a level α test, there might be 0, 1 or 2 real roots of the equation p(z, A) = α, for

z > 0. In most practical cases, at least one such root exists. Let zα denote the largest root

zα = max{z > 0 : p(z, A) = α}. The testing rule will reject the hypothesis if the observed

test statistics is greater than zα and will retain it otherwise. ¥

Remark 6 Another inconsistency of approximation (26) is that its right-hand-side depends

on A through λ(A), that satisfies λ(A1∪A2) = λ(A1)+λ(A2)−λ(A1∩A2). As a consequence

we have that:

P
(

sup
s∈A1∪A2

X(s) ≥ z

)

= P
(

sup
s∈A1

X(s) ≥ z

)

+ P
(

sup
s∈A2

X(s) ≥ z

)

− P
(

sup
s∈A1∩A2

X(s) ≥ z

)

,

while the true distribution must satisfy:

P
(

sup
s∈A1∪A2

X(s) ≥ z

)

= P
(

sup
s∈A1

X(s) ≥ z

)

+ P
(

sup
s∈A2

X(s) ≥ z

)

−P
(

sup
s∈A1

X(s) ≥ z, sup
s∈A2

X(s) ≥ z

)

so that (26) yields the incorrect equality

P
(

sup
s∈A1

X(s) ≥ z, sup
s∈A2

X(s) ≥ z

)

= P
(

sup
s∈A1∩A2

X(s) ≥ z

)

.
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Obviously, this same inconsistency exists when dealing with the expected Euler characteris-

tic. This is due to the use of a function (either Lebesgue measure λ or Euler characteristic)

that is additive with respect to A while p(z, ·) is not. Note that Piterbarg (1996, proof of

Theorem 7.1) shows that, as the sets become smaller and smaller, as it is the case here,

the probability of pairwise intersections gets negligibly small and thus this inconsistency is

irrelevant. ¥

.6 NON-MONOTONICITY OF EULER-BASED P-VALUE APPROXIMATIONS

In this section, we explain why the p-value approximation based on the Euler character-

istic of the level sets can fail to be monotone. We require monotonicity in our method since

we need to test all subsets in an efficient way.

Consider a homogeneous Gaussian random field with covariance structure over S = [0, 1]2

as in (34), that is a special case of (27). The approximation of p(z, A), based on the expected

Euler characteristic, for such a random field is given by:

p(z, A) '
[

bz

π
A(A) +

( b

π

)1/2 P(A)
2

]

ϕ(z) + E(A)(1− Φ(z)), (30)

where A(A), P(A), E(A) denote, respectively, area, perimeter, and Euler characteristic of

a set A, and ϕ(·) is the pdf of a standard normal. Note that approximation (29) happens to

be the first term of (30).

We show that if the sequence of partitions of S ⊂ R2 is chosen as in (22), approximation

(30) does not preserve the monotonicity of p(z, A). Following the procedure of Section 2,

when a set Vk is rejected, we test the set Vk+1 = Vk \ S(k) where S(k) is a square with side

length l > 0.

In the example of Figure 2, the area, perimeter and Euler characteristic of Vk+1 and Vk
are in the following relationships:

A(Vk+1) = A(Vk)− l2 P(Vk+1) = P(Vk) + 2l E(Vk+1) = E(Vk).

Using approximation (30) we obtain

p(z, Vk+1) =

(

bz
π A(Vk)− l2) +

√

b

π

(P(Vk) + 2l)
2

)

ϕ(z) + E(Vk)(1− Φ(z))

= p(z, Vk)−
[

bz
π l

2 − l

√

b

π

]

ϕ(z).

If l <
√

π
bz2

the term in square brackets is negative and p(z, Vk+1) > p(z, Vk), in contradiction

with (10).
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The above nonmonotonicity is unavoidable for isotropic processes. We show this in the

special case of covariance (34): when we remove a square from the last set tested Vk, for the

actual set Vk+1 we have

A(Vk+1) = A(Vk)− l2

P(Vk+1) = P(Vk) + 2l∆p

E(Vk+1) = E(Vk) + ∆e

where ∆p ∈ {−2,−1, 0, 1, 2} is related to the number of sides of the square that are in Vk+1

and ∆e is the difference in the Euler characteristic. The worst pairs (∆p,∆e) (worst pairs

here means that at each possible ∆p we attach the highest compatible ∆e) are:

(−2,+3) (−1,+2) (0,+1) (+1, 0) (+2,−1). (31)

Using approximation (30) we obtain

p(z, Vk+1) =

(

bz
π A(Vk+1) +

√

b

π

P(Vk+1)

2

)

ϕ(z) + E(Vk+1)(1− Φ(z))

=

(

bz
π (A(Vk)− l2) +

√

b

π

P(Vk) + 2l∆p

2

)

ϕ(z)

+(E(Vk) + ∆e)(1− Φ(z))

= p(z, Vk) +

(

−bzπ l
2 +

√

b

π
∆pl

)

ϕ(z) + ∆e(1− Φ(z)).

To keep the correct inequality p(z, Vk+1) ≤ p(z, Vk) we need

(

−bzπ l
2 +

√

b

π
∆pl

)

ϕ(z) + ∆e(1− Φ(z)) ≤ 0.

Using inequality (1.1.7) in Adler (2000)

(1− 1

z2
)
ϕ(z)

z
≤ (1− Φ(z)) ≤ ϕ(z)

z
,

we get the following conditions

−bzπ l
2 +

√

b

π
∆pl +

∆e
z ≤ 0 for ∆e ≥ 0

−bzπ l
2 +

√

b

π
∆pl + (1− 1

z2
)
∆e
z ≤ 0 for ∆e < 0.

12



For ∆e ≥ 0 the positive solutions are

l ≥
√

π

b

∆p +
√

∆2
p + 4∆e

2z
;

while for ∆e < 0 the positive solutions are (if ∆p > 0)

0 < l ≤
√

π

b

∆p −
√

∆2
p + 4(1− 1

z2
)∆e

2z
l ≥

√

π

b

∆p +
√

∆2
p + 4(1− 1

z2
)∆e

2z
.

All the pairs in (31) with ∆e ≥ 0 give

l ≥ 1

z

√

π

b

while (+2,−1) gives

0 < l ≤ z − 1

z2

√

π

b
l ≥ z + 1

z2

√

π

b
.

To prevent non-monotonicity we need to consider the intersection between all the solutions

that gives

l ≥ z + 1

z2

√

π

b
. (32)

so that the side length of the squares cannot converge to 0, as required by Definition 1.

In contrast, the approximation (25) that we use, does not suffer from this problem. Since

| detCs|−1 > 0 in (25):

A1 ⊂ A2 implies

∫

A1

| detCs|−1ds ≤
∫

A2

| detCs|−1ds

(33)

implies P
(

sup
s∈A1

X(s) ≥ z

)

≤ P
(

sup
s∈A2

X(s) ≥ z

)

,

and the approximation of p(z, A) in (26) is monotone in A, even if A1 or A2 are non-convex.

.7 SIMULATIONS.

The examples in this section consider four different signal sources in S = [0, 1]2, denoted

as Horseshoe, Bullets, Bubbles and Romper Room, displayed in Figure 3. We add noise from

13



a Gaussian random field to each of these signals. The noise is generated with zero mean and

covariance function

C(X(r), X(s)) = σ2 exp{−b||s− r||2} (34)

using the R package RandomFields. We take σ = 300 and b = 100. The signals have different

intensities varying from 2σ to 5σ, and shown from darker to lighter shades. The signal for

Romper room is set constant to 5σ = 1, 500. All images are shown at their finest resolution,

256× 256 pixels.

Figure 4 shows the analysis of a typical realization from the Bubbles example and, for

comparison, the level set from familywise approach. Table 1 reports the (c = 0.1, α = 0.05)

threshold T and the corresponding true values of Γ(T ) and Λ(T ) for different resolution sizes.

Figure 5 shows the true FDP process and its upper envelope Γ.

Table 2 summarizes the results of 1000 simulations. The coverage is very close to the

nominal value. The true FNP’s of the confidence threshold are quite small. In this sense,

the method has high “power.” There is also fairly rapid convergence as the resolution size

increases. However, the FNP envelope is very conservative. We conjecture that a test

statistic other than supAX(s) might give tighter confidence limits for FNP.

.8 SCAN CLUSTERING.

A common problem in epidemiology, astronomy, and other fields is to detect unusual

clustering of events in a point process. A standard method for detecting the existence of

such clusters is the scan statistic, defined as the maximum number of points in a fixed

window as the window is shifted across the domain (Glaz, Naus, and Wallenstein 2001).

This statistic is used for an omnibus test of the null hypothesis that there is no clustering.

If the test rejects, it leaves open the question of where and how much clustering there is.

Scan statistics are usually based on rectangular windows whose size is chosen arbitrarily.

In this section, we develop false discovery control for scan statistics. Our approach

allows for inferences on where and how much clustering there is. The method can be used

for rectangular windows however it just as easily extends to more general kernels.

We begin with an example from astronomy. Figure 6 A shows the smoothed data from

an astronomical sky survey with N = 135, 864 points. Each point represents one galaxy.

The image is a kernel density estimate (described below). Astronomers are interested in

identifying clusters of galaxies. Here we formalize this and we adapt our methods from the

previous sections for quantifying the error rate.

Let Y1, . . . , YN be points from a point process on S = [0, 1]× [0, 1] with intensity function

ν. Assume that ν(s) = ν0 for all s in a set S0 ⊂ S called the “field” and that ν(s) > ν0

for s /∈ S0. Points outside S0 are said to be in “clusters”. Define the normalized density be

14



f(s) = ν(s)/
∫

S
ν(u)du. Consider the hypotheses

H0,s : s ∈ S0 versus H1,s : s /∈ S0. (35)

Define the random field of scan statistics by

X(s) =
1

n

n
∑

j=1

KH(s− Yj) (36)

where KH is the two-dimensional kernel which we take here to be normal with fixed band-

width matrix

H =

(

h2
1 0

0 h2
2

)

.

Under weak conditions, √
N (X(s)− f(s))Ã B

where and B is a mean zero Gaussian process with covariance

R(s, t) =

∫

S

KH(s− u)KH(t− u)f(u)du−
∫

S

KH(s− u)f(u)du

∫

S

KH(t− u)f(u)du.

Hence, C(X(s), X(t)) ≈ N−1R(s, t).

We assume that
∫

Sc
0

ν(s)/ν0 ds is small in which case f(s) ≈ 1 for s ∈ S0. Moreover,

assuming that max(h1, h2) is small relative to the area of S and that f is bounded,
∫

S

KH(s− u)KH(t− u)f(u)du ≈
∫

R2

KH(s− u)KH(t− u)du

and
∫

S

KH(s− u)f(u)du ≈ 1.

Hence,

R(s, t) ≈
∫

R2

KH(s− u)KH(t− u)du− 1 = K2H(s− t)− 1. (37)

Therefore, the correlation function is

ρ(s) =
R(s, 0)

R(s, s)
≈

1

2π
√

det(2H)
exp

(

−1
2
sT (2H)−1s

)

− 1

1

2π
√

det(2H)
− 1

.

This is of the form (28) and hence approximation (29) applies with

a =
1

2π
√

det(2H)
, B =

1

4
H−1 and c = −1.
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While this approximation to the correlation function appears to be adequate, we have found

it better to estimate the field’s variance empirically, while using the approximation for the

correlation function.

We computed Ξ(t) in the example using a kernel with bandwidth chosen by cross-

validation and applied our method. Figure 6 C shows a plot of Ξ(t) versus t. With ε = 0.1

and c = 0.1, the minimum confidence threshold T for which Ξ(T ) ≤ c is T = 1.233. For that

value of T , 7 clusters are declared to be false out of 73. The retained clusters are shown in

figure 6 B.

.9 IMAGING.

The data from a functional Magnetic Resonance Imaging (fMRI) experiment consist of a

sequence of three-dimensional images obtained at regular intervals in a Magnetic Resonance

scanner while the subject performs a sequence of behavioral tasks. The behavioral tasks are

designed to exercise the brain functions under study. Each image is a three-dimensional array

of volume elements or voxels, usually arranged in two-dimensional slices. Concentrated neural

activity gives rise to a localized blood-flow (hemodynamic) response that can be detected

as small, systematic changes in the time course of measurements for voxels near the site of

activity.

A typical fMRI data set has tens of thousands of voxels. A common approach to identify-

ing voxels of interest in fMRI is to (i) perform a hypothesis test at each voxel (after suitable

pre-processing of the data such as spatial smoothing) and then (ii) select those voxels for

which the corresponding null hypothesis is rejected. This approach has proved effective for

a wide range of tests including linear models (Friston et al., 1995), spectral analysis (Müller

et al., 2001), permutation tests (Bullmore et al., 1999; Belmonte and Yurgelun-Todd, 2001;

Nichols and Holmes, 2002), Kolmogorov-Smirnov (Aguirre, Zarahn and D’Esposito, 1998),

and nonlinear regression (Genovese, 2000).

Worsley et al. (1996) approached the image of test statistics derived from an fMRI data

set as a random field. For example, a t-test computed at each voxel gives a t-field (Cao et al.,

1998). See also Worsley et al. (2002). The Worsley method approximates the distribution

of the Euler characteristic of a level set of the field to compute a threshold for the tests that

controls familywise error.

Taking a similar view of fMRI data, we apply our method for False Discovery Rate control

to data selected from an fMRI study. We show one slice of the brain for a single subject in

an eye movement experiment. Figure 7 shows a field of t-statistics (1083 degrees of freedom)

after enough smoothing to make the assumptions of Section 5 apply. Because the t-statistics

have 1083 degrees of freedom we can approximate them as Normal for both methods. The

example is presented to illustrate our techniques and is not intended to be a definitive fMRI
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analysis.

Figure 7 shows the field, the confidence envelope and the rejected voxels at the (c =

0.1, α = 0.05) threshold. These rejected voxels correspond to visual areas in the occipetal

cortex.

.10 PROOFS

Lemma 1 The class C is closed with respect to the union.

Proof. Let U =
⋃

j∈J Aj where J is an index set, and Aj ∈ C for each j ∈ J . From (3),

x(U) = supj∈J x(Aj), and p(·, U) is decreasing and continuous from the left, hence

p(x(U), U) = p(sup
j∈J

x(Aj), U) = inf
j∈J

p(x(Aj), U).

Each Aj ⊂ U and p(z, ·) is increasing, thus p(x(Aj), U) ≥ p(x(Aj), Aj). Therefore, since

p(x(Aj), Aj) ≥ α

p(x(U), U) = inf
j∈J

p(x(Aj), U) ≥ inf
j∈J

p(x(Aj), Aj) ≥ α,

and U ∈ C. Hence C is closed under unions. ¤

Lemma 2 For each A ⊂ S0, P(C 3 A) ≥ 1− α and hence P(U ⊃ S0) ≥ 1− α.

Proof. For a level α test, the probability of rejecting a set A ⊂ S0, is at most α, and

the probability that A ∈ C is greater or equal to 1 − α. This applies also to the whole null

set S0, thus P(C 3 S0) ≥ 1− α. Finally, since U =
⋃

A∈C A, P(U ⊃ S0 ≥ P(C 3 S0) ≥ 1− α.

¤

Lemma 3 The output of the above algorithm, the set V ∗, equals the confidence superset U .

Proof. Since p(x(V ∗), V ∗) ≥ α (Step 3c), then V ∗ ∈ C and V ∗ ⊂ U . Conversely, if

some Sj does not belong to V ∗, monotonicity of p(x(A), ·) implies that p(x(A), A) < α for

each set A ⊃ Sj. As a consequence no subset of C can contain Sj, thus Sj 6⊂ U and U ⊂ V ∗.

¤

Lemma 4 The sequences Cn and Un are both increasing.

Proof. Since the partitions are nested, each A ∈ Cn can be obtained as the union of

elements in Sn+1. Since p(x(A), A) ≥ α still holds, A ∈ Cn+1. Hence Cn ⊂ Cn+1, and

Un ⊂ Un+1. ¤
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Theorem 1 If the sequence of partitions (Sn) is nested and degenerating, then limn Un is a

(1− α) confidence superset for So
0

P
(

lim
n
Un ⊃ So

0

)

≥ 1− α.

Also, P(U ⊃ S0) ≥ 1− α, where U is the closure of limn Un.

Proof. For each n, let

In =
⋃

Sj∈Sn:Sj⊂S0

Sj

be the union of all sets in the n-th partition that belong entirely to S0. The sequence of sets

In is increasing and it has limn In =
⋃

n In. For each n we have that

1− α ≤ P(Cn 3 In) ≤ P(Un ⊃ In)

where Un is a random sequence of sets, while In is not random. Hence

P
(

lim
n
Un ⊃ lim

n
In

)

≥ 1− α.

We are only left with showing that So
0 ⊂ limn In. For each s ∈ So

0 , a neighborhood of s is

contained in S0. From Definition 1, for n large enough, Sn,s ⊂ S0. Thus s ∈ Sn,s ⊂ limn In.

This holds for all s ∈ So
0 , and it implies that So

0 ⊂ limn In. ¤

Lemma 6 Let c ∈ (0, α) and let β = (α− c)/(1− c). Let T be a (c, β) confidence threshold.

Then T is a level α FDR threshold, meaning that E(Γ(T )) ≤ α.

Proof. We have that

E(Γ(T )) =

∫ 1

0

P(Γ(T ) > s)ds =

∫ c

0

P(Γ(T ) > s)ds+

∫ 1

c

P(Γ(T ) > s)ds

≤
∫ c

0

ds+

∫ 1

c

P(Γ(T ) > s)ds ≤
∫ c

0

ds+

∫ 1

c

P(Γ(T ) > c)ds

≤ c+

∫ 1

c

βds = c+ (1− c)β = α.

¤

Theorem 2 Let Y = −(X − ε). Let Γ(t) denote the (1 − α) upper envelope obtained by

applying the procedure from Section 3 to the field Y . Let Λ = Γ. Then

inf
P∈Pε

P(Λ(t) ≤ Λ(t) for all t) ≥ 1− α.
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Proof. Let ν(s) = E(Y (s)). Note that (20) is equivalent to

H0 : ν(s) ≤ 0 for all s ∈ A versus H1 : ν(s) ≥ ε for some s ∈ A.

Now the max test we have been using in the previous sections, applied to Y over A, is a level

α for H0. This is because ν(s) = 0 is the least favorable (highest level) value under H0. ¤

.11 DISCUSSION

We have provided methods for estimating the False Discovery Proportion process and for

choosing rejection thresholds that control the FDP. There are several open problems under

current study that we will report on in a future paper.

First, the detection problem for scan statistics involves two components: choosing a

statistic and controlling errors. We have given a new method for the latter, though more

work is needed for the former. For example, we chose smoothing bandwidths using cross-

validation. A different approach is to choose the bandwidth to minimize the FNP. The careful

choice of kernel and smoothing parameter remains largely unaddressed in the scan-statistic

literature.

Second, in applications of our methods to Gaussian fields, we require an estimate of the

covariance kernel. Studying the effect of replacing the true covariance with an estimate is

beyond the scope of this paper, but we can make a general observation. If the estimate of

C(X(s), X(t)) is biased towards the identity, then the p-values will be over-estimated and the

procedure is conservative. This suggests shrinking empirical covariance estimates towards

the identity.

Third, our results are based on the statistic sups∈AX(s). We are exploring other statistics

and other types of fields besides Gaussian fields. We also are examining the benefits of using

different statistics on different subsets.
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Bubbles 322 squares 642 squares 1282 squares 2562 squares

T 845.5 879.8 923.0 948.4

FDP (T ) 0.017 0 0 0

FNP (T ) 0.043 0.045 0.048 0.049

Table 1: Results from one simulation

322 pixels 642 pixels 1282 pixels 2562 pixels

Horseshoe

Coverage (FDP envelope) 0.928 0.947 0.949 0.950

Coverage (FDP Threshold) 0.962 0.973 0.978 0.982

Coverage (FNP envelope) 0.998 0.998 0.998 0.998

FNP of Threshold 0.034 0.038 0.040 0.042

Bullets

Coverage (FDP envelope) 0.946 0.950 0.950 0.950

Coverage (FDP Threshold) 0.969 0.980 0.984 0.987

Coverage (FNP envelope) 0.998 0.998 0.998 0.998

FNP of Threshold 0.052 0.056 0.059 0.061

Bubbles

Coverage (FDP envelope) 0.929 0.944 0.947 0.947

Coverage (FDP Threshold) 0.984 0.993 0.995 0.995

Coverage (FNP envelope) 0.999 0.999 0.999 0.999

FNP of Threshold 0.062 0.066 0.068 0.070

Romper Room

Coverage (FDP envelope) 0.947 0.952 0.954 0.955

Coverage (FDP Threshold) 1.000 1.000 1.000 1.000

Coverage (FNP envelope) 0.991 0.999 1.000 1.000

FNP of Threshold 0.488 0.530 0.550 0.561

Table 2: Coverage results from 1000 simulations
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k* BH

Figure 1: Comparison to BH.
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Vk+1 S(k)

Figure 2: Nonmonotinicity
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Horseshoe Bullets

A B

Bubbles Romper room

C D

Figure 3: The four Test-signals. A. Horseshoe, B. Bubbles, C. Bullets, D. Romper Room.
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Bubbles + noise Bubbles: confidence bound

A B

Bubbles: level set at T=948.4 Bubbles: level set at familywise threshold 1118.1

C D

Figure 4: Bubbles example. A. Observed image, B. Confidence set U , C. Reconstructed

image, D. Result from familywise approach.
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Bubbles: True FDP and upper envelope

Figure 5: True FDP process (solid) and confidence envelope (dashed).

28



Galaxies: smoothed data Galaxies: clusters retained
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Galaxies: upper envelope of proportion of false clusters

C

Figure 6: A. Smoothed Galaxy Field. B. Clusters Above Threshold. C. Upper envelope for

False Cluster Proportion.
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Brain: smoothed data Brain: level set at T=3.720
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Figure 7: A. Smoothed image of brain. B. Pixels above threshold 3.72. C. FDP envelope for

brain image.

30


