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Abstract

The paper examines the relationship among Ito processes from the angle of quadratic varia-
tion. The proposed methodology, “ANOVA for diffusions”, allows drawing inference for a time
interval, rather than for single time points. One of its applications is in fitness of modeling a
stochastic process, it also helps quantify and characterize the trading (hedging) error in the case
of financial applications.

The reason why the ANOVA permits conclusions over a time interval is that the asymptotic
errors of the residual quadratic variation converge as a process (in time). A main conceptual
finding was the clear cut effect of the two sources behind the asymptotics. The variation compo-
nent (mixed Gaussian) comes only from the discretization error (in time discrete sampling). On
the other hand, the bias depends only on the choice of estimator of the quadratic variation. This
two-sources principle carries over to other criteria of goodness of fit, for example, the coefficient
of determination.
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1. Introduction. We consider in the following the regression relationship between two Ito
processes & and Sy,

dEt = ptdSt + dZt, 0 S t S T, (11)

where Z; is a residual process. We suppose that the processes S; and =; are observed at discrete
sampling points 0 = ¢ty < ... < t;; = T. With the advent of high frequency financial data, this type

of regression has been a growing topic of interest in the literature, cf. Section 2.2.

Our purpose in the following is to assess nonparametrically what is the smallest possible residual
sum of squares in this regression. Specifically, denote by < Z, Z > the sum of squares of the process

Z under the idealized condition of continuous observation. We wish to estimate

min < Z,Z >, (1.2)
p

where the minimum is over all adapted regression processes p.

Our problem is “orthogonal” to that of estimation of the regression coefficient p;. Depending
on the goal of inference, statistical estimates g; of the regression coefficient can be obtained using
methods that are either local in space or in time, as discussed in Section 2.2. In addition, is is also

common in financial contexts to use calibration (“implied quantities”, see Section 5).

The importance of the question we ask in this paper is this. Once you know how to estimate
(1.2), you also know how to assess the goodness of fit of any given estimation method for p;. You
also know more about the appropriateness of a one regressor model of the form (1.1). We return

to the goodness of fit questions in Section 4.

The motivating application for the system (1.1) is that of statistical risk management in financial
markets. We suppose that S; and =; are the discounted values of two securities. At each time ¢, a
financial institution is short one unit of the security represented by =, and at the same time seeks
to offset as much risk as possible by holding p; units of security S. Denote the gain/loss, up to

time ¢, from following this “risk-neutral” procedure by Z;. This is then given by (1.1).

The reason why the problem (1.2) connects to an ANOVA is that if the processes = and S were
continuously observed, it would be possible to determine p; uniquely (see (2.4)) to both minimize

< Z,7Z >, and also make the processes S and Z orthogonal at all times ¢, i.e., < S, Z >;= 0 in the
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sense of quadratic covariation. This gives rise to an ANOVA decomposition of the form

t
<E,E>t=/pid<S,S>u+<Z,Z>t, (1.3)
S—— 0 S——
total SS - RSS

SS exf)rlained

The main theorems in the current paper are concerned with the asymptotic behavior of the
estimated RSS, as more observations are available within a fixed time window. There will be some
choice in how to select the estimator < ﬁ>t. We consider, therefore, a class of such estimators

<ﬁ>t. No matter which of our estimators is used, we get the decomposition
<Z,Z >~ <Z,Z> = bias, + ([Z,Zhi— < Z,Z >,), (1.4)

to first order asymptotically, where [Z, Z] is the sum of squares of the (unseen) process Z at the

sampling points, cf. the definition (2.1) below.

A primary conceptual finding in (1.4) is the clear cut effect of the two sources behind the
asymptotics. The form of the bias depends only on the choice of estimator of the quadratic variation.
On the other hand, the variation component is common for all the estimators under study, it comes

only from the discretization error (in time discrete sampling) under the assumption of p known.

The organization is as follows, in Section 2, we establish the framework for ANOVA, and we
examine a class of estimators of the residual quadratic variation. Our main results, in Section 3,
provides the distributional properties of the estimation errors for RSS. See Theorem 1-Theorem 2.
In Section 4, we discuss the statistical application of the main theorems. Parametric and nonpara-
metric estimation are compared in the context of residual analysis. The goodness of fit of a model
is addressed. In Section 5, we present a financial example where ANOVA can be implemented.
Broad issues, including the analysis of variation versus analysis of variance, the moderate level of
aggregation versus long run, the actual probability distribution versus the risk neutral probabil-
ity distribution in the derivative valuation setting, are discussed in Section 4.3-4.4 and 5. After

concluding in Section 6, we give proofs in Sections 7-8.

2. ANOVA for diffusions: framework. ANOVA is one of the main tools in statistics to
assess the relationship among the variables of interest. It operates by breaking down the variation

within a data collection. As is the case in the ordinary linear regression, estimation and ANOVA
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answer different questions: the former tells the estimated value of parameters, the latter tells
how well the model fits. The same comparison holds for a diffusion case where the response and
explanatory variables are continuous-time processes. ANOVA for diffusions does not focus on the
inference at independent time points, rather, it can be aggregated over a certain time span to

determine the goodness of fit relating processes.

2.1. TIto processes, and quadratic variation. We shall be concerned with quadratic variation
(“q.v.”) and co-variation both in continuous and discrete time, the latter reflecting the actual
times of observation. We suppose that there is an interval [0, 7], and that the processes {X,Y} are

observed at a non-random partition 0 = t(()n) < tgn) < tg") <... < t;cn) =1T.

We let [X,Y]; denote the quadratic covariation of X and Y at the discrete-time scale, with the

expression

X, Y] = > (AX,m)(AY ), (2.1)

(n)
tif1<t

X 4 and AY;(n) =Y Y . If X and Y are continuous semimartingales,

where AXt(n) =X t(n) -,
i i+1

#m)
such as the Tto proé;;ses defined below, the quadratic variation < X,Y >; at continuous time-scale
is given as the limit of [X,Y]; as the number of observation points k¥ = k,, — oo, with the mesh
6(™) = max; |At(™)| — 0. The convergence of [X,Y] to < X,Y > is uniform in probability (UCP).
See Jacod and Shiryaev (1987), Theorem 1.4.47 (p. 52), and Protter (1995), Theorem I1.23 (p. 61),

for details. Most of the time, we omit, for simplicity, the partition number (n).

The diffusion processes we shall work with are also known as Ito processes, as follows. Note

that we suppose that there is an underlying filtered probability space (€2, F, Fy, P)o<i<7-

DEFINITION 1. By saying that X is an Ito process, we mean that X can be represented as a smooth

process plus a local martingale,

t t
X; = Xo +/ X, du +/ o X dWX, (2.2)
0 0

where W is a standard (F;)-Brownian Motion, X is Fy measurable, and the coefficients )Z't and

o are Fi-adapted, with fg | Xu|du < +00 and fg(aff)Qdu < 4o00. We also write
X; = Xo + XPR 4 xMC (2.3)

as shorthand for the Doob-Meyer decomposition in (2.2). O
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Note that WX is typically different for different Ito processes. If WX is the Brownian Motion

appearing in the above equation, then the relationship between WX and WY can be arbitrary.

Following similar notations, the (cumulative) quadratic variation and quadratic covariation can

be expressed as

<X, X >

t
/ (0X)?du,
0

t
<X,)Y >, = /afagd<WX,WY>u.
0

Both quadratic variation and covariation are absolutely continuous, where the latter follows from
the Ito process assumption and from the Kunita-Watanabe Inequality (see, for example, p. 51 of
Protter (1995)). For more details about the definitions, see Jacod and Shiryaev (1987) or Karatzas
and Shreve (1991).

We shall often have occasion to suppose that < X,Y >} is itself an Ito process. For ease of

notation, we then write its Doob-Meyer decomposition as
d < X,Y >,=dD{Y +dR}Y = D}V dt + dR}" .
Note that the quadratic variation of < X,Y >’ is the same as < RXY RXY > |

2.2. Estimation schemes.. Following model (1.1), with = and S being Ito processes, we are
interested in estimating the quadratic variation < Z,Z >; of the residual. Clearly, one also has
to deal with the estimation of the instantaneous quantity p, as it enters into the estimation of
< Z,Z >. Specifically, by model (1.1),

d<E,8 >

= 2.4
d< 8,8 > ( )

Pt

In a non-continuous world, where = and S can only be observed over grid times, the most straight-
forward estimator of p is,

e — ':‘
. <ES8> t—hn<t{™ <t™) <t (A“tgn)) (Astgn))
. 2 (2.5)

_<ESY |
<SS T (A50) (850)

For simplicity, this is the one we shall use in the following.
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Asymptotics for estimators on the form < f,?>{5 and hence for p;, is given by Foster and
Nelson (1996) and Mykland and Zhang (2002). Let AL™ be the average observation interval,
assumed to converge to zero. If < X,Y >/ is an Ito process with nonvanishing volatility, then it
is optimal to take h, = O((At(M)/2), and (Kt(n))l/4(< f,?>%— < X,Y >}) converges (for each
fixed t) to a (conditional on the data) normal distribution with mean zero and random variance.
The asymptotic distributions are (conditionally) independent for different times ¢. If < X, Y >} is
smooth, on the other hand, the rate becomes (Kt(n))l/ 3 rather than (Kt(n))l/ 4 and the asymptotic

distribution contains both bias and variance. The same applies to the estimator g;.

The scheme given in (2.5) is only one of many for estimating < X,Y >}. In particular, Genon-
Catalot et al. (1992) use wavelets for this purpose, and determine rates of convergence and limit

distributions under the assumption that < X,Y >/ is deterministic and has smoothness properties.

Another important literature in this area seeks to estimate < X,Y >} as a function of underlying
state variables, see in particular Florens-Zmirou (1993),Hoffmann (1999) and Jacod (2000). The
typical setup is that U = (X,Y,...) is a Markov process, so that < X,Y >/= f(U;) for some
function f, and the problem is to estimate f. If all coefficients in the Markov diffusion are smooth
of order s, and subject to regularity conditions, the function f can be estimated with a rate of

convergence of (Kt(”))s/(lws)_

The convergence obtained for the estimator of f under Markov assumptions is considerably
faster than what can be obtained for (2.5). It does, however, rely on stronger assumptions than
what we shall be working with in the following. Since we shall only be interested in p; as a (random)
function of time, our development does not require a Markov specification, and in particular does

not require full knowledge of what potential state variables might be.

Back to the estimation of the quadratic variation < Z, Z > of residuals. Given the discrete data

of (£, S), there exist different schemes to estimate the residual variation.

One scheme is to start with model (1.1). One first estimates AZ ,n) through relation AZ ) =

() 4o 4™

A= MO ﬁtﬁ") (AS tl('n))’ where all increments are from time ¢; i+1> and then obtains the quadratic
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variation (q.v. hereafter) of Z. This gives an estimator of < Z, Z > as

A A ~ 2 —_ ~
12,2 = (AZw) = > [Adtgn)At—Ptgn)At(AStgn)At)]z (2.6)
<t <t

where the notation of square brackets (discrete time-scale q.v.) is invoked, since AZt(n) is the

increment over discrete times.

Alternatively, one can directly analyze the ANOVA version of the model, (1.3), where d <

Z,7 >y=d < E,E >; —pid < S,S >;. This yields a second estimator of < Z,Z >,

-1 - N
<Z,Z> =) [(A:tgm/\t)2 ~ Pl (A8, ). (2.7)
1<t l
In general, any convex combination of these two,
— (@) 5 5 -1
<Z,Z> =1-a)Z,Zi+a< Z,Z >, (2.8)

would seem like a reasonable scheme for estimating < Z, 7 >;, and this is the class of estimators

— (1/2
that we shall consider. Particular properties will be seen to attach to < Z, 2 >,E / ), which we shall
also denote by < Z\Z/>t,
< 7,7 > =[5, 2. (2.9)

Note that (2.9) also has a direct motivation from the continuous model. Since < S,Z >;= 0, (1.1)

yields that < =, Z >;=< Z, Z >;.

()

Our primary goal is to investigate the statistical properties of the estimator <ﬁ>ta of the
residual q.v. < Z, Z >, and in particular those of ([Z, Z], and < Z,Z >;). Asymptotic properties

are naturally studied with the help of small interval asymptotics.

2.3. Paradigm for asymptotic operations. The asymptotic property of the estimation error is

considered under the following paradigms and assumptions.

For a sequence of partitions of [0,7], 0 = t(()n) < t§") <--- < t,(cn) =T,n=1,23,---, we assume

that as n — oo,

(i) the number of observations k = k,, — oo
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1i) the mesh (5( ) — 0. The mesh is the maximum distance between the t( )’S
1 ?

(iv) the number of observations between ¢ — h, and ¢ goes to infinity,

(v) there is a trade-off between h,, and At(%).

The above (i) and (ii) suggest that, as n increases, we can observe the underlying data process

more frequently. This observation refinement is not nested in that the set {t(()m), tgm), - ,ti:ll)} is

t("2)

not necessarily contained in the set {t(()"z), MR ,t,(czz)} for n1 < ny. The requirement (iii)-(iv)

indicate that estimation window (or bandwidth h,,) shrinks with n while the number of observations
within the window increases. In (v), At™) is the average observation interval, equal to % As
mentioned above, Mykland and Zhang (2002) showed that as n increases, how fast h, and At(n)
decay respectively has a trade-off in terms of the asymptotic variance of the estimation error in p.

It is optimal to take h, = O(V At("). From now on, we use h and h,, interchangeably.
Specifically, we suppose the following.

ASSUMPTION A (Quadratic variation of time:) For each n € N, we have a sequence of non-

random partitions {tz(")}, Atgn) = tz@l - tgn). Let maxi(AtEn)) = §(n). Suppose that

(i) 6(n) = 0 as n — oo, and 6(n)/At(") = O(1).

(n)
2, (n) <t(Atin )2

(i) Hpy(t) = HIAT — H(t) as n — oo, where H(t) is continuously differentiable.

i11) [H\(t) — Hepy(t — hp)]/hn — H'(t) as hy, — 0, where the convergence is uniform in t.
(n) (n)

When the partitions are evenly spaced, H(t) = ¢t and H'(t) = 1. In the more general case,
the left hand side of (ii) is bounded by ¢6(n)/A#("), while the left hand side of (iii) is bounded by

§(n)?/(AtMR)+6(n)/At™). In all our results, h is bigger than A+(")| and hence both the left hand

sides are bounded because of (i). The assumptions in (ii) and (iii) are, therefore, about a unique

limit point, and about interchanging limits and differentiation.

2.4. Assumptions on the process structure. The following assumptions are imposed on the
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relevant Ito processes.

AssuMPTION B(X) (Smoothness): X is an Ito process. Also, < X, X >} and X; are continuous,

almost surely.

REMARK 1. The addition of Assumption B to an Ito process X, and similar smoothness assump-
tions in results below, is mainly a matter of convenience of proof. The assumption can in many

instances be dropped, at the cost of more involved technical arguments. O

AssuMPTION C(X) (Non-vanishing wvolatility): infyejor) < X, X > >0 almost surely

AssuMPTION D (Description of the filtration): There is a continuous multidimensional P-
local martingale X = (XU ... X®)) any p, so that F; is the smallest sigma-field containing
o(Xs,s <t) and N, where N contains all the null sets in o(Xs,s <T).

REMARK 2. The final statement in Assumption D assures that the “usual conditions” (Jacod and
Shiryaev (1987), p. 2, Karatzas and Shreve (1991), p. 10) are satisfied. The main implication,

however, is on our mode of convergence, as follows. O

2.5. The limit for the discretization error. As mentioned in the introduction, the error <ﬁ>t— <
7,7 > can be decomposed in bias and pure discretization error [Z, Z],—< Z, Z >;. We here discuss

the limit result for the latter, following Jacod and Protter (1998).

PRrOPOSITION 1. (Discretization Theorem). Let Z be an Ito process for which fOT(< Z,7Z >"2dt <

00 a.s. fOT Z?dt < 0o a.s. Subject to assumptions A and D,

1 t
(2,2),— < Z,Z >,) "Sﬂ?le/ V2H () < Z,Z >, dW,,
A7 ™) 0

At

where W is a standard Brownian Motion, independent of the underlying process X(®. O

The symbol Lstable Genotes stable convergence of the process, as defined in Rényi (1963) and

Aldous and Eagleson (1978); see also Rootzén (1980) and Section 2 of Jacod and Protter (1998).

In the case of an equidistant grid, the result coincides with applicable part of Theorems 5.1
and 5.5 in Jacod and Protter (1998), and the proof is essentially the same (see Section 7). On an

abstract form, results of this type appear to go back to Rootzén (1980).
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Note that the conditions on < Z,Z >' and Z are the same as in the equidistant case, due to

the Lipschitz continuity of H.

Some further discussion of this proposition, and some further results in this direction that we

shall use, are contained in Section 7.
3. ANOVA for diffusions: main distributional results.

3.1. Distribution of w Recall that the square bracket [Z, Z] and the angled bracket
Var™

< Z,Z > represent the quadratic variation of Z at discrete and continuous time-scale, respectively.

\/A:t(n)

THEOREM 1. . Assume condition A, with ¥5*— — casn — oo, and 0 < ¢ < oco. Suppose S, E, p,

<8,8>" <8 8> <R RS >' < R% R®% >' and < RZ%, R®= > are Ito processes, each
satisfying condition B. Also assume condition C(S). Let estimator AZ () = A= A — ﬁt(”) -AS OB

with S, E and p satisfying model (1.1). Then,

A 5((Z, 24— < 2,7 >y)

t
_ / Vioyd < 8,8 >u +(BL™) 4 (2, Z)= < 2,Z >1) + 0p(1) (3.10)
0
uniformly in £, where
t 1 t t
/ Viepd < 8,8 >y= @/ <p,p>d<S,8 >, +c/ H'(u)d < Z,7Z >, (3.11)
0 0 0
O

REMARK 3. . The consequence of Theorem 1 (same for Theorem 2 below) is that,

1
Dot ——5 (12,2 = < 2,2 >,) + 0p(1)
VA"

converges in law (stably) to

t
D, +/ V2H'(u) < Z,Z >, dW,,
0

0p(1) term goes away by Lemma VI 3.31 (p. 316) in Jacod and Shiryaev (1987). O

Notice that Theorem 1, together with Proposition 1, says that the estimator [Z , 2]t converges

to < Z,Z >; at the order of square root of the average sampling interval. In the limit, the
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error term consists of a non-negative bias f(f Voepd < 5,5 >y, due to the estimation uncertainty
< Z,72>— < Z,Z >, and a mixture Gaussian, due to the discretization [Z,Z)— < Z,Z >;. The
non-negativeness of the asymptotic bias is because the q.v.’s (< p,p >, < 5,8 >, < Z,Z >) are
non-decreasing processes. Furthermore, (3.11) displays a bias-bias tradeoff, thus an optimal ¢ for
smoothing can be reached to minimize the asymptotic bias, though we have not investigated the

effect of having a random c¢. The discretization term is independent of the smoothing factor.
3.2. Distribution of < Z, 7 >1— < Z,Z >;.

THEOREM 2. . Suppose that S, Z, and p are Ito Processes satisfying model (1.1). Assume condition

j—(n)
A and C(9), with Y2 5 casn — 00, and 0 < ¢ < co. Also assume each of the processes =,
’ R )
S, p, <E,8>" <8 8> <R R > < R®5 R > and < R®, RE >') satisfies condition
B, and processes < E,p >’ and < S, p >’ are continuous. Then, uniformly in ¢

—_N— t
<Z,7>-<7,Z> 1
A 2~ [ <EB,8 > dp, (3.12)

\/ AR 2 0

+ (BE™2(12, Z)— < Z,Z >4) + op(1).

Remark 3 applies similarly.

—_—

Unlike [Z , Z], the asymptotic (conditional) bias associated with < Z, Z >; does not necessarily
have a positive or negative sign. Moreover, we are no longer faced with a bias-bias tradeoff due to
the position of ¢ in (3.12). In this case, the role of smoothing in asymptotic bias shall be discussed

in Section 3.3.

3.3. Distribution of <ﬁ>£a)— < Z,Z > From (2.8),

(a)

<Z.Z> =0-2)[Z, 2] +2< Z,Z >,

it follows from the assumptions of Theorems 1-2 that, if one sets

t t
biasl® = %/0 <E,8 > dp, + (1 — 2a)/0 Viepd < S, 8 >y, (3.13)
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Then

o — (a)
72,7 >, —< 72,7 S —
SHZ2 TS S22 g 4 (RE™) (2, Zh— < Z,Z 1) + 0p(1)

Kt(n)

£table piagl® / V2H () < Z,Z > dW,,, (3.14)

As a summary for any linear combination of the estimators in Theorem 1- 2, a € [0,1], the
convergence in (3.14) is in law as a process, and the limiting Brownian Motion W is independent

of the entire data process. See the definition of stable convergence in Section 2.5 above.

The “variance” term (Kt(n))*% ([Z, Z)t— < Z,Z >;) is the same for any estimator in the linear-
combination class, they are all asymptotically perfectly correlated. The common asymptotic, con-
ditional variance is independent of the smoothing bandwidth. It remains unclear whether the
common asymptotic variance could, perhaps, be a lower bound under the nonparametric setting

(see Bickel et al. (1993) for a comprehensive discussion). This needs further investigation.

For the bias, on the other hand, the estimation procedure plays an important role, as the bias
term varies with a. Also the smoothing effect enters the bias terms. From Theorem 1-2, excessive
over-smoothing (smaller ¢) or under-smoothing (bigger ¢) can explode the bias of < Z, Z >( )
a# 5 1. thus (conditional) bias may be minimized optimally. When a = %, it is not obvious how
to deal with bias-bias tradeoff. One might theoretically be able to reduce the bias for </ZTZ>
(i.e. <ﬁ>(1/2)) by choosing the smallest possible bandwidth h. This thought should, however,
be taken with caution. It is not obvious whether the magnitude of the higher order terms in the
earlier results would remain negligible if the estimation window h were to decrease faster than the
order VAt. Also in the case of financial practice, one may want to choose a ¢ such that both the

asymptotic bias and hedging error are relatively small.

—_~—

Table 1 in next page shows that assuming constant p, < Z, Z >; will be the best choice among
the three. When p is random, none of the estimation schemes in section 2.2 is obviously superior

to the others.
4. Goodness of fit.

The purpose of ANOVA is to assess the goodness of fit of a regression model on the form (1.1).
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Table 1: The effect of constant p on the bias components

Estimator Asymptotic Bias
[Z, Z), cf(f H'(u)d < Z,Z >,
—_(1/2) t 1
< 7,7 >, —c [y H'(u)d < Z,Z >,
< Z\_Z/>t 0

We here illustrate the use of Theorems 1 and 2 by considering two different questions of this type.
In the first section, we discuss how to assess the fit of a parametric estimator for p. Afterward, we
focus on the question of how good is the one regressor model itself, independently of estimation
techniques. This is already measured by the quantity < Z,Z >p, but can be further studied by
considering confidence bands for < Z, 7 >; as a process, and by an analogue to the coefficient of
determination. Finally, we discuss the question of the relationship between this ANOVA and the

analysis of variance that is used in the standard regression setting.

4.1. The assessment of parametric models. In the following we suppose that a parametric model
is fit to the data, and p is estimated as a function of the parameter. Since we have a nonparametric
estimate for < Z, Z >, we can compare to this a parametric estimate for the residual sum of squares

to see how good the parametric model is in capturing the true regression of = on S.

Specifically, we suppose that data from the multidimensional process X; is observed at the grid
points. X; has among its components at least Sy and Z;, but there are possibly also other processes
that are components in X;. The parametric model is of the form Py, 8 € ©, 4 € ¥, where the
modeling is such that diffusion coefficients are functions of §, while drift coefficients can be functions
of both § and . It is thus reasonable to suppose that as At — 0, 6 converges in probability to a

nonrandom parameter value 6y, and that
(A8)2(0 — 8o) — 1N (0,1)

in law, stably, where 7 is a function of the data and the N(0,1) term is independent of the data. 6,
is the true value of the parameter if the model does contain the true probability, but is otherwise

also taken to be a defined parameter.
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Under Py, the regression coefficient p; is of the form (). Most commonly, 5;(0) = b(Xy; 6)

for a nonrandom functional b.

We now ask whether the true regression coefficient can be correctly estimated with the model

at hand. In other words, we wish to test the null hypothesis Hy that 5:(6y) = p:.
For the ANOVA analysis, define the theoretical residual by
dVy = d=¢ — Bi(00)dS:, Vo =0,
and the observed one by
AV;, = Ay, — B, (0)ASy, Vo =0.
Under the null hypothesis, < V,V >=< Z, Z > and so a natural test statistic is of the form
U= (&) AV, VIr = <Z.Z >1)
We now derive the null distribution for U, using the results above.
As an intermediate step, define the discretized theoretical residual
AVE = AEy, — B (00)AS, Vii=0

Subject to obvious regularity conditions,

V. Ve = V4V = =2 3 (B4(0) — B, (60) AVIAS,,
ti 1<t
+ 3 (Bu(6) — B (60))*AS],

tir1<t
= —2(0-0 9Bt () AVAAS,, + Op(At
= ) > 5g (D) AVEAS, + Op(At)

u+1<t

= —2(@—00) 0P (90)d< V,S >, +O (At)

o 006
Also, under the conditions in Proposition 2 in Sect 7 and Lemma 3 in Section 8, [V, V9]r =
[V, VIr + 0p(AtY/?) as At — 0 (since < V4,V >=< V,V >, +0,(At"/?), and < V4,V >~
V4V Sim< V,V >1).



ANOVA for Diffusions 14

Hence, under the conditions of Theorem 1 or 2,

A-1/2(§ T 9B,
U= —2(At) V0 -00) [ TL0)d < V.5 >,
0
+(A) VAV, Ve - (2, Z)r)}

—biasy + 0p(1)
where biasy has the same meaning as in Section 2. If the null hypothesis is satisfied, therefore,
T 0B
U— N(O, ].) X 27’]/ %(eo)d < ‘/, S >t —biaST
0

in law, stably. The variance and bias can be estimated from the data. This, then, provides the null

distribution for U.

Another approach is to use U to measure how close the parametric residual < V, V' > is to the

lower bound < Z, Z >. To first order,

(ADYV2U = <V,V>r—<Z,Z >r
T
— [ @60 - pPa <55 >,
0
The behavior of U — (At)"Y/2(< V,V >r — < Z, Z >7) depends on the joint limiting distribution
of (V,V]r— < V,V >7)—(Z, Z]lr— < Z, Z >7) and (At)~Y/2(§—6)). The former can be provided

by Theorem A.2 (or Section 5 of Jacod and Protter 1998), but further assumptions are needed to
obtain the joint distribution. A study of this is beyond the scope of this paper.

4.2. Confidence bands. In addition to pointwise confidence intervals for < ﬁ>t(a), we can
—_— (o]
construct joint confidence band for the estimated quadratic variation < Z,Z >( ) of residuals,

because </Z7>(a) converges as a process by earlier Theorems.
One proceeds as follows. As a process on [0, 77,
S Gy
(At(n)) ? (< Z,Z >§a)— < 7,7 >t) =N biasg") + Ly,

Under all estimation schemes in the linear combination class, we have, by Theorem 1-2 and subse-

(@)

quent results on < ﬁ>t ,

t
L, :/ V2H! (u) < Z,7Z >, dW,,
0
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where W is a standard Brownian Motion independent of the complete data filtration. Now condition
on Fr: by the stable convergence, L; is then a Gaussian process, with < L, L >; nonrandom. Now
use the change-of-time construction by Dambis (1965) and Dubins and Schwartz (1965) to obtain

Ly =WZ} 1, where W* is a new Brownian Motion conditional on F7. It then follows that

max L; = max Wy
0<t<T 0<t<2 [ H'(u)(<Z,Z2>!,)*du
min L; = min wi
0<t<T 0<t<2 [T H'(u)(<Z,Z>),)  du

1
Now write L, (t) = (At() ? (< Z,7 >t(a)— <ZZ >t) - bias,(ta), we have

P(|Lp(t)| <c¢, forallt€[0,T]) — P(|L(t)| <c, forallte|0,T])

= P min W/ > —¢, max W <c¢
0<t<t 0<t<r

Choose ¢ = ¢; such that

P min W > —¢;, max W/ <c¢;|t)=1-aq,
0<t<r 0<t<r

with 7 =2 fOT H'(u)(< Z >!)*du. To find ¢,, one can refer to Karatzas and Shreve (1991) Section
2.8 for the distributions of the running minimum and maximum of a Brownian Motion. This

completes our construction of a global confidence band.

4.3. The Coefficient of Determination. In analogy with standard linear regression, one can
define the R? by

< 4,7 >y

RP=1-—22"0,
< H, 2 >y

This is the quantity one would have observed if the whole path of the processes = and S had been

available. If observations are on a grid, it is natural to use
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Under the assumptions of Section 2, the distribution of Rf can be found by

@) 2(R? - R2)

v ]. —_—
_(Atm)rmm ((< Z.7 >~ < Z,Z >) — (1 - R?)([E, 8~ < E, = >t))
+ 0p(1)
_ 1
_ —(At("))—lﬂm ((1Z, 21— < 2,7 >;) — (1 = R)([E,E;— < E,E >;))

- bias,(:a) + 0p(1),

where biasga) is that corresponding to estimator <ﬁ>t = <ﬁ>ia) (we use <ﬁ>t and

< ﬁ>t(a) interchangeably, unless otherwise stated).

A straightforward generalization of Proposition 1 yields that (E(n))*l/ 22,2)— < Z,Z >y

E,E);— < B,E >¢)o<i<T converges (stably) with the integrand from Definition ?? given by

7 ‘:"'_']

< Z,Z >4)? (< Z,E >1)?
gr = 2H'(t) ( _ f)z( - f)2 ,
(< Z,2>))° (< E,E>})

and equation (1.1) yields that < Z,E >}=< Z, Z >}. It follows that

B2 (R - R%)

Cotafle /\/F<zz> dw,

<:,: >t
L1-Rp /\/2H’ 58512 = (< Z.Z ST)law?
<\—l,\—l>t
(@

— bias;”,

where W and W* are independent Brownian motions. For fixed ¢, the limit is conditionally normal,

(a)

with mean —bias; ’ and variance

1 t t
— (R;l/ 2H(u)(< Z,Z >!)%du + (1 — R?)Q/ 2H'(u)[(< B,E>!)? - (< Z,Z >;)2]du> ,
t 0 0

<EE
which can be readily estimated.
4.4. Variance versus variation: Which ANOVA?. The formulation we have given in (1.3) is in

terms of quadratic variation. This raises the question how our analysis relates to the traditional

meaning of ANOVA, namely a decomposition of variance.
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There are several answers to this, some concerning the broad setting provided by model (1.1),
and they are discussed presently in Sections 4.3 and 4.4. More specific structure is provided by

financial applications, and a discussion is provided in Section 4.5.
In model (1.1), the variation in Z can come from both drift and martingale. As in (2.3),
Zy = Zo + ZPR 4 ZzMC. (4.1)

The analysis we have presented concerns most directly the variation in ZM G in that var(ZM &) =
E(< Z,Z >;), where it should be noted that < Z,Z >;=< ZM% ZMG >, Hence, if the ZPE
term is identically zero, the analysis of variation is also an exact analysis of variance, in terms of

expectations.

On a deeper level, when considering conditionality, the quadratic variation of Z may be a
more relevant target in an analysis than the variance of Z, as the latter is a conditional quantity
and hence less representative of data. Following the Dambis (1965)/Dubins and Schwartz (1965)
representation, ZM% = V_ 7,7>4, where V' is a standard Brownian motion (on a different time scale).
< Z, 7 >=< ZMG ZMG -, therefore, contains information about the actual amount of variation
that has occurred in the process ZM¢. Using the quadratic variation is, in this sense, analogous
to using observed information in a likelihood setting (see, for example, Efron and Hinkley (1978)).
The analogy is valid also on the technical level: if one forms the dual likelihood (Mykland (1995))

from score function ZM% the observed information is, indeed, < Z, Z >;.

4.5. A tale of tradeoffs: ANOVA when the drift is nonzero. So what if the drift ZP® in (4.1)

is nonzero? Is < Z,Z >; any longer relevant to the variation in Z; itself?

Our contention is that < Z,Z >7 is the correct measure of variation for small and intermediate

sized intervals [0, 7], but that bias may take over when T is large.

There is, however, a tradeoff between bias and, on the other hand, conditionally correct infer-
ence. As pointed out in Section 4.3, the estimators <ﬁ>T are conditionally more appropriate
than a straight estimate of var(Zr — Z;), and one may wish to accept more bias (as T grows bigger)
in return for the greater conditionality offered by our “ANOVAriation”. In fact, in the sense of

approximate likelihoods as in Mykland (2001), < Z, Z >7 remains the observed information.
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In terms of the size of T', the martingale term in (4.1) will dominate for small T', whereas
the drift term will dominate for large T'. Specifically, no matter whether " — 0 or T — 400,
ZMG = 0,(T"/?) and ZPE = 0,(T). The application under our consideration generally concerns
non-large level of time aggregation, hence the current analysis of variation, rather than analysis of

variance, is both the feasible analysis and the one that captures the dominant effect.

Of course, one would ideally like to take account of both terms, but there is the added fact
that it is so much easier to estimate < Z, Z >;, and hence the spread of ZM G than the spread in
ZPE. As we have seen in this work, and as is clear from other works (such as Jacod and Shiryaev
(1987), Theorem 1.4.47 (p. 52), and Protter (1995), Theorem 11.23 (p. 61)), < ZM¢ ZMG >, can
be consistently estimated on a fixed interval, with the paradigm from Section 2.3. On the other
hand, even with parametric model assumptions and even with observations continuous in time,
the drift can only be accurately estimated when T is large. This is a consequence of Girsanov’s
Theorem (see, e.g., Chapter 3.5 of Karatzas and Shreve (1991)). The long-run (large 7T') behavior

merits separate discussion and will not be addressed in present work.

4.6. Financial applications: An instance where variance and variation relate exzactly. The case

from Section 4.3, where Z itself is a martingale, or where one is interested in ZM¢ only, is quite
common in finance. We show two examples of this; a conceptual one in this section, and one that

involves data in the next section.

In either example, one is interested in testing whether the residual Z is zero, or in quantifying
the distribution of the residual under the so called Risk Neutral or Equivalent Martingale Measure

P*.

If P is the true, actual, probability distribution under which data is collected, P*, is by contrast,
the following. It must be equivalent to P, in the sense of mutual absolute continuity, and satisfy
that the discounted value of all traded securities must be P*-martingales. The value of financial
assets, consequently, are expectations under P*. For further details, refer to Harrison and Krebs
(1979),Harrison and Pliska (1981),Delbaen and Schachermayer (1995a,b),Duffie (1996), Hull (1999).
Note that, in the simplest case, where we take the short term risk free interest rate r to be constant

over time, the discounted value at time ¢ of a security X; is exp(—rt)Xy, and the initial price at
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time 0 of this security is E*[ezp(—7rt)X}], where E* is expectation taken with respect to P*.

If the residual Z relates to the value of a security, one is often interested in its behavior under

ZMG*

P* rather than under P. Specifically we shall see that one is interested in , where this is the

martingale part in the Doob-Meyer decomposition (4.1), when taken under P*;
Zy = Zo + ZPB 4 ZMC* w x4, P*. (4.2)

The quadratic variation < Z,7 >=< ZMG ZMG 5—_« ZMGx 7zMGx  i5 the same under P and

P*, but under the latter distribution, it refers to the behavior of ZM&* rather than ZMG,
The simplest case is the following.

EXAMPLE 1. Suppose that = and S are both discounted securities prices, and that one seeks to offset
risk in 2 by holding p units of S. The residual is then, itself, the discounted value of the unhedged
part of . Under P*, therefore, Z is a martingale, Zy = Zy + ZMC*.

A deeper example is encountered below in Section 4,where we analyze implied volatilities.

ZMG*_ one is interested in bounds on

In both these cases, to put a value of the risk involved in
the quadratic variation < Z, Z >, under P*. This will help, for example, in pricing spread options

on /.

How do our results for probability P relate to P*? They simply carry over, unchanged, to this
probability distribution. Theorems 1 and 2 remain valid by absolute continuity of P* under P. In
the case of limiting results, such as those in Propositions 1-2 (in Section 7) and the development
for goodness of fit in Section 3, we also invoke the mode of stable convergence in Definition 77,

together with the fact that dP*/dP is measurable with respect to the underlying o-field Fr.

Finally, if one wishes to test a null hypothesis Hy that ZM%* is constant, then Hy is equivalent
to asking whether < Z, Z > is zero (whether under P or P*). This can again be answered with
our distributional results above. In the case of Example 1, the Hy of fully offsetting the risk in =

also tests if Z itself is constant.

5. Introducing ANOVA to volatility research.
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Following market practice, as well as the results of Mykland and Zhang (2001, 2002), we in-
stead investigate the question from Example 1 from the point of view of wolatility. The goal is to
investigate the association between the process of implied volatility and that of realized volatility,

which originate from different data sources.

We are interested in the variation of a non-dividend paying stock S;. To be specific, suppose
the stock price follows

dS; = pSidt + 0.5 dWy (51)

where the drift term u; and the diffusion term oy can be stochastic and time-varying, and W is
a standard Brownian Motion. It will be assumed that all quantities in (5.1) are adapted to the

underlying filtration (F;). The actual distribution governing (5.1) remains denoted by P.

The realized volatility of the underlying asset is 07 =< log S,logS >}, the derivative of the
quadratic variation of log S. An estimate of o7 based on the past data can then be obtained using,

for example, < logms >tl, following the discussion in (2.1) and (2.5).

The implied volatility provides another way to study the variation in the underlying security S.
The computation of implied volatility involves inverting a pricing formula for an derivative security

as detailed below (see (5.3)).

Specifically, consider a European option with payoff f(Sr) at the maturity time 7. Under the
Geometric Brownian Motion paradigm (GBM) for S, where y and ¢ in (5.1) are assumed constant,
the price of this European option at time ¢,# < T, can be written as C(S;,0?(T — t),r(T — t)),
where

C(S,E,R) = exp(—R)E*f(Sexp(R — E/2 + VEZ)), (5.2)

Z is standard normal under P* (the Equivalent Martingale Measure discussed in Section 4.5). The

option maturity 7" and payoff form f are given by the option contract.

Notice that equation (5.2) is the Black and Scholes (1973) and Merton (1973) formula (abbre-
viated with BS). The most common instance would be the call option, where f(s) = (s — K)* with

a pre-determined strike price K.

Suppose that at time ¢, the actual market price of this option is given by V;. The cumulative
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implied volatility at time t is defined to be the unique solution =; of
V;f = C(St7 Et,T(T - t)) (53)

An estimate of =; can be obtained given the paired data (S,V);. In above we have assumed S, V

and = are Ito processes, whose definition and regularity conditions are provided in Section 2.1.

Note that our notion of implied volatility is always on the cumulative scale (from ¢ to expiration
T). This is in contrast to much of the literature, which considers implied instantaneous volatility
(e.g., Beckers (1981), Engle and Mustafa (1992), Bick (1995), Pena et al. (1999), and Rubinstein
(1994)).

It should also be noted that implied volatility has a deeper meaning than what is generally
supposed. Originally, implied (instantaneous) volatility is based on the GBM assumption for stock
prices, which runs into real-case conflicts. However, substantial empirical work show that implied
volatilities contain the information about future variability of S in a way that the past realized data
cannot capture (Lamoureux and Lastrapes (1993), Jorion (1995), Christensen and Prabhala (1998),
Gwilym and Buckle (1997), Blair and Taylor (2001)). In the conceptual front, implied volatility
comes up in connection with bounds-based pricing (Mykland (2003, 2000)) and has a theoretical
connection to actual volatility as seen in Zhang (2001) and in Mykland and Zhang (2001, 2002).

There are two purposes to carrying out an ANOVA of = in a regression on S, as in (1.1). On
the one hand, one can ask whether the model (5.1) is of one factor type as in Example 1, in the
sense that the option V; can be fully hedged in the stock S;. This is a generalization of the usual
one factor setup, a common assumption in the literature (Duffie (1996), Derman and Kani (1994)).
As discussed in Mykland and Zhang (2001), this translates into asking whether the residual has
the form Hy: dZ; = —(;dt. Note that the null hypothesis is on the form ZM%* = constant, or

< Z,7Z >7=0, as described in Section 4.5.

On the other hand, if Hj is rejected, one wishes to know the magnitude of the hedging error.
If discounted securities are given as S; = exp(—rt)S; and V;* = exp(—rt)V;, note that S} can

replace S; in (1.1) without changing the analysis on < Z, Z > (see discussion in Section 4.5). Also,
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Figure 1: 90% Confidence Interval for < Z, Z > of S&P 500 on Feb. 17, 1994, under P*

0.015
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--- estimate under scheme 3 o -

estimates of <Z,Z> with bias adjustment
0.005 0.010

10:00AM  11:00AM 12:00PM 1:00PM 2:00PM 3:00PM
time

following Mykland and Zhang (2001),
dVy* = (Cs + C=p)dS; + C=dzZ}MC*

under P*. Under this distribution, therefore, the magnitude of ZM%* characterized by that of

< Z,Z >, determines the amount of hedging error.

As a direct application, Theorem 1- 2 tell us how to estimate and to set confidence interval
under P* for the quadratic variation < Z, Z > of the residual, and then determine the adequacy
of a volatility model with one factor. As an example, we apply ANOVA for diffusions to the
intra-day (tick-by-tick) data in SP&P 500 options and index. Figure 1 shows the pattern of intra-
day, bias-corrected estimates < Z,Z >, with @ = 0 (scheme 1) and % (scheme 3) of Section
2.2. As shown in the figure, the bias-adjusted estimates of < Z, 7 >(@) behave similarly under
different estimation schemes, in particular, they all significantly deviate from zero. This provides
a strong evidence against one-factor volatility structure (or, rejecting Hy: dZ; = —(;dt), including

the state-dependent volatility model (see Duffie (1996), Derman and Kani (1994), for example).

The confidence interval in Figure 1 is pointwise. The discussion on joint confidence band for
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<ﬁ> is given in Section 4.1.

6. conclusion. This paper provides a methodology to analyze the association between

diffusion-type processes. Its contribution is both conceptual and applied.

Under the general framework of nonparametric, one-factor regression, we obtain the distribution
results for estimation errors in residual variation < Z,Z > and then in a measure of goodness of
fit R?2. The limiting distributions identify two sources of uncertainty, one from the discreteness
nature of the data process, the other from the estimation procedure. Interestingly, among the class
of estimators </Z7>(a) under consideration, « € [0, 1], discrete-time sampling only impacts the
“yariance” component, on the other hand, different estimation schemes lead to different biases in

the asymptotics.

ANOVA for diffusions permits inference over a time horizon. This is because the error terms in
the quadratic variation </Z7>(a) of residuals, and hence error terms in the estimated Coefficient
of Determination R%, converge as a process (in time) , whereas the errors in the estimated regression
parameters g; are asymptotically independent from one time point to the next. This feature of time
aggregation makes ANOVA a natural procedure to determine the adequacy of an adopted model.

Also, the ANOVA is better posed in that the rate of the convergence is the square of the rate for

Pt — pt-

The “ANOVA for diffusions” approach is appealing also from the position of applications in
finance. As in Example 1, it can test whether a financial derivative can be fully hedged in another
asset. In the event of non-perfect hedging, Theorem 1-2 tell us how to quantify the amount of
hedging error as well as its distribution. As in the example of Section 4.5, the current ANOVA
approach helps in testing a volatility model regarding the number of factors involved, without
assuming a specific functional form for the process {S;} and {o?}. Along the same line, the
nonparametric feature of the current ANOVA permits a trading decision based on “data”. The

implementation of ANOVA is a dynamic one.

Another feature embedded with the financial application is that: the “ANOVA for diffusion”
turns out to be a key messenger between the actual distribution P and the Risk Neutral distribution

P*. As detailed in Sections 4 and 5, the distributional results of residual variation are based on data
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(a realization of P), meanwhile it provides inference for hedging and valuing a financial derivative

under P*.
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7. Convergence in law — Proofs and further results.
7.1. Cumulative processes.

In the following, we deal with processes that are exemplified by [Z, Z]— < Z, Z >. We mostly
follow Jacod and Protter (1998).

PROOF OF PROPOSITION 1. The applicable parts of the proof of the cited Theorems 5.1 and 5.5
of Jacod and Protter (1998) carry over directly under Assumption A. When modifying the proofs,
as appropriate, t, replaces [tn]/n, 0, replaces n~!, and so on. For example, the right hand side
of their equation (5.10) (p. 290) becomes K§2. The main change due to the non-equidistant case
occurs in part (iii) of Jacod and Protter’s Lemma 5.3 (p. 291-292), where in the definition of a,,

LB should be replaced by (H(t, +t) — H(t,))B¥. Assumption A is clearly sufficient. '

Note that the result extends in an obvious fashion to the case of multidimensional Z =
(ZzM, ..., ZP).  Also, instead of studying [Z,Z]— < Z,Z >, one case, like Jacod and Protter
(1998), state the result for fg(Zq(f) — Z,Ei))dZ&j).

In the sequel, we shall also be using a triangular array form of Proposition 1, cf. the end of the

proofs of both Theorems 1 and 2.

PROPOSITION 2. (Triangular array version of the discretization theorem). Let Z be a vector
-2

Ito process for which f0T||< Z,Z >|*dt < oo and fOT HZtH dt < oo a.s. Also suppose that

Z™) 4§ =1,2,... are Ito processes satisfying the same requirement, uniformly. Suppose that the

(vector) Brownian motion W is the same in the Tto process representations of Z and of all the Z(™),

ie.,
dZMME = oMW and  dZMC = g,dW. 7.4
u u u
Suppose that
T 4

/0 HO’SL”) - JuH du = 0p(1). (7.5)

Then, subject to Assumption A, the processes \/% f(f (Zl(j’n) — Zﬁi’n))dZZ(Lj ) converge jointly with
At

the processes \/ﬁ f(f(Zq(f) — Z,EZ))qu(f) to the same limit. O

If one requires stable convergence, one just imposes Assumption (D), cf. Theorem 11.2 (pp.
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338) and Theorem 15.2(c) (p. 496) of Jacod (1979).

PrROOF OF PROPOSITION 2. This is mainly a takeoff on the development on p. 292 and the
beginning of p. 293 in Jacod and Protter (1998), and the further development in (their) Theorem

5.5 is straightforward. Again we recollect that H (from Assumption A) is Lipschitz continuous.

Note that to match the end of the proof of Theorem 5.1, we really need o,(d5). This, of course,

follows by appropriate use of subsequences of subsequences. "

8. Proofs of main results. In order to motivate the analysis of py — pt, we here give a

decomposition for
8.1. Notation.

In the following proofs, we sometimes write < X, X >; as < X >;, and < X, X >} as < X >}

for simplicity.
Also J& S is the shorthand for the reference Jacod and Shiryaev (1987).

In the cases where adapted processes X and Y are cadlag, and Ito process except at grid points,
we take < X,Y >; to mean the quadratic variation that comes from the continuous part only. See

the definition of C*[0,T], as defined below.

Also, for convenience, we adopt the following shorthand for smoothness assumptions for Ito

processes:
AsSUMPTION B (Smoothness):

B.0(X): X is in C1[0,T].

B.1(X,Y): < X,Y >;is in C[0,T].

B.2(X): the drift part of X (XP®) is in C[0,T).
Assumption B(X) is equivalent to B.1(X, X) and B.2(X).

If {X™)}, {Y (™}, etc, are sequences of processes rather than fixed ones, we replace C'[0,T] in
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the smoothness conditions by C 1[0, T, to be defined presently. Hence, for example, B.1(X ”),Y(”))

means that < X™ . Y™ > is in Cc*.

A sequence {X™} of processes is said to be C' = C'[0,T] if each X(™ is continuously dif-
ferentiable in each grid interval [tg”),tz(-:i)l), where X (¢;) is the right hand derivative at t;. For

(n

t,(;) =T, we take the interval to be [tkn)_l, T]. We also require that sup,, |X't(n)| < oo. All of the

above is, of course, a.s.

We shall be using the following notations

TX(h) = sup | Xy — X, (8.1)
t—h<u<s<t

TXY(h) = sup < X,Y >! — < X,Y > (8.2)
t—h<u<s<t

Assumption B.1(X,Y) implies YXY (h) — 0. Moreover, YX(h) = 0,(1) in k, when X is an Ito

process. More precise orders are given in Lemma 2.

8.2. Proof of results: lemmas and corollaries.

)1
LEMMA 1. Let M; ,(t), 0 <t <T,i=1,--- ,ky, ky = O((At(n)) ), be a collection of continuous

local martingales. Suppose that
A7)y ?
sup < Mz’,n; Mi,n >r= Op((At )
1<i<kn

)7

Then, for any € > 0,
8

sup  sup |Min (1) = Op(BE™)" )
1<i<ky, 0<t<T

Od
PROOF OF LEMMA 1:
Let a > 4, to be determined later.
We shall use .
sup. sup [ Mia(1)[* < sup > [ Mi(1)[° (81)

1<i<k, t t =
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and the right hand side (r.h.s. from now on) of Equation (8.1) is L-dominanted (see, Jacod and

Shiryaev (1987), p. 35) by
kn

Ant) = ca > < Mig, My >577, (8.2)
=1

following Burkholder’s inequality (see section 3 of Chapter VII of Dellacherie and Meyer (1982),
Barlow et al. (1986), and Protter (1995)), where ¢, is the constant from this inequality.

From Equation (8.1) and Lenglart’s inequality (Jacod and Shiryaev (1987), p. 35),

k

- K

P ( sup sup |M;,(¢)|* > K1> <P (sup E | M; ()" > K1> < _K2 + P (A,(T) > K3) (8.3)
1<i<kn, t t = 1

The cited result requires the r.h.s. of Equation (8.1) and (A,(T")) to be integrable, but since both

processes are continuous, this requirement can be removed by localization.

To bound the r.h.s. of Equation (8.3), note that

An(T) < cokn sup <Mi,n7Mi,n >%/2
1<i<kn
) Z-1
= oAt )

). 2
by the assumption of the lemma. Now set K; = Ké(At(n)) ®  for i = 1,2. Equation (8.3) then
yields that

B_
P( sup sup | M; (1)) > (K})= (AL™) )
1<i<kn t

Q=

KI
< Z+P(0p(1) > Ky)
Kl

By choosing K} large and K] even larger, it follows that

B_1
sup sup |M; ()] = Op(AE™)> ™).
1<i<kp, t

Since « can be arbitrarily large, the result follows. "

LEMMA 2. Let X and Y be Ito processes, and let Assumption A hold. If X satisfies Assumption
B.1(X,X) and B.2(X), then for any € > 0,

TX(5) = Op((n + M) ).
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Similarly, if X and Y satisfy Assumption B.1(< X,Y >',< X,Y >') and B.2(< X,Y >') , then

for any € > 0,
1

TXY () = 0, ((7) + 5(n))§e) ’
where TX and YXY are the same as defined at the beginning of the appendix, and (™ is the mesh

of the partition. O

PROOF OF LEMMA 2:

;_g

>

S
Il

sup | Xy — X
0<u,s<T;lu—s|<n

n sup | X+ 105" (n)
0<s<T

VAN

For XMG | get

Min(s) =< XM¢ _ xM@ t; < s <tj+n+ 6"

’

0 SSti

Let t; be the closest grid point below min(u, s).
Then
X = XC] < XY = X+ X - X
= [Min(uw)] + [Min(s)|
since max(u, s) < min(u,s) + 1 < t; + 6 + 1. Hence, TX"¢ (n) < 2sup; sup, | M; ()]

Now
sup < M;, >r<sup < X > (n+6M™) = 0,(n + 6)
i s
by B.1(X, X).

1—6
Hence sup; sup, | M; ,(s)| = Op((n + 6()27%) for any € > 0, by Lemma 1. Further by B.2(X),

the conclusion follows. Similarly, the result follows for TXY (). '

LEMMA 3. Suppose X, Y and Z are Ito processes. Subject to assumptions A, B.0(Y), B[(X), (Z)],
and B.1(X, Z), we have the following for any € > 0, for either h — 0 or h = ¢, with constant £ > 0
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(i)

()
1 tif1 1 ~
sz D ( / o K= X0)(Zu = Zi)(u = i) dYy = o < X, Z >, Y@(Am)’“”)
t—h<t{™ <t{) <t K
A\ k41
At
()
h
(ii) In particular,
) t
1 i+1 1 P P
sup | —7 > K= Xe)(Zu = Ze)dYy — 5 | < X, 7 >, VudHy| — 0
At tgi)lét t; 0
and for k > 0,
4 " S OKas
sup > o (Xu = X0)(Zu = Zp)(u — t)*dYy| = 0p(AT™)  h)
t—h<t{™ <t{) <t K
where Y, = dY,/du. O

PROOF OF LEMMA 3:

Without loss of generality, it is enough to show the result for X = Z. This is because one
can prove the results for X, Z and X + Z, and then proceed via the polarization identity. The

conditions imposed also means that the assumptions of Lemma 3 are also satisfied for X + Z.

We here prove (i). The first part of (ii) follows since < X >’ and Y are continuous and H,
is Lipschitz continuous (under Assumption A). The second part of (ii) follows by simple order

considerations.

(a) We first show that

(n)

1 tiy1 1 ~
— X >y — < X >p)(u—t)kdY, — —— < X > ¥, (At;)F+?
SUp 73 E [ (K X >y — < X >4)(u—1)"dYy 2 <X > 1 (At;)
t—h<t™ <t{V <t 1
(E(n))lﬁ-l

= OIJ(T)
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Notice that the L.h.s. of the above equation is equal to
(n)
1 tit1
sup —
tp h2 Z /t(")
t—h<t™ <t{™) <t

Let
faw) = (u—t)F[(< X >y — < X >4,)Vu— < X >} Vi, (u — )],

by adding and subtracting (u — ;)% (< X >, — < X >.)Y;, in fu(u), we get

| fn(u)]

(KX >0 — <X >)(u—t:)f V= < X > Y (u—t;)""| du

31

< (u—t)k [Tf’(5<n>)| <X >y = <X > |4Vl X >y — < X )= < X > (u-— t,-)]|]

< (5(n))k+1 |:’r}7(6("))sup <X >! +Sup‘ﬁti‘T<X>’(5(n))
= o ((Kt("))lﬂ-l)

AF(™)
uniformly in u, by assumption B.0(Y') and B.1(X, X). Hence (8.4) is op(%)

(b) Let

1 i+1
II, = 3 Z o [(Xy — X1)? = (K X >y — < X >4)] (u—t;)FdY,
t—h<t{™ <t{V) <t K

We now show

AF k41
At
sup |II;| = OP(T))
t
By It6’s Lemma,
1 R .
1L = % Z - [2 / (X, —Xti)dXv] (u —t;)kdY,
t—h<t™ <) <t K b
2 W DR k
-2y . / (X, — X, )dXPR(u — )Y,
t—h<t™ <t <t K b
I,
2 wh MG k
+ ﬁ Z 4 [/% (XU - Xti)dXv ](U - ti) dy,

t—h<t™ <™ <t "

~ S
~”

e
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where X = XMG 4 XDR wag used above.

Recall that dXPE = X,dv, then

(n) k+1
Ml < swp Kl swp GITXE) 2 Y [ )= o)
b= OilzlLEt “ OS<1111,I<)t " h? ™ won v h
- - t—h<t™ <) <t

by B.0(Y), B.2(X) and the continuity of X.

For I1I; 5, we first let fj(u) denote any sum of terms of the form c(At;)*(u — t;)?, where a4+ = k
and «a, 8 > 0. By integration by parts,

(n)

1 i o MG k
7 5 ] - X)X ) du
bh<t™ <t <t b
(n)
~ Ly M x) (A0 - ) axle (s6)
= ]{;—|—1h2 t(n) [N ti L 1 VU i 1 u .
e PR
(8.6) has q.v. bounded by
(n)
1 1 tit1
———— 7 Sup Z / (Xu — Xti)Qf,fH(u)d <X >,
(k+1)2h* () () ™
t—h<t{™ <t{, <t
< <X > 60 o)
———=—sup < >3 8su u)au
= h+ 1)2 X! Z_P t; tP ) 2k+2

¢
t—h<t™<t{P <t
(_At(”))2k+3—e

= Op( h3

(8.7)

by Lemma 2 under Assumption A, B.1(X, X) and B.2(X). Following Lemma 1 and B.0(Y').

(Kt("))k+3/2—e

sup [ [T,.0| = Op(——575

DEFINITION 2. Suppose X and Y are continuous Ito processes. Let

LM —p) —u)d < X, Y > t>t;—h
BYY, = hIh h ' (8.8)

0 otherwise
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and
2 t;
Bg(y; _ % Ztiththtj+1§t¢/\t fthI(Xs - th)dYs t>t—h (8 9)
7Z7 .
0 otherwise
where [2] indicates symmetric representation s.t. [2] [ XdY = [ XdY + [YdX. m]

Note that by integration by parts via Ito’s Lemma,

XY _

Sl

—_— !
I _ pXY XY
and hence < X, Y >, — < X,Y >, =B{,, + B3, .

LEMMA 4. Under Assumptions A, B(X,Y,< X,Y >'), and the order selection of h? = O(Kt(n)),

for any € > 0,

1_, o
sup [BYY,] = Of(@E™) ) and sup |BIY,| = 0p(@E™)* T

0<t;<T 0<t;<T

In particular,

—_— ! .
sup [< XY >, — < XY >} | :O,,((At( ))4 )
0<t;<T

In addition, under condition B(< RXY, RZV >').

h
<BYY,BfY >, -2 <R, R7 >|| = 0,(W’*™), (8.10)

sup 3

t;

also,

1
sup | < ByY,BFY >, - -3 Y (KX, Z>L<Y,V >+ <X,V > <Y, Z >)(At;)’
t—h<t{™ <t{V) <t

1
= 0,(BT™)?) (8.11)
and )
o \n
sup |< BlzZV,Bg(iY > | = Op(At—) (8.12)
t; ’ ’ ti \/’_l
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PROOF OF LEMMA 4:

i) Suppose we decompose < X,Y >! into a martingale part (RXY) and a drift part (DY
pp p t t t

which is differentiable with respect to ¢,

1 [t 1 [t
By = ﬁ/t h((t—h)—u)defYJrﬁ/t h((t—h)—u)dpffY (8.13)

~ J ~ J
~~

~
XY,MG XY,DR
Biii By

Note that, naturally, under assumption B.2(< X,Y >')
XY,DR| _
Sl}P|Bl ity | = Op(h)- (8.14)
7

Under Assumptions A and B.1(R*Y, RXY), hence using supy<, <7 < RXY > = 0O,(1),

t;
sup < BXY,BXY >7 < sup < RXY >! sup 5 (ti — b — u)’du
i ’ ’ 0<u<T i b Jy—n

= 0,(h) = O,((BE™))

So sup; sup; |Bfi§’MG| = O;,,((Kt(n))4 6) by Lemma 1, and hence sup,; ‘Bf,(tﬂ = O;,,((Kt(n))4 €).

. Xy
Next we examine sup; | By, |,

1 tj+1 1 tj+1 MG
= Z (X5 — Xy,)dY,| < |+ Z (X5 — Xy,)dY,
ti—h<tj<tjp1<t; i ti—h<t;<tjp1<t;*li

~ J
~~

Iy

1 tit1 DR
D (Xs — Xy,)dY;
ti—h<t;<tj 1 <t; Vi

~ J
~~

Py

Consider F; first. Let ¢, be the largest ¢; < ¢. Set

Mi{;Y(t,-) t>t

1 t; G 1 rt G
B Dti—h<t;<tj1<t ftj X = Xpy)dYMO + 4 [ (X = X,)dY MGt —h <t <t

0 t<ti—h
(8.15)

M7 () =
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Then

1 tj+1
< My, My >r < o5 Y (Xs — Xy;)’ds sup <Y,Y >/

2
ti—h<t;<tjy1<t; 'l 0<s<T

1 2
— (TX((S("))) sup <Y,V >/
h 0<s<T

IA

= L0,(@E") ) = 0,(@E™) )

by Lemma 2, under Assumption A, B.1[(X, X), (Y,Y)] and B.2(X). Sosup; |M;,| = Op((Kt(n)) 6)

=

by Lemma 1. It then follows that

2 tj+1 —(n) i€
sup B =l 2 Y [ - avie = o)) (810
! ! ti—h<t;<tjp1<t; " Y
For F2,

—€

sup | Fy| < TX(6M) sup |V;| = O,((A2™)" )

by Lemma 2, under Assumption B.1(X, X) and B.2[(X)(Y)]. Therefore,
2 ti41 . 1 ¢
sup [ BIFP| =sup 2L 3 (X, = X,,)dYPR = 0,(FE™)? ) (3.17)
’ ’ ti—h<t;<tj 1 <t; VL

Hence the result of the lemma follows.
(ii)
Following the definition of Bf% in (8.8),

XY,M ZV,M h
; , G’Bl‘/, G>ti__<RXY’RZV >I|

<B
Sup | 3 t

1 [t
- sgp|ﬁ /t‘_h (t; —h —u)’(< R*Y,R?Y >!, — < RXY R?Y >/ )du

S ET<RXY7RZV>I(h)

3

Hence (8.10) follows by Lemma 2, under Assumption B.1(< RXY, R?V >I, < RXY R?V >I) and
B.2(< RXY RZV ).

Equation (8.11) follows directly from Lemma 3.
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Following the proof of Theorem 1d in Mykland and Zhang (2002),

1 ti+1
3 > / (Xs — Xy,)(ti —h—s)d < R?Y)Y >,
ti—h<t;<t; 1<t ”

zv XY
< Bl,i ’B2,i >t =

. ~

QE((’Y
1 tj+1 v
s Dl / (Vs = Yi,)(ti — h — s)d < RZY, X >,
ti—h<t;<tj;1<t tj

~ vl

v

Y, X
@t

for any t; — h <t < t;, otherwise stopped at ¢;. Enough to show that supi|Q§f’Y| = o0p(V At™).

Let

Xy 1 fits ZV / zZv /
Q =13 Z / (Xs = Xy;)(ti —h = s)(K R7",Y >, = <R”",Y >, )ds.

ti—h<t;<tj11<t" %

1 ti+1
Qg{,y = 5 Z < RZV’Y >;j / (X5 — th)(ti —h—s)ds+ Q*g(,y
t;i—h<t;<tj;1<t t

1 ti+1 ti+1
= Z <R?V)Y >, / [/ (t; — h — u)du] dX, + QY
t; K]

t;i—h<t;<tj;1<t

1 tit1 tir1
- = Y <Ry /] [/J (ti—h—u)du] dX MG
t; s

ti—h<t;j<tj4+1<t
1 ti+1 ti+1
+75 > <R%)Y >}, / [/ (t; — h — u)du] dXPE + @*Y8.18)
ti—h<tj<tj 1<t t s
where the last equality follows from integration by parts. Note that the first term on the r.h.s. of
(8.18) has q.v.

1 tit1 tit1 2
=Y (<RVY >;j)2/] [/J (ti—h—u)du] d< X >,
t ]

t;—h<t;<t;1+1<t j

(n))?
< sup < X >. (sup < R?V)Y >£j)2(5 - )
s J
Also, the second term on the r.h.s. of (8.18) is bounded by

(n) -
— sup | X[ sup|< R7Y,Y >
¢ j

and the third term Q*f(’y is bounded by TX(5(”))T<RZV’Y>’(5(”)). Thus by Lemma, 2, ij’y is of

order Op(AtT(Z)) uniformly in ¢, under Assumption 4, and B.1[(X, X), (R?",Y)], B.2(X) and and

those in Lemma 2. .
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COROLLARY 1. (Linearization of p). Suppose Z, S, and p are Ito processes, where p and p are as

defined in Section 2. Define

1 — —
’ t;
1 2
=25 SS
= g g 2B~ puB).
I t;

i=1
Then, under conditions A4, B(E,S5,< E,8 >/, < §,8 >'), and C(S), for any € > 0, we have

—(n €
sup |pr; — pr — Li| = Op(BE™)” ) (8.19)
t;€[0,T

In particular, from Lemma, 4,

sup |pn — pus| = Op(BE™)* )
t;€[0,17]

PROOF OF COROLLARY 1:

Recall that .
<E,§>;, <ES>
< ES\>L <58 >;5i

Pt; — Pt; = (8.20)

By Taylor expansion of f(< §S\>21) at < 8,8 >}, where f(< §S\>21) = L

<8,8>},
Pti — pt;
_ <ES>,-<ES>, <88>,-<88> —,
== 7 - 72 <:,S >ti
< 8,8 >} (< 8,8>%)
— 2
<8,8> —< 88> —
(<55 >, — t’)<E,S>;.
&, :
1 /\, , ,_/\, _ ,
= Lti — m(< S,S >ti_ < S,S >t1)(< :,S >ti_ < \::,S >t7,)
? tl
R
1 — 2
+§—3(< 8,8 > —<8,8>,) <E,S>
t
Ra
1 — 2 _—
+£—3(< 5,8 >, —<8,8>) (<ES8>,—<ES>;)
t;

~ S
~”

R3
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where &, is between < ES\X% and < S, 8 >}..
Now V¢ > 0, on set A = {inf,cjor) < S, 8 >,> '},

IA-s?p|Lti|

< |<§S\>;i—<E,S>;iHI | <§S\>;i—<S,S>;i|
> 14 SEP <SS >éi A Sltl,'p Pt; <SS >{‘,¢
— 1/4—¢
= 0(@BE™) ") (8.21)

Equation (8.21) follows from Lemma 4, under Assumption A, B.1[(SS), (EE)], and B.2[(S), (E)].

/2—e€

). 1
Similarly sup;, |R1| = Op((At(n)) ) onset A. Next under the assumptions of A, B.1[(SS5), (EE)],
and B.2(S) (note that B.1(ES) follows from B.1(S,S) and the continuity of p, and the relationship
= =pdS+dZ.

]_ —_— 2
IA'SEP|R2| < Ip- msgp <E,S >}, S;l'p(< 5,8 >, —<85,8>)
N 1/2—¢
= 0(@E™) ") (8.22)

1
|§t7"

Equation (8.22) follows from Lemma 4 and the next result: sup; = Op(1), which is proved in

the following.
Since &, is between < 5,5 >} and < 5,8 >}, on set A we have

inf |§,| > inf [< 5,8 >1 —|< §S\>Qi— <85,8 > |]

> inf< S, 8 >t —sup|< S, 8>} — < 85,8 > |
i t;

>  —sup|< ES\>L,— < 8,8 > | (8.23)
hence,
P(sup — > K) = P(inf|&,] < =)
sup — = P(infl&. | < —
tip |§t7’| - t; bl = K

< P(ipflé < 2} n4)+ P(4)

( 8.23) — 1 _
< P({d —sup|< 8,8 >} — < 5,8 >, |§E}0A)+P(A)
t.

1

— 1 _
< P({sup|< §,8>}—<85,8> | > — f}) + P(A)
t;



ANOVA for Diffusions 39

Ve > 0, since by assumption C(S5),

P{ inf <S,8><d}—>P{inf <§,5>=0}=0asc =0,
t€[0,T t€[0,T]

we can choose ¢'s.t.P(A) = P{inf,coq < 8,8 >i< '} < 5.

From Lemma 4, sup;, |< S/,S\>éi— < 8,8 >}. | = op(1), thus we can choose K,where 4 <
d,s.t.P(sup,, |< §S\>%i— < 8,8>, | > — %) < £, therefore, P(supy, @ > K) < ¢, that is,
supy, |€1¢| = Op(1).

Similarly, supy, [Bs| = 0,(&E™)"" ™"} on set A.

La- S?p |pAt¢ — Pt; — Lti‘ = OP((E(n))2 )
Ve > 0,V§ > 0, we can choose ¢ s.t. P(A) < §, thus

1 . 1 . -
P(———suwplpn, —pt, —Lu| >¢) < P(————TLasup|py, —pr, — Li,| > &) + P(4)

(At n))2 t; (Kt(n))2 t;

— 04+ P(A)asn — oo

< 4

since ¢ is arbitrary, %76 supy, |pt; — pt; — Lt;| = Op(1) "
@™
8.3. Proof of the first theorem.
PROOF OF THEOREM 1:

Note that the assumptions of the theorem imply those of Corollary 1.

(i) By the definition of Z,

Y A<Z,Z > 5y~ Y A<Z7Z > 0 pg
<t <t

At BRY
= Y [A<EE>w,, —2 pud < 2,8 >, + ped < 8,8 >,]
t; AL t(-n)/\t t(-n)/\t

(n) i
ti 1<t

. o e
_ Z[A<z,:>t(n)/\t—2/ pud<:,S>u+/() Pud < 8,8 >y
i t

(n) n
N SONE
(n) K 4
ti+1 <t

t
= / (ﬁu - pu)2d < S5,8 >y (8'24)
0
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That iS, <Z,Z>+—<Z,Z>¢ __

\/A:t(n) \/—(n) fO
(ii) Now let L;,(t) = L1,in(t) + Lo n(t), where for j = 1,2,

—pu)?d < 8,8 >,

[B b Pti— nBipl, t>t

<S5, S>’ VEZE
Ljin(t) = WM[B“S — pr—nB§Pl, ti—h <t <t
0 t<t;—h
We show here that
K (n)\ 3¢
/ (bu— pu)?d < 8,5 >u= 3 2, (1)5% Aty + Op(BT™) ) (8.25)
’ <
uniformly in ¢, for any € > 0.
First observe that
|/ 2< 8,8 > du—> (b —pi)’ < S, 8 >, Aty
i
t1+1 . 9 ,
= |Z/ o) — (o~ pu)?) < 8,8 >, du
t;

tit1
+3 (s - ptf/ (< 8,8 >, =< 8,8 >})du
i ti

IN

tit1
/ti |(Pu = Pu + Pt; — pr;) (P — Pu)| < S, 8 >, du+ sup s, — pe, PT55 (6
< 2supsup|py — pu|YP(6™) < 8,8 >¢ +sup |py, — pr, 7T (62
i u i
= 0,(@ ™) @) (8.26)
by Corollary 1 and Lemma 2 with Assumption A, B.1[(p, p), (R*S, R%%)], and B.2[(< S, S >'), (p)].

Then, use the notation that < S, S >}= 0757 = 57. We now show

~ - g*6
sup| Y5 Liat AL — 37 BRa(t)a pAt = 0,(BE™)" ) (8.27)
0 <t i <t

where L, is the same as defined in Corollary 1.
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We know
Lubt, — Lin(t)51,-n = Z pri—h = ) B
2
1 1
+ BFY — p.,B — =
2_:( i JtZ)[Uti Uti*h]
7j=1
thus,

sup | Ly, 61, — Lin(ti)G1,—n] <  sup —Tp ZSUP‘BJSE
i 0<t<T Ot Pl

2
+ sup —T%(h ()Y |sup|BFi|+ sup |ps|sup|Bjy
0<t<T Ut il A 0<t<T i
——26
= 0,(AI™)* ) (8.28)

by Lemma 2 and Lemma 4, under Assumption A, B(S,E,p,< 5,5 >/, < E,8 >'), and C(S).
Notice that B(G) is satisfied given B(S,< S, S >'), due to < 52,6% >|= 46} < 5,6 >} and the

definition of &2.

Now let
ai = (LG4 — Ei,n(ti)&ti—h)Q
bi = Lu,61,(Ly,61; — Lin(ti)és,_n)
¢ = (Lydy,)” — (Ez‘,n(tz’)@:ﬁh)Z

—(p). 14
Then, Equation (8.28) and Corollary 1 yield that sup,;|a;| = Op((At(n)) 6) and sup; |b;| =
). 23
Op((BE™)" ).

And SO Supi |CZ| = Supz. |a’L 2b | — ((At(n)) )

Based on above,

——36
S Baiay - Y B t)euatl=1 Y cilti] < sup|ei|T = O (ALY
£ <t £ <t £ <t

uniformly in ¢ € [0, 7]. Hence Equation (8.27) follows.
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b 8.26 .  (n). 3
/ (bu—pu)2d < 5,8 >0 "2V ST (= pi)? < 8,8 > At + O, (BF™)* )
0 £ <t
§—€
“xl N 26l AL+ 0BT
<
8.27 3_3¢
G20 S B2 ()67 _p At + 0BT
<
Hence (8.25) follows.
(iii) We here show that
N B2t)57 pAti= Y < Lin >, 55y At + Op(BT™)" ) (8.29)
< i<
Set
YO(t) = L3,(t)— < Lin > (8.30)
and
Tnp= Y YO@)67 A+ Y ()67 AL, (8.31)
th <t
where t, is the largest grid point less than .
Suffice to show that for any € > 0,
3¢
Sup | Zngl = Op((BT™)" ) (8.32)

0<t<T

By Lenglart’s Inequality (Jacod and Shiryaev (1987) Lemma 1.3.30, p.35), it is enough to show
that

3
2

< 2oy 2o >0 = O,(BE7) ) (8.33)

for any € > 0, which is shown in the following.

Since < f/i,n, f}j,n >y= 0 if (¢; — h,t;] and (¢t; — h,t;] are disjoint for any ¢; < T and t; < T, the
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quadratic variation of the Z,, is considered in the overlapping time interval.

< Ty Zy >7< sup & (Aty) At)/ d<y® yW >
" 0<t<T t|Z; ! (ti—hti]N(t—ht;] |

1

sup & (AL)(At) / d<v® >, . / d<v®>,)
! ZZ (ti—h,ti]N(t —h.t;] ) (ti—h,ti]0(t—hst;) )

0<t<T

N[=

IN

; 3
< 2 sup &7 Y (AL)(AL) et -y / d<Y® ) ( / d<yYW ) (8.34)
0<t<T i (t; —h,t;] (tj—h,t;]

The above second line follows from Kunita-Watanabe Inequality (p. 61 of Protter, 1995).
By Ito’s formula, for t; — h < t < t;,
YO >t=4L2 (1) < Lin >} (8.35)

By Corollary 1 and (8.28),
<YOSI<U < Lijy >} (8.36)

-
where U is independent of ¢, and Uy = O,,((Kt(")) 2.

By the Kunita-Watanabe Inequality and Cauchy-Schwarz Inequality,

2
1
<Lip>i<4 sup — > (< B5Y > +pi_n< BjY >;> (8.37)
0<u<T Ty 5 ’
where B]ng, 7 =1,2, is defined before Lemma 4.

Obviously, on t; — h <t < t;,

1
<BYY > = (b — (i - h))? < RXY >! (8.38)

Also, let MZ-);LY(t) be the martigale defined in equation (8.15). Then, again by the Kunita-Watanabe

Inequality and Cauchy-Schwarz In equality,
< By > <2<<MXY> +< MO t) (8.39)

Note that,

<MXY > X — Xn)? <Y > (8.40)

1
>y h2(
for t; — h < t < t;, where tx is the largest grid point smaller than t. In view of equations

— (n).3/2—
(8.36) and (8.37), it is enough to show that (8.34) is Op((At(n)) / €) in the two cases where



ANOVA for Diffusions 44
< Y® >/ is replaced by (a) U1< BYY >, for (X,Y) = (E,5) and (S,S), and (b) U1< MXY >,
for (X,Y) = (%5,5),(S,E) and (S, S).
Consider first the case of < Bf’(iy >;. Set
Np=sup#{j:t<t; <t+h}
t

and 6 = min (tgi)l —tz(n)), note that N, = O(J(Ln)) = O(ﬁ) under Assumption A. Since

_ 1/2—€
SUPg<y <1 < RXY >; < 00, up to a multiplicative Op((At(n)) ) term, Equation (8.34) becomes

(At(n))2 3 3 % 3/2
S [0 - Y

h2
i<jitj—ti<h
At2 ti—t: 3 1/2 t: — s 3/2
= %hﬁ Z nlil_(%)] (1_%)
i<jitj—ti<

(DE) hH{(,§) : t; < t; < t;+ b}

IA

< (ALY Bk, N,

= O(At™) (8.41)

oy 3/2—
we thus establish the fact that the whole term of Equation (8.34) is of order Op((At(n)) 6), under

assumption B.1(RXY, RXY), which is satisfied for (X,Y) = (Z, S) and (S, S) under the assumption

of the theorem.

As for < Mi)f;LY >;, note that

and that this expression is dominated by

— Ssu Y >!I'N . X, — X, )? —1 P X (s ’ (n)
5 p <Y >, Nsup (Xy 1) dt < 2N sup <Y >, (6"™)) ¢
h 0<u<T k t h 0<u<1
= 0O N—1 At(n) e = O, ((At™) a7
p( h2( ) ) p(( ) )

by Lemma 2 under Assumption A, B.1[(X, X),(Y,Y)] and B.2(X). It follows that (8.34) is, up to
an Op(1) factor,

2 AT E 2 AT E A L
(At)°Op((AtM) ). Z 1 < (A1) Op((Atm) N
1<j:tj—t;<h

l1—e

= 0p((B1™) )



ANOVA for Diffusions 45

which is what we needed to show. Translated to S and E, the conditions imposed are B.1[(S, S), (E, E)]
and B.2[(S), (E)].

(iv) We next show that as ¥-5-— At( L ¢, by B(< R%%,R5% >! < R®S,RSS >! < R®5 R=5 >')
and C(S).

1
Z<Lm>tat,(At —>/V,,p u)d < S,8 >y (8.42)
VAt var™ i)
7,+1
in probabili if i " _ <pp>i @) (<EE>L 9
probability, uniformly in ¢ € [0, T], where V;_,(t) = =3~ + cH'" (t)(Z5 551 07)- ]

3
4

Since sup; |< L1, L2,in > | = Op((AtM)*) from Lemma 4, it follows that we can prove

separately that

Z <L1,n>tlo§, (Atz)—> / <p,p>,d<S,8S >, (8.43)

(n)
15 <t

var™

and

P <E,E> '
—y O < Loin >1, 5F_p(Al) c/o (Coe - Wd<8,8> (54
? u

(n)
) <t

\/:

uniformly in ¢.

It is enough to prove the statement for each ¢, since the convergence of increasing functions to

an increasing function is automatically uniform.
Equation (8.43) follows directly from the approximation (8.10) in Lemma 4. It remains to show
(8.44). This is what we do for the rest of (iv).

. . 1 _ 2p p2
Let A be an Ito process, which we shall variously take to be 5557 T 5550 and 5557

Consider a subproblem of (8.44), that of the convergence of

(n Y <BY B >, An-n (8.45)
VAL "y

i+1=
By equation (8.11) in Lemma 4, this is (uniformly in ¢) equal to

=YY A)B)* A, Ak o)

(n
VA 1), <t ti=h Sty St 41 <t
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where f(t) =< X,Z >< Y,V >} + < X,V >i<Y,Z >}. By interchanging the two summations,
(8.45) then becomes

— Z (5 > Ay_pAti+op(1)

tj+2<t t]+1§tistj—|—h,

1
= ﬁg D Ft) A (AL)? + 0p(1)
tj42<t

Since the difference between the last two terms is bounded by

e 3 T4 (h)

tj42<t

==(n)
\/A_ht Hy(t) = 0:0(1)

< sup (6 T4(h)

by Lemma 2. Hence, (8.45) converges to ¢ fo u)AydH (u) = ¢ fo u)AyH'(u)du by Assumption
A and since A and f are bounded and continous. Note that H is absolutely continuous since

Lipschitz.

The result (8.44) now follows by aggregating this convergence for the cases of < BQE,f ,B;f >

= 2
(A= <s,15>')’ < BZE’BEE > (A= _<52,§>_’)’ and < Big,%gaBéq,%q > (A= _<sfjs>')'
(v) To finish the theorem, we want to show that
supl[Z, 2}~ < 2,2 > ~(12, 2= < 2,2 >1)| = op(B1") /%), (8.46)

Note that < Z,Z >, — < Z,Z >,= (py— p1)? < S, S > and similarly for the drift of Z and Z. The

result then follows from Proposition 2 and Corollary 1.

8.4. Additional lemmas for Theorem 2, and proof of the theorem.

(n)l/Z

LEMMA 5. Let X, Y, and A be Ito processes. Let h = O(At ).
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Define
VY= ) (AX)(AY) + (X — X)) (Vi - Ya,)
£ <t
ut) = / ZA (ti s €fum hu])Athdu—— D AL AV(h - Aty) (8.47)
™ <y

i+1=
Then subject to conditions A, B.1[(X, X), (4, A), (Y,Y), (4, X), (4,Y)] and B.2[(X), (4), (V)]

) 1/2
sup /()] = o,(BE™ ).

O
PROOF OF LEMMA 5:
By polarization, one can without loss of generality take Y = X.
Note first that
2 A
sup |AV;,| = sup(AXy,)” = Op(At ) (8.48)
i i

by Lemma 2, under assumptions A, B.1[(X, X)], and B.2[(X)].

In the following, we provide the proof in two steps. We use z A y to denote min(z,y). Note

that U (t) is the sum of the two components considered.

(i) Set
h / Z Atz+1 t“ti+1€[u,h7u])AVYtidu (849)

Then by exchanging the summation and the integral, and by integration by parts,

(ti+h)At
= 3 AV- / (ks + h) At — u) dA,.

t
(n) i+1
iy <t

Under Assumptions A and B.2(A), it is straightforward to see that

1 (ti+h)At DR 1 - )
sup |—/ ((ti + h) Nt —u)dA,) "™ — §Ati+1h| = Op(h*).

i h tiy1

In view of (8.48), the part of (8.49) that is attributable to AD® is therefore o,(h) uniformly.
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Meanwhile, set
1 (t;+h)At

(ti+h)
glijt) = =< / (i + B) At — u)dAy, (1 + ) At — w)dAy >
h tit1 ti+1

= Op(1) uniformly in 4,5,
provided that B.1(A, A) is satisfied.
Hence, by (8.48)

< U > sup | AVy [sup | AV, | suplgGi 5, 1)| 7 h = o0, (AL™).

2,95t (n)
ti <t

By Lenglart’s Inequality, it follows that sup, [U(t)| = op(h), given that h? = O(Kt(n)).

(ii) Now set

Q}n

/ Z (tistit1€[u— hu])AAtzAVvtld’u

which is equal to %Zt(n) < DAL AV ((ti + h) At — tit1). Under our assumptions, this equals in
i1
turn & 37 ) , AAy AV, (h — At;) + Op(h*~€) following (8.48) and B.1[(4, 4)], B.2[(4)]. Next we
i+1S

will only argue that

2
Y A4, AV, = oy (A" 2

(n)
1 <t

, (8.50)

1/2
and the result + > AA, AV (AL) = op(At(n) ) follows similarly.

<
First consider the part related to APE,

1/2
| Z AA?RAVt | < sup|A |sup|AVt [t = op(At(n)

(n)
iy <t

by Assumption B.1[(X, X)], B.2[(A4), (X)].

)’

Similarly, one can remove the drift part from the X process, under Assumption B.1[(4, 4), (X, X)],

B.2[(A), (X)].

One is then left to argue that

I 1/2
3 AAMG(AXME) = o) (BT ), (8.51)

(n)
15 <t
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and this follows as in the proof of Theorem 5.1 of Jacod and Protter (1998), with modifications
noted in the proof of (our) Proposition 1. This is since we have assumed B.1[(4, A), (X, X)].

(iii) Combining parts (i) and (ii), (8.50) follows [

LEMMA 6. Let =, S, p, and Z be the Ito processes defined in earlier sections. Subject to regularity

conditions in Lemma 5 with (X,Y) = (E,5), (S,S), or (p,S), and with A = p, p? or Z,

L - - ho [t
/ (Pu — pu)d < E, S >y= [:'7Z]t - [Za Z]t - g/ pud <Pa <S8, 8 >I>u + Op(h)
0 0

uniformly in ¢. O

PROOF OF LEMMA 6:

Note that by Taylor expansion of — S,15'>’ at <§15\> -, we get
<ES>,-pu<88>, _ <ES>,-p<585>,
I - —
< 8,8 >y . <8,8 > .
Pu—pu
<E, 8> —pu<8 8> —
+ u— Pu U< S 8>~ < 8,8>")
(< 8,8 >)
+op(V AE™) (8.52)

where the higher order o,(1/ E(n)) is uniform in u, by Lemma 4 and Corollary 1.
Thus

t
| Gu-pii<z5>,
0

¢ = o= =5

<E S>> —p, <858 >! _

— / I U pul I ud<:,5>u
0 <S5,8 >

Py — G a- —(n
—/ Lo Py (B < 8,8 >N)d < B, S >y +o,(\V AL (8.53)
0 <S5 8>

uniformly in ¢.
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Following Lemma 5, the first term on the r.h.s. of (8.53) becomes

1 ——(n . .
- Z Pt ASy[AEY — pr, ASy | (h — At;) + op(V Al )) uniformly in ¢,

(n)
tl <t

= [B,Z)s —[Z,Z]s + op(V Kt(n)) uniformly in ¢,

where the last line is due to

) -
7Y mA (/ (Pu—Pti)dSu> (h-at) = op(VBI™),

<t
(n)
1 tit1 .
=Y Az, ( /t(n) (pu—pti)dsu> (h—At) = oy(VAL™Y)
™ <y :

i+1—=
by similar arguement in handling (8.50), under assumption 4, B.1[(p, p), (S, S),(Z, Z),(Z, S), (S, p)],
and B.2((S), (2), (o)

For the second term on the r.h.s. of (8.53), one can invoke Lemma 4, Corollary 1, and similar

arguments in Theorem 1, it becomes

1 TMG SS,MG SS,MG —_ ——(n)
=Y e THOEBISMC 1 BEMO)A < 5,8 >, +o,(v AL
(n) ’ t;—h
t1+1<t
1 > =S SS SS SS
= = Y (cpg o) (SBESBI >y < BB >)A <5 5>,
t(n) <t ’ t;i—h

i+1=

2
PN <55> o) (< BES,BSS > —py < BSS, BSS >1)A < 5,8 >y, +o,(VAL™)

(n)
t; +1<t

> ptz (p,< 8,8 >') Ati + 0p(V BE™)

e

where E%G is defined as fji,n with By and Bj being replaced by BM¢ and BM¢ correspondingly
(c.f. Theorem 1 for the definition of f/z n, and Lemma 4 for those of Bjs, j = 1,2). Note that in
the above last line the conditions used include B(S, < R%S, RS >/ < R®5 RS9 >'), the By terms

are canceled out because of (8.11) in Lemma 4, and the B; terms yield the result by Lemma 2 and
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the next two equations:

XY SS -
> A <BYY,BY¥ >, A<E S >y

)
b <t

— ZAtZ (< X,y > <SS>>,A<E,S>ti+op( Kt("))

(n)
ty) <t

for (X,Y) =(E,S) or (S,S), and with A; = or Ay = -)?, and

1
(<S,S>’ ) (<S ,S>4

(<E,8>,< 58> =p, (<58>,<88>) +<55> (p,<55>",.

Hence the result follows. (]

PROOF OF THEOREM 2:

Note that by definition,
A< Z/,—Z\_/>t(n)
L= N - R -
= 5[(Adt§n>)2 = 20, (A ) (ASym) + szgn) (A5t5n>)2 + (Aﬂtyw) t(") (AS, (n)) ]
= A[E, ZA]%

Because d < E, 7 >y=d < Z,7 >; by assumption, one gets

(< Z\Z/>t— < 4,74 >t>

Kt(n)

( —A<EZ >tl)

At t51)1<t

1 1 A —
[._4, <\_.,Z >t) (< E, 2> —-<EZ >t)

At(n \/ AR

Cr Cs
First notice that
<E,Z>=<8,Z > +(p. — pr) <E, S >} (8.54)

Then as \/ A¢™ /h — ¢, (8 54) and Lemma 6 show that

Cy = / Pu d< HaS >u
VA t("

Z,7); - [= !
_ [Z, Z] — [, ]+3c/pud<p,<575>'>u+01’(1) uniformly in £.

Kt(n)
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That is,

<< Z\Z/>t_ < Z, Z >t)
E(n)
[E,2)i— < B, Z > +[Z,Z: — [E, 2]y 1

t

= — [ pud / 1

f—e) +3c/op” (0:<8,5>1),+ (1)
At

Z,2— < Z,Z> 1 [t

— 2, Z): t+—/pud<p,<S,S>'>u
vl sedo

[B,Z — Z);— < B, Z — Z >

again since < B, Z >;=< 4,7 >y.

+ + op(1) (8.55)

The second component on the right hand side of (8.55) , ([B,Z — Zi— < B, Z — Z >;)/ Al
goes to zero in probability, by Proposition 2, since < E,E >/, < Z2-2,2-Z >! and < E, Z-Z >!
satisfy the conditions of this proposition. This is in view of Corollary 1. The argument is similar

to that at the end of the proof of Theorem 1.
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