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number of curves. Our motivating example is a genetic microar-
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1 Introduction

CATS – Clustering After Transformation and Smoothing – is a technique

for nonparametrically estimating and clustering a large number of curves

(or profiles). The basic idea is to first remove the curves which are nearly

flat, smooth the remaining curves, and then cluster the smoothed curves. A

novel feature of our method is that we estimate the error due to the fact

that we are clustering the estimated rather than the true curves. We obtain

an asymptotic confidence bound for the clustering estimation error based on

estimated confidence balls of the non-constant curves. The method we use

for confidence ball estimation was introduced by Beran and Dümbgen (1998).

CATS is quite general but, for clarity, we will discuss the method in the

context of microarray experiments. This problem is challenging because of

the small number of design points but large number of expression profiles,

and the small signal-to-noise ratio. Indeed, our motivating example is a

genetic microarray experiment conducted at the University of Pittsburgh.
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Scheines, Greg Cooper and the other members of the CMU-University of Pittsburgh Gene
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This experiment produced time series of gene expression levels for 5355 genes

over 15 time points.

There is now a substantial literature on genetic microarrays on various

topics such as clustering (Eisen et al, 1998; Hastie et al, 2000; Bar-Joseph,

Gerber, Gifford and Jaakkola, 2002; Wakefield, Zhou, Self, 2002) and multi-

ple testing (Dudoit et al, 2000; Efron, Storey and Tibshirani, 2001; Newton

et al, 2001).

For related work on curve clustering in the context of microarray data

see Bar-Joseph, Gerber, Gifford and Jaakkola(2002) and Wakefield, Zhou,

Self(2002).

2 The Model

We consider data of the form,

Yij = fi(tij) + σiεij, i = 1, . . . , N, j = 1, . . . , m. (1)

where E(εij) = 0. Thus, Yij is the jth observation on the ith curve. In the

examples of interest, N and m are both large but N is typically much larger

than m. In the microarray setting, Yij is the log gene expression of gene i at

time tj.

We assume that the curves fi belong to a Sobolev space F ≡ Fβ(c) of

unknown order β and unknown radius c. See the appendix for a formal

definition of F . Let ψ1, ψ2, . . . be an orthonormal basis for F and write

fi(t) =

∞∑

j=1

θijψj(t) (2)

where

θij =

∫
fi(t)ψj(t) dt. (3)

We estimate fi by

f̂J
i (t) =

J∑

j=1

θ̂ijψj(t) (4)

where the estimates θ̂ij and the choice of smoothing parameter J are de-

scribed below. We call a curve fi null or inactive if fi is constant as a
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function of t. Otherwise, fi is non-null or active. Let A denote the set of

active curves.

Let θi = (θi1, θi2, . . . , ) be the vector of coefficients for curve fi. We will

view the (θi, σi)’s as random draw from some distribution P. We assume that

P has compact support. In a slight abuse of notation, we also use P to denote

the marginal law of the θi’s.

3 Clusters of Curves

Since our goal is to cluster the curves, we need a measure of the efficacy

of a set of clusters. Let C = {f1, . . . , fN} denote a finite set of curves. A

clustering algorithm may be viewed as a map

T : C × C → {0, 1}

where

T (f, g) =

{
1 if f and g are in the same cluster
0 otherwise.

The cluster map T induces a partition {C1, . . . , Ck} of C where two curves

f and g are in the same partition element if and only if T (f, g) = 1. The

numbering of the partition elements is arbitrary. Generally, one uses an

algorithm that can produce k clusters for any given k. Thus, let us write

Tk for the cluster map that yields k clusters. For example, Tk might be the

output of the k-means clustering algorithm.

We address two different questions for the efficacy of the clusters. The

first is: how good are the estimated clusters? The second is: how close is

the clustering using the estimated curves Ĉ = {f̂1, . . . , f̂N} to the clustering

using the true curves C = {f1, . . . , fN}? The first concerns cluster quality;

the second concerns estimation error. We will define two parameters, Ω and

η associated with these questions.

3.1 Cluster Quality

Regarding cluster quality, many such criteria have been proposed. We shall

use the following. Suppose that C1, . . . , Ck are clusters, that is, they form a
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partition of C. Define the cluster purity

Ω = min
1≤j≤k

min
f,g∈Cj

ρ(f, g)

where

ρ(f, g) =

∫
(f(x)− f)(g(x)− g)dx√∫

(f(x)− f)2dx
∫

(g(x)− g)2dx

and f =
∫
f(x) dx.

Thus, ρ(f, g) is the Pearson correlation between the curves f and g and

Ω measures the worst pairwise correlation over all the clusters. Note that

−1 ≤ Ω ≤ 1 and Ω = 1 if and only all the curves in each cluster are

proportional to each other. Write Ω(k) to indicate the dependence on the

number of clusters.

In the Fourier domain we can rewrite Ω as follows. Let f =
∑

j ajψj

and g =
∑

j bjψj. From a = (a0, a1, . . .) define a new vector ã = (ã1, ã2, . . .)

obtained by discarding a0 and normalizing:

ãj =
aj√∑∞
j=1 a

2
j

, j ≥ 1. (5)

Define b̃ = (̃b1, b̃2, . . .) similarly. Then,

ρ(f, g) = 1− || ã− b̃||
2

2
. (6)

Hence, correlation clustering in function space is equivalent to Euclidean

clustering in the Fourier domain, after the transformation a 7→ ã.

Generally, Ω(k) will increase as k increases. We will examine Ω as a

function of k. If we want to choose one value of k, we take the smallest k

such that Ω ≥ 1− ε for some user-specified ε. This gives the smallest number

of clusters that guarantees that all curves within a cluster are (1− ε)-similar.

3.2 Estimation Error

Regarding estimation error, we proceed as follows. Let C = {f1, . . . , fn}
denote the true curves and let Ĉ = {f̂1, . . . , f̂n} denote the estimated curves.
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Let T and T̂ denote the corresponding clustering maps. Various methods

have been proposed to compare two clusterings. See, for example, Rand

(1971) and Fowlkes and Mallows (1983), Meilă (2000).

We define the misclustering rate for K clusters η(K) by

η(K) =
1(
N
2

)
∑

r<s

I
(
TK(fr, fs) 6= T̂K(f̂r, f̂s)

)
. (7)

Thus, η is the fraction of all pairs which are either incorrectly put in the same

cluster or are incorrectly put in separate clusters. We write η(K) to indicate

the dependence on the number of clusters K. The misclustering rate can be

expressed as

η = 1−R(T, T̂ )

where R is the Rand index (Rand, 1971).

3.3 k-means clustering

Let us briefly review some facts about k-means clustering. Let θ1, . . . , θN ∼ P

where each θi is a vector in Rd. The k-means algorithm searches for the k

vectors a = {a1, . . . , ak} that minimize

1

n

n∑

i=1

min
1≤j≤k

||θi − aj||2.

This is equivalent to minimizing

W (a,PN) =

∫
min
a∈A
||θ − a||2dPN(θ)

over all possible choices of sets A containing k or fewer points, where PN is

the empirical measure putting mass 1/N on each θi. The centers a determine

a tessellation {A1, . . . ,Ak} where θ ∈ Aj if θ is closer to aj than any other

center.

Pollard (1981) shows, under weak conditions, that the minimizer a =

(a1, . . . , ak) converges almost surely to the population minimizer a ofW (a,P).

Also, Pollard (1982) shows that
√
N(a− a) N(0, S)

for some kd× kd non-singular matrix S.
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4 CATS

Our strategy for analyzing data of this form involves a series of steps sum-

marized below; see also Figure 1.

CATS

Transform Data
Y−→(θ̂1,...,θ̂m)

test H0i : fi(t) = constant

Smooth non-constant curves

Cluster Smoothed Curves

Estimate Misclustering Rate

Figure 1: Data analysis strategy.

4.1 Transforming the Data

Without loss of generality, assume that all time points lie in [0, 1]. We trans-

form the data into the Fourier domain as follows. Let

φ0(t) ≡ 1, and φj(t) =
√

2 cos(jπt), j ≥ 1
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denote the cosine basis. Define the m× (k + 1) matrix

Φ =




φ0(t1) φ1(t1) · · · φk(t1)
φ0(t2) φ1(t2) · · · φk(t2)
...

...
...

...
φ0(tm) φ1(tm) · · · φk(tm)


 .

Now perform a Gram-Schmidt orthogonalization on the columns of Φ to make

the columns orthogonal. Denote the new matrix by Ψ. Let θ̂i = (θ̂i1, . . . , θ̂im)

θ̂ir =
1

m

m∑

j=1

ψrjYij.

Under weak conditions, we have that θ̂i ≈ N(θi, m
−1Σi) where Σi is diagonal

with (j, j) element σ2
j .

4.2 Smoothing

The function f̂J
i (t) =

∑J
j=0 θ̂ijψjt is the smoothed version of the ith profile.

The parameter J controls the amount of smoothing. The optimal amount

of smoothing will vary from curve to curve. Rather than trying to find an

optimal amount of smoothing for each curve, instead we will find a single

smoothing parameter that does reasonably well for all the curves. We con-

sider two approaches.

Approach 1: Minimum Regret. Let

Ri(J) = E
(∫

(f̂J
i (t)− fi(t))

2dt
)

denote the risk of the estimate of fi. We will estimate the risk function for

each curve. Then we choose J to minimize the total regret, the risk minus

the minimum risk for each curve. Here are the steps.

Step 1. Variance Estimation. We estimate the variance σ2
i for gene i

using the high component variance estimator:

σ̂2 =
1

m− J

m∑

i=J+1

Z2
j
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which is an asymptotic consistent estimator.

Step 2. Risk estimation. Define

R̂i(J) =
Jσ̂2

i

m
+

m∑

j=J+1

(
θ̂2

ij −
σ̂2

i

m

)

+

(8)

which is a uniformly consistent estimate of the risk( see Beran and Dümbgen,

1998).

Step 3. Regret estimation. Define the regret

r̂i(J) = R̂i(J)− min
1≤k≤m

R̂i(J) (9)

which measures how much risk is sacrificed for curve i if smoothing parameter

J is used. Define the total regret

t(J) =

n∑

i=1

r̂i(J). (10)

Step 4. Smoothing parameter. Define

Ĵ = argminJt(J).

Approach 2: Multiscale Smoothing. Rather than searching for an optimal

amount of smoothing, we can instead consider all values of J simultaneously

and choose the one that leads to the most efficacious clustering. More pre-

cisely, we consider all the estimates f̂J or 1 ≤ J ≤ Jm where Jm = o(m). We

recommend the value Jm =
√
m. This leads to confidence balls for the curves

of size O(m−1/4) which is the smallest possible in a nonparametric sense (Li,

1989). Note that f̂J
i is actually estimating

fJ
i (t) =

J∑

j=0

θijφj(t).

We can think of fJ
i (t) as the smoothed version of the true curve. When J is

small, we give up high resolution information about fi but we can estimate
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fJ
i (t) accurately. We will probably not discover many clusters when J is

small since there is not much shape information in f J
i . As we increase J

we can potentially discover more shape information leading to more refined

clusters. However, the confidence sets for f J
i get larger as J increases. In

Section 4.6 we define the cluster uncertainty η which will be a function of

the number of clusters k and the resolution level J . We will then produce

confidence intervals for η(k, J) and Ω(k, J) and plot these as functions of k

for each J .

4.3 Screening Out Flat Curves

In this section, we explain how to test

H0i : fi(t) = ci

or some constant ci. If H0i is true then
∑m

j=1 θ
2
i = 0. This suggests the test

statistic

Ti =

m∑

j=1

θ̂2
i,j.

We reject the null hypothesis for large value of Ti. We estimate the p-value

by permuting Yi, Y
b
i for b = 1, . . . , B (in our simulation we usually take

B = 100, 000), and computing for each permutation the test statistic, T (Y b
i ):

P̂i =
1

B

B∑

b=1

I(T (Y b
i ) ≥ T (Yi)).

To correct for the multiplicity problem we use the Benjamini-Hochberg

(1995) method. Let P(1), . . . , P(n) denote the ordered p-values. We reject H0i

if Pi ≤ T where T = P(j) and

j = max

{
i : P(i) ≤

iα

n

}
. (11)

This method controls the expected fraction of false discoveries to be less than

or equal to α. See Benjamini and Hochberg (1995).

The FDR procedure assumes independent test statistics and the gene

expression levels tend to be correlated. However, as shown in Storey and
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Tibshirani (2002), the method works well even in the presence of dependence

in clusters. Finally, we set Â = {i : P̂i ≤ T}. In our analysis, the significance

level is α = .05.

4.4 Confidence Ball for fi

We use the method in Beran and Dümbgen (1998) for constructing a confi-

dence ball Bi for fi. Fix α > 0 and let

Bi =
{

(θi1, . . . , θim) :
m∑

j=1

(θij − θ̂ij)
2 ≤ s2

i

}
(12)

where

s2
i =

z α
N
τ̂i√
m

+ R̂i,

zα is the α quantile of the standard normal and τ̂i is given in the Appendix.

The corresponding confidence ball for fi is {∑m
j=1 θijψj(x) : θ ∈ Bi}. For

notational convenience, the confidence ball for fi will also be denoted by Bi.

Theorem 1 follows directly from the theorems of Beran and Dümbgen.

Theorem 1 Let Fβ(c) denote a Sobolev space of order β and radius c. Then,

for any β > 1/2 and any c > 0,

lim inf
N→∞

sup
f1,...,fN∈Fβ(c)

P
(
fi ∈ Bi for all i = 1, . . . , N

)
≥ 1− α.

Recall the mapping θ 7→ θ̃. The function f(θ) = θ
||θ||
. is continuous.

The set

B̃i = {θ̃ : θi ∈ Bi} (13)

is a confidence set for θ̃ and is a compact set (B̃i = f(Bi)).

The confidence ball for the multiscale method is slightly different. Here

we need a confidence ball for (θi1, . . . , θiJ) which is somewhat simpler. Since,

θ̂ij ≈ N(θij, σ
2
i /m), we have that

J∑

j=1

(θij − θ̂ij)
2 ≈ σ2

i

m
χ2

J .
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Hence,

BJ
i =

{
(θ1, . . . , θJ) :

J∑

j=1

(θj − θ̂j)
2 ≤

σ̂2
i χ

2
J,α′

m

}
(14)

is an approximate 1 − α′ confidence set for (θi1, . . . , θiJ). We take α′ =

α/(NJm) to ensure that the coverage is uniform over curves i and scales J .

We can use the estimated confidence balls Bi to screen out the remaining

false positives after screening out the flat curves using hypothesis testing. If

(0, 0, . . .) ∈ Bi then fi is a false positive.

4.5 Clustering

We want to identify curves with similar shape. In the microarray setting for

example, genes with similar expression profiles are co-expressed gene. Co-

expressed genes are likely to be co-regulated and hence co-expression can

suggest functional pathways and interactions between genes.

For r, s ∈ Â define

d(r, s) =

J∑

i=1

(θ̃rj − θ̃sj)
2

where J is the smoothing parameter and θ̂r and θ̂s are the cosine transforms

for the curves Yr and, respectively, Ys and θ̂ 7→ θ̃ is the transform described

in Section 3.1.

Then we apply the k-means clustering algorithm with the distance de-

fined above. (Any other clustering method could be used.) We estimate the

number of clusters using the gap method of Tibshirani, Walther, and Hastie

(2000). Specifically, they propose testing under the null hypothesis whether

the number of clusters is 1 versus the alternative hypothesis that the num-

ber of clusters is greater than 1. The null distribution, called the reference

distribution, is the uniform distribution under which a clustering method

would provide only one cluster. The test statistic is called the “gap” statis-

tic. Tibshirani et al. propose taking the null distribution to be a uniform

distribution on the hyper-rectangle over the range of the observed data.
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We can also infer the number of clusters using the curves for Ω(j,K) and

η(J,K). We expect to see either a unimodal pattern with the mode at the

true number of clusters or the curves will flat out by true cluster number.

4.6 Estimating the Misclustering Rate

In the following, we provide a confidence interval for the misclustering rate

η =
1(
N
2

)
∑

r<s

I
(
T (fr, fs) 6= T̂ (f̂r, f̂s)

)
. (15)

Theorem 2 Suppose that Bi is a 1− (α/N) confidence set for fi. Let

η =
1(
N
2

)
∑

r<s

max
f∈Br ,g∈Bs

I
(
T (f, g) 6= T (f̂r, f̂s)

)
. (16)

Then,

P(η ∈ [0, η]) ≥ 1− α. (17)

Computing (16) can be computationally demanding. A simplification

occurs with k-means clustering. Recall that k-means clustering produces a set

of cluster centers a1, . . . , ak. This, in turn, produces the Voronoi tessellation

{A1, . . . ,Ak} where f ∈ Aj if f is closer to aj than any other cluster center.

In this case, T (f, g) = 1 if and only if f and g belong to the same member

of the tessellation.

Theorem 3 Assume the conditions of the main theorem in Pollard (1982).

Let {A1, . . . ,Ak} be the tessellation based on the true curves and let {Â1, . . . , Âk}
be the tessellation from the estimated curves. Let j(i) denote the index of the

tessellation element containing f̂i. Then

η ≤ 1

N

N∑

i=1

I
(
fi /∈ Âj(i)

)(
1 +

1

N − 1

N∑

i=1

(
1− I

(
fi /∈ Âj(i)

)))
+OP

(
1√
m

)
.

(18)

Outline of Proof. Let θ = (θ1, . . . , θN) denote the true coefficient

vectors and let θ̂ = (θ̂1, . . . , θ̂N) denote the estimated coefficient vectors. Let
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a = (a1, . . . , ak) denote the cluster centers based on θ and let â = (â1, . . . , âk)

denote the cluster centers based on θ̂. Let µ denote the population minimizer

of
∫

mina∈A ||θ − a||2dP(θ). Thus

a = argminu

∫
ma(θ)dPN(θ)

where

ma(θ) = min
1≤j≤k

||θ − aj||2.

Hence, a is an M-estimator. Using Pollard (1992) or Theorem 5.23 of van

der Vaart (1998), we have that
∫
ma(θ)dP(θ) =

∫
mµ(θ)dP(θ) +

1

2
(a− µ)TVµ(a− µ) + o(||a− µ||2)

where Vµ is the second derivative of the map a 7→ R(a) ≡
∫
ma(θ)dP(θ).

Moreover,

a = µ+
1

N
S

N∑

i=1

Yi + oP

(
1√
N

)

where S = −V −1 and Yi = ṁµ(θi). Recall that θ̂i ≈ N(θi, m
−1Σi). Treating

this approximation as exact, we can view θ̂i as a sample from Pm = P⊕Qm

where Pm(θ̂ ∈ B) =
∫

Q(θ̂ ∈ B|θ)dP(θ) and Qm denotes the N(θi, m
−1Σi).

With Rm(a) =
∫
ma(θ̂)dP(θ̂), it is easy to see that µm ≡ argminRm(a) =

µ+O(m−1/2). Also,

â = µm +
Sm

N

N∑

i=1

Ŷi + oP

(
1√
N

)

where Sm = S +O(m−1/2) and Ŷi = Yi +OP (m−1/2). It follows that

||a− â|| = OP

(
1√
m

)
.

Recall that P has support on a compact set. Restricted to this compact set,

dH(Aj∆Âj) is a continuous function of µ − â, where ∆ denotes symmetric

set difference and dH is the Hausdorff distance. It then follows that

dH(Aj∆Âj) = OP (1/
√
m). (19)
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Let A(f) denote the member of the tessellation that contains f and similarly

for Â(f̂). Now,

T (f, g) =
k∑

j=1

I(f ∈ Aj)I(g ∈ Aj) and T̂ (f̂ , ĝ) =
k∑

j=1

I(f̂ ∈ Âj)I(ĝ ∈ Âj).

Let us define

T (f̂ , ĝ) ≡
k∑

j=1

I(f̂ ∈ Aj)I(ĝ ∈ Aj).

It then follows from (19) that

T̂ (f̂ , ĝ) = T (f̂ , ĝ) +OP

(
1√
m

)
.

Thus,

I

(
T (fi, fj) 6= T̂ (f̂i, ĝi)

)
= S(i, j) +OP

(
1√
m

)

where S(i, j) = I(T (fi, fj) 6= T (f̂i, ĝi)). Let C = {i : Bi 6⊂ Â(i)} (with the

cardinal |C|). Note that

S(i, j) ≤ max(I(i ∈ C), I(j ∈ C)).
Thus,

η =
1(
N
2

)
∑

r<s

I
(
T (fr, fs) 6= T̂ (f̂r, f̂s)

)

=
1(
N
2

)
∑

r<s

S(i, j) +OP

(
1√
m

)

=
1

N(N − 1)

N∑

r=1

∑

s6=r

S(i, j) +OP

(
1√
m

)

≤ 1

N(N − 1)

∑

r∈C

(N − 1) +
1

N(N − 1)

∑

r∈Cc

∑

s6=r

I(s ∈ C) +OP

(
1√
m

)

=
|C|(N − 1)

N(N − 1)
+

1

N(N − 1)
(N − |C|)|C|+OP

(
1√
m

)

=
|C|
N

(
1 +

N − |C|
N − 1

)
OP

(
1√
m

)
. �
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Theorem 4 Let

η =

N∑

i=1

I
(
Bi ∩ Âr 6= ∅ for some r 6= j(i)

)
(20)

η̂ =
η̄

N

(
1 +

N − η̄
N − 1

)

Then, [0, η̂] is an approximate 1− α confidence interval for η.

In the next section we describe an algorithm for computing η.

4.7 Algorithm for Computing η

To compute η we need to compute (20) which requires evaluating

δi ≡ I
(
Bi ∩ Âr 6= ∅ for some r 6= j(i)

)

where Bi is the confidence ball and j(i) is the cluster index for the profile fi.

The following algorithm can be used.

1. For r 6= j(i) do:

(a) Let H be the hyperplane that bisects the line joining Cj(i), the

center of the cluster j(i), and Cr, the center of an arbitrary cluster

r 6= j(i). Thus we construct the hyperplane, H, which bisects the

segment joining Cj(i) and a different cluster center Cr.

(b) Let Bi be the confidence set of the profile fi. Define c̃min
i = f(cmin

i )

(f(θ) = θ/||θ||)the closest point in B̃i to the hyperplane of bisec-

tion.

(c) If d(Cj(i), c̃
min
i )) > d(Cr, c̃

min
i )) set δir = 1. Otherwise set δir = 0.

2. Set δi = maxr 6=j(i) δir.

We present an analytic solution to c̃min
i in the appendix. Having the

coordinates of the closest point in Bi to the bisection hyperplane it is not

difficult to compute the distances d(Cj(i), c̃
min
i )), d(Cr, c̃

min
i )) and thus δi.
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Figure 2: Minimum Distance. This figure is a 3D version of our algorithm.
Cr and Cj(i) are cluster centers and ci is a confidence set center corresponding
to curve i. Note that the confidence set is not a ball. In this case, the curve
is misclustered or δi = 1
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Figure 3: The left panel consists of the three curves: f1 and f2 (the same
pattern, in the same figure), and f3. The plots on the right are the curves
with negative means (−1)f1, (−1)f2, (−1)f3.

5 Example: Synthetic Data

We generate synthetic data according to the regression model:

Yj = f(tj) + σεj

with j = 1, . . . , m. We want to use these synthetic data to evaluate the

methods introduced in this paper. Subsequently, we need f to take various

shapes. The regression functions for f are:

f1(t) = I{t∈S}(t)
((

2−5t
2

)
∧
((

5t−2
3

)2
+ sin 5πt

2

))
+I{t∈Sc}(t)

((
2−5t

2

)
∧
(

5t−2
3

)2)

f2(t) =
(

2−5t
2

)
∧
((

5t−2
3

)2
+ sin 5πt

2

)

f3(t) = cos(2πt) where S =
(

2
5
, 4

5

)

The first two curves have similar pattern with small perturbation at the

17



smoothing parameter J = 3 J = 4 J = 5 J = 6 J=25
# of true positives 578 589 589 586 1
# of false positives 8 20 17 14 0
# of false positives 3 4 4 4 0
with (0, 0, . . .) ∈ B

Table 1: Number of rejection according to FDR for different values of smooth
parameter - synthetic data. The number of non-constant curves is 600 with
different noise levels. The last line is the number of false positives that can be
identified using their confidence sets: if the confidence set contains (0, . . . , 0)
then it is a constant curve.

early and late time points (see 3, left upper plot). We also include in the

analysis the reversed (negated) curves (see figure 3, right plots).

The synthetic data contain 150 curves for each of the 4 patterns on dif-

ferent scale. For simplicity, we take the noise εij being normally distributed.

Among the 2000 curves in the synthetic data, 1400 are constant curves

(Yij = Nm(0, σi)). The 600 non-constant curves are defined over m = 25

design points (Yij = µif(tj) + Nm(µi, σiIm) with f taking one of the three

shapes f1, f2 or f3). The standard deviation is between σ ∈ (0.2, 0.5) We be-

lieve that these synthetic data are fairly representative of amount of structure

and complexity of a dataset provided by a microarray experiment. However,

the generated curves are independent which is not the case of the expression

profiles from microarray experiments. The reason we don’t consider “loose

dependence” for the synthetic curves is that the testing procedure comple-

mented with FDR correction for multiple inference can be equally applied

under cluster dependence and independence as long as the number of curves

is large.

Testing for non-constant curves. A first step is to apply the smooth-

ing algorithm presented in Section 4.2. Applying the minimum regret ap-

proach to the synthetic data, the smoothing parameter is estimated to be

Ĵ = 4.

The error rate for the multiple hypothesis testing is controlled at the

level of significance α = .05. The number of rejections differs with J , the

smoothing parameter (see Table 5). The larger number of true positives are
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for J = 4 and J = 5.

It is worth mentioning that we’ve implemented several forms of runs test.

The nonparametric test outperforms all of them. Usually, the runs tests

recognize nonrandom patterns with a large number of design points (≥ 35).

Clustering. We generate data from 4 different curve patterns (see Figure

3). The gap method applied to the transformed data of the non-constant

curves (see Section 4.5) estimates the number of clusters to be K̂ = 4. Thus

gap method in the context of our algorithm doesn’t account for the small

perturbation when the number of design points is as small as 25.

Misclustering. The misclustering bound is asymptotic. To evaluate the

validity of this result, we consider the same curves in figure 3 over m = 100

design points rather than m = 25. A synthetic dataset with 600 non-constant

and 10 flat curves is generated according to the 4 patterns in figure 3. The

estimated balls of the 610 profiles are in figure 4. The radius of these ball

is obtained using χ2 approximation. The ones centered around 0 are the 10

flat curves. Thus we screen out those curves fi with (0, 0, . . .) ∈ Bi.

We compute the estimated misclustering rate for smoothing parameter

J = 3, 4, 5, 6 and for the number of clusters K = 2, . . . , 8 (see figure 5).

The true misclustering rate is 0 for K = 2, 3, 4, 5, 6 clusters. The number of

clusters inferred from the misclustering curves is K̂ = 4.

6 Example: Adipose Cell Experiment

In this section we apply CATS to data from an experiment on adipose

cells. We examined data from spotted cDNA microarrays (Research Ge-

netics, Carlsbad, California) experiment. The experiment was completed in

February, 2002 at the University of Pittsburgh (Peters et al.). The spotted

cDNA microarray experiment consists of a time-sequenced sampling of dif-

ferential expression in mRNA from (3T3L1 cultured) adipose cells originally

obtained from mice. These cells were treated with a drug, troglitazone, which

is a member of a family of drugs known as thiazolidendiones (TZD’s). In our

experiment, the drug treatment of the cells lasted for different periods of

time ranging from 0 hours to 24 hours.

The data consist of 15 measurements of mouse adipose cells at different
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Figure 4: 2D confidence balls for 610 synthetic curves. Each circle represents
the confidence ball in 2D of one curve with radius computed using χ2 ap-
proximation. Each color is associated with a different curve pattern/cluster.
The circles (black color) in the middle correspond to constant curves. Note

that the misclustering rate is based on the confidence sets of θ̃ as defined in
equations (5) and (13) and not on these 2D balls.
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Figure 5: Upper bound for η - synthetic data. Each curve represents the
asymptotic upper bound for η for a given smooth parameter J over the num-
ber of clusters. For example, curve 6 in the figure consists of the estimated
upper bound for J = 6.

periods of time. For each measurement, target cDNA was obtained by mRNA

extraction and reverse transcription (into complementary DNA). Then the

cDNA targets were hybridized to microarrays. Each of the 15 hybridizations

produced images, which were processed using the software package Pathways

3. The main quantity of interest reported by the image analysis methods is

the intensity for each probe on each array.

After image processing, removing sources of experimental bias and vari-

ance, the gene expression data can be summarized by a matrix of intensities

with 15 columns (corresponding to the number of arrays) and 3824 rows (cor-

responding to the number of probes). Each of the 3824 rows represents the

expression profile over time of a DNA sequence.

The arrays need to be normalized to account for systematic differences

between arrays. We use a global linear normalization that forces the log

intensities to have median equal to zero at each array, making the median of

the experiment array the same as that of the baseline array. This appears to

perform well because we expect only a relative small proportion of the genes

to vary significantly in expression between mRNA samples [24].
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smoothing parameter J = 3 J = 4 J=5 J=15
# of rejections 291 238 264 0

Table 2: Number of rejection according to FDR for different values of smooth
parameter - microarray data.

Testing for active genes. Similarly to the analysis of synthetic data,

we first screen out the inactive genes. Using minimum regret approach, the

smoothing parameter of these data is Ĵ = 3.

We find 291 active genes among the 3824 DNA sequences for the estimated

smoothing parameter Ĵ = 3.

Clustering. Next, we want to identify the cluster membership of the

active genes in the microarray data. We estimate two global clusters for

smoothing parameter J = 3, 4, 5. The separation between the two clusters

when J = 3 is evident in Figure 6. The panel displays the second cosine

transform component (θ̂2) vs. the third component (θ̂3) for the 291 significant

expression profiles when the number of clusters is 2.

The average curves over time of the significant sequences in each cluster

are shown in Figure 7. The sequences in the first cluster have a depression

around 8 - 10 hours and the sequences in the second cluster have a rise around

6 - 10 hours. However, the second cluster selects the gene expression profiles

with very low activity compared to the ones in the second cluster.

Misclustering. For these observed data we compute the approximate

upper bound of the misclustering rate η for J = 3, 4, 5 as shown in figure

8. We infer from the misclustering rate curve for J = 3 that the number of

clusters is K = 2. In fact there is a large jump for the estimated misclustering

bound from K = 2 to K = 3.

7 Discussion

The methodologies introduced in this paper provide a means for screening

out flat curves, a means for clustering non-constant curves and a means for

quantifying the estimation error in the estimated clusters. These methods

enable us to make inference on a large number of non-constant curves simul-
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Figure 6: 2D balls for significant genes. Each circle represents the confidence
ball of one gene with radius computed using χ2 approximation. The red
circles are in cluster 1 and the black circles are in cluster 2. Their average
curves are in the next figure.
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Figure 7: Average curves by cluster. In each plot, the average over all genes
in one cluster is plotted over time.

taneously.

We propose a nonparametric test for filtering out the constant profiles.

The test is applied after transforming the profile data using cosine basis.

With a small smoothing parameter, the test proves to be powerful in identi-

fying constant curves. This step is important, because a large number of flat

curves with different degrees of random noise affects the clustering. In this

way, we eliminate constant curves which could lead to misinterpretation in

the reported results. We’ve tried a few other tests on different experimental

data, and the nonparametric test presented in this paper proved to be the

most powerful at a small number of design points. Significance over a small

number of arrays is an important issue in the microarray experiments where

their cost is highly expensive.

We also propose a clustering algorithm of the smoothed non-constant

curves which is an alternative to clustering by correlation. The correlation

coefficient of two curves can be expressed as the Euclidean distance of the

normalized cosine transforms in the Fourier space. We use k-means in this

article but any other clustering algorithm can be used after data transforma-
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tion and smoothing.

The last step is the inference on the cluster estimation. We consider a

misclustering rate based on the fraction of all pairs put incorrectly in the

same cluster or put incorrectly in different cluster. This misclustering rate

was first introduced by Rand (1971). We find an asymptotic upper bound of

this misclustering rate which can be approximated using 95% confidence balls

estimated using the method in Beran & Dümbgen (1998). To our knowledge,

this approach to cluster estimation has not been considered previously.

To evaluate the validity of our clustering method, we generated a syn-

thetic dataset. We correctly estimate the true number of clusters and the

true cluster membership. We use the approximate upper bound to make in-

ference on the cluster error estimation as well as inference on the smoothing

parameter and number of clusters.

For the gene expression data, we identified two clusters of gene expression

profiles which showed a change in expression over treatment times. The es-

timated misclustering bound is about 0.1 which show that the our clustering

method performs quite well on these data.

Appendix

Sobolev Ellipsoid

Let ψ1, ψ2, . . . be an orthonormal basis for L2. The Sobolev ellipsoid Fβ(c)

or order β and radius c is

{
f(x) =

∞∑

j=1

βjψj(x) :

∞∑

j=1

β2
j j

2β ≤ c2
}
.

τ 2 estimation

We estimate the confidence balls for the expression profiles in Â under the

normal means problem:

Zj = θj + σεj

with j = 1, . . . , m and εj ∼ N(0, 1). Now let σ2 be the variance of Z.
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We estimate σ2 with the high component variance estimator:

σ̂2 =
1

m− J

m∑

i=J+1

Z2
j

which is an asymptotic consistent estimator of σ.

Define

d̂ =
√
m(L(β̂Z, θ)− R̂(β)) (21)

where L is the mean square loss and R̂(β) is the Stein’s unbiased risk es-

timator (SURE). According to Beran & Dümbgen (1998) the asymptotic

distribution for d is N(0, τ 2).

Substituting L and R̂ in (21) obtain

d̂ =
√
m

(
m∑

j=1

(β̂jZj − θj)
2 −

(
m∑

j=1

σ̂2β2
j +

m∑

j=1

(
Z2

j − σ̂2
)
(1− βj)

2)

))
.

We find that

V(d̂) =

m∑

j=1

(2fj−1)2

(
1 +

1− 2cj
m− J

)
(4θ2

jσ
2+2σ4)+4σ2

m∑

j=1

fj

(
(1− fj) +

2(2fj − 1)cj
m− J

)
θ2

j

where cj is 1 for j ≥ J+1 and 0 otherwise. Replace σ2 ← σ̂2 (where σ̂2 is the

high component variance of Z) and θ2
j ← (Z2

j − σ̂2)+ to obtain the estimate

τ̂ 2 of V(d̂). When fj = 1 for j = 1, . . . , k and 0 otherwise, the estimated

variance becomes:

t̂au
2

=
m∑

j=1

(
1 +

1− 2cj
m− J

)
(4(Z2

j − σ̂2)+σ̂
2 +2σ̂4)+4σ̂2

k∑

j=1

2cj
m− J (Z2

j − σ̂2)+.

The estimated variance of d̂ is different from the one presented in [5, 4]

because it takes into account the dependence between Z and σ̂.

Analytic solution for η

Let w and w0 the weights in the equation of the hyperplane which bisects

the segment joining Cr and Cj(i):

H : h(x) = wtx + w0 = 0.
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The bisection hyperplane is defined as follows. We know that the median

point of the joining segment CrCj(i) is in the hyperplane H and for any point

H in the hyperplane, the line joining H and the median, M , is perpendicular

on the line uniquely determined by Cr and Cj(i).

Denote the coordinates of an arbitrary point in H: h = (h1, . . . , hk),

the coordinates of Cr, the arbitrary cluster center, p = (p1, . . . , pk), and the

coordinates of Cj(i): s = (s1, . . . , sk).

We write that the joining segment HM is perpendicular on the line de-

termined by Cj(i) and M :

k∑

i=1

(
hi −

pi + si

2

)(
si −

pi + si

2

)
= 0.

It follows that

wi = pi − si for i = 1, . . . , k and w0 =
k∑

i=1

s2
i − p2

i

2
.

The confidence set is defined by:

B̃i = {θ̃ : θ̃ = f(θ), θ ∈ Bi}.

We check B̃i∩H 6= ∅ by computing the minimum distance from the confidence

set B̃i to the bisection hyperplane.

min
θi∈Bi

d(f(θi),H) = min
θi∈Bi

[
< θi, w >

||θi||||w||
+

w0

||w||

]
.

Because the minimum will be on the envelope, we solve

min
< θi, w >

||θi||||w||
, with ||θi − θ̂i|| − ri = 0. (22)

The equivalent geometry problem to the optimization problem (22) is the

following. We want to find the maximum angle to the origin between a fixed

point W in the space and points on the envelope of the hypersphere Bi. See

figure 9 for a 3D description. The problem reduces to finding the maximum
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Figure 9: Maximum angle. We want to maximize the angle ŴOT with T
on the circle of center C and radius r. This angle gives the solution to the
optimization problem we solve for η̄ as defined in the text.

angle, T̂OW where T falls on the envelope of a hypersphere. The problem

(22) is easier to solve with the following constrains:

min
ti

< ti, w >

||ti||||w||
with ||ti − θ̂i|| = ri, < ti, (ti − θ̂i) >= 0. (23)

with the last equality due to the tangent in T from the origin. We rewrite

again the minimization problem as:

min
ti

< ti, w > with ||ti||2 = ||θ̂i||2 − r2
i , < ti, θ̂i >= ||θ̂i||2 − r2

i . (24)

We solve this optimization problem using Lagrange’s theorem:

Of(t) = µOg(t) + λOh(t)

f(t) =< t, w >=
∑J

j=1 tjwj

g(t) = ||t||2 − (||θ̂i||2 − r2
i ) =

∑J
j=1 t

2
j − C

h(t) =< t, θ̂i > −(||θ̂i||2 − r2
i ) =

∑J
j=1 tj θ̂ij − C

(25)

One solution to the problem gives the coordinates of cmin
i with the minimum

distance d(f(cmin
i ),H).
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The algorithm is different for the case when the origin is in the ball Bi.

For this case, Ci = ||θ̂i||2−r2
i ≤ 0 and the coordinates of the maximum angle

satisfies:
< t, w >= −||t||||w|| ⇐⇒ t = (−a)w with a > 0

||t− θ̂i|| = r2
i .

(26)
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