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Abstract

The analysis of climatological data often involves statistical significance testing at many

locations. While the field significance approach determines if a field as a whole is significant, a

multiple testing procedure determines which particular tests are significant. Many such procedures

are available, most of which control, for every test, the probability of detecting significance that

does not really exist. The aim of this paper is to introduce the novel “false discovery rate” approach,

which controls the false rejections in a more meaningful way. Specifically, it controls a priori the

expected proportion of falsely-rejected tests out of all rejected tests; additionally the test results

are more easily interpretable. The paper also investigates the best way to apply a false discovery

rate (FDR) approach to spatially correlated data, which are common in climatology. The most

straightforward method for controlling the FDR makes an assumption of independence between

tests, while other FDR-controlling methods make less stringent assumptions. In a simulation study

involving data with correlation structure similar to that of a real climatological data set, the sim-

ple FDR method does control the proportion of falsely-rejected hypotheses despite the violation

of assumptions, while a more complicated method involves more computation with little gain in

detecting alternative hypotheses. A very general method that makes no assumptions controls the

proportion of falsely-rejected hypotheses but at the cost of detecting few alternative hypotheses.

Despite its unrealistic assumption, based on the simulation results, the authors suggest the use of

the straightforward FDR-controlling method and provide a simple modification that increases the

power to detect alternative hypotheses.



1. Introduction

Climate research often involves an assessment of the statistical significance of a quantity, such

as an observed correlation or trend. If the quantity is measured at multiple locations, this requires

testing many hypotheses simultaneously. Such a situation can arise when correlating an atmo-

spheric field with a non-spatial quantity, such as a teleconnection pattern, or when correlating two

atmospheric fields. It can also arise when evaluating time trends or model performance at many

locations. The usual setting for such multiple testing in climatological studies involves quantities

measured over time, with time providing the replication necessary for calculating the chosen test

statistic, such as correlation, trend, or model fit, at each of the locations. This paper addresses the

problem of evaluating statistical significance when many hypothesis tests are performed simulta-

neously.

A single test performed at significance level α has probability α of rejecting the null hypothesis

when it is in fact true. Hence if n such tests are performed when all n null hypotheses are true (the

collective null hypothesis), then the average number of tests for which the null is falsely rejected

is n ·α. For example, with α = 5%, testing for a trend at 1000 locations at which no change really

occurred would yield 50 significant locations on average; this is unacceptably high.

Climatologists have long recognized the problem of accounting for multiple tests; as early as

1914, when conducting multiple tests, Walker adjusted the significance level used for rejection

(Katz 2002). More recently, climatologists have taken the alternative approach of testing for field

significance. In a seminal paper, Livezey and Chen (1983) proposed a method that determines

if a field of individual, or local, hypothesis tests are collectively significant. This approach is

popular in the climatological literature, with over 300 citations of Livezey and Chen (1983) since

its publication. Statistical climatology texts cover the method as the primary way to deal with

multiple hypothesis tests (Wilks 1995; von Storch and Zwiers 1999). The basic approach relies

on the fact that if the collective null hypothesis holds, and if the p-values are independent, they

can be viewed as a sample from a binomial distribution with sample size n and probability of

‘success’ (correctly accepting the null), 1 − α. Using properties of the binomial distribution, one
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can calculate the probability p of observing as many or more significant p-values as were actually

observed. If p is less than α, the observed field is said to be field, or globally, significant at level

p. If the p-values are not independent, p can be obtained by Monte Carlo simulation. Wilks (1997)

discusses modifying the approach to make use of the bootstrapped null distribution of quantities

other than the p-values for determining field significance. Another variant on the Livezey and Chen

(1983) approach is to find the number of effectively-independent locations, also termed degrees of

freedom, n∗, to use in place of the actual number, n, of locations in the binomial approach.

Livezey and Chen (1983) illustrate the field significance method on the correlation between the

Southern Oscillation Index and the 700 mb geopotential height at many locations over a 29 year

period. Subsequent researchers have used the method or variants on a wide variety of problems.

The method screens out situations in which apparent spatial effects, such as a coherent area of

positive correlations in one region, could plausibly be accounted for by chance as a result of spatial

correlation in the observations used to calculate the field. Researchers who find field significance

then proceed to interpret the field. We now present an example of a multiple testing problem in

climatology and give the results of several multiple testing approaches to highlight the issues at

hand.

Paciorek et al. (2002) analyze time trends of multiple indices of winter storm activity during

1949-99 to assess if activity has changed over 51 years. For illustrative purposes here, we focus

on one such index, the variance of the bandpass-filtered daily mean temperature at 500 hPa, which

reflects the variability in temperature at scales of 2.5-10 days, and acts as a measure of large-scale

atmospheric variability brought about in part by the passage of extratropical cyclones. To test for

a change, Paciorek et al. (2002) use the fitted slopes from linear regressions of the index against

time (51 years) at each of n = 3024 locations on a 2.5 by 2.5 degree latitude-longitude grid in the

Northern hemisphere, 20◦ − 70◦N.

The method of Livezey and Chen (1983) detects field significance, with p < 0.001, but gives no

indication about which particular locations are significant, even though this is of crucial interest.

For that we must test for a change at each location. Traditional methods typically declare the

4



change to be significant if it exceeds some multiple of its standard deviation σ; the most commonly

used threshold is 2σ, which corresponds to a probability of about α = 5% of erroneously rejecting

a null hypothesis. An alternative is the recent false discovery rate (FDR) procedure of Benjamini

and Hochberg (1995), which controls the proportion q of falsely rejected null hypotheses relative

to the total number of rejected hypotheses.

Figure 1 shows the significant locations as determined by testing at significance level α = 5%,

testing at a more stringent Bonferroni-corrected α = n−1 · 5% with n = 3024 (section 2b), and

testing by the FDR procedure with the false discovery rate set at q = 5%. These three procedures

pick vastly different numbers of significant locations: 941, 19, and 338, respectively, and perhaps

the only reassuring (and not surprising as we shall see later) fact is that there appears to be an

order: the Bonferroni-significant locations are a subset of the FDR-significant locations, which in

turn are a subset of the 2σ-significant locations.

Which result should we report?

The purpose of this paper is to introduce FDR procedures to members of the climatology com-

munity, who are often faced with problems of multiple testing, and to show the advantages of FDR

compared to traditional procedures.

The next three sections are fairly distinct. In section 2, we describe how the competing test-

ing procedures are performed, and the different ways in which they control the number of false

detections. We argue that FDR controls a more useful and tangible criterion than do the classical

methods. This is the most important message of this paper. However, the original FDR proce-

dure of Benjamini and Hochberg (1995), which we describe in section 2 and show the results

of in Figure 1, makes independence assumptions that may be unrealistic for climate data. Sec-

tion 3 introduces other FDR procedures (Yekutieli and Benjamini 1999; Benjamini and Yekutieli

2001) designed to handle dependent tests; such tests arise often in climatology (in fact, Yekutieli

and Benjamini (1999) illustrate their procedure with a climatological example), since observations

at nearby locations are likely to be spatially correlated. These new FDR procedures control the

number of false detections in the same meaningful way we describe in section 2, but we know
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of no simulation study that shows how they actually perform when applied to correlated data.

We therefore conduct such a study, based on simulated data consistent with climatological data.

Our conclusion is that the FDR procedure of Benjamini and Yekutieli (2001) is too conservative

to be useful, while the improvements of the procedure of Yekutieli and Benjamini (1999) over

the original procedure of Benjamini and Hochberg (1995) are too minor to warrant the additional

computation required. Section 4 introduces recent refinements to the FDR procedure of Benjamini

and Hochberg (1995). Section 5 summarizes our findings.

2. Multiple Testing procedures and their properties

Consider the general problem of detecting significance, for example of trends, at many loca-

tions over some area. The null hypothesis, H0, states that no change occurred, and is tested against

the loosely specified alternative hypothesis, HA, that “some” change (increase, decrease or either)

occurred. Whereas the commonly used test of Livezey and Chen (1983) determines if the data

contain evidence against H0 globally over the whole area, here we are concerned with testing H0

versus HA at a potentially large number, n, of locations in the area. That is, we wish to make local

determinations of significance.

The first step is to choose a test statistic, T , a function of the data whose value helps us decide

if H0 should be rejected or not. In our temperature variance index example, T is the estimated

regression slope of index values against time, with evidence against H0 provided by large values

of |T |, since we are interested in detecting either an increase or a decrease. The choice of T is in

itself an interesting problem, since some particular T may be better able to discriminate between

H0 and HA; we will not debate this question here and instead will assume that some suitable T has

been identified for the purpose of answering the question of scientific interest.

Letting ti denote the observed value of T at location i = 1, . . . , n, and assuming that large
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values of |T | provide evidence against H0, the corresponding p-values are

pi = Pr(|T | ≥ |ti| | H0 true ), (1)

where “| H0 true ” means that (1) is calculated with respect to the distribution of T under the

assumption that H0 is true. In plain words, (1) measures the probability that |T | could have a value

greater than |ti| when H0 is true. A high probability means that ti, the value of T we observed, is

perfectly ordinary when H0 is true. A low probability indicates that the observed ti is very unusual

when H0 is true, which means that either we observed a rare event (a very unusual value of T ),

or H0 is not true. Therefore, a small p-value, pi, provides strong, although not foolproof evidence

against H0; rejecting H0 could be the wrong decision. Both traditional and FDR procedures reject

H0 when pi is small, but they differ in the way they control the number of erroneous decisions that

can be made, as described in section 2b. We first describe how the various testing procedures are

performed.

a. Multiple testing methods

Before we perform any test, we must first choose, for the traditional procedure, the nominal

probability, α, of erroneously rejecting any particular null hypothesis, and for the FDR procedure,

the nominal false discovery rate (FDR), q, which is the rate of false rejections out of all rejections

we are willing to allow. The adjective “nominal” conveys that α and q are chosen a priori, before

the tests are performed. The probability α is commonly known as the significance level, or the

probability of a type I error, although in the context of multiple testing, α could more suitably

be referred to as the false positive rate (FPR), as argued in section 2b; henceforth, we refer to

traditional procedures as FPR procedures. The choice of α or q is subjective and should reflect our

willingness to make mistakes in order to have more power to detect real changes; see section 2b.

The most commonly used value for both α and q is 5%.
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A traditional FPR procedure rejects H0 at location i if pi is smaller than α; the same threshold

is applied to all tests/locations. In contrast, the FDR procedure of Benjamini and Hochberg (1995)

rejects H0 at all locations i for which pi ≤ pk, where

k = maxi=0,...,n

{

i : p(i) ≤ q · i

n

}

, (2)

with p(i), i = 1, . . . , n, the p-values (1) sorted in ascending order, and p(0) = 0.

Figure 2 clarifies this seemingly complicated rule. It displays the outcome of the two testing

procedures on a stylized example, with particular choice of q = α = 20%. The ordered p-values,

p(i), are plotted against i/n for i = 1, . . . , n. Then the horizontal line at α, and the line with

intercept zero and slope q are overlaid. All p-values below the horizontal line are rejected by the

traditional FPR procedure, while the FDR procedure rejects all p-values, in ascending order, up to

the largest p-value that lies below the (0, q) line, indicated on Figure 2 by an arrow.

Figure 2 also shows that, although the FDR rejection rule is complicated, effectively all p-

values below a certain threshold are rejected, since the p-values are plotted in ascending order.

This yields two remarks. First, this explains why the three sets of rejected null hypotheses in

Figure 1 were nested subsets: the implicit FDR threshold was between the significance levels of

the two FPR procedures, α = 5% and the Bonferroni-corrected α = n−1 · 5%.

Second, this suggests that the outcome of the FDR procedure could have been obtained with

a traditional FPR procedure with some cleverly chosen α. So why bother with an FDR testing

procedure? The answer, which we develop further in the next section, is that FDR procedures

control false rejections in a meaningful way.

b. Controlling mistakes

When we reject or fail to reject a particular H0, we may either make the correct decision, or

make one of two mistakes: reject when H0 is in fact true, or fail to reject when H0 is in fact false.
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These mistakes are commonly referred to as false positive and false negative detections; also as a

type I and type II errors. We denote by nFP and nFN the numbers of such mistakes out of the n tests;

see Table 1. Since the truth is unknown, we use testing procedures that control these errors. Both

FPR and FDR procedures control the number of false positive detections nFP in different ways, but

neither (nor any testing procedure we know) controls the number of false negative detections. It

is easy to see why; once α or q is chosen, the decisions about the hypotheses, as carried out in

Figure 2, are determined; there is no room left to control the number of false negatives.

For a traditional FPR procedure, the choice of α determines the properties of the test; α is the

probability of rejecting any particular H0 by mistake, which means that on average, α% of the nH0

locations for which H0 is true will be found significant by mistake. We report this in Table 1 as

FPP = nFP/nH0
, FPR = E(FPP) = α, (3)

where FPP is the observed false positive proportion, and E stands for expectation. The FPP/FPR

notation is consistent with standard statistical terminology, where the expectation of an observed

“proportion” is usually referred to as a “rate”. Equation (3) justifies our calling α the false positive

rate (FPR).

What (3) means is that the number nFP of false positives that a traditional FPR procedure allows

is proportional to the unknown number nH0
of true null hypotheses. So for example, if most or all

locations have nH0
true, this test will yield a large number of false positive detections, as we will

later illustrate in Figure 3. Moreover, because nH0
is unknown, (3) does not help quantify nFP.

But one thing is clear; we probably made at least one mistake! Indeed, when the tests are

independent, we can easily show that P (nFP ≥ 1) = 1 − (1 − α)nH0 , which, for α = 5% and

nH0
= 2, 3 or 10, evaluates to 9.75%, 14.26% or 40.13%, and increases rapidly with nH0

. That is,

the probability of making at least one false positive detection, P (nFP ≥ 1), often referred to as the

family-wise type I error, is very high.
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Corrections that limit the number of false positives have been suggested. The simplest is to use

an arbitrarily smaller α, say 0.5% or 0.01% instead of 5%. The less ad hoc Bonferroni correction

uses α = n−1 · α′ for each of the n tests, which guarantees that the family-wise type I error,

P (nFP ≥ 1), is smaller than some chosen probability α′; in Figure 1, we used α′ = 5% and

n = 3024. Although a smaller α reduces the probability of rejecting null hypotheses by mistake, it

also reduces the probability of detecting real changes, and thus increases the number, nFN, of false

negative errors. Choosing which α to use is a trade-off; increasing the chance of detecting real

changes also increases the chance of making false positive detections, and conversely.

The false discovery rate procedure of Benjamini and Hochberg (1995) uses a different criterion;

it controls the proportion of false rejections out of all rejections, which is referred to as the false

discovery proportion (FDP). Choice of a particular q in (2) guarantees that the FDP is on average

less than q, which we report in Table 1 as

FDP = nFP/nreject, FDR = E(FDP) ≤ q, (4)

where the false discovery rate (FDR) is the expectation of the corresponding proportion. For

example, setting q = 5% guarantees that, whatever the number, nH0
, of true null hypotheses and

however many tests end up being rejected, at most 5% of the rejected tests are false detections

on average. But just as with traditional FPR procedures, choosing q is a trade-off; lowering q to

avoid false positive errors decreases our chance of detecting real changes and necessarily increases

our chance of making false negative errors. However, the FDR is a more tangible, meaningful, and

informative criterion of error control than the FPR. Additionally, since we do know nreject in (4), we

can calculate an approximate1 upper bound for the expected number of false positive detections,

that is

E(nFP) ≤ nreject · q.

1The upper bound is only approximate because it assumes that nreject is fixed, whereas it is a random variable,
since it is determined by the data.
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In the example of Paciorek et al. (2002) (section 1), the FDR procedure with q = 5% yielded

nreject = 338 rejections out of n = 3024 tests. If we choose to report this result, we can also

report that on average, there are fewer than 338 · 5% = 17 false positive detections, nFP, out of the

338 rejected tests. On the other hand, if we choose to report the results of one of the traditional

procedures, we cannot accompany them with estimates of nFP nor of nFN.

Table 1 also reports measures of false negative detections complementary to the FPR and the

FDR. The false negative rate, FNR, is the expected proportion of tests we failed to reject out of the

nHA
tests that should be rejected. The false non-discovery rate (Genovese and Wasserman 2002),

FNDR, is the expected proportion of tests we should have rejected out of all the naccept tests we

did not reject. While the FNR cannot be controlled a priori, it is often of concern to statisticians

because it relates to the “power” of a test, where power = 1 − FNR is the probability of rejecting

a test for which H0 is false; the power measures the ability of a test to detect real changes. The

FNDR cannot be controlled a priori either, but an upper bound can be estimated. We defer this

topic to section 4 to avoid detracting from the main message here, which is that the FDR procedure

controls a meaningful measure of false positive detections.

c. Illustration

Consider a simplified version of the example of section 1. Suppose that we are testing for a

change at each of n = 1000 locations, based on regression slopes. We assume that all locations are

independent, and defer to section 3 for more realistic scenarios. Assume that the nH0
locations that

have experienced no change over time have estimated slopes normally distributed with true mean

µ0 = 0 and standard deviation σ0 = 1, while the other nHA
= n − nH0

locations have µA = 3 and

σA = 3. Note that we used σ0 > 0 because, even if true slopes are zero at the nH0
locations with

H0 true, slopes estimated from data will never be exactly zero.

We perform traditional FPR, Bonferroni and FDR procedures on such samples with α = 5%,

the Bonferroni-corrected α = 1000−1 · 5%, and q = 5%, respectively, and for each testing pro-

cedure and each sample, we record the false discovery proportion, FDP = nFP/nreject. Figure 3a
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shows the average of the FDP in 1000 samples, plotted against a = nHA
/n, the proportion of true

alternative hypotheses; note that the y-axis reads “FDR” rather than “average FDP” because, since

we used a large number of samples, the average FDP is close to its expected value, FDR = E(FDP),

the false discovery rate2. The plot clearly shows that the FDR of the traditional procedure with

α = 5% is not controlled, and worse, is uncomfortably high when a is below 25%. In real situa-

tions nHA
is unknown, so we could unknowingly have a large proportion of the rejected hypotheses

be false positive detections. On the other hand, the FDR of the FDR procedure is always below the

nominal q = 5%, so that, whatever the actual (unknown) numbers of null and alternative hypothe-

ses, nH0
and nHA

, the procedure delivers on its promise, that the proportion of erroneous rejections

is on average less than q. Note that FDR falls further below q as a increases. We explain why in

section 4 and show there how to calculate a tighter upper bound for FDR.

Figure 3b shows the power of each procedure as functions of a; in the notation of Table 1,

power = (1−FNR), with false negative rate FNR well approximated by the average over the 1000

samples of the false negative proportion FNP = nFN/nHA
. We see that the FDR testing procedure

is consistently almost as powerful as the traditional FPR procedure, even though it successfully

limits the proportion of false positive detections. The Bonferroni method’s consistently low FDR

comes at the cost of low power; such a test is often said to be conservative, because it fails to reject

many alternative hypotheses.

This simple example illustrates that the FDR procedure combines the desirable features of the

traditional and Bonferroni procedures without their flaws; it has high power while controlling the

FDR to be below q, for whichever q is chosen.

3. FDR procedures for correlated tests

In section 2 we made the argument that controlling the false discovery rate (FDR) makes

more sense than controlling the probability of type I errors (FPR); henceforth we focus only on

2This result follows from the Weak Law of Large Numbers, which states that as the sample size goes to infinity,
the sample mean approaches the population mean (Casella and Berger 2002, p. 232).
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FDR procedures.

In the example of section 1, we used the original FDR procedure of Benjamini and Hochberg

(1995), because it is the simplest to apply. However it makes the assumption that all n tests are

independent, which rarely holds for climate data, for which measurements at nearby locations are

often positively correlated. The more recent FDR procedures of Yekutieli and Benjamini (1999)

and Benjamini and Yekutieli (2001) are designed to handle this complication. The various FDR

procedures differ in their assumptions, as described in section 3a, but under their respective as-

sumptions, all guarantee an FDR below the chosen value of q with probability close to one.

Returning to our example of section 1, the three FDR procedures with q = 5% detect 338

(Benjamini and Hochberg 1995), 376 (Yekutieli and Benjamini 1999), and 36 (Benjamini and

Yekutieli 2001) significant locations respectively; the results are so different that we feel compelled

to investigate how the methods perform when applied to simulated data. We know of no other such

study.

Section 3a describes briefly the new FDR procedures. Section 3b explains how data sets con-

sistent with climate data were created, and section 3c reports the results of our simulation study. To

summarize in advance, we find that the assumption-free FDR procedure of Benjamini and Yekutieli

(2001) is too conservative to be useful. The procedure of Yekutieli and Benjamini (1999) is reason-

ably successful, but requires lengthy computations, while the original straightforward procedure

of Benjamini and Hochberg (1995) is fairly resistant to violations of the independence assumption,

and thus still gives good results for climate data.

a. FDR procedures and assumptions

Let SH0
denote the set of p-values corresponding to locations where H0 is true, and let SHA

denote

the set of all other p-values. Consider the following assumptions:

Assumption 1: the elements of SH0
are mutually independent.

Assumption 2: the two sets SH0
and SHA

are independent from one another.

The original FDR procedure of Benjamini and Hochberg (1995) makes both these assump-
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tions, which are clearly unreasonable for data that have spatial dependence. The procedure of

Yekutieli and Benjamini (1999) makes Assumption 2 only, and while it is likely to be violated

by climatological data, the violation is restricted to the spatial boundaries between the two sets

SH0
and SHA

. The FDR procedure of Benjamini and Yekutieli (2001) makes no assumptions at

all, and therefore applies very generally. For simplicity of terminology, we denote the procedures

by FDR-Indep (Benjamini and Hochberg 1995), FDR-Corr (Yekutieli and Benjamini 1999), and

FDR-General (Benjamini and Yekutieli 2001).

To apply FDR-General is straightforward; we proceed just as with FDR-Indep described in

section 2, but replace q with q/(
∑n

i=1 i−1) in (2), where n is the total number of locations/tests.

For Figure 2, this translates into replacing the line with slope q with a line with shallower slope,

q/(
∑n

i=1 i−1). Note that although the only differences between FDR-General and FDR-Indep are

the slope of the line used in Figure 2 and the data assumptions they require, both procedures make

the same claim, that FDR ≤ q. However, for FDR-Indep the claim is strictly valid only if the tests

satisfy Assumptions 1 and 2.

FDR-Corr also makes a correction to FDR-Indep, although it is much less immediately obvi-

ous. The properties of FDR-Indep rely on the fact that, when the locations are independent, the

distribution of the p-values for which H0 is true is uniform on [0, 1]. However, the uniform distri-

bution no longer holds when locations are correlated, so that FDR control is no longer guaranteed,

and the FDR control of FDR-Indep can degrade markedly. FDR-Corr involves estimating the dis-

tribution of the p-values that have H0 true, by obtaining p-values from data simulated from the

collective null hypothesis (all locations have H0 true). It does this in much the same way data type

(A) is simulated in the next section, with the aim of calibrating q in the rejection rule (2), so that

the actual FDR is as close as possible to the original nominal FDR q. This FDR method requires

substantial computations, based on a collective null hypothesis model estimated from the data; the

quality of the test is partly a function of the simulation size (the larger the better), and of how well

the estimated collective null hypothesis model represents the hypothetical truth. An additional

complication is that the calibration requires an estimate of the number of rejected hypotheses that
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have H0 false, which is not easily done. Because FDR-Corr requires simulation and estimation

steps, Yekutieli and Benjamini (1999) could only show that FDR control, FDR ≤ q, is obtained

with probability close to, but less than one.

b. Simulated data sets

To assess the observed properties of the three FDR procedures, we conduct a simulation study

based on three types of simulated data sets, which were created specifically so that the strengths

of their spatial correlations span most types that arise in climatology; data type (A) has no spatial

dependence, (B) has spatial dependence consistent with the climate data of section 1 (Paciorek

et al. 2002), and (C) has stronger spatial dependence. Before we describe how these data sets were

simulated, we illustrate that spatial dependence.

The correlation structure of a spatial field can be summarized by the spatial autocorrelation

function (Cressie 1993), which shows how rapidly the mean correlation between pairs of locations

decreases with the distance between the locations. It is obtained by first plotting the sample cor-

relation between all possible pairs of locations against the distance between the locations, then by

smoothing the plot; Figure 4 shows the resulting smooths for the three simulated data set types, as

well as for the two real climate data sets described below.

For data (A), the autocorrelation drops immediately to zero, consistent with the fact that data

(A) has no spatial correlation. It decays more slowly for data (C) than for data (B); for example,

the correlation between two locations that are 1000 km apart is 0.5 for data (B), whereas it is still

about 0.9 for data (C); indeed the distance must be greater than 2500 km for the correlation to be

below 0.5 for data (C). Also, locations that are more than 3500 kms apart are almost completely

independent for data (B), whereas the correlation is still as high as 0.2 for data (C).

For comparison with our simulated data, Figure 4 also shows the spatial autocorrelation for two

real climatological data sets, the Global Historical Climatology Network monthly mean station data

from 1961-1990 for precipitation and sea level pressure. We see that the spatial autocorrelations

of the real data lie within the range of the three simulated data sets. For clarity, we show only
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the average correlation as a function of distance; in all the data sets, there are large positive and

negative individual correlations between specific locations at all distances shown in the plot. As

one would expect, precipitation is less spatially correlated than sea level pressure. We expect that

few climatological fields will be substantially more correlated than the pressure field seen here,

since pressure fields are typically quite smooth spatially. These comparisons suggest that our

simulated data sets cover the range of correlation scales likely to be encountered in climatological

data.

Our simulated data sets are all based on the data of Paciorek et al. (2002), described in section 1,

so that they are consistent with actual climate data. First we detrend the time series at all n = 3024

locations, with fitted trends obtained from linear regressions of temperature variance against time.

We are thus left with a spatially correlated set of n time series Yi(t), i = 1 . . . n, that do not

contain any signal; here i denotes location and t time. Then, letting t
∗ denote a vector of 51 years

sampled at random and with replacement from t = {1949, 1950, . . . , 1999}, Yi(t
∗), i = 1 . . . n, is

a simulated data set that contains no signal, but that has spatial correlation consistent with climate

data; in statistical jargon, Yi(t
∗) is a bootstrap sample. Using the same t

∗ at all locations preserves

the spatial correlation structure of the original data, yielding data sets of type (B), while using

different t∗’s destroys it, yielding data sets of type (A). To create a highly spatially correlated data

set of type (C), we start from a data set of type (B) and induce stronger spatial dependence by

replacing Yi(t
∗

j) at each location i and year j by the average of Yk(t
∗

j) for all locations k within

1913 km (0.3 radians) of i. Note that so far we have shown how to create spatially independent or

correlated time series that contain no signal.

We then add non-zero linear trends βi at each of nHA
locations, giving simulated data

Xi(tj) = Yi(t
∗

j) + βitj.

Correlated and uncorrelated data sets all use the same signal βi; they differ only in their error
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structure Yi(t
∗). The trends βi are chosen such that the signal to noise ratio is held constant across

these nHA
locations, that is, βi is chosen to explain a pre-specified proportion of variability (R2) in

the regression of Xi(t) on t. Because the magnitude of the random noise differs across locations,

had we added the same fixed trend βi = β at each of the nHA
locations, it would have been more

difficult to understand how the relative levels of signal and noise affect the comparison of the

multiple testing procedures.

Finally, we let nHA
vary between 0% and 99% (0, 1, 10, 25, 50, 75, 90, 99) of the total number

of locations, n = 3024, and use three R2 levels, 10%, 15%, and 20%. Comparisons between the

FDR procedures for each data type at each value of nHA
and R2 are based on results averaged over

10000 simulated data sets.

c. Properties of the FDR procedures – a simulation study

We study the properties of the three FDR procedures applied to our three types of simulated

data. Table 2 summarizes the assumptions (specified in section 3a required by each FDR procedure

and which types of data satisfy them.

Our main results are summarized in Figure 5, which has the same structure as Figure 3. Fig-

ure 5a plots, for the three FDR procedures applied to the three simulated data types, the average

over 10000 simulated samples of the false discovery proportion (FDP) versus a = nHA
/n, the

proportion of true alternative hypotheses; note that since the FDP is averaged over so many sam-

ples, it is indeed very close to its expected value, the FDR. Figure 5b shows the corresponding

power = (1 − FNR) curves, although for the sake of clarity, we plot only the curves for data type

(B). Figure 5 shows our results only for q = 5% and signal to noise ratio, R2 = 10%. Other values

of q produced qualitatively the same results. Similarly, other values of R2 produced quantitatively

the same panel (a), and qualitatively the same panel (b); not surprisingly, the power increases as a

function of the signal to noise ratio R2, since true alternative hypotheses become easier to detect.

We comment on the three FDR procedures in sequence. Because FDR-Indep requires As-

sumptions 1 and 2 (see Table 2), it is only applicable safely to data type (A); indeed, our
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simulation results confirm the theoretical claim in (4), that FDR ≤ q for all a (Figure 5a, dotted “I”

curve). We had observed this already in Figure 3. Strictly speaking, FDR-Indep is inappropriate

for data sets (B) and (C), since they are spatially correlated, but it is interesting to assess its robust-

ness to violations of the assumptions. The dashed and solid “I” curves in Figure 5a suggest that the

effect of applying FDR-Indep to increasingly correlated data is to further widen the discrepancy

between the FDR and q. However, FDR remains below q for all a, so that even though FDR-Indep

is theoretically inappropriate for correlated data, it still provides FDR control as stated in (4).

One may feel that an FDR as low as possible is desirable, since it reduces the number of false

positive detections. However, a low FDR invariably entails low power, which produces larger

numbers of false negative detections, as seen in Figures 5b and 3b. We reiterate at this point that

our aim is not to determine which procedure minimizes the FDR, since all testing procedures make

a trade-off between the numbers of false negative and false positive detections, but rather which

has FDR as close as possible to, and below, q; that is, we want predictable, tight FDR control.

Therefore, FDR-Indep provides FDR control as stated by (4) even for positively spatially correlated

data, although the tightness of the control degrades as spatial correlation increases, which in turn

reduces the power of the test (not shown on Figure 5 for clarity). In section 4, we explain how to

improve FDR-Indep.

FDR-General (Benjamini and Yekutieli 2001) requires no assumptions, so that (4) should be

satisfied for all data sets. And indeed, the corresponding FDR curves (“G” curves in Figure 5a)

are below q for all a, although they are too far below q to make FDR-General practically useful;

the excessively low FDR entails very low power, as seen in Figure 5b. We find that FDR-Indep is

practically more useful than FDR-General, even though it requires assumptions that often are not

met by the data.

The last FDR procedure considered is FDR-Corr (Yekutieli and Benjamini 1999), with simu-

lation results shown as the “C” curves in Figure 5. Although it requires fewer assumptions than

FDR-Indep (Table 2), FDR-Corr is only strictly applicable to data type (A), with guarantee that

(4) holds with probability close to, but less than one. Note indeed that the FDR curve for data (A)
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is below q, except for small a, which is consistent with simulation results in Yekutieli and Ben-

jamini (1999). We also see that the effect of applying FDR-Corr to increasingly correlated data

is to increase the FDR, although FDR control as stated in (4) still holds for most a, even for very

correlated data. This makes FDR-Corr a competitor to FDR-Indep, especially since it has slightly

higher statistical power, as shown in Figure 5b. However, we feel that the computational effort it

requires is excessive. With n = 3024 locations and a simulation size of 1000, which we consider

a bare minimum, FDR-Corr takes 97 CPU seconds to test the whole field, compared to 0.00007

seconds with FDR-Indep; FDR-Corr also requires programming a complicated algorithm, includ-

ing generating p-values from the null hypothesis, which may be difficult to replicate and whose

simulation differs between data sets.

To summarize, we find that of the two FDR procedures designed to handle dependent data, only

FDR-Corr is worth considering. As with the Bonferroni method, FDR-General is too conservative

to be useful. We also find that, although it is designed for independent data, FDR-Indep is robust

to correlation in simulated data consistent with climate data, and therefore can be applied fairly

safely, with the considerable advantage that it requires little computational or programming effort.

We therefore favor FDR-Indep for its simplicity.

4. A tighter FDR control

We argued in section 2 that, when multiple tests are performed, the FDR is a more relevant

quantity to control than the FPR. Then in section 3, we demonstrated by simulation that the original

FDR-Indep procedure of Benjamini and Hochberg (1995) performs sufficiently well when applied

to spatially correlated climate data. Here, we show how to tighten the FDR control of FDR-Indep

to make it a more powerful procedure.

Letting a = nHA
/n be the unknown proportion of true alternative hypotheses, Genovese and
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Wasserman (2002) show that, for FDR-Indep performed with nominal FDR q,

FDR ≤ (1 − a) · q. (5)

Since a ∈ [0, 1], then (1 − a) · q ≤ q, so that (5) provides an upper bound for FDR that is tighter

than q. This explains why, in Figures 3a and 5a, the FDR curves fall progressively further below q

as a increases; indeed, because the discrepancy between q and (1− a) · q increases with a, so does

the discrepancy between q and FDR. Figure 6a is a partial reproduction of Figure 5a; it shows the

FDR curves of FDR-Indep, our procedure of choice, along with the line (1 − a) · q versus a. We

see that all FDR curves remain not only below (1 − a) · q, as expected from (5), but also remain

very close to (1 − a) · q for all a. We would observe the same in Figure 3a if we added the line

(1 − a) · q versus a.

This suggests a way to improve FDR control: to ensure that the FDR is as close as possible to,

yet below, a specific rate q′, we should perform FDR-Indep illustrated in Figure 2 with q such that

q′ = (1 − a) · q. We call this the modified FDR-Indep procedure; p-values are rejected according

to (2) with

q = (1 − a)−1q′, which yields FDR ≤ q′. (6)

Tighter FDR control increases the power of the test. This is easily understood from Figure 2;

replacing the line with slope q by the line with steeper slope (1 − a)−1q (steeper since a ≥ 0)

potentially allows more p-values to be under that line, and therefore rejected. For example, if half

the n locations have H0 false (a = 0.5), then performing FDR-Indep with q = 10% in Figure 2,

compared to the previous q = 5%, still ensures that the proportion of false discoveries is on average

below, yet close to q′ = 5%.
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Genovese and Wasserman (2002) also show that

FNDR ≤ a, (7)

where the false non-discovery rate (FNDR) was introduced in section 2 as the rate of tests we

should have rejected out of the tests we accepted; FNDR = E(nFN/nreject) in the notation of Table 1.

Unlike the FDR, the FNDR cannot be controlled a priori, so (7) is not useful other than by providing

an approximate upper bound for the expected number of false negative errors,

E(nFN) ≤ a · naccept,

as illustrated in Figure 6d.

The implications of (5) and, to some extent, of (7) are very attractive. The difficulty is that a is

unknown, and therefore must be estimated; this adds variability to the procedure and in turn may

invalidate the inequalities in (5) and (7). In the rest of this section, we show how to estimate a,

study how (5) and (7) hold on the simulated data sets of section 3, and finally return to our example

of section 1.

a. Estimating a

Storey (2002) and Genovese and Wasserman (2002) each propose estimators for a; the method

we present here is a hybrid. Let FP (x) denote the cumulative distribution function (CDF) of the

p-values used to perform the tests. For now we develop the approach using the true CDF; we will
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describe later how to estimate this using the empirical CDF. Our estimate of a is

â = I−1

I
∑

i=1

max

(

0,
FP (xi) − xi

1 − xi

)

with xi = x0 + (1 − x0) ·
(i − 1)

I
, (8)

where xi takes I regularly spaced values between x0 and 1; we routinely use x0 = 0.8 and I = 20

for reasons justified below.

To make sense of (8), consider first the case a = 0, that is all n locations have H0 true. It is well

known that when the tests are independent, the distribution of the p-values is uniform on [0, 1], that

is

FP (x) =























0 if x ≤ 0

x if x ∈ [0, 1]

1 if x ≥ 1.

(9)

Thus FP (x)−x = 0 for all x ∈ [0, 1], and since xi ∈ [0, 1] in (8), our estimate, â = 0, matches the

true a = 0 perfectly.

Next consider the general case where nHA
= a · n locations have H0 false, and the remaining

nH0
= (1 − a) · n have H0 true. Then the CDF of the p-values is a mixture distribution

FP (x) = aFA(x) + (1 − a) F0(x), (10)

where FA(x) and F0(x) are the CDFs of the p-values in the two subpopulations where H0 is

respectively false and true. As before, F0(x) is uniform on [0, 1] when the tests are independent.

On the other hand, FA(x) is completely unknown, other than that it has more mass than a uniform

toward zero, since p-values that correspond to locations with H0 false tend to be small. To simplify

our argument, assume that all such p-values are smaller than some x0 < 1, so that FA(x) has all

its mass between zero and x0. Then FA(x) = 1 for all x ≥ x0, so that for xi ≥ x0, (10) reduces to
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Fp(xi) = a + (1 − a) F0(xi). This implies

FP (xi) − xi

1 − xi

= a

in (8), yielding â = a exactly. More generally, there exists some sufficiently large x0 ∈ [0, 1], so

that FA(x0) = 1− ε with ε a very small positive number; in this case (8) yields an estimate, â, such

that

â ≤ a

(

1 − ε
I
∑

i=1

(1 − xi)
−1

)

≤ a. (11)

That is, â underestimates a although it is very close to a when ε is very small, which happens when

x0 gets close to one. This explains why we use a fairly large value, x0 = 0.8, in (8).

Note that the potential downward bias of â has no adverse effect on the FDR procedure. Indeed,

â ≤ a implies (1 − a) · q ≤ (1 − â) · q, so that FDR control as per (5) is preserved. The only

consequence is that the test is slightly more conservative than it would have been had we known a.

The last difficulty is that FP (x) in (10) is unknown, since neither a nor FA(x) are known. We

estimate FP (x) with the empirical density function (EDF) of the p-values in (1),

F̂P (x) = n−1

n
∑

i=1

I[0,x](pi),

where IS(pi) = 1 if pi ∈ S, and IS(pi) = 0 otherwise. More simply, the EDF is the cumulative

histogram of the p-values, with histogram bins taken to be the smallest distance between any two

p-values. Figure 7 shows the histogram and corresponding EDF of the p-values in our example of

section 1 and Figure 1, from which, applying (8), we obtain â = 61.7%.

Use of F̂P (x) in place of FP (x) in (8) explains why we take an average of I = 20 values

to estimate a in (8); we hope to reduce the variability in â associated with estimating FP (x).

Additionally, even though we have FP (x) ≥ x theoretically, F̂P (x) ≥ x does not necessarily hold
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for all x since F̂P (x) is variable; to ensure that â ≥ 0, we therefore threshold the contributions

from the xi’s for which F̂P (xi) ≥ xi in (8).

b. Properties of the modified FDR-Indep – A simulation study

The results in (5) and (7) are valid for FDR-Indep applied to spatially independent data and

when a is known. We established in section 3 that the effect of applying FDR-Indep to spatially

correlated data was to decrease the FDR, so that if a is known, then (5) also holds for correlated

data. However a must be estimated, and the method proposed in the last section is strictly valid

only for independent tests. Indeed, we have found in the simulations that â overestimates a when

the correlation is strong. Now, â ≥ a implies (1 − â) · q ≤ (1 − a) · q, which in turn implies

that (5) no longer holds; that is, FDR control is not necessarily guaranteed for spatially correlated

data. The purpose of this section is to study how badly FDR control as per (5) degrades as the

spatial correlation in the data gets stronger. To do that we applied the modified FDR-Indep (6) to

the simulated data sets from section 3, with results in Figure 6.

Figure 6a isolates the FDR curves of the original FDR-Indep procedure that were shown in

Figure 5a; Figure 6b shows the FDR curves of the modified FDR-Indep (6) applied to the same

data. Focusing first on data (A), which are spatially independent so that â does not overestimate a,

we see that the FDR is much closer to, yet remains below q ′ = 5% for all a. That is, the modified

FDR-Indep provides not only FDR control, but tighter FDR control than the original FDR-Indep.

Note however that the FDR curves drop well below q ′ for large a; the control degrades. This

happens because the larger a is, the less the uniform distribution F0(x) contributes to (10), so that

â underestimates a, as described in (11).

Figure 6b also shows that, for all a, the FDR curves for data (B) and (C) are much closer to

q than the original FDR curves in Figure 6a were to q, although they do sometimes exceed q;

FDR ≤ q does not hold for all a, as we expected since â overestimates a for spatially correlated

data. However, as argued in section 3, we constructed data type (C) with spatial correlation more

extreme than most real climate data, so the breakdown of FDR control we see here is as extreme
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as one is likely to experience. For data (B), which has correlation consistent with the temperature

variance of section 1, FDR control degrades hardly at all. We therefore conclude that the modified

FDR-Indep procedure provides tight FDR control for the vast majority of climate data.

Finally, Figures 6c and 6d show the power (1 − FNR) and FNDR curves of FDR-Indep and its

modified counterpart. For clarity, only the curves for data type (B) are plotted; the other curves

were qualitatively similar. It is clear that the power and FNDR of the modified procedure are

respectively larger and smaller than the power and FNDR of the original procedure; indeed, allow-

ing more rejections entails a larger number of false positive detections nFP, and therefore a smaller

number of false negative ones nFN. The FNDR curves are below a, suggesting that (7) does hold,

although a is not a tight upper bound; hence the upper bound on the expected number nFN of false

negative discoveries is not tight either.

To conclude, both the original and the modified FDR-Indep procedures control the FDR, but

the latter has higher power and lower FNDR; it is therefore a better procedure. Additionally, it is

fairly resistant to spatial correlations in the data.

c. Temperature variance example revisited

In our motivating example of section 1, we had found significant increases in temperature

variance over 51 years at 941, 19, and 338 locations, using respectively the FPR (α = 5%), the

Bonferroni (α = 3024−1 · 5%) and the original FDR-Indep (q = 5%) procedures; these locations

were shown in Figure 1. We now apply the modified FDR-Indep.

Applying (8) with the estimate, F̂P (x) shown in Figure 7b yields â = 61.7%, which says that

approximately 61.7% of the locations have H0 false. Based on Figure 6, we trust that using â in

place of the unknown a will yield reasonable results, since the temperature variance data have the

same correlation structure as data type (B). Such a large value of â = 61.7% first surprised us,

because FDR-Indep had only rejected nreject = 338 out of n = 3024 locations, barely more than

10%. This discrepancy can be explained. First, many locations that have H0 false might not show

enough change to reach statistical significance. Second, we know from (5) and Figure 5 that when
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a is large, the FDR-Indep procedure does not provide good FDR control, in the sense that FDR is

well below q. The modified procedure of this section will help tighten the FDR control greatly and

give more power to detect locations with H0 false.

Accordingly, we perform FDR-Indep once more, this time with q = (1 − 0.617)−1 · 5% to

ensure FDR ≤ 5% as per (5). We now find that nreject = 807 locations show a significant change in

temperature variance over the last 50 years, as indicated in Figure 8. Moreover, (5) and (7) suggest

that the number nFP of false positive discoveries is approximately less than 807 · 5% = 41, while

the number nFN of locations we failed to detect is less than (3024 − 807) · 61.7% = 1368.

This last result suggests that we fail to detect a considerable number of locations with H0 false.

This seems more alarming that it really is. There are three reasons; the first two are specific to

FDR procedures, the last concerns detection of significance at large. First, nFN is probably much

less than 1368, because the upper bound for FNDR in (7) is not particularly tight for the modified

FDR-Indep procedure, as observed in Figure 6d. We know of no theoretical result that would

provide a tighter upper bound for FNDR. Moreover, our data is spatially correlated, so that â likely

overestimates a, the true proportion of alternative hypotheses, which inflates further our already

loose upper bound for nFN. Lastly, many locations that may have H0 false do not show a strong

enough signal to be declared significant, so that from a statistical (or any other) point of view, these

locations are not distinguishable from the locations that have H0 true.

5. Conclusions

We started this paper by comparing and contrasting the traditional FPR and the FDR proce-

dures, which control the proportion of false positive discoveries in different ways. We then argued

in section 2 that the FDR procedure controls a more useful criterion, the rate of falsely rejected

hypotheses out of all rejected hypotheses. In section 3, we investigated the robustness of the orig-

inal FDR procedure of Benjamini and Hochberg (1995) (which we denote FDR-Indep) to spatial

correlation in the data, and found that it is not only robust, but its performance is just about as good
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as that of other FDR procedures that were later developed to handle correlated data, and it is much

simpler to apply than its direct competitor FDR-Corr (Yekutieli and Benjamini 1999). In section

4, we presented an improvement for FDR-Indep, recently developed by Genovese and Wasserman

(2002), which gives FDR-Indep tighter control of the FDR, and thus increases its power to detect

significant changes. This requires that the unknown proportion of true alternative hypotheses be

estimated. The method we propose overestimates this proportion when high spatial correlation is

present in the data, but the effect on FDR control is minimal. We have provided sample R, S-Plus,

and Matlab code for implementing the original and modified FDR-Indep procedures at the first

author’s homepage (http://www.stat.cmu.edu/˜vventura/ClimFDR.html) and in

the S and Matlab software archives at StatLib (http://lib.stat.cmu.edu).

In conclusion, we have summarized the current state of the art in multiple testing and have

demonstrated the properties of the FDR method based on simulated data that are consistent with

climate data. Based on these studies, we believe that the FDR-Indep procedure and its modified

version are powerful testing procedures that provide effective FDR control.
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Figure 1: Map of locations with significant trends in the temperature variance index, 1949-99, in

the area 20◦ − 70◦N based on three multiple testing procedures: α = 5% (light gray plus medium

gray plus dark gray), FDR (medium gray plus dark gray), and Bonferroni (dark gray).
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Figure 2: Illustration of the traditional FPR and FDR procedures on a stylized example, with

q = α = 20%. The ordered p-values, p(i), are plotted against i/n, i = 1, . . . , n, and are circled and

crossed to indicate that they are rejected by the FPR and FDR procedures respectively.



a (%)

FD
R

 (%
)

0 20 40 60 80 99

0
40

80

(α = 5%)FPR

Bonferroni

FDR

(a)

a (%)

(b)

Po
w

er
 (%

)

0 20 40 60 80 99

0
30

60

Figure 3: (a) FDR and (b) power of three testing procedures, as functions of the proportion of true

alternative hypotheses, a = nHA
/n.
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Figure 4: Spatial autocorrelation for the simulated data types of section 3b; (A) no spatial correla-

tion, (B) actual correlation of data in section 1, and (C) stronger correlation. Also included are the

spatial autocorrelation of station-based monthly mean precipitation and sea level pressure from the

Global Historical Climatology Network (GHCN).
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Figure 5: (a) FDR and (b) power plotted against the proportion of alternative hypotheses, a =
nHA

/n, for the three FDR testing procedures applied to the three data types described in section

3b. Data types (A), (B), and (C) are distinguished with different plotting lines (dotted, dashed, and

solid respectively), and testing procedures by a distinguishing letter at the start of each curve: “C”

for FDR-Corr, “I” for FDR-Indep, and “G” for FDR-General. The horizontal line on (a) is at

q = 5%. For clarity, in (b) we show only the power for data type (B); results for data types (A) and

(C) are similar.
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Figure 6: FDR plotted against a = nHA
/n, for (a) the original FDR procedure in section 2 and (b)

its modified version in section 4, applied to the simulated data of section 3b. The horizontal lines

are at q = 5%; the additional solid line on (a) has slope (1−a) · q. (c) Power and (d) FNDR for the

original and modified FDR procedures are plotted against a = nHA
/n only for data type (B) for

clarity; results for data types (A) and (C) are qualitatively similar. The solid line in (d) is y = x,

the upper bound in (7). The testing procedure is indicated by a distinguishing letter at the start of

each curve: “I” for FDR-Indep and “M” for the modified FDR-Indep.
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Figure 7: (a) Histogram of the p-values in the example of section 1. (b) Corresponding EDF (solid

line), the cumulative histogram, is shown with the CDF of uniformly-distributed p-values (dashed

line) for comparison.



Figure 8: Map of locations with significant trends in the temperature variance index, 1949-99 in

the area 20◦ − 70◦N based on FDR-Indep in section 2 (dark gray), and its modified version of

section 4 (light gray plus dark gray), both with FDR ≤ 5%.
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List of Tables



Table 1: Quantities relevant to traditional FPR and new FDR procedures. The information that

is known is indicated in bold. FPP/FNP/FDP and FNDP indicate, respectively, the observed

false positive/negative/discovery and non-discovery proportions, and FPR/FNR/FDR/FNDR the

corresponding expected proportions, which we refer to as rates; for example E(FDP) = FDR.

D E C I S I O N

quantities

maintain H0 reject H0 relevant to

Row Totals FPR procedures

T nH0
− nFP nFP nH0

FPP =

nFP
nH0

R H0 # correctly # of false positives # of true H0 FPR= α

U maintained

T HA nFN nHA
− nFN nHA

FNP =

nFN
nHA

H # of false negatives # correctly rejected # of false H0 FNR = ??

column naccept nreject n (# of tests)

totals # of maintained H0 # of rejected H0

quantities FNDP = nFN
naccept

FDP = nFP
nreject

relevant FNDR≤ a FDR≤ q

to FDR (see section 4)



Table 2: Summary of assumptions (defined in section 3a). A
√

indicates that a particular FDR

procedure requires the assumption under consideration (left side of the table) or that a particular

data set satisfies it (right side of the table). An × indicates a procedure does not require the

assumption (left side) or that a data set violates it (right side). An ×× indicates more serious

violation of the assumption.

FDR procedure Data type: correlation is

FDR-Indep FDR-Corr FDR-General zero “normal” strong

(BH 1995) (YB 1999) (BY 2001) (A) (B) (C)

Assumption 1
√ × × √ × ××

Assumption 2
√ √ × √ × ××


