
A Tale of Two Time Scales:

Determining integrated volatility with noisy high-frequency data ∗

Lan Zhang, Per A. Mykland, and Yacine Äıt-Sahalia
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Abstract

It is a common financial practice to estimate volatility from the sum of frequently-sampled
squared returns. However market microstructure poses challenge to this estimation approach,
as evidenced by recent empirical studies in finance. This work attempts to lay out theoretical
grounds that reconcile continuous-time modeling and discrete-time samples. We propose an
estimation approach that takes advantage of the rich sources in tick-by-tick data while preserving
the continuous-time assumption on the underlying returns. Under our framework, it becomes
clear why and where the “usual” volatility estimator fails when the returns are sampled at the
highest frequency.
KEY WORDS: Measurement error; Subsampling; Market Microstructure; Martingale; Bias-
correction; Realized volatility.

1 INTRODUCTION

In the analysis of high frequency financial data, a major problem concerns the nonparametric
determination of the volatility of an asset return process. A common practice is to estimate volatility
from the sum of the frequently-sampled squared returns. Though this approach is justified under
the assumption of a continuous stochastic model, it meets the challenge from market microstructure
in real applications. We argue that this customary way of estimating volatility is flawed in that
it overlooks observation error. The usual mechanism for dealing with the problem is to throw
away some data. We here propose a statistically sounder device. Our device is model-free, it takes
advantage of the rich sources in tick-by-tick data, and to a great extend it corrects the effect of the
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microstructure on volatility estimation. In the course of constructing our volatility estimator, it
becomes clear why and where the “usual” volatility estimator fails when the returns are sampled
at the highest frequency.

Our interest is about using high frequency intra-day data to estimate the integrated volatility
over some time periods. To fix the idea, let {St} denote the price process of a security, suppose the
return process {Xt}, where Xt = log St, follows an Ito process

Xt = µtdt + σtdBt (1)

where Bt is a standard Brownian motion. The standard model for the volatility σ2
t of a security

price process is to take σ2 to be the instantaneous variance (or squared diffusion coefficient) of the
return process {Xt}. The parameter of our interest is the integrated (cumulative) volatility over

one or successive time periods,
∫ T1

0 σ2
t dt ,

∫ T2

T1
σ2

t dt · · · . A natural way to estimate the cumulative
volatility, say, a single time interval from 0 to T , is to use the the sum of squared incremental
returns,

∑

ti

(Xti+1 − Xti)
2 ≈

∫ T

0
σ2

t dt, (2)

where the Xti ’s are all the observations of the return process in the time interval from 0 to T . The
estimator

∑

ti
(Xti+1 − Xti)

2 is so commonly used that it is broadly referred to as the “realized
volatility”.

For a sample of the recent literature in integrated volatility, see Hull and White (1987), Jacod
and Protter (1998), Gallant, Hsu and Tauchen (1999), Chernov and Ghysels (2000), Gloter (2000),
Andersen, Bollerslev, Diebold, and Labys (2001), Barndorff-Nielsen and Shephard (2001), Mykland
and Zhang (2002) and others.

Under model (1), the approximation in (2) is justified by the theoretical results in stochastic
process which states

plim
∑

ti

(Xti+1 − Xti)
2 =

∫ T

0
σ2

t dt. (3)

In other words, as the sampling frequency increases, the estimation error of the realized volatility
diminishes. According to (3), realized volatility computed from the highest frequency data ought

to provide the best possible estimate for
∫ T
0 σ2

t dt the integrated volatility. However, this is not the
general viewpoint from the finance literature.

It is generally held that the returns process Xt should not be sampled too often, regardless of
the fact that the asset prices can often be observed with extremely high frequency, such as several
times per second. It has been found empirically that the estimator is not robust when the sampling
interval is quite small. Issues including bigger bias in the estimate and non-robustness to changes
in sampling interval have been reported (Brown (1990), Campbell, Lo and MacKinlay (1997),
Figlewski (1997), Bai, Russell and Tiao (2000), Andersen et al (2001)). The main explanation for
this phenomenon is the so-called “market microstructure”, in particular bid-ask spread. When the
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prices are sampled at finer intervals, the microstructure becomes more pronounced. It is suggested
that the bias induced by the market microstructure make the most finely sampled data unusable
for the calculation, and authors prefer to sample over longer time horizon to obtain reasonable
estimates (Figlewski (1997), Andersen et al (2001)).

This approach to handling the data poses a conundrum from the statistical point of view. We
argue that sampling over longer horizon merely reduces the impact of microstructure, rather than
quantifying and correcting the effect from the microstructure for volatility estimation. And it goes
against the grain to throw away data. On the other hand, market microstructure may pose so
many problems that subsampling is the only way out.

In this paper we develop a method to estimate integrated volatility in a way which lessens this
conflict. Our contention in the following is that the contamination due to market microstructure is,
to first order, the same as what statisticians usually call “observation error”. We shall incorporate
the observation error into the estimating procedure for integrated volatility. In other words, we
shall suppose that the return process as observed at the sampling times is of the form log Sti = Yti

where

Yti = Xti + εti . (4)

Here Xt is a latent “true return” process, and the εtis is independent noise around the true return.
A similar structure was used in a parametric context by Gloter (2000) and Aït-Sahalia and Mykland
(2003).

We show in Section 2.2 that, if the data have a structure of the form (4), this would have a
devastating effect on the use of the “realized volatility”. Instead of (2), one gets

∑

ti,ti+1∈[0,T ]

(Yti+1 − Yti)
2 = 2nV ar(ε) + Op(n

1/2) (5)

where the errors εti ’s are iid with mean 0, and n is the number of sampling intervals over [0, T ].

The results from equation (5) suggest that the realized volatility no longer estimates the true
integrated volatility, but rather the variance of the contamination noise. In fact, the true integrated
volatility, which is Op(1), is even dwarfed by the magnitude of the asymptotically Gaussian Op(n

1/2)
term in (5). See Section 2 for details.

Of course, the model (4) may also not be correct. When made the basis of inference, it could still
occur that one does not wish to sample as frequently as the data would permit. It may, however,
make it possible to use substantially larger amounts of data that what would be possible under
(2). Also, any subsampling based scheme can be made to incorporate all the data by the same
construction as in Section 3 below.

In seeking to create an inference procedure under measurement error, we have sought to draw
some lessons from the empirical practice that one should not use all the data, while at the same
time not violating basic statistical principles. Our procedure estimates parameters at two different
frequencies of sampling, and then by cancellation removes the effect of the εs to the required order.
We show in Section 4 that this leads to a variance-variance trade-off between the effect in (5) and
an effect due to the sampling frequencies.
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The theory, including also asymptotic distributions, is developed in Section 2-4 for the case of
one time period [0, T ]. The multi-period problem is treated in Section 5. Section 6 discusses how
to estimate the asymptotic variance for equidistant sampling. A procedure for unequidistant case
is being developed in a forthcoming paper, Zhang and Mykland (2003). And Section 7 discusses
what to do if one really wants to use the customary realized volatility.

2 ANALYSIS OF THE “REALIZED VOLATILITY”

2.1 Set-up

To spell out the model above, we let Y be the logarithm of the price of an asset, observed at times
0 = t0, t1, · · · , tn = T . We assume that at these times, Y is related to a latent true price X (also
in logarithm scale) through equation (4). The latent price X is then given in (1). The noise εti

satisfies the following assumption,

εti i.i.d. with Eεti = 0, and V ar(εti) = ν. Also ε ⊥⊥ X process (6)

where ⊥⊥ denotes independence between two random quantities. Our modeling as in (4) does not
require that εt exists for every t, in other words, our interest in the noise is only at the observation
times ti’s.

For the moment, we focus on determining the integrated volatility of X for the entire time
period [0, T ]. This is also known as the continuous quadratic variation < X,X > of X. In other
words,

< X,X >T =

∫ T

0
σ2

t dt (7)

To describe succinctly the realized volatility, we use the notion of observed quadratic variation
[·, ·] . Given the grid G = {t0, ..., tn}, the observed quadratic variation for a generic process Z is

[Z,Z]t =
∑

ti+1≤t

(∆Zti)
2 (8)

where ∆Zti = Zti+1 − Zti . We shall later have occasion to vary the grid G. Quadratic covariations
are similarly defined. See Karatzas and Shreve (1991) for more details on quadratic variations.

Our interest is to assess how well the realized volatility, [Y, Y ]T , approximates the integrated
volatility < X,X >T of the true returns process. In our asymptotic considerations, we shall always
assume that the number of observations in [0, T ] goes to infinity, and also that the maximum
distance in time between two observations goes to zero:

max
i

∆ti → 0 as n → ∞ (9)
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2.2 The Realized Volatility: An Estimator of the Spread of the Noise?

Under the additive model Yti = Xti + εti , the realized volatility based on the observed returns Yti

now has the form

[Y, Y ]T = [X,X]T + 2[X, ε]T + [ε, ε]T .

This gives the conditional mean and variance of [Y, Y ]T , given the process of latent true prices X.
As derived in the Appendix,

E([Y, Y ]T | X process) = [X,X]T + 2nν, (10)

under assumption (6) and the definition of [·, ·] in (8). Similarly,

V ar([Y, Y ]T | X process) = 4nEε4 + Op(1), (11)

subject to condition (6) and Eε4
ti < ∞, for all i. The exact expression for the variance is given in

the Appendix A.1.

Following the discussion in Appendix A.2, it is also the case that as n → ∞, the distribution of
n−1/2([Y, Y ]T −2nν) becomes normal conditionally on the X process, with the mean 0 and variance
4Eε4.

Equations (10) and (11) suggest that in a discrete-time world, realized volatility [Y, Y ]T is not a
reliable estimator for the true variation [X,X]T of the returns. For large n, realized volatility could
have little to do with the true returns. As seen in (10), [Y, Y ]T has a positive bias whose magnitude
increases linearly with the sample size n. If one really wants to live with this bias – which we do
not recommend – and use the customary realized volatility as a measure of variation, the above
provides theoretical evidence for not sampling too often. See also Section 7.

Interestingly, apart from revealing the biased nature of [Y, Y ]T in the high frequency setup, our
analysis also delivers an estimator for the spread of the noise term. In other words, the realized
volatility [Y, Y ]T yields a consistent and asymptotically normal estimator of noise spread ν, namely
ν̂ = 1

2n [Y, Y ]T . We have, for a fixed true return process X,

n1/2(ν̂ − ν) → N(0, Eε4), as n → ∞, (12)

cf. Theorem A.1 in the Appendix.

3 SAMPLING SPARSELY WHILE USING ALL THE DATA:

ANALYSIS IN THE MULTIPLE GRID CASE

3.1 Multiple Grids and Sufficiency

We have argued in the previous section that one can indeed benefit from using infrequent data
(see also Section 7). And yet, one of the most basic lessons of statistics is that one should not do
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this. We here present two ways of tackling the problem. Both are based on selecting a number
of subgrids of the original G = {t0, ..., tn}, and then averaging the estimators derived from the
subgrids. The principle is that to the extent that there is a benefit to subsampling, this benefit
can now be retained, while the variation of the estimator can be lessened by the averaging. The
benefit of the averaging is clear from sufficiency considerations, and many statisticians would say
that subsampling without subsequent averaging is inferentially incorrect.

In the following, we first introduce a set of notations, and then move to studying the realized
volatility in the multi-grid context. In Section 4, we show how to explicitly estimate the model (4)
by using a combination of the single grid G and the multiple grids.

3.2 Notation for the Multiple Grids

We specifically suppose that the total grid G, G = {t0, ..., tn} as before, is partitioned into K
non-overlapping subgrids G(k), k = 1, ...,K, in other words,

G = ∪K
k=1G(k) where G(k) ∩ G(l) = ∅ when k 6= l.

For most purposes, the natural way to select the k’th subgrid G (k) is to start with tk−1 and then
pick every Kth sample point after that, until T . That is to say that

G(k) = (tk−1, tk−1+K , tk−1+2K , · · · , tk−1+nkK) (13)

for k = 1, · · · ,K, and nk is the integer making tk−1+nkK the last element in G(k). We shall refer to
this as regular allocation of sample points to subgrids.

Whether the allocation is regular or not, we let nk be such that subgrid G(k) has nk+1 elements.
As before, the number of elements in the total grid G is n + 1.

More general schemes for allocating sample points to grids can also be used, subject to the
restrictions in Theorem A.1 in Appendix A.2.

The realized volatility based on all observation points G, so far denoted [Y, Y ]T , will now for

clarity be written as [Y, Y ]
(all)
T . Meanwhile, if one uses only the subsampled observations Yt, t ∈ G(k),

the realized volatility will be denoted as [Y, Y ]
(k)
T , with the form of

[Y, Y ]
(k)
T =

∑

tj ,tj,+∈G(k)

(Ytj,+ − Ytj )
2.

By definition, if ti ∈ G(k), then ti,− and ti,+ are, respectively, the previous and next element in
G(k).

A natural competitor to [Y, Y ]
(all)
T is then given by

[Y, Y ]
(·)
T =

1

K

K∑

k=1

[Y, Y ]
(k)
T , (14)
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and this is the statistic we analyze in the following.

As before, we fix T and use only the observations within the time period [0, T ]. Asymptotics
will still be under (9) and under (15) below,

as n → ∞, n/K → ∞. (15)

In general, the nk need not be the same across k. We define

n̄ =
1

K

K∑

k=1

nk =
n − K + 1

K
. (16)

3.3 Error Due to the Noise ε

Recall that we are interested in determining the integrated volatility < X,X >T , or quadratic
variation, of the true returns. As an intermediate step, we study in this subsection how well the

“pooled” realized volatility [Y, Y ]
(·)
T approximates [X,X]

(·)
T , where the latter is the “pooled” true

integrated volatility when X is considered only at discrete time scale. [X,X] has a form as defined
in equation (8).

From (10) and (14),

E([Y, Y ]
(·)
T | X process) = [X,X]

(·)
T + 2n̄ν. (17)

Also, since {εt, t ∈ G(k)} are independent for different k,

V ar([Y, Y ]
(·)
T | X process) =

1

K2

K∑

k=1

V ar([Y, Y ]
(k)
T |X process)

=
1

K2

K∑

k=1

nk4Eε4 + Remainder,

= 4
n̄

K
Eε4 + Op(

1

K
) (18)

in the same way as in (11). The order of the remainder follows as in the single grid case, cf. (A.3)
in the Appendix.

By Theorem A.1 in Appendix A.2, the conditional asymptotics of the estimator [Y, Y ]
(·)
T is as

follows

Theorem 1. Suppose X is an Ito process of form (1). Suppose Y is related to X through model
(4), and that (6) is satisfied with Eε4 < ∞. Also suppose that ti and ti+1 is not in the same subgrid
for any i. Under assumption (15), as n → ∞

√

K

n̄
([Y, Y ]

(·)
T − [X,X]

(·)
T − 2νn̄)

L−→ 2
√

Eε4Z(·)
ε , (19)

conditional on the X process, where Z
(·)
ε is standard normal.
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This can be compared with the earlier result which is stated below in equation (49) in Section

7. Notice that Z
(·)
ε in (19) is almost never the same as Zε in (49), in particular, Cov(Zε, Z

(·)
ε ) =

V ar(ε2)/Eε4, based on the proof in Theorem A.1 in the Appendix.

In comparison to the realized volatility using full grid G, the aggregated estimator [Y, Y ]
(·)
T

provides an improvement in that both the asymptotic bias and variance are of smaller order of n.
Cf. equations (10) and (11) in the preceding section. We shall use this in Section 4, and also in
Section 7 below.

3.4 Error Due to the Discretization Effect: [X, X]
(·)
T − < X, X >T

In this subsection, we study the impact of the time discretization. In other words, we investigate

the deviation of [X,X]
(·)
T from the integrated volatility < X,X >T of the true process. Denote the

discretization effect as DT , where

Dt = [X,X]
(·)
t − < X,X >t

=
1

K

K∑

k=1

([X,X]
(k)
t − < X,X >t ) (20)

with
[X,X]

(k)
t =

∑

ti∈G(k):ti,+≤t

(Xti ,+ − Xti)
2 (21)

We consider in the following the asymptotics of DT . The problem is similar to that of finding the

limit of [X,X]
(all)
T − < X,X >T , cf. equation (50) below. This current case, however, is more

complicated due to the multiple grids.

We suppose in the following that the sampling points are allocated to subgrids as described by
equation (A.20) in Appendix A.3. In particular, this covers the regular allocation, as defined in
Section 3.2. We also assume that

max
i

|∆ti| = O(
1

n
). (22)

Define the weight function

hi =
8n

TK3

K∑

l=1

[ti − t
(l)
i +

1

2
∆ti][{#k : t

(k)
i > t

(l)
i } +

1

2
] (23)

In the case where the ti are equidistant, and under regular allocation of points to subgrids, ∆ti = ∆t,
and so all the hi are equal, and

hi =
2

∆tK3
∆t(1 + 32 + ... + (2K − 1)2) =

2K(2K − 1)(2K + 1)

3K3
=

8

3
+ o(1). (24)

More generally, assumptions (22) and (A.20) assure that

sup
i

hi = O(1). (25)
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We take < D,D >T to be the quadratic variation of Dt when viewed as a continuous time
process (20). This gives the best approximation to the variance of DT .

We show the following results in Appendix A.3.

Theorem 2. Suppose X is an Ito process of the form (1), with drift coefficient µt and diffusion
coefficient σt, both continuous almost surely. Assume (22) and (A.20). Then the quadratic variation
of DT is approximately

< D,D >T =
TK

n
η2

n + op(
K

n
) (26)

where
η2

n =
∑

i

hi(< X,X >′
ti)

2∆ti. (27)

In particular, DT = Op((K/n)1/2). From this, we shall derive a variance-variance trade-off
between the two effects that have been discussed – noise and discretization.

First, however, we discuss the asymptotic law of DT . Stable convergence is discussed at the
end of this section.

Theorem 3. Assume the conditions of Theorem 2, and also that

η2
n

P−→ η2 (28)

Also assume Condition E in Appendix A.3. Then

DT /(K/n)1/2 L−→ ηZ, (29)

where Z is standard normal, and independent of the data. The convergence in law is stable.

In other words, DT /(K/n)1/2 can be taken to be asymptotically mixed normal “N(0, η2).”

For most of our discussion, it is most convenient to suppose (28), and this is satisfied in many
cases. For example, when the ti are equidistant, and under regular allocation of points to subgrids,

η2 =
8

3

∫ T

0
σ4

t dt, (30)

following (24). One does not need to rely on (28); we argue in Section A.3 that without this

condition, one can take DT /(K/n)1/2 to be approximately N(0, η2
n).

For estimation of η2 or η2
n, see Section 6.

Finally, stable convergence (Renyi (1963), Aldous and Eagleson (1978), Chapter 3 of Hall and
Heyde (1980)) means for our purposes that the left hand side of (29) converges to the right hand
side jointly with the X process, and that Z is independent of X. This is slightly weaker than
convergence conditional on X, but serves the same function of permitting the incorporation of
conditionality-type phenomena into arguments and conclusions, cf. the following sections.
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3.5 Combining the Two Sources of Error

One can combine the error term from discretization and that from the observation noise. It follows
from Theorems 1 and 3 that

[Y, Y ]
(·)
T − < X,X >T −2νn̄

L≈ ξZtotal, (31)

where Ztotal is a standard normal random variable independent of the X process, and

ξ2 = 4
n̄

K
Eε4 +

T

n̄
η2. (32)

Here, the symbol “
L≈” means that when multiplied by a suitable factor, the convergence is in law

(and stable, by the preceeding results). Cf. also the proof of Theorem 4 in the next section.

It is easily seen that if one takes K = cn2/3, both components in ξ2 will be present in the limit,
otherwise one of them will dominate.

Based on (31), [Y, Y ]
(·)
T is yet a biased estimator of the quadratic variation < X,X >T of the

true return process. In particular, the bias 2νn̄ still increases with the number of the sub-samples.

One can recognize that, as far as the asymptotic bias is concerned, [Y, Y ]
(·)
T is a better estimator

than [Y, Y ]
(all)
T , since n̄ ≤ n, suggesting that the bias in the subsampled estimator [Y, Y ]

(·)
T increases

in a slower pace than the full-sampled estimator. One can also construct a bias-adjusted estimator
from (31), and this further development would involve the higher order analysis between the bias
and the subsampled estimator. We show the methodology of bias correction in Section 4.

4 ESTIMATION FOR THE MODEL WITH MEASUREMENT

ERROR: COMBINING TWO SAMPLING FREQUENCIES

4.1 The Estimator: Main Result

In previous sections, we have seen that the multigrid estimator [Y, Y ](·) is yet another biased
estimator of the true integrated volatility < X,X >. In this section we improve the multigrid
estimator by adopting bias adjustment.

To access the bias, one utilizes the full grid. As mentioned from equation (12) in single-grid
case (Section 2), ν can be consistently approximated by ν̂,

ν̂ =
1

2n
[Y, Y ]

(all)
T . (33)

Hence the bias of [Y, Y ](·) can be consistently estimated by 2n̄ν̂. A bias-adjusted estimator for
< X,X > can thus be obtained by

̂< X,X >T = [Y, Y ]
(·)
T − 2ν̂n̄. (34)
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To study the asymptotic behavior of ̂< X,X >T , note first that under the conditions of Theorem
A.1 in Appendix A.2

(
K

n̄

)1/2 (
̂< X,X >T − [X,X]

(·)
T

)

=

(
K

n̄

)1/2 (

[Y, Y ]
(·)
T − [X,X]

(·)
T − 2νn̄

)

− 2(Kn̄)1/2(ν̂ − ν)
L−→ N(0, 8ν2), (35)

where the convergence in law is conditional on X.

We can now combine this with the results of Section 3.4 to determine the optimal choice of K
as n → ∞:

̂< X,X >T− < X,X >T = ( ̂< X,X >T − [X,X]
(·)
T ) + ([X,X]

(·)
T − < X,X >T )

= Op

(

n̄1/2

K1/2

)

+ Op

(

n̄−1/2
)

. (36)

The error is minimized by equating the two terms on the right hand side of (36), yielding that the

optimal sampling step for [Y, Y ]
(·)
T is K = O(n2/3). The right hand side of (36) then has order

Op(n
−1/6).

In particular, if we take
K = cn2/3, (37)

we find the limit in (36), as follows.

Theorem 4. Suppose X is an Ito process of form (1), and assume the conditions of Theorem 3 in
Section 3.4. Suppose Y is related to X through model (4), and that (6) is satisfied with Eε2 < ∞.
Also suppose that ti and ti+1 is not in the same subgrid for any i. Under assumption (37),

n1/6
(

̂< X,X >T− < X,X >T

) L−→ N(0, 8c−2ν2) + η
√

TN(0, c)

=
(
8c−2ν2 + cη2T

)1/2
N(0, 1), (38)

where the convergence is stable in law (see Section 3.4).

Proof of Theorem 4. Note that the first normal distribution comes from equation (35) and
the second from Theorem 3 in Section 3.4. The two normal distributions are independent since
the convergence of the first term in (36) is conditional of the X process, which is why they can
be amalgamated as stated. The requirement that Eε4 < ∞ (Theorem A.1 in the appendix) is not

needed since only a law of large number is required for M
(1)
T (see the proof of that theorem) when

considering the difference in (35) above. This finishes the proof.

The estimation of the asymptotic spread s2 = 8c−2ν2 + cη2T of ̂< X,X >T is deferred to
Section 6. Also, note that, by Theorem A.1 and the same methods as in Appendix A.2, a consistent
estimator of the asymptotic variance of ν̂ is given by

1

2

1

n

∑

i

(∆Yti)
4 − 3ν̂2. (39)
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4.2 Properties of ̂< X, X >T : Optimal Sampling, and Bias Adjustment

To further pin down the optimal sampling frequency K one can minimize the expected asymptotic
variance in (38) to obtain

c = (
16ν2

TEη2
)
1/3

(40)

which can be consistently estimated from data in past time periods (before time t0 = 0), using
ν̂ and an estimator of η2, cf. Section 6. As mentioned in Section 3.4, η2 can be taken to be
independent of K so long as one allocates sampling points to grids regularly, as defined in Section
3.2. Hence one can choose c, and so also K, based on past data.

Example 1. If σ2
t is constant, and for equidistant sampling and regular allocation to grids, η2 =

8
3σ4T , and the asymptotic variance in equation (38) is

8c−2ν2 + cη2T = 8c−2ν2 +
8

3
cσ4T 2

and the optimal choice of c becomes

copt = (
6ν2

T 2σ4
)
1/3

. (41)

In this case, the asymptotic variance is

4(6ν2)
1/3

(σ2T )
4/3

.

One can also, of course, estimate c to minimize the actual asymptotic variance in (38) from data
in the current time period (0 ≤ t ≤ T ). It is beyond the scope of this paper to consider whether
such a device of selecting frequency has any impact on our asymptotic results.

In addition to large sample arguments, one can study ̂< X,X >T from a “smallish” sample
point of view. We argue in the following that one can apply a bias type adjustment to get

̂< X,X >
(adj)

T =
(

1 − n̄

n

)−1
̂< X,X >T . (42)

The difference from the estimator in (34) is of order Op(n̄/n) = Op(K
−1), and thus the two

estimators behave the same to the asymptotic order that we consider. The estimator (42), however,
has the appeal of being, in a certain way, “unbiased”, as follows. Consider all estimators of the
form

̂< X,X >
(adj)

T = a[Y, Y ]
(·)
T − 2bν̂n̄,

then, from (10) and (17),

E( ̂< X,X >
(adj)

T |X process) = a([X,X]
(·)
T + 2n̄ν) − b

n̄

n
([X,X]

(all)
T + 2nν)

= a[X,X]
(·)
T − b

n̄

n
[X,X]

(all)
T + 2(a − b)n̄ν.
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It is natural to choose a = b to completely remove the effect of ν. Also, following Section 3.4,

both [X,X]
(·)
T and [X,X]

(all)
T are asymptotically unbiased estimators of < X,X >T . Hence one can

argue that one should take a(1 − n̄/n) = 1, yielding (42).

Similarly, an adjusted estimator of ν is given by

ν̂(adj) =
1

2
(n − n̄)−1

(

[Y, Y ]
(all)
T − [Y, Y ]

(·)
T

)

, (43)

which satisfies that E(ν̂(adj)|X process ) = ν + 1
2 (n− n̄)−1

(

[X,X]
(all)
T − [X,X]

(·)
T

)

, and is therefore

unbiased to high order. As for the asymptotic distribution, One can see from Theorem A.1 in the
Appendix that

ν̂(adj) − ν = (ν̂ − ν)(1 + O(K−1)) + Op(Kn−3/2)

= ν̂ − ν + Op(n
−1/2K−1)) + Op(Kn−3/2)

= ν̂ − ν + Op(n
−5/6)

from (37). It follows that n1/2(ν̂ − ν) and n1/2(ν̂(adj) − ν) have the same asymptotic distribution.

5 MULTIPLE PERIOD INFERENCE

For a given family A = {G(k), k = 1, · · · ,K}, we denote by

̂< X,X >t = [Y, Y ]
(·)
t − n̄

n
[Y, Y ]t (44)

where, as usual, [Y, Y ]t =
∑

ti+1≤t ∆Y 2
ti and [Y, Y ]

(·)
t = 1

K

∑K
k=1[Y, Y ]

(k)
t , with

[Y, Y ]
(k)
t =

∑

ti∈G(k):ti,+≤t

(Yti,+ − Yti)
2.

In order to estimate < X,X > for several discrete time periods, say [0, T1], [T1, T2], · · · , [TM−1, TM ],

where M is fixed, this amounts to estimating < X,X >Tm − < X,X >Tm−1=
∫ Tm

Tm−1
σ2

udu, for

m = 1, · · · ,M , and the obvious estimator is ̂< X,X >Tm
− ̂< X,X >Tm−1

.

To carry out the asymptotics, let nm be the number of points in the mth time segment, and

similarly let Km = cmn
2/3
m , where cm is a constant. Then {n1/6

m ( ̂< X,X >Tm
− ̂< X,X >Tm−1

−
∫ Tm

Tm−1
σ2

udu),m = 1, · · · ,M} converge stably to {(8c−2
m ν2 + cmη2

m(Tm − Tm−1))
1/2

Zm}, where the

Zm are iid standard normals, independent of the underlying process, and η2
m is the limit η2 (Theorem

3) for time period m. In the case of equidistant ti and regular allocation of sample points to grids,

η2
m = 8

3

∫ Tm

Tm−1
σ4

udu.

In other words, the one period asymptotics generalizes straightforwardly to the multiperiod
case. This is because ̂< X,X >Tm

− ̂< X,X >Tm−1
−
∫ Tm

Tm−1
σ2

udu has, to first order, a martingale
structure. This can be seen from the Appendix.
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An advantage of our proposed estimator is that if εti has different variance in different time
segments, say V ar(εti) = νm for ti ∈ (Tm−1, Tm], then both consistency and asymptotic (mixed)
normality continue to hold, provided that one replaces ν by νm. This adds a measure of robustness
to the procedure. If one were convinced that ν is the same across time segments, an alternative
estimator has the form

̂< X,X >t = [Y, Y ]
(·)
t − (

1

K
#{ti+1 ≤ t} − 1)

1

n
[Y, Y ]

(all)
t . (45)

The errors ̂< X,X >Tm
− ̂< X,X >Tm−1

−
∫ Tm

Tm−1
σ2

udu, however, are in this case not asymptotically

independent. Note that for T = Tm, both candidates (44) and (45) for ̂< X,X >t coincide with
the quantity in (34).

6 DETERMINING THE ASYMPTOTIC VARIANCE

In the one period case, the main goal is to find the spread s2 = 8c−2ν2 + cη2T , cf. (37)-(38). The
multigrid case is a straightforward generalization, as indicated in Section 5.

Here, we shall only be concerned with the case where the points ti are equally spaced (∆ti = ∆t),
and are regularly allocated to the grids A1 = {G(k), k = 1, · · · ,K1}. The more general case, and
proof of the method, is treated in Zhang and Mykland (2003).

A richer set of ingredients are required to find the spread than just to estimate ̂< X,X >T . To
implement the estimator, create an additional family A2 = {G(k,i), k = 1, · · · ,K1, i = 1, · · · , I} of
grids where G(k,i) contains every i-th point of G(k). We assume that K1 ∼ c1n

2/3. The new family
then consists of K2 ∼ c2n

2/3 grids, where c2 = c1I.

In addition, we need a division of the time line into segments (Tm−1, , Tm], where Tm = m
M T .

For the purposes of this discussion, M is large but finite.

We now get an initial estimator of spread as

ŝ2
0 = n1/3

M∑

m=1

(

̂< X,X >
K1

Tm
− ̂< X,X >

K1

Tm−1
− ( ̂< X,X >

K2

Tm
− ̂< X,X >

K2

Tm−1
)

)2

where < X,X >Ki

t is the estimator (44) using grid family i, i = 1, 2.

Using the discussion in Section 5, one can see that

ŝ2
0 ≈ s2

0, (46)

where, for c1 6= c2 (I 6= 1),

s2
0 = 8ν2(c−2

1 + c−2
2 − c−1

1 c−1
2 ) + (c

1/2
1 − c

1/2
2 )

2
Tη2

= 8ν2c−2
1 (1 + I−2 − I−1) + c1(I

1/2 − 1)
2
Tη2. (47)



A Tale of Two Time Scales: Determining integrated volatility 15

In (46), the symbol ≈ means first convergence in law as n → ∞, and then a limit in probability

as M → ∞. Since ν can be estimated by ν̂ = [Y, Y ](all)/2n, one can put hats on s2
0, ν2, and η2 in

(47) to obtain an estimator of η2. Similarly,

s2 = 8ν2



c−2 − c(c−2
1 + c−2

2 − c−1
1 c−1

2 )

(c
1/2
1 − c

1/2
2 )

2



+
c

(c
1/2
1 − c

1/2
2 )

2 s2
0

= 8

(

c−2 − cc−3
1

I−2 − I−1 + 1

(I1/2 − 1)
2

)

ν2 +
c

c1

1

(I1/2 − 1)
2 s2

0, (48)

where c ∼ Kn−2/3 where K is the number of grids used originally to estimate < X,X >T .

Normally, one would take c1 = c. Hence an estimator ŝ2 can be found from ŝ2
0 and ν̂.

When c1 = c, we argue that the optimal choice is I = 3 or 4, as follows. The coefficients in (48)
become

coeff(s2
0) = (I1/2 − 1)

−2

coeff(ν2) = 8c−2(I1/2 − 1)
−2

f(I)

where f(I) = I − 2I1/2 − I−2 + I−1. For I ≥ 2, f(I) is increasing, and f(I) crosses 0 for I
between 3 and 4. These, therefore, are the two integer values of I which give the lowest ratio of
coeff(ν2)/coeff(s2

0). Using I = 3 or 4, therefore, would maximally insulate against ν̂ 2 dominating
over ŝ2

0. This is desirable as ŝ2
0 is the estimator of carrying the information about η2. Numerical

values for the coefficients are given in Table 1. If c is such that ν̂ 2 still overwhelms ŝ2
0, then a choice

of c1 6= c should be considered.

Table 1. Coefficients of ν̂2 and ŝ2 when c1 = c

I coeff(s2
0) coeff(ν2)

3 1.866 −3.611c−2

4 1.000 1.5000c−2

7 THE BENEFITS OF SAMPLING SPARSELY

In the above we have constructed a method to directly estimate the integrated volatility of the
process X, by combining different sampling frequencies. If one really insists, however, one can
pretend that the noise term ε is so negligible that one can ignore it. In the following, we discuss
whether this approach can possibly have at least some merit.

7.1 The Single Grid Case

In Section 2, we argued that the realized volatility estimates the wrong quantity. This problem
only gets worse when observations are sampled more frequently. Its financial interpretation boils
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down to market micro-structure, measured by ε in (4). As the data record is sampled finely, the
change in true returns gets smaller while the microstructure noise, such as bid-ask spread and
transaction cost, remains at the same magnitude. In other words, when the sampling frequency
is extremely high, the observed fluctuation in the returns process is more heavily contaminated
by microstructure noise and becomes less representative of the true variation < X,X >T of the
returns. Along this line of discussion, the broad opinion in financial application (see, for example,
Figlewski (1997), Bai et al (2000), Andersen et al (2001)) is not to sample too often, at least when
using realized volatility. We now discuss how this can be viewed in the context of the model (4).

Intuitively, suppose that ν is small. It could formally be taken to tend to zero as n → ∞, along
with Eε4. The asymptotic normality in Section 2.2 then takes the form

[Y, Y ]T
L≈ [X,X]T + 2νn + 2

√
nEε4Zε, (49)

where the symbol “
L≈” is used in a similar way to that of Section 3.5. Here Zε is standard normal, the

subscript ε indicates that the randomness comes from the noise, or the deviation of the observables
Y from the true process X. The convergence in law is conditional on the X process.

For small ν, one now has a chance at estimating < X,X >T . Following Rootzen (1980), Jacod
and Protter (1998) and Mykland and Zhang (2002), and under the conditions stated in these papers,
one can show that

(n

T

)1/2
([X,X]T− < X,X >T )

L−→
(∫ T

0
2H ′(t)σ4

t dt

)1/2

× Zdiscr, (50)

stably in law (see the end of Section 3.4). Zdiscr is standard normal random variable, the subscript
indicates that the randomness is due to the discretization effect in [X,X]T when evaluating <
X,X >T . H(t) is the asymptotic quadratic variation of time, as discussed in an earlier paper
(Mykland and Zhang (2002)). In the case of equidistant observations ∆t0 = ... = ∆tn−1 = ∆t,
H ′(t) = 1. For the irregularly spaced case, we refer to our earlier paper.

Again the convergence is in law, and it is stable, cf. the end of Section 3.4. Since the εs are
independent of the X process, Zε is independent of Zdiscr.

It then follows from (49)-(50) that

[Y, Y ]T
L≈ < X,X >T +2νn + ΥZtotal, (51)

in the sense of stable convergence, where Ztotal is standard normal, and where the variance has the
form

Υ2 = 4nEε4 +
T

n

∫ T

0
2H ′(t)σ4

t dt (52)

Seen from this angle, there is scope for using the realized volatility [Y, Y ] to estimate < X,X >.
It is with bias 2νn, but the bias goes down if one uses fewer observations. This, then, is consistent
with the practice in empirical finance.
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As can be seen from (52), there is, however, a trade-off between sampling too often and too
rarely. Consider the simple case where the observation times are equidistant, so that H ′(t) = 1
independently of the sampling frequency. It is then natural to minimize the mean squared error

MSE = (2νn)2 + Υ2, (53)

which means that one should choose n to satisfy ∂MSE/∂n ≈ 0, in other words,

8ν2n + 4Eε4 − T

n2

∫ T

0
2H ′(t)σ4

t dt ≈ 0. (54)

To solve for n, we suppose as mentioned above that ν → 0 as n → ∞, and we suppose that
E(ε4)/(E(ε2))2 is of order O(1). Thus

n3 +
1

2
n2 E(ε4)

(E(ε2))2
− ν−2 T

8

∫ T

0
2H ′(t)σ4

t dt ≈ 0. (55)

Hence, finally,

n = ν−2/3

(
T

8

∫ T

0
2H ′(t)σ4

t dt

)1/3

+ o(ν−2/3) as ν → 0. (56)

The equation (56) is the formal statement saying that one can sample more frequently when
the error spread is small. Note that to first order, the final trade-off is between the bias 2vn and
the variance due to discretization. The effect of the variance associated with Zε is of lower order
when comparing n and ν.

It should be emphasized that (56) is a feasible way of choosing n. One can estimate ν using

all the data following the procedure in Section 2.2. The integral
∫ T
0 2H ′(t)σ4

t dt can be estimated
by the methods discussed in Section 6 below. For a general procedure, see our forthcoming paper,
Zhang and Mykland (2003).

We can do better, however, than using the “realized volatility”, as we shall see in the following.

7.2 The Multiple Grid Case

Following the development in Section 3, one can go to the multi-grid case and search for an optimal
frequency n̄ for subsampling to balance the coexistence of the bias and the variance in (31). To

reduce the mean squared error of [Y, Y ]
(·)
T , we set ∂MSE/∂n̄ = 0. From (32)-(31), bias = 2νn̄ and

ξ2 = 4 n̄
K Eε4 + T

n̄ η2, then

MSE = bias2 + ξ2 = 4ν2n̄2 + 4
n̄

K
Eε4 +

T

n̄
η2 = 4ν2n̄2 +

T

n̄
η2 (to first order),

thus the optimal n̄∗ satisfies that

n̄∗ = (
Tη2

8ν2
)
1/3

.
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Therefore, assuming the estimator [Y, Y ]
(·)
T is adopted, one could benefit from a minimum MSE if

one subsamples n̄∗ data in an equidistant fashion. In other words, all n observations can be used
if one uses K∗, K∗ ≈ n/n̄∗, subgrids. This is in contrast to the drawback of using all the data in
the single grid case. The subsampling coupled with aggregation brings out the advantage of using
the entire data. Of course, for the asymptotics to work, we need ν 2 → 0.

Our recommendation, however, is to use the methods in Sections 4 -6.

8 CONCLUSION

In this work, we have quantified and corrected the effect of noise on the nonparametric assessment
of integrated volatility. In the setting of high frequency data, the usual financial practice is to use
sparse sampling, in other words, throwing away most of the available data. We have argued that
this is caused by not incorporating the noise in the model. While it is statistically unsound to
throw away data, we have shown that it is possible to build on this practice to construct estimators
that make statistical sense.

Specifically, we have found that the usual realized volatility mainly estimates the magnitude of
the noise term rather than anything to do with volatility. An approach that is built on separating
the observations into multiple “grids” lessens this problem. We found that the best results can
be obtained by combining the usual (“single grid”) realized volatility with the multiple grid based
device. This gives an estimator which is approximately unbiased, and we have also shown how to
assess the (random) variance of this estimator. Most of the development is in the context of finding
the integrated volatility over one time period; at the end, we extend this to multiple periods. Also,
in the case where the noise can be taken to be almost negligible, we provide a way of optimizing the
sampling frequency if one wishes to use the classical “realized volatility” or its multi-grid extension.

One important message of the paper: Any time one has an impulse to sample sparsely, one can
always do better with a multi-grid method. No matter what the model is, no matter what quantity
is being estimated.

APPENDIX: PROOFS OF RESULTS

When the total grid G is considered, we use
∑n−1

i=1 ,
∑

ti+1≤T and
∑

ti∈G interchangeably in the
following proofs.

A.1 Variance of [Y, Y ]T Given the X Process

We here calculate explicitly the variance in equation (11), from which the stated approximation
follows. The explicit remainder term is also used for equation (18).
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Let a partition of [0, T ] be 0 = t0 ≤ t1 ≤ · · · ≤ tn = T . Under assumption (6),

V ar([Y, Y ]T |X process)

= V ar[
∑

ti+1≤T

(∆Yti)
2|X process]

=
∑

ti+1≤T

V ar[(∆Yti)
2|X process]

︸ ︷︷ ︸

IT

+2
∑

ti+1≤T

Cov[(∆Yti−1)
2, (∆Yti)

2|X process]

︸ ︷︷ ︸

IIT

since ∆Yti = ∆Xti + ∆εti is 1-dependent given X process.

V ar[(∆Yti)
2|X process]

= κ4(∆Yti |X process) + 2[V ar(∆Yti |X process)]2 + 4[E(∆Yti |X process)]2V ar(∆Yti |X process)

+4E(∆Yti |X process)κ3(∆Yti |X process)

= κ4(∆εti) + 2[V ar(∆εti)]
2 + 4(∆Xti)

2V ar(∆εti) + 4(∆Xti)κ3(∆εti), under assumption (6)

= 2κ4(ε) + 8ν2 + 8(∆Xti)
2ν

since κ3(∆εti) = 0. The κs are the cumulants of the relevant order.

So, IT = n
(
2κ4(ε) + 8ν2

)
+ 8ν[X,X]T .

Similarly, for the covariance,

Cov[(∆Yti−1)
2, (∆Yti)

2|X process]

= Cov[(∆εti−1)
2, (∆εti)

2] + 4(∆Xti−1 )(∆Xti)Cov(∆εti−1 ,∆εti)

+2(∆Xti−1)Cov[∆εti−1 , (∆εti)
2] + 2(∆Xti)Cov[(∆εti−1)

2,∆εti ]

= κ4(ε) + 2ν2 − 4(∆Xti−1)(∆Xti)κ2(ε) − 2(∆Xti)κ3(ε) + 2(∆Xti−1 )κ3(ε) (A.1)

because κ1(ε) = 0, κ2(ε) = V ar(ε) = E(ε2), κ3(ε) = Eε3, and κ4(ε) = E(ε4) − 3ν2.

Thus, assuming the coefficients in (A.1)

IIT = 2(n − 1)(κ4(ε) + 2ν2)

−8ν
∑

ti+1≤T

(∆Xti−1)(∆Xti) − 4κ3(ε)(∆Xtn−1 − ∆Xt0)

Amalgamating the two expressions one obtains

V ar([Y, Y ]T |X process) = n
(
2κ4(ε) + 8ν2

)
+ 8ν[X,X]T + 2(n − 1)(κ4(ε) + 2ν2)

− 8ν
∑

(∆Xti−1)(∆Xti) − 4κ3(ε)(∆Xtn−1 − ∆Xt0)

= 4nEε4 + Rn, (A.2)

where the remainder term Rn satisfies

|Rn| ≤ 8ν[X,X]T + 2(κ4(ε) + 2ν2)

+8ν|
∑

(∆Xti−1)|(∆Xti)| + 4|κ3(ε)|(|∆Xtn−1 | + |∆Xt0 |)
≤ 16ν[X,X]T + 2(κ4(ε) + 2ν2) + 2|κ3(ε)|(2 + [X,X]T ) (A.3)
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by the Cauchy-Schwartz inequality and since |x| ≤ (1 + x2)/2.

Since [X,X]T = Op(1), (11) follows. Similarly, (18) follows since [X,X]
(·)
T = Op(1).

A.2 Relevant Central Limit Theorem

Lemma A.1. Suppose X is an Ito process. Suppose Y is related to X through model (4). Then
under assumption (6) and definitions (8) and (14),

[Y, Y ]
(all)
T = [ε, ε]

(all)
T + Op(1), and [Y, Y ]

(·)
T = [ε, ε]

(·)
T + [X,X]

(·)
T + Op(

1√
K

) 2

Proof of Lemma A.1

(a) one grid case:

[Y, Y ]
(all)
T = [X,X]

(all)
T + [ε, ε]

(all)
T + 2[X, ε]

(all)
T (A.4)

We show:

E

(

([X, ε]
(all)
T )

2
|X process

)

= Op(1) (A.5)

and in particular

[X, ε]
(all)
T = Op(1) (A.6)

To see (A.5):

[X, ε]
(all)
T =

n−1∑

i=0

(∆Xti)(∆εti)

=

n−1∑

i=0

(∆Xti)εti+1 −
n−1∑

i=0

(∆Xti)εti

=

n−1∑

i=1

(∆Xti−1 − ∆Xti)εti + ∆Xtn−1εtn − ∆Xt0εt0

Since E([X, ε]
(all)
T |X process ) = 0 and εti iid for different ti, we get

E

(

([X, ε]
(all)
T )

2
|X process

)

= V ar([X, ε]
(all)
T |X process )

= ν[

n−1∑

i=1

(∆Xti−1 − ∆Xti)
2 + ∆X2

tn−1
+ ∆X2

t0 ]

= 2ν[X,X]T − 2ν
n−1∑

i=1

(∆Xti−1)(∆Xti)

≤ 4ν[X,X]T (A.7)
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by Cauchy-Schwartz Inequality, from which and from [X,X](all) being of order Op(1), (A.5) follows.
Hence (A.6) follows by Markov Inequality.

(b) multiple grid case:

notice that
[Y, Y ](·) = [X,X]

(·)
T + [ε, ε]

(·)
T + 2[X, ε]

(·)
T (A.8)

(A.8) strictly follows from model (4) and the definitions of grids and [ , ]
(·)
t , see Section 3.2.

Need to show:

E([X, ε]
(·)
T

2
|X process ) = Op(

1

K
) (A.9)

in particular

[X, ε]
(·)
T = Op(

1

K1/2
). (A.10)

and V ar([X, ε]
(·)
T |X process ) = E[([X, ε]

(·)
T )

2
| X process ].

To show (A.9), note that E([X, ε]
(·)
T |X process ) = 0,

E[([X, ε]
(·)
T )

2
| X process ] = V ar([X, ε]

(·)
T |X process )

=
1

K2

K∑

k=1

V ar([X, ε]
(k)
T |X process )

≤ 4ν

K
[X,X]

(·)
T = Op(

1

K
)

where the second equality follows from the disjointness of different grids as well as ε ⊥⊥ X . The

inequality follows from the same argument as in (A.7). Then the order follows since [X,X]
(·)
T =

Op(1). Cf. the method in Mykland and Zhang (2002) if one wants a rigorous development for the

order of [X,X]
(·)
T .

Theorem A.1. Suppose X is an Ito process of form (1). Suppose Y is related to X through model
(4), and that (6) is satisfied with Eε4 < ∞. Also suppose that ti and ti+1 is not in the same

subgrid for any i. Under assumption (15), as n → ∞, (
√

n(ν̂ − ν),
√

K
n̄ ([Y, Y ]

(·)
T − [X,X]

(·)
T − 2νn̄))

converges in law to a bivariate normal, with mean 0 and covariance matrix

(
Eε4 2V ar(ε2)

2V ar(ε2) 4Eε4

)

(A.11)

conditional on X process. where the limiting random variable is independent of the X process. 2

Proof of Theorem A.1:

By Lemma A.1, need the distribution of [ε, ε](·) and [ε, ε](all).
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First, we explore the convergence of

1√
n

(

[ε, ε]
(all)
T − 2νn, [ε, ε]

(·)
T K − 2νn̄K

)

(A.12)

Recall that all the sampling points t0, t1 · · · , tn are within [0, T ]. We use G to denote the time
points in the full sampling, as in the single grid. G (k) denotes the subsamplings from k-th grid.

As before, if ti ∈ G(k), then ti,− and ti,+ are, respectively, the previous and next element in G (k).
εti,− = 0 for ti = minG(k) and εti,+ = 0 for ti = maxG(k).

Set

M
(1)
T =

1√
n

∑

ti∈G
(ε2

ti − ν)

M
(2)
T =

1√
n

∑

ti∈G
εtiεti−1 (A.13)

M
(3)
T =

1√
n

K∑

k=1

∑

ti∈G(k)

εtiεti,−

We first find the asymptotic distribution of (M
(1)
T ,M

(2)
T ,M

(3)
T ) using the martingale central limit

theorem, and then we use the result to find the limit of (A.12).

Note that (M
(1)
T ,M

(2)
T ,M

(3)
T ) are the end points of martingales with respect to filtration Fi =

σ(εtj , j ≤ i,Xt, all t). We now derive its (discrete-time) predictable quadratic variation < M (l),M (k) >,
l, k = 1, 2, 3. (Discrete time predictable quadratic variations are only used in this proof, and are
different from the continuous time quadratic variations in (7)).

< M (1),M (1) >T =
1

n

∑

ti∈G
V ar(ε2

ti − ν | Fti−1) = V ar(ε2)

< M (2),M (2) >T =
1

n

∑

ti∈G
V ar(εtiεti−1 | Fti−1) =

ν

n

∑

ti∈G
ε2
ti−1

= ν2 + op(1)

< M (3),M (3) >T =
1

n

K∑

k=1

∑

ti∈G(k)

V ar(εtiεti,− | Fti−1) =
ν

n

K∑

k=1

∑

ti∈G(k)

ε2
ti,− = ν2 + op(1)

by the law of large numbers.
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Similarly, for the predictable quadratic covariations,

< M (1),M (2) >T =
1

n

∑

ti∈G
Cov(ε2

ti − ν, εtiεti−1 | Fti−1) = Eε3 1

n

∑

ti∈G
εti−1 = op(1)

< M (1),M (3) >T =
1

n

K∑

k=1

∑

ti∈G(k)

Cov(ε2
ti − ν, εtiεti,− | Fti−1) = Eε3 1

n

K∑

k=1

∑

ti∈G(k)

εti,− = op(1)

< M (2),M (3) >T =
1

n

K∑

k=1

∑

ti∈G(k)

Cov(εtiεti−1 , εtiεti,− | Fti−1)

=
ν

n

K∑

k=1

∑

ti∈G(k)

εti−1εti,− = op(1)

since ti+1 is not in the same grid as ti.

Since the εti ’s are iid and Eε4
ti < ∞, the conditional Lindeberg conditions are satisfied. Hence

by the martingale CLT (see condition 3.1, p. 58 of Hall and Heyde (1980)), (M (1),M (2),M (3))
are asymptotically normal, with covariance matrix as the asymptotic value of < M (l),M (k) >. In
other words, asymptotically, (M (1),M (2),M (3)) are independent normal with respective variances
V ar(ε), ν2, and ν2.

Returning to (A.12),

[ε, ε](all) − 2nν = 2
∑

i6=0,n

(ε2
ti − ν) + (ε2

t0 − ν) + (ε2
tn − ν)− 2

∑

ti>0

εtiεti−1 = 2
√

n(M (1) −M (2)) + Op(1)

(A.14)
Meanwhile:

[ε, ε](k) − 2nkν =
∑

ti ∈ G(k)

ti 6= maxG(k)

(εti,+ − εti)
2 − 2nkν

= 2
∑

ti∈G(k)

(ε2
ti − ν) − (ε2

minG(k) − ν) − (ε2
max G(k) − ν) − 2

∑

ti∈G(k)

εtiεti,−(A.15)

where nk + 1 is the total number of sampling points in G (k).

Hence,

[ε, ε]
(·)
T K − 2n̄νK =

√
n(2M (1) − 2M (3)) − R = 2

√
n(M (1) − M (3)) + Op(K

1/2), (A.16)

since R =
∑K

k=1

[

(ε2
minG(k) − ν) + (ε2

max G(k) − ν)
]

satisfying ER2 = V ar(R) ≤ 4KV ar(ε2).

Since n−1K → 0, and since the error terms in (A.14) and (A.15) are uniformly integrable, it
follows that

(A.12) = 2(M (1) − M (2),M (1) − M (3)) + op(1) (A.17)
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Hence, (A.12) is also asymptotically normal with covariance matrix

(
4Eε4 4V ar(ε2)

4V ar(ε2) 4Eε4

)

.

By Lemma A.1, and as n−1K → 0,

1√
n

(

[Y, Y ]
(all)
T − 2νn,K([Y, Y ]

(·)
T − [X,X]

(·)
T − 2νn̄)

)

|X process

is asymptotically normal,

1√
n

(

[Y, Y ]
(all)
T − 2νn

[Y, Y ]
(·)
T K − 2νn̄K − [X,X]

(·)
T K

| X process

)

= 2

(
M (1) − M (2)

M (1) − M (3)

)

+ op(1)

L−→ 2N

(

0,

(
Eε4 V ar(ε2)

V ar(ε2) Eε4

))

(A.18)

Since

ν̂ =
1

2n
[Y, Y ]

(all)
T , and

K√
n

=

√

K

n̄
(1 + o(1)), (A.19)

Theorem A.1 follows.

A.3 Asymptotics of DT

For transparency of notation, we take ∆t = T/n, in other words, the average of the ∆ti.

For given s ∈ [0, T ], let s
(k)
− be the closest point on grid G(k) smaller than s, i.e., s

(k)
− = max{u ≤

s : u ∈ G(k)}. In particular, for grid points ti, let t
(k)
i be the closest point on grid G(k) smaller than

ti, i.e., t
(k)
i = max{u ≤ ti : u ∈ G(k)}. Observe that t

(k)
i = (ti)

(k)
− .

We here do not assume regular allocation of sample points to subgrids, but instead that

max
i

K∑

l=1

{#k : t
(k)
i > t

(l)
i }2 = O(K3). (A.20)

Note that {#k : t
(k)
i > t

(l)
i } is the number of points in the total grid G between t

(l)
i and ti. The

requirement (A.20) is satisfied under regular allocation of sample points to subgrids, as defined in
Section 3.2, in other words, G(l) = {tl−1, tK+l−1, ...}.
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Proof of Theorem 2. Rewrite

DT = [X,X]
(·)
T − < X,X >T

=
1

K

K∑

k=1

([X,X]
(k)
T − < X,X >T )

=
1

K

K∑

k=1

∑

{ti,ti,+∈G(k)}
2

∫ ti+1

ti

(Xs − Xti)dXs (by Ito’s formula)

= 2

∫ T

0

1

K

K∑

k=1

(Xs − X
s
(k)
−

)dXs

Denote the integrand as Zs. We can write Zs = Xs − 1
K

∑K
k=1 X

s
(k)
−

Following the arguments in Mykland and Zhang (2002), the quadratic variation of DT is

< D,D >T = 4

∫ T

0
Z2

sd < X,X >s

= 4

∫ T

0
< Z,Z >s d < X,X >s +op(

K

n
)

= 4

∫ T

0
< Z,Z >s< X,X >′

s ds + op(
K

n
)

= 4
∑

i

∫ ti+1

ti

< Z,Z >s< X,X >′
s ds + op(

K

n
),

where the sum is over all (except the last) observation points ti. To calculate the integrand, note
that for ti ≤ s < ti+1,

< Z,Z >s< X,X >′
s =

1

K2

K∑

k=1

K∑

l=1

(< X,X >s − < X,X >
s
(k)
−

∧s
(l)
−

) < X,X >′
s

=
1

K2

K∑

l=1

(< X,X >s − < X,X >
s
(l)
−

)(2{#k : s
(k)
− > s

(l)
− } + 1) < X,X >′

s

=
1

K2

K∑

l=1

(s − t
(l)
i )(2{#k : t

(k)
i > t

(l)
i } + 1)(< X,X >′

ti)
2 + op(

K

n
),
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since the s
(l)
− = t

(l)
i as s varies over the relevant time interval [ti, ti+1). Hence

∫ ti+1

ti

< Z,Z >s< X,X >′
s ds

=
1

K2

K∑

l=1

(∫ ti+1

ti

(s − t
(l)
i )ds

)

(2{#k : t
(k)
i > t

(l)
i } + 1)(< X,X >′

ti)
2 + op(

K

n2
)

=
1

K2

K∑

l=1

(
1

2
∆t2i + (ti − t

(l)
i )∆ti

)

(2{#k : t
(k)
i > t

(l)
i } + 1)(< X,X >′

ti)
2 + op(

K

n2
)

=
1

4
∆̄tKhi(< X,X >′

ti)
2∆ti + op(

K

n2
)

where the hi are defined by (23). Hence, since the error term above is uniform in i (in probability),

< D,D >T = ∆tK
∑

i

hi(< X,X >′
ti)

2∆ti + op(
K

n
) (A.21)

thus showing Theorem 2.

We now proceed to the asymptotic distribution of DT . We first state a technical condition on
the filtration (Ft)0≤t≤T to which Xt and µt (but not the ε’s) are assumed to be adapted.

Condition E (Description of the filtration): There is a continuous multidimensional P -local
martingale X = (X (1), · · · ,X (p)), any p, so that Ft is the smallest sigma-field containing σ(Xs, s ≤
t) and N , where N contains all the null sets in σ(Xs, s ≤ T ).

For example, X can be a collection of Brownian motions.

Proof of Theorem 3. One shows by methods similar to those in the proof of Theorem 2 that
if L is any martingale adapted to the filtration generated by X , then

sup
t

| 1

∆tK
< D,L >t | →p 0, (A.22)

The stable convergence with respect to the filtration (Ft)0≤t≤T then follows in view of Rootzen
(1980) or Jacod and Protter (1998). This ends the proof of Theorem 3.

Finally, in the case where η2 does not converge, one can still use the mixed normal with variance
η2

n. This is because every subsequence of η2
n has a further subsequence which does converge in

probability to some η2 in probability, and hence for which the assumption (28) in Theorem 3 would
be satisfied.

The reason for this is that one can define the distribution function of a finite measure by

Gn(t) =
∑

ti+1≤t

hi∆ti (A.23)

Since Gn(t) ≤ T supi hi, it follows from (25) that the sequence Gn is weakly compact in the sense
of weak convergence (see Helly’s Theorem, e.g. Billingsley (1995) p. 336). For any convergent
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subsequence Gn → G, we then get that

η2
n =

∫ T

0
(< X,X >′

t)
2dGn(t) →

∫ T

0
(< X,X >′

t)
2dG(t). (A.24)

almost surely, since be have assumed < X,X >′
t to be a continuous function of t. One then defines

η2 to be the (subsequence dependent) right hand side of (A.24).

To further proceed with the asymptotics, continue the subsequence from above, and note that

1

∆tK
< D,D >t ≈

∫ t

0
(< X,X >′

s)
2dGn(s)

→
∫ t

0
(< X,X >′

s)
2dG(s).
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