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Abstract

The paper studies inference for volatility type objects and its implications for the hedging of

options. It considers the nonparametric estimation of volatilities and instantaneous covariations

between diffusion type processes. This is then linked to options trading, where we show that our

estimates can be used to trade options without reference to the specific model. The new options

“delta” becomes an additive modification of the (implied volatility) Black-Scholes delta. The

modification, in our example, is both substantial and statistically significant. In the inference

problem, explicit expressions are found for asymptotic error distributions, and it is explained

why one does not in this case encounter a bias-variance tradeoff, but rather a variance-variance

tradeoff. Observation times can be irregular.
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1 INTRODUCTION

Volatility has become a popular topic in the statistics and the econometrics literature. How-

ever, most of these studies remain at the stage of estimating volatility and only a few mention

both volatility estimation and option hedging. In contrast to the existing literature, we do not

focus on issues like option mispricing with different volatility estimates. Rather, this paper seeks

to investigate the instantaneous association between two volatility estimates, realized volatility and

option-implied volatility, and investigate its impact on interval inference for the delta in options

hedging. In the process, we state general theorems about the estimation of instantaneous covaria-

tions.

The literature on estimation of realized volatility mainly consists of three schemes: parametric,

semi-parametric, and non-parametric. Most investigators have adopted parametric assumptions

on the data generating process. ARCH (Engle (1982)), GARCH (Bollerslev (1986)), and various

stochastic volatility models (Hull and White (1987); Wiggins (1987); Polson et al. (1994)) are just a

few examples among the vast literature. The apparent evolution of volatility modeling reflects the

need for reconciling the model and the features of the data. For example, the extension of ARCH

to GARCH intends to incorporate the heteroscedasticity in the data (Bollerslev (1986)), stochastic

volatility models are developed to account for the volatility smile, skewness and kurtosis, and the

generalized MA(1) by Bai et al. (2000a,b) uses a semi-parametric approach to capture the high

kurtosis in exchange-rate data that could not be adequately explained by GARCH. In addition to

the rich parametric literature in volatility estimation, the attention to non-parametric approaches

is also rising in the recent decade. The non-parametric approach generally includes (1) chopping

the returns data into blocks based on time, then summing intra-period squared returns (Merton

(1980); Poterba and Summers (1986); French et al. (1987); Andersen et al. (2001) ); (2) rolling

regression approach (Officer (1973); Fama and MacBeth (1973); Foster and Nelson (1996)); (3)

summing absolute returns (Alizadeh et al. (2000)). For implied volatility, simultaneous equations

estimators, weighted average estimators and others have been reported (see, Latané and Rendleman

(1976); Beckers (1981) , for example). As reviewed above, substantial efforts have been put on
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statistical quantification of volatility itself (either realized or implied, separately), however, little

effort is extended to the association between implied and realized volatility, and to its implications

on option pricing and hedging.

Option pricing and hedging is initiated from the seminal work of Black and Scholes (1973)

and Merton (1973). Since then, scholars have developed models to price and hedge various derivative

securities, e.g. options on different underlying assets, futures, swaps, debt, more recently mortgage-

backed securities and serial defaults. This body of work is mostly theory-oriented. The role of data

or the numerically oriented procedures stay at the level of calibrating the model or of implementing

the model in the situation of no closed-form solution. In other words, statistical uncertainty is

rarely considered in option research.

In a series of papers, Mykland (1998, 1999, 2000, 2001) started to question the lack of commu-

nication between statistical uncertainty and financial engineering (abbreviated with FE) research,

and pointed out that “neglecting statistics in option pricing is not just a bad form”, in fact, naive

implementation of the FE theories could lead to losing money in practice. To account for the sta-

tistical uncertainty in option pricing and hedging, Mykland (1998) has proposed a non-continuous

model that on the one hand makes the task of statistical quantification possible, on the other hand

his model converges to a diffusion whose properties are more familiar in option pricing and hedging

literature.

On the empirical side, investigators have considered the impact of volatility estimation on option

pricing. For example, deRoon and Veld (1996) looked at the mispricing of Dutch index warrants,

using the historical standard deviation and implied volatility of the previous day, respectively, as

the input to the option valuation model; Chu and Freund (1996) , and more recently Hardle and

Hafner (2000), considered the volatility estimate based on GARCH model, and found that the use

of GARCH model for volatility can reduce mispricing of an option, also Karolyi (1993) used a

Bayesian approach to model volatility for option valuation. All these studies focused on comparing

the mispricing with the Black and Scholes model when different volatility estimates are used.

The current work continues our efforts in stressing statistical quantifications in option pricing

and hedging. Our work is different from most of the past studies in the literature, in the sense that
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we do not compare the mispricing of an option with different volatility input. Instead, we emphasize

the association between realized volatility and option-implied volatility, and we make inference

on the delta in a hedging situation. In particular, with the help of small-interval asymptotics

and martingale decomposition techniques, we investigate the estimation properties and thus set

confidence interval for the estimators of volatility, the delta (as in the delta hedge), and leverage

and so on. Moreover, we have adopted a non-parametric estimation scheme, which frees us from

various model assumptions on the system. For example,we do not need to specify a volatility model

in the present study.

The inferential part of our results, which use a rolling sample scheme, permit unequal observa-

tion times, and has explicit forms for asymptotic variances. We also focus on the case where the

underlying (unobserved) process is continuous. This permits a transparent handling of proofs using

stochastic calculus. In particular, we present a natural decomposition for the estimation error of

the volatility-type objects. This decomposition appears to fall into the traditional bias-variance

trade-off, however, it becomes instead a variance-variance trade-off, cf. the discussion after Theo-

rem 1. The inference problem studied is related to that of Foster and Nelson (1996), though our

scope and results are different (see also the note after Corollary 1).

The organization is as follows. Section 2 describes the general inferential problem for volatility-

style objects, for example, instantaneous covariation between returns and implied volatility. Section

3 discusses the application to options and how this leads to a regression problem. Section 4 presents

the limiting distributions of the relevant estimation errors in Theorems 1 - 2. Section 5 focuses

on the implication of our estimation results, in particular, the implications for pointwise and joint

confidence intervals for the delta in a hedging situation. Finally, proofs are in the Appendix.
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2 GENERAL SETUP

2.1 Ito processes

We shall be concerned with Ito processes, and their instantaneous variations and covariations.

By saying that X is an Ito process, we mean that X can be represented as a smooth process

plus a local martingale,

Xt =
∫ t

0
vudu+

∫ t

0
σudWu,

where W is a standard Brownian Motion. Note that W is typically different for different Ito

processes. If WX is the Brownian Motion appearing in the above equation, then the relationship

between WX and W Y can be arbitrary.

We are interested in the volatility and instantaneous covariation of Ito processes. To study this,

one would start with the cumulative quadratic variation < X,X >t or covariation < X,Y >t, as

defined by Jacod and Shiryaev (1987) or Karatzas and Shreve (1991).

The volatility of the process X is then σ2
t =< X,X >′

t. The more general object is the

instantaneous covariation < X,Y >′
t, so we shall mostly state general theorems about the latter.

Note that the existence of the volatility follows from the Ito process assumption. Similarly, the

absolute continuity of < X,Y >t follows from the Ito process assumption and from the Kunita-

Watanabe Inequality (see, for example, p. 51 of Protter (1995)).

2.2 The inference problem

Considering now the general problem of finding < X,Y >′
t, note first that if the two processes

X and Y were observed continuously, there would be no need for inference. The instantaneous

covariation could be calculated exactly.

As it is, however, observations on diffusion process data are almost necessarily discrete. We

suppose that there is an interval of observation [0, T ], and our processes are observed at a non-

random partition 0 ≤ t(n)
1 ≤ t(n)

2 ≤ · · · ≤ t(n)
k = T .

To mimic the continuous time < X,Y >t, we let [X,Y ]t represent the quadratic covariation of
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X and Y at the discrete-time scale. In other words, if

∆X
t
(n)
i

�
= X

t
(n)
i+1

−X
t
(n)
i

, ∆Y
t
(n)
i

�
= Y

t
(n)
i+1

− Y
t
(n)
i

,

then

[X,Y ]t =
∑
t
(n)
i+1≤t

(∆X
t
(n)
i

)(∆Y
t
(n)
i

).

Recall that < X,Y >t= limn→∞[X,Y ]t, where the convergence is uniform in probability (UCP),

see Jacod and Shiryaev (1987) and Protter (1995) for details.

The limit is taken as the number of observation points k = kn → ∞, with the mesh δ(n) =

maxt |∆t(n)| → 0. Most of the time, we omit, for simplicity, the partition number (n).

To estimate the continuous quantity < X,Y >′
t, we use an approximation similar to the above,

namely

̂< X,Y >
′
t
�
=

1
h

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∆X
t
(n)
i

∆Y
t
(n)
i

,

in other words, ̂< X,Y >
′
t≈([X,Y ]t− [X,Y ]t−h)/h. As n→∞, h = hn → 0. Further discussion of

this procedure is given is Section 4.

The approach of letting the observation points become dense on [0, T ] is known as small in-

terval asymptotics. We shall also use this approach to find limit laws for statistical errors, when

approximating < X,Y >′
t by ̂< X,Y >

′
t. This is described in Section 4.1.

This type of asymptotics leads to mixed normal limit laws jointly with the underlying data

processes. Thus, we end this section with a definition.

Definition (Mixing convergence): We let X be the (typically multidimensional) data generat-

ing process. We say f (n),X L−→ N(0,M) (mixing) if there exists a standard normal random vector

W independent of X , such that (X , f (n),X ) converge jointly in law to ((X ),M1/2W ), where f (n),X
t

is a function of (Xs)s≤t, M1/2 is measurable with respect to process X . M1/2 is the square root of

the symmetric, semi-positive definite matrix M .

There are two types of mixing, mixing-past, where the independence is of (Xs)s≤t only, and

mixing-global, where the independence is of (Xs)s≤T .
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Interchangeably, we write f (n),X L.mixing−→ N(0,M) , or f (n),X L−→M1/2W , where W is standard

normal random vector.

3 REGRESSION

3.1 A generalized one factor model for options

Following the findings in Mykland and Zhang (2001), and in Zhang (2001), we shall particularly

be interested in the relationship between the price {Vt} of an option, the price of the underlying stock

{St}, and the cumulative implied volatility {Ξt} of the option. Note that Vt = C(St, r(T − t),Ξt),

where C is the Black-Scholes (1973) - Merton (1973) formula expressed in cumulative terms. A

regression relationship that accounts for the extent to which implied volatility can be hedged in

the underlying stock is given by

dΞt = ρtdSt + dZt,

dZt = −ζtdt. (3.1)

This is a generalization of the usual one-factor model. Further discussion of its trading aspect

can be found in Mykland and Zhang (2001). We here, however, are mainly concerned with the

question of inference for ρt. The connection to instantaneous covariation is as follows

ρt =
< Ξ, S >′

t

< S, S >′
t

. (3.2)

Given this generalized one-factor setup in Equation (3.1), we have shown in Mykland and Zhang

(2001) and Zhang (2001) that under the no-arbitrage rule, the delta hedge ratio can be written as

∆ = CS + ρCΞ (3.3)

where C is as defined as above and subscript refers to derivatives.

3.2 Estimation

When the scheme from Section 2 is used for the situation described in Section 3.1, it becomes

what is known as rolling regression. This approach has been used frequently by econometricians
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since the 60’s (see Fama and MacBeth (1973), also see Foster and Nelson (1996) for recent devel-

opments) when dealing with time-varying parameters.

The estimator for ρ is

ρ̂t =
̂< Ξ, S >t
̂< S, S >t

=

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆Ξti)(∆Sti)∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆Sti)
2 . (3.4)

As we shall see in the following sections, the estimation error of ̂< Ξ, S >t (as well as ̂< S, S >t)

can be decomposed into two parts, which are of order Op(
√
h) and Op(

√
∆t

(n)

h ) respectively. By

stochastic Taylor expansion, the estimation error of ρ can be expressed as

ρ̂t − ρt =
1

< S, S >′
t

[ ̂< Ξ, S >
′
t− < Ξ, S >′

t]

− ρt
< S, S >′

t

[ ̂< S, S >
′
t− < S, S >′

t] + op(
√
h+

√
∆t(n)

h
)

Before we proceed to the asymptotic property of the estimation error associated with ̂< Ξ, S >t

and with ρ̂t, we first review under what paradigm and under what assumptions the asymptotics is

considered.

4 STATISTICAL PROPERTIES

4.1 Paradigm for asymptotic operations

For a sequence of partitions of [0, T ], 0 = t(n)
0 ≤ t(n)

1 ≤ · · · ≤ t(n)
k = T, n = 1, 2, 3, · · ·, we assume

that as n→∞,

(1) the number of observations k = kn →∞

(2) the mesh δ(n) → 0. The mesh is the maximum distance between the ti’s,

(3) the bandwidth hn → 0,

(4) the number of observations between t− hn and t goes to infinity,



Volatility: Inference and Hedging 8

(5) there is a trade-off between hn and ∆t(n), see the coming theorems. ∆t(n) is the average

observation interval, equal to T
k .

The above (1) and (2) suggest that, as n increases, we can observe the underlying data process

more and more frequently. This observation refinement is not nested in a sense that the set

{t(n1)
0 , t

(n1)
1 , t

(n1)
2 , · · · , t(n1)

kn1
} is not necessarily contained in the set {t(n2)

0 , t
(n2)
1 , t

(n2)
2 , · · · , t(n2)

kn2
} for

n1 < n2. It only means that with n increasing, the mesh of our observation intervals decreases, in a

way that the number of observations in the estimation window increases, as indicated by (4). The

requirement (3) indicates that the bandwidth hn also shrinks with n. We shall show in the coming

section that as n increases, how fast hn and ∆t(n) decay respectively has a trade-off in terms of the

asymptotic variance of the estimation error. From now on, we use h and hn interchangeably.

4.2 Notations and assumptions

Assumption A (Homogenous partition):

For each n ∈ N , we have a sequence of non-random partitions {t(n)
i }, ∆t(n)

i = t(n)
i+1 − t

(n)
i . Let

maxi(∆t
(n)
i ) = δ(n).

(1) δ(n) −→ 0 as n −→∞, and δ(n)/∆t(n) = O(1).

(2) H(2)
(n)(t) =

∑
t
(n)
i+1

≤t
(∆t

(n)
i )2

∆t(n)
−→ H(2)(t) as n −→ ∞, where H(2)(t) is continuously differen-

tiable.

(3) [H(2)
(n)

(t)−H(2)
(n)

(t− h)]/h −→ H(2)′(t) as h −→ 0, where the convergence is uniform in t.

When the partitions are evenly spaced, H(2)(t) = t and H(2)′(t) = 1. In the more general case,

note that the left hand side of (2) is bounded by tδ(n)/∆t(n), while the left hand side of (3) is

bounded by δ(n)2/(∆t(n)h)+ δ(n)/∆t(n). In all our results, h is bigger than ∆t(n), and hence both

the left hand sides are bounded because of (1). The assumptions in (2) and (3) are, therefore,

about a unique limit point, and about interchanging limits and differentiation.

For continuous Ito processes X and Y , write dXt = dXDR
t + dXMG

t = X̃tdt + dXMG
t , dYt =
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dY DRt + dYMG
t = Ỹtdt+ dYMG

t , and

d < X, Y >′
t= dD

XY
t + dRXYt = D̃XY

t dt+ dRXYt .

Assumptions on the processes (B-D) are imposed on the pair (X,Y ):

Assumption B (Smoothness). B(X,Y ) : X, Y and < X,Y >′ are Ito processes. Also, the

following items are in C1[0, T ] almost surely

(i) the respective quadratic variations of X, Y and < X,Y >′

(ii) the drift part of < X,Y >′
t (DXY

t )

(iii) the drift parts of X (XDR) and of Y (Y DR)

Note in (i) that the quadratic variation of < X,Y >′ is the same as < RXY , RXY >. The same

should be observed about Assumption D below.

Assumption C (Integrability). C(X,Y ) :

(i) E sups∈[0,T ] |< X,X >′
s| <∞, and similarly for < Y, Y >′.

(ii) E sups∈[0,T ] | D̃XX
s | <∞, and similarly for D̃Y Y .

Assumption D (Non-vanishing volatility). D(X,Y ) :

inft∈[0,T ] < R
XY , RXY >′

t > 0 almost surely

Assumption E (Structure of the filtration):

The data (Xt) is measurable with respect to a filtration generated by a finite number of Brownian

Motions.

4.3 Asymptotic distribution of the estimation error: main theorem

Under the paradigm and assumptions listed in Section 4.1 and 4.2, we now consider the asymp-

totic property of the estimation errors ̂< X,Y >
′
t− < X,Y >′

t and ρ̂t − ρt. We summarize the

results in two theorems, whose proofs are provided in the Appendix. First, however, two quantities

that constitute a natural decomposition of the estimation error,
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BXY1,t =
1
h
(< X,Y >t − < X,Y >t−h)− < X,Y >′

t

BXY2,t =
[2]
h

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs −Xt(n)
i

)dYs

where [2] indicates symmetric representation s.t. [2]
∫
XdY =

∫
XdY +

∫
Y dX.

Theorem 1 Suppose that X, Y, Z, and V are continuous Ito processes. Let B1 and B2 be defined

as above. Also suppose we decompose < X,Y >′
t into a martingale part (RXYt ) and a drift part

(DXY
t ). Under Assumptions A, B(X,Y ), C(X,Y ) and D(X,Y ), we have (a)-(b). If the same

conditions are imposed on Z and V , (c) -(d) also hold.

(a) ̂< X,Y >
′
t−< X,Y >′

t= BXY1,t +BXY2,t , where BXY1,t = Op(
√
h), BXY2,t = Op(

√
∆t

(n)

h ).

(b) In order for BXY1,t and BXY2,t to have the same order, O(h) = O(
√

∆t(n)). In this case, BXY1,t

and BXY2,t are both of order Op((∆t
(n))

1
4 ).

(c) jointly and mixing,

h−1/2


 BXY1,t

BZV1,t


 L−→ N(0,M1), (

∆ti
h

)−1/2


 BXY2,t

BZV2,t


 L−→ N(0,M2),

where M1 =
1
3


 < RXY , RXY >′

t < RXY , RZV >′
t

< RXY , RZV >′
t < RZV , RZV >′

t


 ,

and M2 = H(2)′(t)


 a11 a12

a21 a22




where

a11 =< X,X >′
t< Y, Y >

′
t +(< X,Y >′

t)2,

a12 = a21 =< X,Z >′
t< Y, V >

′
t + < X,V >′

t< Y,Z >
′
t,

a22 =< Z,Z >′
t< V, V >

′
t +(< Z, V >′

t)2.
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The convergence in law is mixing-past. Subject to Assumption E, it is also mixing-global.

(d) the asymptotic distributions of B1,t and B2,t are conditionally independent, given the data either

up to time t or up to T , depending on whether Assumption E is used in (c). Also, ∀t �= t′, BXYi,t
and BZVi,t′ are conditionally independent given the data, under Assumption E. �

Under regularity conditions, Theorem 1(a) suggests that we can decompose the estimation

error of the instantaneous quadratic covariation (< X,Y >′
t) into two parts: BXY1 and BXY2 . From

their mathematical expressions (see the beginning of Section 4.3), one perhaps would guess that

we had a bias-variance trade-off regarding the estimation error of < X,Y >′
t, with BXY1 serving

as a bias term, and BXY2 serving as a variance term. This would indeed have been the case in

the traditional non-parametric estimation (e.g. density estimation). However, there is a difference

between traditional and our nonparametrics: the former mainly deals with a smooth quantity,

whereas the latter deals with a non-smooth quantity (namely < X,Y >′
t).

It turns out that to first order both BXY1 and BXY2 are variance terms. As shown in the proof

in the Appendix, we can express BXY1 as

BXY1,t =
1
h

∫ t

t−h
((t− h)− u)dRXYu︸ ︷︷ ︸

martingale: variance term

+
1
h

∫ t

t−h
((t− h)− u)dDXY

u︸ ︷︷ ︸
bias term

where the variance term dominates when < X,Y >′
t is not smooth, and the bias term becomes the

only term when < X,Y >′
t is smooth (i.e. RXYt = 0 when < X,Y >′

t is smooth). In Theorem 1,

< X,Y >′
t is an Ito process, hence the first-order term of B1 is dominated by a martingale com-

ponent. Meanwhile, the first order of BXY2 is also a martingale term, which does not vanish even

if < X,Y >′
t is smooth (see the proof in appendix for details). Therefore, we are faced with a

variance-variance trade-off in the estimation error of < X,Y >′
t.

Theorem 1(b) says that the order of B1 is determined by the smoothing bandwidth h alone,

whereas the order of B2 depends on the number of observations used for estimation purpose at

each time t (i.e. the number of observations in (t−h, t]). It is optimal to select h with the order of

square root of the average observation interval, optimal in the sense of minimizing the asymptotic

variance in the estimation error in part (a).
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The asymptotic distributions in (c) are normal mixtures, after M1 and M2 are estimated from

the data. A more explicit representation would be

h−1/2


 BXY1,t

BZV1,t


 L−→M1/2

1,t E1

and

(
∆t(n)

h
)−1/2


 BXY2,t

BZV2,t


 L−→M1/2

2,t E2

where E1 and E2 are bivariate normal independent of each other. It is worth to point out that M1,t

and M2,t depend on the data, whereas the Es are independent of data.

One here encounters the issue of conditional distribution versus unconditional distribution.

Conditional on data,M1,t andM2,t are observable in a world of continuous records or approximately

observable in a discrete-record world. Thus if h is proportional of
√

∆t(n), and
√

∆t
(n)

h → c as n

increases, we can then, for example, construct an approximate 95% conditional confidence set for

< X,Y >′
t by ̂< X,Y >

′
t ± 1.96h1/2

√
M̂

(1,1)
1,t + c2M̂ (1,1)

2,t , where M (1,1)
i,t means the (1,1) element in

the matrix of Mi,t. Unconditionally, the confidence set is generally different due to dependence

between E and the data. Our findings on the independence between E and the data make our

unconditional confidence set and conditional confidence set the same.

Theorem 1(d) suggests that the quadratic covariation between B1,t and B2,t is of higher order,

so is the covariation between Bi,t and Bi,t′ for t �= t′. In the limit, B1,t and B2,t (also Bi,t and Bi,t′

for t �= t′) become uncorrelated, which is the same as independent given the Gaussian findings in

(c).

Remarks:

1. Notice that < X,Y >′
t is a random quantity, NOT a constant. The latter is the frequen-

tist’s typical notation of a parameter. In this paper, we borrow the terminology “estimation” and

“confidence set”, and use them in a broader way. The alternative would be to use “prediction” and

“prediction set”, but this tends to confuse because of the connotations of forecasting future data.

2. The results in Theorem 1 involve the following order of operation: as a first step, the

convergence is joint with the underlying data processes (see the definition in Section 2.2) {(Ξt, St)};
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then, conditional on the observable (i.e. the whole data processes), M1 and M2 can be estimated,

making the limit in Theorem 1(c) a mixture normal. Similarly, we can discuss asymptotic bias,

variance, and independence after the joint convergence and then the conditioning operations.

4.4 Estimation of volatility and of regression coefficients

Suppose we set both X and Y equal to log(S), then Theorem 1 tells us the asymptotic distri-

bution of realized volatility < logS, logS >′
t.

Corollary 1 Suppose that the stock price S is a continuous Ito process. Let Xt = logSt,

σ2
t =< X,X >′

t, σ̂2
t = ̂< X,X >

′
t. Under Assumptions A, B(X,X), C(X,X), D(X,X), and

the assumption about the order of h in Theorem 1(b),

σ̂2
t − σ2

t =
1
h

∫ t

t−h
(t− h− u)dRXXu + [2]

1
h

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)dXMG
u

+ op((∆t
(n))

1
4 )

Furthermore, if
√

∆t
(n)

h → c (nonrandom), conditional on data, (∆t(n))−1/4(σ̂2
t − σ2

t ) is asymptoti-

cally distributed N(0, Vσ̂2−σ2) (mixing), where

Vσ̂2−σ2 =
1
3c
< σ2, σ2 >′

t +2cH(2)′(t)σ4
t (4.5)

The nature of the mixing depends on Assumption E about the data filtration in Theorem 1(c).

�

Note that the connection of the first term in Equation (4.5) to Theorem 1 is that< RXX , RXX >′
t

= 〈< X,X >′, < X,X >′〉′t =< σ2, σ2 >′
t. This corrects the expressions in Theorem 2 in Foster

and Nelson (1996), when considering the continuous-time limit in their Equation (9) (p. 149).

Theorem 2 Suppose S and Ξ are continuous Ito processes. Let ρ̂t = <̂Ξ,S>
′
t

<̂S,S>
′
t

. Subject to the

assumptions applied in Theorem 1 with X=Ξ, Y=Z=V=S, and O(h) = O(
√

∆t(n)), we have

(a) representation:

ρ̂t − ρt =
1

< S, S >′
t

[BΞS
1 − ρtBSS1 ] +

1
< S, S >′

t

[BΞS
2 − ρtBSS2 ] + op((∆t

(n))1/4)
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(b) asymptotic distribution:

if
√

∆t
(n)

h → c (nonrandom), conditional on data, (∆t(n))−1/4(ρ̂t − ρt) is asymptotically dis-

tributed N(0, Vρ̂−ρ), where

Vρ̂−ρ =
< ρ, ρ >′

t

3c
+ cH(2)′(t)(

< Ξ,Ξ >′
t

< S, S >′
t

− ρ2t ) (4.6)

The convergence in law is mixing, with the past or globally, depending on whether Assumption E

is used. �

According to Theorem 2, ρ̂t − ρt has the order of (∆t(n))1/4, where ∆t(n) is the average length

of sampling interval. We can arrange the first-order term of ρ̂t − ρt into two parts, one is related

to the B1’s and the other related to the B2’s. In the limit, conditional on the whole data process,

the estimation error of ρt follows a mixture normal distribution, with mean 0 and variance equal

to the estimate of Vρ̂−ρ. Equation (4.6) indicates that under-smoothing (i.e. c is greater) or over-

smoothing would blow up the asymptotic variance. For example, an under-smoothing would reduce

< ρ, ρ >′
t /(3c) while increasing cH(2)′(t)(<Ξ,Ξ>′

t
<S,S>′

t
− ρ2t ). This implies that an optimal rate c can be

reached in order to minimize the asymptotic variance of the estimation error of ρt. The same thing

goes for σ̂2
t .

Both for σ̂2 and ρ̂ an optimal choice of c can be found. For example, for ρ̂, it would appear

that the optimal rate is given with

c2 = c2t =
1
3

< ρ, ρ >′
t

H(2)′(t)(<Ξ,Ξ>′
t

<S,S>′
t
− ρ2t )

which can then be estimated from the data. The optimal asymptotic variance is then

Vρ̂−ρ = 2
[
< ρ, ρ >′

t

3
H(2)′(t)(

< Ξ,Ξ >′
t

< S, S >′
t

− ρ2t )
]1/2

We have not investigated how a data-dependent choice of c would affect our theoretical results,

which assume nonrandom c.

Remarks:
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1. The mixture normal result in Theorem 2 mainly comes from our estimation mechanism,

where we have used an increasing number of data records in a finite amount of time to deliver the

estimator.

2. The convergence holds at each time t, but not as a process. In other words, ρ̂ − ρ does not

converge as a process, because as n → ∞, ρ̂t − ρt and ρ̂t′ − ρt′ become independent for t �= t′,

and in the normal stochastic process paradigm, there is no such process consisting of independent

elements at each time t. Such a process would be continuous white noise, and the derivative of (the

non-differentiable) Brownian Motion.

3. When estimating< σ2, σ2 >′, < ρ, ρ >′, or, in the broader case of Theorem 1, < RXY , RZV >′

= 〈< X,Y >′, < Z, V >′〉′, a consistent estimate can be obtained by plugging in the estimated

quantities for σ2, ρ, or < X,Y >′. One can no longer, however, use the original grid 0 = t0 < t1 <

... < tk = T when computing the “outer” < ·, · >′, but rather a sub-grid or some other partition

that is coarser than the original grid, and which permits consistent estimation at each point of the

coarser partition. We have not investigated the precise theoretical requirements in this paper, but

this is the procedure which lays behind the error bounds in Figure 1 in next section.

5 IMPLICATIONS

5.1 Implications for the hedge ratio

Following Equation (3.3) in Section 3.1, ∆ = CS + ρCΞ , where ∆ stands for the delta hedge

(i.e. the number of stocks to hold for offsetting the risk in option). This implies that the estimation

error of the hedge ratio is given by

∆̂−∆ = CΞ(ρ̂− ρ). (5.7)

Hence, our asymptotic results on ρ can help setting a confidence region for ∆. In addition, tests

of hypothesis H0 : ρ = 0 vs. Ha : ρ �= 0 tells us whether or not our hedge ratio ∆ is significantly

different from the Black-Scholes hedge CS . Finally, our result provides a way of hedging without

knowing the model for S. This is not affected by the fact that we use the Black-Scholes-Merton

functional form. It does, however, assume the generalized one-factor model in Equation (3.1).
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Figure 1: 90% Confidence Interval for Relative Hedge, S&P 500 on Feb. 17, 1994
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Figure 1 is one example of applying Theorem 2 in option hedging. Using the data from S&P

500 index and option, we can investigate how relative hedge, as well as its 90% confidence interval,

evolves across one day. In this application, the relative hedge denotes the ratio of our one-factor

delta relative to the Black-Scholes delta ( ∆
CS

). As we can see from Figure 1, even the upper bound

of the 90% CI of the relative hedge is smaller than 1, indicating that the Black-Scholes delta over-

hedged, at least on February 17, 1994. Notice that the confidence interval in Figure 1 is pointwise.

5.2 Other considerations on confidence sets for ρ

In the previous section, we considered how to make inference on ρ and then on ∆ at each time

t. In a real market, making decisions at each possible observation time is too expensive (due to

the transaction cost incurred by each hedging action) and too dangerous (due to the uncertainty

coming from estimation error, data discreteness, and unexpected news, for example). Therefore,

it would be more reasonable to make a hedging decision based on information from several time

periods.
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Because the delta hedge is closely related to ρ (at least in the generalized one-factor case as

we have assumed in this section), we concentrate on ρ at this moment. Instead of focusing on the

distribution of ρ at one time t, we now consider simultaneous confidence set for ρsi at several times

i = 1, 2, · · · ,m.

Let Un(t) = (∆t(n))
− 1

4 1√
Vρ̂−ρ(t)

(ρ̂t−ρt), let 1−α be the simultaneous coverage probability, and

1− γ be the coverage probability at a specific time point, then

1− α = P
[
∩mi=1{|Un(si)| ≤ zγ/2}

]
=

m∏
i=1

P{|Un(si)| ≤ zγ/2} (5.8)

≈ (1− γ)m (5.9)

where (5.8) is because ρ̂si − ρsi and ρ̂sj − ρsj are asymptotically independent for i �= j. Two issues

are worth to be pointed out: 1) for fixed α, bigger m leads to smaller γ. This may lead to a true

question of bias-variance tradeoff, and this remains to be investigated. If one makes inference on

more time periods jointly while maintaining the acceptable total uncertainty, one has to suffer from

the wider estimation error at each individual time point; 2) for γ small, (5.9) is close to the multiple

comparison result given by Bonferroni Inequality.

Alternatively, we can consider the average coverage, that is,

fraction of times that CI covers ρ

=
1
m

m∑
i=1

I
(
|Un(si)| ≤ zα/2

)
→ 1− α as m→∞, n→∞

Both approaches to constructing joint confidence sets can be particularly useful from the view-

point of risk management.
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6 APPENDIX

6.1 Supporting convergence theorems

It should be emphasized that the results in this sub-section are straightforward applications of

standard limit theory for stochastic processes, as discussed, for example, in the book by Jacod and

Shiryaev (1987). Similar results to the ones below exist in many forms in the literature. Because

of our application, however, we needed rather specific formulations, and this led us to state and

prove the results below.

Theorem A. 1 (Broad Framework Convergence Theorem):

Suppose X and M (n), respectively, are a continuous multidimensional martingale and a se-

quence of continuous martingales. The martingales are with respect to filtration Ft≤T , where Ft =

σ(Xs, s ≤ t). Also M (n)
s = 0,∀s ≤ t− hn. Let Ψ(n) be a sequence of time changes, where

Ψ(n)(s) =




s s ≤ t− hn
[s− (t− hn)]hn + (t− hn) t− hn < s ≤ t− hn + 1

t t− hn + 1 < s ≤ t+ 1

s− 1 t+ 1 < s ≤ T + 1

.

Let X̃(n)
s = XΨ(n)(s), and let

Ỹ (n)
s =




0 s ≤ t− hn
h
−α

2
n (M (n)

[s−(t−hn)]hn+(t−hn) −M
(n)
t−hn

) t− hn < s ≤ t− hn + 1

h
−α

2
n (M (n)

t −M (n)
t−hn

) t− hn + 1 < s ≤ T + 1

Assume

1) hn ↓ 0 as n ↑ ∞,

2) h−αn (<M (n),M (n)>[s−(t−hn)]hn+(t−hn) − <M (n),M (n)>t−hn)
P−→ η2

t ft(s− t),∀s ≥ t,

3) ft(s) is nonrandom and continuously differentiable, with ft(0) = 0, and ηt is random variable

measurable with respect to Ft.

Then, (X̃(n)
t , Ỹ

(n)
t )0≤t≤T+1 is C-tight. Moreover, any limit (X̃, Ỹ )0≤t≤T+1 of a convergent subse-
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quence of this sequence satisfies

X̃s = XΨ(s)

Ỹs =


 0 for s < t

ηt
∫ s∧(t+1)
t (f ′t(u− t))

1/2dW̃u for s ≥ t

where Ψ(s) =



s s ≤ t

t t < s ≤ t+ 1

s− 1 t+ 1 < s ≤ T + 1

, and W̃ is a Brownian motion on [t, t+ 1].

Proof: (for simplicity, write h instead of hn in the next proof.)

As n→∞, Ψ(n)(s)→ Ψ(s), where Ψ is another time change. By definition of X̃(n), we have

X̃(n)
s −→ XΨ(s) = X̃s,∀s ≤ T + 1 (6.1.1)

As a matter of fact, X̃(n) converges to X̃ locally uniformly (a.s.) since for small h,

sup
s≤T+1

| X̃(n)
s − X̃s |

≤ sup
s≤t−h

| X̃(n)
s − X̃s | + sup

t−h<s≤t
| X̃(n)

s − X̃s | + sup
t<s≤t−h+1

| X̃(n)
s − X̃s |

+ sup
t−h+1<s≤t+1

| X̃(n)
s − X̃s | + sup

t+1<s≤T+1
| X̃(n)

s − X̃s |

= sup
t−h<s≤t

| X[s−(t−h)]h+(t−h) −Xs | + sup
t<s≤t−h+1

| X[s−(t−h)]h+(t−h) −Xt |

≤ sup
|u−v|≤2h

|Xu −Xv|+ sup
|u−v|≤h

| Xu −Xv |

−→ 0 as X is continuous and u, v < T + 1

so X̃(n) → X̃ in D(R).

Similarly, sups≤T+1 | < X̃(n), X̃(n) >s − < X,X >Ψ(s) | → 0, thus by Jacod and Shiryaev

(1987) (abbreviated with J&S hereafter) VI proposition 1.17 (p. 292)

< X̃(n), X̃(n) >→< X̃, X̃ > in D(R) (6.1.2)

By definition of Ỹ (n) and assumption 2),

< Ỹ (n), Ỹ (n) >s
P−→




0 s ≤ t

η2
t ft(s− t) t ≤ s < t+ 1

η2
t ft(1) t+ 1 ≤ s ≤ T + 1

as n→∞. (6.1.3)
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Jointly, < X̃(n), Ỹ (n) >s
P−→ 0 (6.1.4)

( 6.1.3) is true for all s, hence true for a subset in [t, t+ 1]. Since [Ỹ (n), Ỹ (n)] is nondecreasing

and has continuous limit, J&S Theorem VI 3.37 (p. 318) yields that the convergence is in law

(D(R)). By using continuity and equation ( 6.1.2), < X̃(n), X̃(n) >= [X̃(n), X̃(n)] is C-tight, and

< Ỹ (n), Ỹ (n) >= [Ỹ (n), Ỹ (n)] is C-tight. So the sequence {([X̃(n), X̃(n)], [Ỹ (n), Ỹ (n)])} is C-tight by

J&S Corollary VI 3.33 (p. 317). Invoking J&S Theorem VI. 4.13 (p. 322), we have the sequence

(X̃(n), Ỹ (n)) is tight.

Now, given any subsequence, we can find further subsequence such that

(X̃(n), Ỹ (n))→ (X̃, Ỹ ). ( 6.1.2)-( 6.1.4) and J&S corollary VI. 6.7 (p. 342) lead to

((X̃(n), Ỹ (n)), [X̃(n), X̃(n)], [Ỹ (n), Ỹ (n)], [X̃(n), Ỹ (n)])

L−→ ((X̃, Ỹ ), [X̃, X̃], [Ỹ , Ỹ ], [X̃, Ỹ ])

where [X̃, X̃]s = [X,X]Ψ(s), [X̃, Ỹ ] = 0, [Ỹ , Ỹ ] =




0 s ≤ t

η2
t ft(s− t) t ≤ s < t+ 1

η2
t ft(1) t+ 1 ≤ s ≤ T + 1

This implies

that X̃ and Ỹ are continuous local martingales. The latter follows from Proposition IX. 1.17 in

J&S by using continuity of M (n).

If f ′ > 0, let W̃s =


 0 s ≤ t

1
ηt

∫ s
t (

d
duf(u− t))

− 1
2dỸu t ≤ s ≤ t+ 1

(6.1.5)

If f ′ is not always positive, create W̃s as in Vol III of Gikhman and Skorokhod (1979). By definition

( 6.1.5), < W̃, W̃ >= s − t for t ≤ s ≤ t + 1. By Levy’s Theorem (J&S II Theorem 4.4, p. 102),

W̃ is a Brownian Motion on [t, t + 1], and it has increments independent of F̃t, which is defined

as σ(X̃u, u ≤ t). Since X̃s = Xs for s ≤ t and X̃s = Xt for t ≤ s ≤ t + 1, it follows that W̃ is

independent of X over [0, t+ 1]. Hence the joint convergence to (X̃, Ỹ ) is uniquely defined, and is

independent of subsequence. By inverting equation ( 6.1.5), we obtain

Ỹs =


 0 for s < t

ηt
∫ s∧(t+1)
t (f ′t(u− t))

1/2dW̃u for s ≥ t
(6.1.6)
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Theorem A. 2 (Convergence Theorem with Independence of the Past):

Following the same setup and assumptions as in Theorem A.1, also assume T = t, we have

(Xu,0≤u≤t, h
−α

2
n (M (n)

t −M (n)
t−hn

)) L−→ (Xu,0≤u≤t, ηt
√
ft(1)Z),

where Z is standard normal independent of the X-process.

Proof:

In formula ( 6.1.6), f ′ is nonrandom and the Brownian Motion W̃ has the independent in-

crement property, hence ˜̃Y t+1 =
∫ t+1
t (f ′t(u− t))

1/2dW̃u is Gaussian and independent of F̃t. Also

< ˜̃Y , ˜̃Y >t+1=
∫ t+1
t f ′t(u − t)du =

∫ 1
0 f

′
t(u)du = ft(1). So ˜̃Y t+1 ∼ N(0, ft(1)), independent of the

X̃-process. Then Ỹt+1
L= ηt(ft(1))1/2Z, where Z is standard normal, independent of X̃-process.

From definition ( 6.1.1), X̃s = Xs,∀0 ≤ s ≤ t, hence in the end,

(Xu,0≤u≤t, h
−α

2
n (M (n)

t − M (n)
t−hn

)) L−→
(
Xu,0≤u≤t, ηt(ft(1))1/2Z

)
, where Z is independent of X-

process.

In the case T > t, one needs additional regularity conditions, we here give one version. Also,

this extra condition may not be needed from the point of view of estimating σ2 or ρ at point t.

Theorem A. 3 (Convergence Theorem with Independence of both Past and Future):

Following the same setup and assumptions as in Theorem A.1, also assume Ft is generated by

(W (1)
t ,W

(2)
t , . . . ,W

(q)
t )0≤t≤T , where the W ’s are independent Brownian Motions. Then we have

(Xu,0≤u≤t, h
−α

2
n (M (n)

t −M (n)
t−hn

)) L−→ (Xu,0≤u≤T , ηt
√
ft(1)Z),

where Z is standard normal independent of the X-process.

Proof:

Let F̃t = σ(W (i)
Ψ(t), i = 1, 2, · · · , q; W̃t) in Theorem 1, andXt = (W (1)

t , · · · ,W (q)
t ). Since [W̃ ,W (i)]t =

0, W̃ is independent of X. Therefore the results of Theorem 3 hold.
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6.2 Supporting lemmas and corollaries

In the following proofs, we sometimes write < X,X >t as < X >t, and < X,X >′
t as < X >′

t

for simplicity.

In analogy with the definition of H(2)
(n)

(t) in Assumption A, we also define H(j)
(n)

(t) for j ≥ 1:

H
(j)
(n)(t) =

∑
t
(n)
i+1≤t

(∆t(n)
i )j

(∆t(n))j−1
.

By the same argument given just after Assumption A, [H(j)
(n)

(t)−H(j)
(n)

(t− hn)]/hn is bounded, and

hence every sequence (in n) has a convergent subsequence. For clarity of exposition, we shall act

as if the sequence itself converges as n → ∞, and call the limit H(j)′(t). Wherever this is used,

it is easy to see that the relevant argument (which is always about stochastic order) goes through

without the existence of a limit.

Also, for convenience, we disaggregate Assumptions B and C as follows:

Assumption B (Smoothness):

B.1(X,Y ): < X,Y >t is in C1[0, T ].

B.2(X,Y ): the drift part of < X,Y >′
t (DXY

t ) is in C1[0, T ].

B.3(X): the drift part of X (XDR) is in C1[0, T ].

Assumption C (Integrability):

C.1(X,Y ): E sups∈[0,T ] |< X,Y >′
s| <∞.

C.2(X,Y ): E sups∈[0,T ] | D̃XY
s | <∞.

AssumptionB(X,Y ) is equivalent toB.1(X,X), B.1(Y, Y ), B.1(RXY ), RXY ), B.2(X,Y ), B.3(X),

and B.3(Y ). Similarly, C(X,Y ) is equivalent to C.1(X,X), C.1(Y, Y ), C.2(X,X) and C.2(Y.Y ).

Corresponding statements involving covariations of X and Y follow by the Kunita-Watanabe in-

equalities (Protter (1995), pp. 61-62).
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Notice that we shall be using the following notations

ΥX(h) = sup
t−h≤u≤s≤t

|Xu −Xs| (6.2.1)

ΥXY (h) = sup
t−h≤u≤s≤t

|< X,Y >′
u − < X,Y >′

s| (6.2.2)

AssumptionB.1(X,Y ) implies ΥXY (h)→ 0. Moreover, from condition C.1(XX) and C.2(XX),

Burkholder’s Inequality yields that EΥX(h) = o(1) in h.

Lemma 1 Suppose X, Y , and Z are Ito processes . Subject to assumptions A, B.1[(X,X), (Z,Z),

(X,Z)], B.3[(X)(Z)] and C.1[(X,X), (Z,Z)], we have the following for any constant k > 0,

(i):

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(< X >u − < X >ti)(u− ti)kYudu = Op(
(∆t(n))k+1

h
)

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xti)2(u− ti)kYudu

=
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(< X >u − < X >ti)(u− ti)kYudu+ op(
(∆t(n))k+1

h
)

(ii)

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)(Zu − Zt(n)
i

)(u− ti)kYudu = Op(
(∆t(n))k+1

h
)

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)(Zu − Zt(n)
i

)(u− ti)kYudu

=
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(< X,Z >u − < X,Z >t(n)
i

)(u− ti)kYudu

+ op(
(∆t(n))k+1

h
)

�
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Proof of Lemma 1:

(i) By Itô’s Lemma,

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xti)2(u− ti)kYudu

=
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[< X >u − < X >ti +2
∫ u

ti

(Xv −Xti)dXv](u− ti)kYudu

=
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[< X >u − < X >ti ](u− ti)kYudu

︸ ︷︷ ︸
I

+
2
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
∫ u

ti

(Xv −Xti)dXv](u− ti)kYudu

︸ ︷︷ ︸
II

Now we show that both I and II are of oder Op(
(∆t

(n)
)k+1

h ). First,

|I| ≤ 1
k + 2

sup
0≤u≤t

< X >′
u sup

0≤u≤t
|Yu|

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)k+2

assumption A∼ H(k+2)′(t)
k + 2

sup
0≤u≤t

< X >′
u sup

0≤u≤t
|Yu|

(∆t(n))k+1

h

= Op(
(∆t(n))k+1

h
) (6.2.3)

where Equation (6.2.3) follows from assumption B.1(X,X) and the continuity of Y .

For II, we write X as the sum of XMG and XDR,

II =
2
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
∫ u

ti

(Xv −Xti)dXDR
v ](u− ti)kYudu

︸ ︷︷ ︸
II1

+
2
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
∫ u

ti

(XDR
v −XDR

ti )dXMG
v ](u− ti)kYudu

︸ ︷︷ ︸
II2



Volatility: Inference and Hedging 25

+
2
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
∫ u

ti

(XMG
v −XMG

ti )dXMG
v ](u− ti)kYudu

︸ ︷︷ ︸
II3

Recall that dXDR
v = X̃vdv,

|II1| ≤ 2
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
∫ u

ti

|(Xv −Xti)X̃v|dv](u− ti)k|Yu|du

≤ sup
0≤u≤t

|Yu| sup
0≤u≤t

|X̃u|ΥX(h)
2
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(u− ti)k+1du

assumption A∼ 2
k + 2

sup
0≤u≤t

|Yu| sup
0≤u≤t

|X̃u|ΥX(h)H(k+2)′(t)
(∆t(n))k+1

h

= op(
(∆t(n))k+1

h
) (6.2.4)

where Equation (6.2.4) follows from assumption B.3(X) and the continuity of X and Y . Similar

approach leads to II2 = op(
(∆t

(n)
)k+1

h ).

Let

Lt =
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)k
∫ t

(n)
i+1

t
(n)
i

∣∣∣∣
∫ u

ti

(XMG
v −XMG

ti )dXMG
v

∣∣∣∣ du,
We have,

E|Lt| =
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)k
∫ t

(n)
i+1

t
(n)
i

E

∣∣∣∣
∫ u

ti

(XMG
v −XMG

ti )dXMG
v

∣∣∣∣ du

≤ c

h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)k
∫ t

(n)
i+1

t
(n)
i

E

(∫ u

ti

(XMG
v −XMG

ti )
2
d < XMG >v

)1/2

du

≤ c

h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)k
∫ t

(n)
i+1

t
(n)
i

(
E

∫ u

ti

(XMG
v −XMG

ti )
2
dv

)1/2

·
(
E sup
u∈(0,t]

< X >′
u

)1/2

du

=
c

h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)k
∫ t

(n)
i+1

t
(n)
i

(∫ u

ti

E(< X >v − < X >ti)dv
)1/2
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·
(
E sup
u∈(0,t]

< X >′
u

)1/2

du

≤ c∗

h2
E sup
u∈(0,t]

< X >′
u

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)k+2

where the first two inequalities follow from Burkholder’s inequality and Hölder’s Inequality respec-

tively, and the subsequent equality follows from Fubini’s Theorem and the resultE(XMG
v −XMG

ti )2 =

E(< X >v − < X >ti). Thus Lt = Op(
(∆t

(n)
)k+1

h ) by Markov’s inequality, under assumptions A

and C.1(X,X).

Let

Nt =
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

Yti

∫ t
(n)
i+1

t
(n)
i

∫ u

ti

(XMG
v −XMG

ti )dXMG
v (u− ti)kdu

Applying integration by parts, we get

Nt =
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

Yti

∫ t
(n)
i+1

t
(n)
i

(XMG
v −XMG

ti )dXMG
v

∫ t
(n)
i+1

t
(n)
i

(u− ti)kdu

− 1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

Yti

∫ t
(n)
i+1

t
(n)
i

[
∫ u

ti

(v − ti)kdv](XMG
u −XMG

ti )dXMG
u

=
1

k + 1
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

Yti

∫ t
(n)
i+1

t
(n)
i

[(∆ti)k+1 − (u− ti)k+1](XMG
u −XMG

ti )dXMG
u

therefore,

< N >t=
1

(k + 1)2
1
h4

∑
t−h≤t(n)

i <t
(n)
i+1≤t

Y 2
ti

∫ t
(n)
i+1

t
(n)
i

[(∆ti)k+1 − (u− ti)k+1]
2

·(XMG
u −XMG

ti )
2
d < X >u

≤ 1
(k + 1)2

sup
u∈(0,t]

Y 2
u sup
u∈(0,t]

< X,X >′
u ·

1
h4

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[(∆ti)k+1

− (u− ti)k+1]2(XMG
u −XMG

ti )
2
du (6.2.5)
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Using similar approach as in Lt, we have

E
1
h4

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[(∆ti)k+1 − (u− ti)k+1]
2
(XMG

u −XMG
ti )

2
du

=
1
h4

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[(∆ti)k+1 − (u− ti)k+1]
2
E(XMG

u −XMG
ti )

2
du

≤ E sup
u∈(0,t]

< X,X >′
u

a

h4

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)2k+4

= o(
(∆t(n))2k+2

h2
)

under assumption A and C.1(X,X), where a is some constant. Thus Equation (6.2.5) has order

op(
(∆t

(n)
)2k+2

h2 ) by Markov’s inequality, under assumptions A, B.1(X,X), C.1(X,X) and continuity

of Y . And so Nt = op(
(∆t

(n)
)k+1

h ).

Hence,

|II3| ≤ 2ΥY (h)|Lt|+ 2|Nt| = op(
(∆t(n))k+1

h
) (6.2.6)

Therefore (i) follows from Equations (6.2.3), (6.2.4), and (6.2.6).

(ii) Using Itô’s Lemma,

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)(Zu − Zt(n)
i

)(u− ti)kYudu

=
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(< X,Z >u − < X,Z >ti)(u− ti)kYudu

+
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
∫ u

ti

(Xv −Xti)dZv](u− ti)kYudu

+
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
∫ u

ti

(Zv − Zti)dXv](u− ti)kYudu

then the results can be derived by using same argument as in part (i), under assumptions A,

B.1(XX)(ZZ)(XZ), C.1(XX)(ZZ), and B.3(X)(Z).
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Lemma 2 Suppose {Xt}, {Yt} and {Zt} are Itô processes. Also suppose Zt ∈ C1[0, T ]. Let each

Itô process be represented as the sum of its martingale part and drift part (i.e. Xt = XDR
t +XMG

t ,

Yt = Y DRt + YMG
t ). Subject to assumptions A, B.1[(X,X), (Y, Y )], B.3[(X)(Y )] and C.1(X,X),

the following holds, for any nonegative integer m:

(i)

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)(Zu − Zt(n)
i

)mdYu

=
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)(Zu − Zt(n)
i

)mdYMG
u + op(

(∆t(n))
m+1/2

h3/2
)

where

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)(Zu − Zt(n)
i

)dYMG
u = Op(

(∆t(n))
m+1/2

h3/2
)

(ii)

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆Z
t
(n)
i

)m
∫ t

(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)dYu

=
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆Z
t
(n)
i

)m
∫ t

(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)dYMG
u + op(

(∆t(n))
m+1/2

h3/2
)

where

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∆Z
t
(n)
i

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)dYMG
u = Op(

(∆t(n))
m+1/2

h3/2
)

�

Proof of Lemma 2:

(i) treat the martingale part and the drift part separately.

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)(Zu − Zt(n)
i

)mdYu
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=
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)(Zu − Zt(n)
i

)mdYMG
u ← I

+
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)(Zu − Zt(n)
i

)mdY DRu ← II

Write dZt = Z̃tdt, first we can obtain I = Op(
(∆t

(n)
)
m+1/2

h3/2 ) because of the following,

< I > =
1
h4

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)2(Zu − Zt(n)
i

)2md < YMG >u

≤ sup
u∈[0,t]

|< Y >′
u| sup

u∈[0,t]
{(Z̃u)

2m}

· 1
h4

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu −Xt(n)
i

)2(u− t(n)
i )2mdu

= Op(
(∆t(n))2m+1

h3
)

by Zu ∈ C1[0, t], assumption B.1(Y, Y ), and by Lemma 1(i) following assumptions A, B.1(X,X),

C.1(X,X), and B.3(X).

Next we consider the order of the drift part, II. Recall the notation dY DRu = Ỹudu and

dXDR
u = X̃udu. Applying Minkovski’s inequality, we get

|II| ≤ | 1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(XDR
u −XDR

t
(n)
i

)(Zu − Zt(n)
i

)mdY DRu |

+| 1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(XMG
u −XMG

t
(n)
i

)(Zu − Zt(n)
i

)mdY DRu |

≤ 1
m+ 2

sup
u∈[0,t]

|Ỹu| sup
u∈[0,t]

|Z̃u|
m

sup
u∈[0,t]

|X̃u|
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)m+2

+ sup
u∈[0,t]

|Ỹu| sup
u∈[0,t]

|Z̃u|
m 1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)m
∫ t

(n)
i+1

t
(n)
i

|XMG
u −XMG

t
(n)
i

|du (6.2.7)
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Now let

Gt =
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)m
∫ t

(n)
i+1

t
(n)
i

|XMG
u −XMG

t
(n)
i

|du,

by Fubini’s Theorem,

E|Gt| =
∑

t−h≤t(n)
i <t

(n)
i+1≤t

(∆ti)m

h2

∫ t
(n)
i+1

t
(n)
i

E|XMG
u −XMG

t
(n)
i

|du

≤ c

h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)m
∫ t

(n)
i+1

t
(n)
i

E(< XMG >u − < XMG >ti)
1/2
du (6.2.8)

≤ E
√

sup
u∈[0,t]

< XMG >′
u

c′

h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)m+3/2

≤
√
E sup
u∈[0,t]

< XMG >′
u

c′

h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)m+3/2 (6.2.9)

= O(
(∆t(n))

m+1/2

h
)

under assumptions A and C.1(X,X). Equation (6.2.8) follows from Burkholder’s inequality with

some constant c, Equation (6.2.9) follows from Jensen’s inequality. Then Gt = op(
(∆t

(n)
)m+1/2

h3/2 )

based on Markov’s inequality.

Therefore, Equation (6.2.7) is of order op(
(∆t

(n)
)m+1/2

h3/2 ) under the continuously differentiability

condition of Z, and the assumptions A, C.1(X,X), and B.3[(X)(Y )]. Hence the result follows,

given A, B.1[(X,X)(Y, Y )], C.1(X,X), and B.3[(X)(Y )].

(ii) Similar to (i).

Lemma 3 Suppose X, Y , and Z are Itô processes. Then under assumptions A and B.1[(X,X),

(X,Z)],

(i)
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[< X >u − < X >ti ](u− ti)kYudu

∼ 1
k + 2

∆t(k+1)

h
H(k+2)′(t) < X >′

t Yt
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(ii)
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[< X,Z >u − < X,Z >ti ](u− ti)kYudu

∼ 1
k + 2

∆t(k+1)

h
H(k+2)′(t) < X,Z >′

t Yt

�

Proof of Lemma 3:

(i) Let

H1
�
=

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
(< X >u − < X >ti)(u− ti)k

− < X >′
u (u− ti)k+1

]
Yudu

H2
�
=

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

[∫ t
(n)
i+1

t
(n)
i

< X >′
u (u− ti)k+1Yudu− < X >′

ti Yti
(∆ti)k+2

k + 2

]

H3
�
=

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(
< X >′

ti Yti− < X >
′
t Yt
) (∆ti)k+2

k + 2

Now we show that H1 = op(∆t
(k+1)

h ),H2 = op(∆t
(k+1)

h ),H3 = op(∆t
(k+1)

h ).

For ξ ∈ (ti, ti+1)

H1 =
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(< X >′
ξ − < X >′

u)(u− ti)k+1Yudu

≤ 1
k + 2

1
h2

ΥXX(h) sup
0≤u≤t

|Yu|
∑

t−h≤t(n)
i <t

(n)
i+1≤t

(∆ti)k+2

= op(
∆t(k+1)

h
)

under assumptions A and B.1(X,X) and the continuity of Y . Recall that

ΥXY (h) = sup
t−h≤u≤s≤t

|< X,Y >′
u − < X,Y >′

s| .

Again, Assumption B.1(X,Y ) implies ΥXY (h)→ 0.

H2 =
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(
< X >′

u Yu− < X >′
ti Yti

)︸ ︷︷ ︸
Vu−Vti

(u− ti)k+1du
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≤ 1
k + 2

ΥV (h)
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)k+2

= op(
∆t(k+1)

h
)

under Assumption A and B.1(X,X). Notice that ΥV (h) = op(1), because that Yt is continuous,

also < X >′
t is continuous by assumption B.1(X,X), thus Vt =< X >′

t Yt is continuous.

H3 =
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(
< X >′

ti Yti− < X >
′
t Yt
)︸ ︷︷ ︸

Vti−Vt

(∆ti)k+2

k + 2

≤ 1
k + 2

ΥV (h)
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)k+2

assumption A
= op(

∆t(k+1)

h
)

by assumption A and B.1(X,X). Therefore,

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[< X >u − < X >ti ](u− ti)kYudu

=
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

< X >′
t Yt

(∆ti)k+2

k + 2
+H1 +H2 +H3

assumption A∼ 1
k + 2

∆t(k+1)

h
H(k+2)′(t) < X >′

t Yt

(ii) follow from similar argument as part (i), with extra assumption B.1(X,Z).

Corollary 2 Suppose X, Y , Z, V are Itô processes, Let

H
(2)
n,<X,Y >,<Z,V >(t) =

1

∆t(n)

∑
t
(n)
i+1≤t

∆ < X,Y >
t
(n)
i

∆ < Z, V >
t
(n)
i

Then under assumptions A and B.1[(X,Y), (Z,V)],

(i) H
(2)
n,<X,Y >,<Z,V >(t)−H(2)

n,<X,Y >,<Z,V >(t− h)

=
1

∆t(n)
< X,Y >′

t< Z, V >
′
t

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆t(n)
i )2 + op(h)

(ii) H
(2)′

<X,Y >,<Z,V >(t) exists, and H(2)′

<X,Y >,<Z,V >(t) = H(2)′(t) < X,Y >′
t< Z, V >

′
t
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�

Proof of Corollary 2:

(i)

H
(2)
n,<X,Y >,<Z,V >(t)−H(2)

n,<X,Y >,<Z,V >(t− h)

=
1

∆t(n)
< X,Y >′

t< Z, V >
′
t

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)2

+
1

∆t(n)

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∆ < X,Y >ti
[
∆ < Z, V >ti − < Z, V >′

t (∆ti)
]

+
1

∆t(n)
< Z, V >′

t

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)
[
∆ < X,Y >ti − < X,Y >′

t (∆ti)
]

≤ 1

∆t(n)
< X,Y >′

t< Z, V >
′
t

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)2

+
1

∆t(n)
sup
u∈(0,t]

< X,Y >′
u ΥZV (h)

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)2

+
1

∆t(n)
< Z, V >′

t Υ
XY (h)

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)2

=
1

∆t(n)
< X,Y >′

t< Z, V >
′
t

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆ti)2 + op(h)

under assumptions A and B.1[(X,Y ), (Z, V )].

(ii) follows from assumption A directly.

6.3 Proof of theorems and corollary

Proof of Theorem 1:

(a)

̂< X,Y >
′
t− < X,Y >′

t
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=
1
h


 ∑
t−h≤t(n)

i <t
(n)
i+1≤t

∆X
t
(n)
i

·∆Y
t
(n)
i


− < X,Y >′

t

=
1
h
(< X,Y >t − < X,Y >t−h

+ [2]
∑

t−h≤t(n)
i <t

(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs −Xt(n)
i

)dYs)− < X,Y >′
t

=
1
h
(< X,Y >t − < X,Y >t−h)− < X,Y >′

t︸ ︷︷ ︸
BXY

1,t

+
[2]
h

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs −Xt(n)
i

)dYs

︸ ︷︷ ︸
BXY

2,t

where the second equality follows from Itô’s Lemma. We begin by considering the order of the

BXY2,t . By Lemma 2 (ii) under assumptions A, B.1[(XX), (Y Y )], C.1(XX) and B.3[(X), (Y )],

BXY2,t = Op(
√

∆t
(n)

h ). We next consider the order of BXY1,t in the following.

Suppose we decompose < X,Y >′
t into a martingale part (RXYt ) and a drift part (DXY

t ) which

is differentiable with respect to t, then,

BXY1,t =
1
h

∫ t

t−h
< X,Y >′

u du− < X,Y >′
t

=
1
h

∫ t

t−h
(< X,Y >′

u − < X,Y >′
t)du

=
1
h

∫ t

t−h
((t− h)− u)d < X, Y >′

u (integration by parts)

=
1
h

∫ t

t−h
((t− h)− u)dRXYu︸ ︷︷ ︸

BXY,MG
1,t

+
1
h

∫ t

t−h
((t− h)− u)dDXY

u︸ ︷︷ ︸
BXY,DR

1,t

As shown, we refer to the first term as BXY,MG
1,t -the martingale part of BXY1,t , and the second

term as BXY,DR1,t -the drift part of BXY1,t . Note that, naturally, BXY,DR1,t = Op(h) under assumption

B.2(X,Y ).

< BXY,MG
1 , BZV,MG

1 >t =
1
h2

∫ t

t−h
(t− h− u)2d < RXY , RZV >u

=
1
3
h < RXY , RZV >′

t +op(h) (6.1)
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Note that op(h) is from the following

1
h2

∫ t

t−h
(t− h− u)2(< RXY , RZV >′

t − < RXY , RZV >′
u)du

≤ h

3
ΥRXY ,RZV

(h) = op(h)

by assumption B.1(RXY , RZV ). Hence BXY,MG
1 = Op(

√
h) by B.1(RXY , RXY ). Since BXY,DR1,t =

Op(h), it follows that BXY1,t = Op(
√
h)

(b) Equate Op(
√
h) = Op(

√
∆t

(n)

h ), it follows that Op(h) = Op(
√

∆t(n)).

(c) The asymptotic distribution of BXY1,t follows from (6.1) in (a) by Theorems A.2 or A.3 in

Appendix 6.1, depending on assumption E. Now we consider the order of BXY2,t .

BXY2,t =
[2]
h

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs −Xt(n)
i

)dYMG
s

︸ ︷︷ ︸
BXY,MG

2,t

+
[2]
h

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs −Xt(n)
i

)dY DRs

︸ ︷︷ ︸
BXY,DR

2,t

and then

< BXY,MG
2 , BZV,MG

2 >t

=
[2]
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs −Xt(n)
i

)(Zs − Zt(n)
i

)d < YMG, VMG >s

+
[2]
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs −Xt(n)
i

)(Vs − Vt(n)
i

)d < YMG, ZMG >s

∼ ∆t(n)

h
[H(2)′

<X,Z>,<Y,V >(t) +H(2)′

<X,V >,<Y,Z>(t)] + op(
∆t(n)

h
)

by Lemma 1, Lemma 3 and Corollary 2.

In particular, < BXY2 , BXY2 >t= ∆t
(n)

h [H(2)′

<X,X>,<Y,Y >(t)+H(2)′

<X,Y >,<X,Y >(t)] in the limit. Hence

the asymptotic distribution of BXY2 follows from Theorems A.1 - A.3 in Appendix 6.1.
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(d) We here will show < BXY1 , BXY2 >t= Op(∆t
(n)

√
h

)

< BZV,MG
1 , BXY,MG

2 >t

= <
1
h

∫ t

t−h
((t− h)− s)dRZVs ,

[2]
h

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(XMG
s −XMG

t
(n)
i

)dYMG
s >

=
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(XMG
s −XMG

t
(n)
i

)((t− h)− s)d < RZV , YMG >s

+
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(YMG
s − YMG

t
(n)
i

)((t− h)− s)d < RZV , XMG >s

Now suffice to consider one of the above two terms, we will examine the first one. Let dGs =

[s− (t− h)]d < RZV , YMG >s, integration by parts yields,

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(XMG
s −XMG

t
(n)
i

)((t− h)− s)d < RZV , YMG >s

= − 1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(XMG
s −XMG

t
(n)
i

)dGu

= − 1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆XMG
ti )(∆Gti) +

1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

GsdX
MG
s

= − 1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆XMG
ti )[

∫ t
(n)
i+1

t
(n)
i

(u− (t− h))d < RZV , YMG >u]

︸ ︷︷ ︸
I

+
1
h2

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
∫ s

ti

(u− (t− h))d < RZV , YMG >u]dXMG
s

︸ ︷︷ ︸
II

= Op(
∆t(n)

√
h

)

because

I ≤ 1
h2

√√√√√ ∑
t−h≤t(n)

i <t
(n)
i+1≤t

(∆XMG
ti

)2 ·
∑
t
(n)
i+1≤t

[
∫ t

(n)
i+1

t
(n)
i

(u− (t− h))d < RZV , YMG >u]2
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≤ sup
0≤u≤t

< RZV , YMG >u
′ 1
h2

√
[XMG]t − [XMG]t−h

√√√√ ∑
t
(n)
i+1≤t

h2(∆ti)2

= Op(
√

∆t√
h

)

< II >=
1
h4

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
∫ s

ti

(u− (t− h))d < RZV , YMG >u]
2

d < XMG >s

≤ ( sup
0≤u≤t

< RZV , YMG >′
u)

2
sup

0≤u≤t
< XMG >′

u

· 1
h4

∑
t−h≤t(n)

i <t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
∫ s

ti

(u− (t− h))du]
2

ds

= ( sup
0≤u≤t

< RZV , YMG >′
u)

2
sup

0≤u≤t
< XMG >′

u

· 1
h4

∑
t−h≤t(n)

i <t
(n)
i+1≤t

{ 1
20

(∆ti)5 +
1
4
(∆ti)4[ti − (t− h)] + 1

3
(∆ti)3[ti − (t− h)]2}

≤ ( sup
0≤u≤t

< RZV , YMG >′
u)

2
sup

0≤u≤t
< XMG >′

u

·
∑

t−h≤t(n)
i <t

(n)
i+1≤t

{(∆ti)
5

20h4
+

(∆ti)4

4h3
+

(∆ti)3

3h2
}

Assumption A∼ ( sup
0≤u≤t

< RZV , YMG >′
u)

2
sup

0≤u≤t
< XMG >′

u

·{(∆t
(n))

4

20h3
H(5)′(t) +

(∆t(n))
3

4h2
H(4)′(t) +

(∆t(n))
2

3h2
H(3)′(t)}

= Op(
(∆t(n))

2

h
)

by assumption B.1[RZV , Y ), (X,X)], and the order selection of h2 = O(∆t(n)).

The independence for t �= t′ follows by the same methods as in Theorem A.1 and A.3.

Proof of Corollary 1:

The result follows directly from Theorem 1.

Proof of Theorem 2:
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By Taylor expansion on 1

<̂S,S>
and result in Theorem 1 (a),

ρ̂t − ρt =
̂< Ξ, S >

′
t

̂< S, S >
′
t

− < Ξ, S >′
t

< S, S >′
t

=
1

< S, S >′
t

[ ̂< Ξ, S >
′
t− < Ξ, S >′

t]−
ρt

< S, S >′
t

[ ̂< S, S >
′
t− < S, S >′

t] + op(
√
h)

=
1

< S, S >′
t

[BΞS
1 − ρtBSS1 ] +

1
< S, S >′

t

[BΞS
2 − ρtBSS2 ] + op(

√
h) (6.2)

From Theorem 1, we also know that asymptotically,

h−1/2




BΞS
1,t

BSS1,t

BΞS
2,t

BSS2,t




L−→ N(0,M3)

where

M3 =




1
3


 < RΞS >′

t < RΞS , RSS >′
t

< RΞS , RSS >′
t < RSS >′

t


 0

0 cH(2)′(t)


 < Ξ >′

t< S >
′
t +(< Ξ, S >′

t)2 2 < Ξ, S >′
t< S >

′
t

2 < Ξ, S >′
t< S >

′
t 2(< S >′

t)2







Straightforward calculation following (6.2) and M3 gives,

Vρ̂t−ρt =
1

3(< S >′
t)2

[< RΞS >′
t +ρ

2
t < R

SS >′
t −2ρt < RΞS , RSS >′

t]

+
H(2)′(t)

(< S >′
t)2

∆t(n)

h2
[< Ξ >′

t< S >
′
t +(< Ξ, S >′

t)
2 + 2ρ2(< S >′

t)
2

− 4ρt < Ξ, S >′
t< S >

′
t]

=
1
3
< ρ >′

t +(
1

< S >′
t

)2H(2)′(t)
∆t(n)

h2
[< Ξ >′

t< S >
′
t −(< Ξ, S >′

t)
2]

=
1
3
< ρ >′

t +cH
(2)′(t)[

< Ξ >′
t

< S >′
t

− ρ2t ]

Notice that we use < X > to represent < X,X > for simplicity, where X can be any process.
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