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We present a method for constructing nonparametric confidence
sets for density functions based on an approach due to Beran and
Diimbgen (1998). We expand the density in an appropriate basis
and we estimate the basis coefficients by using linear shrinkage
methods. We then find the limiting distribution of an asymptotic
pivot based on the quadratic loss function. Inverting this pivot
yields a confidence ball for the density.
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1 Introduction

This paper extends the REACT regression method of Beran (2000) and Beran
and Diimbgen (1998) to the problem of density estimation. The goal is to
obtain nonparametric confidence sets for density functions.

We expand the unknown density f in a basis, f(z) = >_.0;¢;(x), and
we use an estimate of the form j?(x) =2 gjgb]—(:ﬂ) where 5] is an estimate of

6;. Based on the limiting distribution of ) ](5] —6,)* we construct a ball C,,
such that
liminf inf P(f, € C;,)) > 1 —a (1)

n—oo feF

where f, = >0_, 0;0;(x) is the projection of f onto the set spanned by the
first p = p(n) basis functions and F is an appropriate function class. Here,
p = p(n) — 0o as n — oo. In the regression case, Beran and Diimbgen (1998)
and Genovese and Wasserman (2002) used p(n) = n. However, in the density
estimation case it appears we need the stronger condition p = o(n'/3).

Constructing confidence sets for nonparametric curve estimation prob-
lems is challenging because the estimate ftypically has asymptotic bias. The
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set (), that we construct adjusts for some, but not all, of the bias. Specifically,

~ ~

the bias E(f(z)) — f(z) can be decomposed as (E(f(x)) — fo(z)) + (f,(z) —
f(x)) which we call smoothing bias and tail bias. The sets (), account for
smoothing bias but do not account for tail bias.

2 Review of the REACT Method

We begin with a brief review of Beran’s REACT method for regression.
Suppose that

Y; = f(x;) + o¢ (2)

where €, ~ N(0,1) and z; = i/n. Expand f in an orthonormal basis as
fl) = 0;6;(x). (3)
j=1
Let GAJ = 0 for j > n, and for j < n define
S 1
0; = > Yig;(wi). (4)
j=1

Let = (,...,6,) and let 8(A) = (\By,...,\.0,) where the shrinkage
coefficients A = (Ay,---,\,,) are contained in an appropriate set A,, such as
the set of all monotone, non-increasing vectors. Beran calls this the set of
monotone modulators.

Define the pivot process

B, (A) = Vn(Ln(A) = Su(A)) (5)

where L, () = Z;L:l(@ — 6,)? is the loss function and S, (\) is an estimate

of the risk R, (X\) = E(L,())) (such as Stein’s unbiased risk estimator). The

function estimate is

Fl@)=> " Nb0,()
j=1

where A is the minimizer of S,(\) over A,. Beran and Diimbgen (1998)
showed that {B,(\) : A € A,} converges to a Gaussian process. Moreover,
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they showed that B, () is stochastically close to B,(X) where A minimizes
the true risk R, (A). It follows that B, (X) converges in law to a Normal with
some variance 72. The convergence is uniform over certain function classes
F. Then by inverting the pivot Bn(X) we get the confidence set

p_{ez Ry %m@}

where T is a consistent estimate of 7. The corresponding confidence ball for

o= 22521 0504() 1s

C, = {f(-) - iequj(-) L (0h,....,60,) € Dn}.

The theory described above was generalized to the case of non-linear
wavelet thresholding where F is a class of Besov spaces in Genovese and
Wasserman (2002). However, the theory does not carry over directly to den-
sity estimation because the pivot process in density estimation is a sum of
dependent processes. However, we will modify the theory to accommodate
this complication.

3 Density Estimation

Let Yi,...,Y, be a random sample from a distribution function F' with den-
sity f on [0, 1]. We assume that f € L,[0, 1] and we expand f in an orthonor-

y) =1+ Zﬁjqﬁj(y)

Although it is not essential, we shall use the cosine basis ¢;(z) = v/2 cos(jry)

mal basis:

for j =1,2,... We estimate the density function by

) =14 7bi65(), (6)

j=1



where 5] = L5 ¢,;(Y;) and p = p(n) depends on sample size n. Estimates
of this form have been studied for a long time; see Efromovich (1999), for a
detailed account.

We assume that f belongs to

fE{fif(y):1+Zej¢j(y), (617927”’7)69(7”70)}’

where

O(m,C) = {(91,92, )Y e < C}
j=1

is a Sobolev ellipsoid of order m and radius C. We assume that m > 1/2.
However, we do not require that m or C' be known. All results that follow
hold uniformly over ©(m, C').

Let

Ap:{(Ala”’a)‘p): 12>\122>\p20}

denote the set of monotone modulators. Let

J=1

be the loss function. The risk function is

R0 = E(L,(0) = 3 |2 4 (1= 2,8 )

50 = Z T o (-2, )
where
o =var(s,mi) = (1+ ), 51= LS o0 -0

The following theorem establishes the convergence of the pivot process

By(A) = Vn(Lp(A) = Sp(N).



THEOREM 3.1. Suppose that § € O(m,C) where m > 1/2. Let p =

p(n) — oo asn — oo and p = o(n'/3). Further let X and X be the minimizers
of L,(A\) and R,(\) over A,. Then

Vi(Ly(3) = 5,(1)/7(3) = N(0, 1), (10)
where T (X) (p/n)7i ()\) + 7‘2()\) is a consistent estimator of 7‘2(X) =
(p/n)72(N) + 73 (N). Here,

2() = %Z(mj —1)%t, 20 = %Z(ﬁj — 1%,

2(\) = 429” 107 +8) Y 0i0(N — DA — Do,

1<k<j<p

o5\ ~ - ~ N ~ -
20 = 42(@3-%) N = D% +8> 0 > 0;6k(N — DA — D)5,
j=1

1<k<j<p

PN 011+ 0, ~ RN
Cov (6;,6x) = (M - t9j9k) Ok = Z(¢j(y -
i=1

.
B
Il

V2

The next theorem establishes how to construct uniform asymptotic con-
fidence sets for densities. In what follows, we sometimes write Py or P to
emphasize the dependence of the probability measure on the unknown den-
sity. Define

D, = {9 S (0 - A < Z“j(;) n Sp@)} (1)

and

cpz{fp:fp:uiejqﬁj(x),eepp}. (12)

THEOREM 3.2. Under the same assumption of Theorem 3.1 the following
results hold.

1. 72(N) is a uniformly consistent estimator of T2(X) for k =1,2:

sup Pe{‘?‘,f(X) — 7‘,3()\)’ > e} =o0(1), Ve>D0. (13)
00 (m,C)

o1 (Yi) — Ok).



2. The normalized pivot process BP(X)/T(/)\\) does not approach a degener-
ate distribution:

liminf inf (72(X) + (n/p)2 (X)) > 0. (14)

n—oo cO(m,C)

3. The confidence sets have coverage at least 1 — ac:

o o o S 1-a
llﬁgf@(lrrnl}cc)P(G €D, >1—«, and h}}l{}.}f ;:gjfrPf(fp €C)>1-a
(15)

The proofs are in Section 4.

4 Proof of the Theorems

Throughout this section, all results hold uniformly over the Sobolev param-
eter ball ©(m, C) for m > 1/2. The following lemma plays a key role in the
proof of Theorem 3.1.

LEMMA 4.1. Suppose that f € F where m > 1/2. Then

e}

> 16;1F=0(1) fork>1.

j=0

Further let B} = [\/ﬁ(@—ej)]k Then E¥ = Op(1) uniformly inj € {1,...,p}.

PrOOF. The first inequality is the Bernstein inequality for Fourier co-
efficients; see Efromovich (1999) for the details. For the bound of Ef, we
can apply Serfling (1980) Section 2.2.2 Lemma B; the kth moment of the
sum of 11D random variables is of a order of O(n*/?) if kth moment of the

random variable exists. Here n is the number of random wvariables. Since
$;(Y1),...,0;(Y,) are D and E (¢;(Y7) — 6;)" is finite,
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Let E; = \/ﬁ(éA’j—Qj) and define the standardized pivot process B, (\)/7(\)
as follows.

B,(N)/7(A) = Vn(Lp(A) = S,(A)/7(A)
= [(p/n)'*Wi(N) + Wa(N) = (vB/m)V (V) ] /T(N).

=
=
Il

1 & .
ﬁ ;(2)‘1 — D(E — 03), Wa(A) = 22(/\]- —1)0,E;,
V) = (0/p)" (20 = DE = o) 720 = (/)7 + )

To prove Theorem 3.1, we follow the strategy of Beran and Diimbgen (1998),
originating from Stein (1981). In other words, we use the asymptotic distri-
bution of the pivot process B ( )/7(X) to derive a confidence ball for 6. Here,
\ minimizes S »(A) and X minimizes R, (). The proof will use the following
steps.

Step 1 Show that R R _
(Bp(A) =W(A)/T(A) = 0p(1),
uniformly over ©(m, C), where W () = (p/n)2Wi(\) + Wa(N).

Step 2 Show that Wy (\) converges weakly to a Gaussian process with mean
zero and covariance kernel Ky (s, t) where Ki(A\, \) = 72()\) for k =1, 2.

Step 3 Show that W ()\)/7(\) converges to a standard Normal.

Step 4 Show that W(X)/7(X) converges to a standard Normal by stochastic
closeness of Wy (A).

sup [Wi(A\) = We(A)| = 0,(1) for k=1,2.
O(m,C)

Step 5 Show that B ( )/T ( ) converges to a standard Normal where T2(/):) is
a consistent estimator of 72(\).



We begin by showing that
(Bo(N) = W(N)/7(Y) = (VB/m)(VN)/T(X) = 0,(1).
It suffices to show that

V(A)=0(1) and liminf inf nT(X)/\/]?:oo

n 0eO(m,c)
Recall that
~ 1 < ~
7= D () -0
=1

Let V; = ﬁ(&; — UJZ).
Then,

- e o)

Thus,
1 p
Var (V(3) = - Var (Z(zAj . 1)Vj)
j=1
p p
= LSS - 1M - 1)2Cov (Vi)
p j=1 k=1
1 p p
< —ZZ|cov(vj,vk)|.
p 7=1 k=1

(16)

Here, Cov (V},V}) is a linear combination of Cov (Ej, Ey), Cov (E;, E}) and

Cov (E2, E2).



To show Var (V (X)) = O(1), we need to show that sums of Cov (£}, Ey),
Cov (E;, E}) and Cov (E?, E}) are at most O(p).
The followings are immediately from Lemma 4.1 :

p p p p
>N |Cov (B Er) = nY Y |Cov(8;,0:)]
J k J k
_ ii O + 0}k
J

= 0(19)

p p
> |Cov (B} Ey)| =
J k
:ﬁ¥¥
- b
- o():
p p p p R R
> [Cov(ELLEY)| = n2ZZ\cov@%—zejej,éz—zekek)\
J ok ]

62,67) — 26,Cov (6,,62)

— 0,0,

— 26,Cov (8, 9,9)

O2jrk + O2j—k| %0 — 0102,
177

V2

J?

—~20,Cov (B, 62) + 46,0,Cov (6, 5@)

(Oj4k + Oj—r) — V20,01)* + R

7 k
p p 2
- zzzo—;k+o(%) —0(1),
7 k

where

R, = Oajk) + Oa)j k| + 2095 + 2024 + 2xf)

2f (
Consequently, Var (V(\)) = O(1).
We'll show in Lemma 4.4 that

lim inf@(infc)(le(A) + (n/p)m3(N\)) > 0.

n



Hence,

liminf inf n272(\)/p = lim inf 9(infc)m'f(}\i) + (n?/p)2(\) = oo.

n O(m,C) n

Therefore,

limsup sup (v/p/n)(V(A)/7(N) =

n O(m,C)

The next step is to show that W()\) /7(X) converges to a standard Normal.
Now,

W) /T() = (aN)/7 )W) + (1= a(X)/2(0)) /W (V),

where a(X) = (p/n)7¢(A\)/7*()). Note that a() € [0,1].
First, we derive the asymptotic distribution of W (\)/7(\) using the fol-
lowing strategy:.

Step 1 Show that the characteristic functions(c.fs) of (a(X N)/T2ONY2WL ()
and ((1 — a(\))/72(X)Y2W,(X) converges to the c.fs of Normal dis-
tributions. That is,

e [exp (i (20) i, )] - exp (- 29| = o),

T2 (M) 2
o () ") - (- S = ot
if
hmnmfg(mf 72(N) /a(X) > 0, nmninf@3£§C)T§(X)/(1—Q(X)) > 0. (17)

Step 2 Show asymptotic independence of (a(X)/72(A))Y2W; (X) and ((1—a(X))/7(X))2Wa(X).
In other words,
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If conditions (17) and (18) are satisfied, then

€ [exp (it(220) w5y (22 i, 50 - (- ) = o)

(A 75 (A) 2
Hence, W (X)/7()) converges to a standard Normal.
Note that conditions (17) and (18) can be replaced with
sup Cov (Wi(X), Wa(N)) = o(1), (19)
O(m,C)
2\ -2(Y 1/2
liminf inf | LA > 0. (20)
no 0m0) \ a(N)(1—a()N))

To show the asymptotic normality of W(X)/7(}), it suffices to show
W(X)/T(X) is stochastically close to W(X)/7(}X). Since a()) is bounded,
one can show the stochastic closeness by showing stochastic closeness of
Wie(N)/7(X) to Wie(N)/7(X) for k= 1,2. :

@fz‘u%)\Wk(A)/Tk(A) — Wi(N)/7 (V)] = 0p(1). (21)
To show the stochastic closeness, we invoke Theorem 6.2 in the Appendix
which is a modified functional Central limit theorem. To do so, we must show
finite dimensional convergence of W; and W5 to a Gaussian limit which also
guarantees that the c.f.’s (characteristic functions) of W; and W, converges
to the c.f.’s of Normal distributions.
We use the following lemma to show finite dimensional convergence of W;
to a Gaussian limit.

LEMMA 4.2. For given A,

2.2
‘E (exp[ith(A)]) ~exp ( - %)‘ 0, n—0. (22)
Furthermore, if
liminf inf 77()\) >0, (23)

n O(m,C)

then the finite dimensional distribution of W1(\) has a Gaussian limit.
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PROOF.

First we show that the summability of covariance condition (31) is satis-
fied.

Let Wi(A) = S°F_, S;:()\) where S;(\) = (2, — 1)Wy;.

Jj=1 P
Then,
1
sup» Y E (sj(s)sk(t))‘ < —sup )y > ‘ (25; — 1)(2t), — 1)E [Wy,; W] ‘
s,teEA 1<k<j<p D steA 1<k<j<p

E((E2 - o3)(B} - o})] |

P GSi<
1
< ]32 S |Cov (B2 E}).
1<k<j<p

We already showed that Cov (E?, E}) = 03, + O(n~"). Therefore,

%Z S |Cov (B2 E)| = o(1). (24)

1<)#k<p

Now we show finite dimensional the convergence of the finite dimensional
marginals of W;(\). One can write Wi()) as a sum of three terms.

Wi(\) = N (2Aj—1)wlj+ﬁ Z(QAj—nwlj—ﬁ > (1=2))Wy,

VISDA JEJ2 VISDE

where Jl = {j . (2>‘j_1> > 0}, JQ = {j : (2)\J—1) = O}, J3 = {j : (2)\]—1) <
0}, wx = (px/p)"/?, pi is the cardinality of J;, for k =1,2,3 and >, p. = p.
Let ka = \/% ZjGJk(2>\j - 1>Wk]
Then,
Wi =wiWy1 +wsWys,

since Wy, 2 = 0.

To show the asymptotic normality of W;(\), we need to show (1) the c.fs
of W,,1 and W, 5 converges to the c.fs of Normal distributions (2) conditions
(19) and (20) are satisfied :

~ ~ 11
sup Cov(W,1(A),W,3(A)) =0(1), liminf inf —— >0, 25
21, Cov (Wia(), Was(3) = o(1), - Timinf inf " )
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(3) Wi (A) does not approach a degenerated distribution.

Condition (23) ensures (3). Without (3), (1) and (2) imply only the con-
verges of the characteristic function of Wi (\). Keep in mind that we only
need convergence of the c.f of Wi (\) to the c.f. of a Normal distribution to
invoke Theorem 6.2.

Since J; and J3 are disjoint, one can show that

sup Cov (Wn1(N), Was(N)) = o(1) (26)
O(m,C)
and 11
liminf inf —— >0, (27)

n o(m,C)Wwy W3

because wy, wy € [0, 1].

It remains to show convergence of the characteristic functions of W, ;
and W, 3. Without loss of generality, it suffices to show that the c.f. of
Wi(a) = 7 > 25— a;Wi; converges to the c.f of a Normal distribution where
a = (ai,...,a,) and a;’s are bounded and positive. While Theorem 3.1 re-
quires the finite dimensional convergence, one can reduce it to the univariate
case via linear combinations by Cramér-Wold device. In other words, the
c.foof YO0 Wi(ty) = # b1 > he1(2tg; — 1)Wy; converges to the c.f. of a
Normal distribution where t; = (t51,...,tkp) € Ap.

Since Y ;" (2tg; — 1) is bounded for all j, again it remains to show con-
vergence of the c.f. of W/ (a) to the characteristic function of a Normal dis-
tribution.

Let X; = (¢1(Y3),...,¢,(Y:))T and D = diag(ay, .. ., a,). Further let R; =
Y12(X; — 6) where ¥ = Var (X;). Then W{(a) can be written as follows:

Wi(a) = ii“ﬁ([\/ﬁ(@—eﬁ')]z—ﬁ)

J=1

¢ _ N7 N2
(Vn(X = 0))" D(v/n(X —0)) \/ﬁ; i

S-S

_ L RIS DS (R — L S o2
= (VARSI DS i) ﬁ;“
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\1T \/ *_ipa'ag
(vnR)"S (VnR) ﬁ; i

_ L
Y

1 . o1 1 _ _
= —(VaR)"D'(VaR) — — a0} + —(VnR)" (X' — D')(VaR),
W B
where ¥ = X/2DXY2 and D’ = diag(Y').
Here,
D' = diag(X'?) - D - diag(X"?) = diag(X)D = diag(a,0%, ..., a,0?).

p

With the covariance summability condition

Var (I(VAR)T( = D)(VAR)) = °37 37 ajucCov (B B) = ol1).

1
p 1<j<k<p

As a result,

W'(a) = h(vnR) + 0,(1),

where h(z) = ﬁ (:ETD’x—lTD’1> andz = (x1,...,7,),1=(1,...,1)T € RP.
We only need to show convergence of the moment generating function (mgf)

of h(y/nR) to the mgf of a Normal distribution, that is, we must show that
|E e shMVrR) _ o5 Xl ajo)/p| — (1), for any s > 0.

By the triangle inequality,

|E e—sh(\/ﬁ}'_%)_es2 P a?o;l/p| < |E (e—sh(\/ﬁR))_E (e—sh(Z))|+|E (e—sh(Z))_652 P a?o;-l/p|’
where Z = (Zy,...,Z,)" is a multivariate standard Normal random variable.

In addition to the covariance summability condition, convergence of the
first term of the right hand side implies asymptotic independence while that
of the second term ensures that the sum of independent random variables
converges to a Normal distribution.

To show convergence of the first term, we adapt Portnoy’s (1986) ap-
proach and use the Lindeberg condition for the proof of the convergence of
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the second term. We’ll show in Lemma 4.3 that the Lindeberg condition is
satisfied.
The Fourier inversion formula gives

E (e ) ~E (@) | = | [gladrita) - [ gla)de(s) |

— | [ (en(z) - )ar

where g(z) = ") G = [~ %g(x)dx, P, is the cumulative density func-
tion (cdf) of /nR and ®(z) is the cdf of Z.

The key point is to use properties of g(t) to show that the above integral
converges to 0.

Let 37 = VP Then,

2sajcrj

Y

a0 = [ gt

= S Ty _ 4T S Ty

= exp <\/ﬁ1 Dl)/exp( it x)exp( \/]3:17 Dx)dx
£ I I

- T e (530 5530

Note that g(t) converges to 0 exponentially fast unless ||¢|| is very small.
Now,

on () =2 (0 (7)) - (oo () o ()

where R’ = L_R. Note Var (R') = 1.

el
By a Taylor expansion,

(N, e e Ry A
on(z) =1- 5 - ST e, et < swE R (21

Let s7 = t"¥7Y2 Then s"%s = ||t]|%.
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Furthermore,

Et'R)* = E[s7(X —0)]

(VAN
(0]
/N
V2]

.
N——
)
m
[ —

j=1 j=1
p
= 8(28]) sT%s
j=1
because |p;(Y) — 0;] < 2v/2.
Hence,
p p
ey 8(2 ) sTxs/(s7Ds)? ( sj) /sT5s = O(|[t]1?).
||t|| j=1 7j=1
Define W,,(¢) = W= 4 E (7 R)3/(6,/n). Then,

It1l°

oggh (=) - wato)] < I

As a result, one can obtain the following from the fact |e* — 1] < |ule

() -] < U oy (U 200

Again applying the triangle inequality gives

en) >[50 (o) - ) < o [

+ @0 [ gl - =)

Jul
)

dt

()=

LIP g

The second term on right hand side converges to 0 from Portnoy (1988)
Lemma 1.1. For the first term, one can split the domain of the integral into
Ay = {||t]]| < ep'?} and Ay = {||t|| > ep'/3} and define I; and I, are the
integrals over A; and As.
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Now,

2 n
=N Cp3ed Cp3e3
< (2m)7PEG(2) - exp ( - ).

_ L OpPe t|2  Cpe
hos oo fiao/ e (- B 229

where Z is a multivariate standard Normal random variable.

Furthermore,
erPEGE) = o ([]8) 7 (% 3 %) /exp (% S0+ ﬁf)) dt
j=1 L yp:l . » j=1
= (2n)P?exp (—;—]2> (jl;[l <1+jﬁf)> +o(1)
2T 1 1\T 1
~ () /211<1+ 57 +8—ﬁ;1>£[1< —gmt 8@4) +o(1)
_ p/ .
(2m) 2}:[1 (1 + 4@4) +o(1)

— (2m) P exp lii +o(1)
4 j=1 634

= (27) 7" %exp <1 Zs%?af) +o(1)
P

which is the mgf of a Normal distribution.
Consequently, with p®/n — 0, I; converges to 0.
For t € Ay,

~ - 11 1
g(t) = (277)17/2(]1:[1 632)1/2 exp (5 ; 5_]2 D) ;ﬁﬁf)

> (2m)" exp(Cyplogp + Cav/p — Cap™®).

because Y *_, 373 < max; G7|t]|* = O(p™).
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Then,

hgswwme/

teAs

S01%<\/t‘>)0lt+sup 9(8)](2 )_p/Q/e_‘I’(t)dt

teAs

sSwwmmWWﬁw wﬂwmmyW/ﬁWﬁ

teAg teAs

Since supy 4, |g(t)| converges to 0 and e~ I1I°/2 is integrable, the second term
converges to 0.
For the first term, if ¢’ (¢) is integrable, then it is bounded by

Co(2m)P/? exp(Ciplog p + Coy/p — Cap™% 4 (p/2) logn),

which converges to 0 due to p*/n — 0.

It remains to be shown that ¢}%(¢) is integrable. Since |pg(t)] < 1, it
suffices to show that pg(t) is integrable.

Because the parameter of the probability density function (pdf) of Y
belongs to the Sobolev parameter ball, the pdf is bounded. Recall X =
(01(Y),...,0,(Y)). Hence, the pdf of X is also bounded. Furthermore, R =
Y~1/2(X —#) is a orthonormal transformation of X, therefore its pdf is also
bounded. Since the pdf of R is bounded, ¢g(t) is integrable.

Finally, it remains to show Var (W;(\)) = 72(A\) + 0,(1) for given X :

p

Var (W,(\)) = %Var (Z(mj - 1)le>

j=1

= —Z (2X;, — 1) Var E2 Z Z (22, — 1)(2A; — 1)Cov (

J 1 1<k<j<p

= = Z(mj — 1%t +0 G) :
P p

= 1t(\) +0(1).

LEMMA 4.3. Wi(A) and Wa(X) converge weakly to Gaussian processes
over A,.

18
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Proor. Having proved finite dimensional convergence to a Gaussian
limit and covariance summability of W3 () in Lemma 4.2, we can now appeal
to Theorem 6.2.

By direct calculation,

1 1
155(M)]a, = %SXEK”V — Wyl < %|W1j|~

Applying Lemma 4.1 immediately implies W§; = (E} — 02)* = O,(1).
Then,
1< )
Z E(ISI0IR,) < 5 DTE (W) = 0(1),
j=1

Now, for all u > 0,
p
Zf{ns 2 > ISR < le W2 > up}W?,
p -

- Z (EI{W2 > up}E[Wi])"

j 1

W ; (E[WEJ]E[ij])l/Q

- of5)

It remains to show that the entropy condition (36) is satisfied.
Let dp(s,t) = ([(s— t)zdP)1/2 where P is a random measure and

IN

IA

Sk 57: (w2 2
dP(-) = { % = Wi >0 ae.

0 . otherwise.
Here,
_ 1 : s= tj
5tj (s) = { 0 : otherwise.
Then, for arbitrary s,t € A,

b\W1 (57 t)2 = -

4p
p 2|

le} i
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< [dpts] Z

Using the above inequality, one can make the covering number bounded by
the uniform covering number:

R 4 & ,171/2
N(uaA;D?pW1) S N U[EZWM} 7AP .
It follows that

e(n)
/ \/lOgN U ApapW1)d

AN
o\
[}
S
—
o
0Q
/N
IS
| —
ESTITN
=
| I
L
=
S
iS]
N———
——
—
-
o
IS

1/2

4L 1/2 e(n)[(4/p) > ij]
- )" e b
D 0

=1
It is shown by Dudley (1987) that
log N(u,Ay) < cu™' forall u € (0,1].
Combining the above inequality and % S W = 0,(1) gives

em(m s, wz]"”
/ log N(u,A,)du — 0, ase(n) | 0.
0

Thus Wi () converges to a Gaussian process over A,,.

For W5(\), we use a different approach. Although W, is a sum of de-
pendent processes, it can be re-written as a sum of independent stochastic
processes:

Wo(A) = 2\/_2)\ —1)8,(6;, — 6)
= IZA—129 (65(Y;
— IZ X, —0)

~ 227;(»
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where T;(\) = ﬁ(@()\) - 0)T(X; - 0).

Hence we can use the classical empirical process theory to show stochastic

convergence of Ws. In other words, we only need to show that conditions (34),

(35) and (36) are satisfied.
A simple calculus argument shows that

TR, = (3205 = 66,00 1)
< <Sﬁpi Oy = 06,057 — )] )

A
/N
gk

Define U; = > ¥_, Uy; where Uy; =| 0;(¢;(Yi) — 0;) | fori =1,...,n.
Owing to |¢;(Y;) — ;] < 2/2 for all j, for m > 1,

lignE(HE()\)Hf\) <11mE(U)2m<hm<2\/_Z|9 |) < o0.

Furthermore,

(ZI{HT B, > InWIR,) < %iE<I{UE>nu}UE>

< %Z{E(I{Uhnu})E(
< —Z{ P(U? > nu)E (Uf‘)}
S

R

v}

1/2

Finally, we need to show that the condition (36) is satisfied for Ws(\).
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1/2
Define dg(s,t) = max; dg,(s, ) where dg,(s,t) = <f(s — t)2in> and

10O p
{ W . j=1 Uz_] >0 a.e.

0 :  otherwise.

dQ;(-) =

For arbitrary s,t € A,,

pw, (s5,1)* = iy (i(sj—tﬁ@j(%(l@)—ﬁﬁf

AN
|
N\
w
<
~
<.
=
N—
no

4 2
< 2 2
<2 do,(5.1)) U
24 U
< (dQ(s,t)> =y v,
=1
where df, = [|s —t]dQ;.

Usmg a snmlar argument in the proof for Wi (),

N(u, Ay, pws,) <N< [ ZUQ} 1/2, p>.

And

/e(” \/logNu Ay, pwy)du - < / logN ZU2] 1/2’ p>}1/2du
2

n) > 12
= [%Z ]1/2/ i : log N (u, A,)du
(1)

Consequently, W(\) converges to a Gaussian process over A,. [
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Since,

Var (Wo())) = Var(Ti(\)
= (0(\) = 0)"=(0()) - 0)
= 2922>\—1 —|—22 Z Hﬁkajk)\—l)()\k—l)
j=1 1<k<j<p
= 7\,

with Lemma 4.3, one can show that

e e (1 (430 s 0)] e (- 220 <ot

T1 2
’E [exp (it(lég;\)ymﬂfg(;\)ﬂ — exp ( - M) ‘ = o(1),
if
hmnmf@(lnf 72(N)/a(N) > 0, lim infeggfc)fg(i) /(1 —a(X) > 0.

Hence, to derive the asymptotic distribution of W(A)/7()), it remains to
show that conditions (19) and (20) are satisfied.

LEMMA 4.4. The followings hold:

S )Cov (W1 (X), Wa (X)) = o(1),

- 1/2 -
2 2 2

liminf inf (M7 (Y Ciminf inf [T S
o omO) \ a(h)(1 — a(n)) nooemoy | p

PRrROOF. First,

p

Cov (Wi(\), W5(N)) = % S0 = 1) — 1)Cov (W, W)
— >\ — 2)\k —1 COV le, ng .
+ S 3 (= - o )
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Moreover,
Cov (le, ng) = QjCOV (Ej, Ef)
1
= 20j07 + —0;F.(0),
Cov (le, ng) = QjCOV (Ej, Eg)
1
= 26j‘9k0'jk + EHJP,L(Q),
where P,(f) is a polynomial of 6.
Therefore,

limsup sup Cov (Wi(A), Wa(A)) = o(1).
n  O(m,C)

Now,

liminf inf > 0.

n O(m,C)

2N i i 2T £
a1 —a(N)) n e(mco) p/n

In other words,

liminf inf (72(A) + (n/p)m2(N)) > 0.

n 0eO(x,C)
We now follow the proof of Beran and Diimbgen (1998) Theorem 3.2.
Suppose that 72 + 77 can be degenerated at A = ). Recall that 73()\) =
(O(N) = 0)X(0(N) — 0) is 0 if and only if °F_, 67(N; — 1)* = 0.
In other words, we assume

p p
IS - %)Zgzeg@ S =0 (@
1 j=1

liminf inf (
P <
]:

n 0€O(a,C)

and then we derive a contradiction. Now,

1 I~ n < ~
R,(\) = —ZA§U§+—ZQ§(1—Aj)2
P P
1~
2 2
= QZAJ%
j=1

1, I o/ 12712
B (h-5) ]
7j=1

i=1

v
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Let A5 = \;1{}; > 3/4}, then A* = (X{,...,\2) € A,. Note that (\%)?
9\ —1/2)% and (1 — \9)? < 16(1 — Aj)*.

Then,
n ~ n
—R,(\) < —R,(\°
p p(A) < p p(X%)
1< n w—
= =Y (Mol (- X)P+ -
L= b=

9~ /~ 1\2 16n
< U Y
= o(1).

These two inequalities contradict the equation (28). [

Our next task is to show that W, (X) is stochastically very close to W (\)
for k =1,2.

The theorem below not only plays a key role in the proof of stochastic
closeness but also show convergence of loss and risk functions.

THEOREM 4.1. Let A and X be minimizers of L,(X) and R,(\) over A,,.
2 ~ o~ \2
Then € (S0, (2+62) (X)) and € (20, (3~ ,)?) are bounded

ARG nem) Gy een) o)
where J(A fo V1og N(u, A,)du.

Furthermore

by

= 0p(1).

.
[y

-~ o2 -~ 52 -~
ProOF. Let w;; = Hf,wzj = -+ ‘9]2'791]' = (9? - WJ)/GJQ and gy; =

92/< +92> for j=1,...,p. Then A = A% and A = A3 where
p

A\ = arg ;\IGl}\IZI) Z;[wij()\j — )%, for i=1,2.
j:

25



Using the same argument in the proof of Theorem 2.2 in Beran and Diimbgen

(1998), one can show that
[0 0) - (2 +2)6 )

(£ n-3)) =

E

'Mﬁ

e+ ) )i
< e (ap (T e 1))

where G = {fg: f,g € A, }.
With the maximal inequality

(Sup— ) < CE ( /0 o \/1ogN(u,g,ﬁs)du>

p 1
_ CE (%waj)w / /108 N(w, G)du
j=1 0
1L 50\ /2
J9>(];;E<W1j>) ,
By
) < ce( [ VRN g m)
0

Wi,

IN

Z 9iWaj

E (sup
gcg
1 n 1/2 1
= CE (— > UE) / Vog N(u, G)du
i 0
1 <& 1/2
< ca@)(5 Y Ewy) "
i=1
Since N(u,G) < N(u/2,A,)? for all u > 0, it is simple to show that
J(@) < 4J(A,) = O(L).

Furthermore,

(a0

geg P

) < E (supz

geg

)

9;V;
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Hence,

p 2

IA

N

S (G (-5)) = [ s (G Ewn) o (2]

Jj=1

Similarly,

p
-
(270,
j=1

Now,

I o~ ~
]_9 § ‘732'()‘3 -
j=1

|

@)
—
Sl
~—

IA

)\—)\
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For the second term of the right hand side, one can show
¢ 2/ Y \2 1¢ 2
S BN <o) B
j=1 j=1

Furthermore,

p p
Var (Z Ef) = Z E(E;)+2 Z Cov (EZ, E}) = O(p)
j=1 j=1 i<k
Therefore,

P20 A =0,( 7).

which follows immediately from

1(m1na)i()\ ) Za N —A)?2=0, (\}ﬁ)

p =

Finally, we show convergence of the loss and the risk functions.
By the triangle inequality

|Lp(N) = By(N)] < [Ly(N) = By(V)| + [Ry(A) = Ry(M)].

For the first term in the above equation,

IA
%

On the other hand,



It is straightforward to show that the first term is O,(p/n).
Then with the Cauchy-Schwartz inequality, one can show that

iﬂ?«l N - 1=N)) = iﬁ?@ — ) +2iej<1 3= A)

P ~ 12 , P o~ 1/2

< 2(2992'(1 - Aj)2> (Z OV Aj)2>
j=1 j=1
p A~ ~

+D 020y = \)

j=1

= Op(l)v

since ) 7, 6’?()\ —\ )2 = 0,(1) which follows immediately from
Ld G2\ s~ ~\2
Z (9? + ZJ) ()‘j - Aj) = op(1).

j=1
Therefore, |RP(X) — RP(X)| = 0,(1) which completes the proof. [

With Theorem 4.1, we can show stochastic closeness of W,(X) and Wy (X) for
k=12

LEMMA 4.5. Fork =1,2,

sup (W) = W) = o,(1).
O(m,C)

PROOF. By stochastic equicontinuity, it suffices to show that py, (X, X)Q
and py, (A, A\)? are 0,(1). It is straightforward to show that

(AN = S[E (B O]

- E[> (3 -X) W@L

1

(\]
ST

ot (N — )% + 0,(1)

S

i=1
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A=A
P _ 2
= 4E [Z()\j = X)0;(¢;(Yi) — QJ')h:x
j=1
p R _ p R . -
= 4) 02— N)0T +8> 00N — N (A — M)o
j=1 i<k

= 400\ = 000 — 0(N)
= 0,(1).

The last equality follows from the fact that ¥ is a positive definite therefore
it can be 0 if and only if >37_, j( — A;)? = 0 which is shown in Theorem
4.1. O

Recall that
W)/T(A) = @)W (0) /7)) + (1= a(V) > (Wa(V)/m(V)),
where a(\) = (p/n)m2(N\)/T2(N).

We already showed that W(X)/7(X) converges to a standard Normal.
With an application of Lemma 4.5, one can show that

sup [W(X)/7(X) = W) /7(V)| = 0,(1).

O(m,C)

since a(\) is bounded.
Now we prove Theorem 3.2.

PROOF. First, we show that 77 () is a consistent estimator for k = 1, 2.
From the proof of Var (V(A)) = O(1), one can obtain

1< 1<
523]2. = > o7 +0,(1). (29)
j=1 =1

By the triangle inequality,
72(0) — 72(A Z| (20 — 12— o(2); — 1)?
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2 — ~ ~
- > o) = 1) — o} (2); — 1)°]
j=1

While the equation (29) ensures convergence of the first term in right hand
side to 0, applying the Cauchy-Schwartz inequality with %Z?zl(x — X)2 =
0p(1) shows that the second term converges to 0.

Now,

2 = 20| < i{(e —a—z)af(v 1) — 0252(\2 — 1)

- n
7j=1

23 % (55 N = D — e — 0,600 — 1) (e — 1>ajk).

1<k<j<p

Combining the maximal inequality and results of Theorem 4.1, one can

show
1Sp(A) = Bp(M)] = 0,(1).
Consequently,
- 02 8y2' N 2 N 5N 252
Z(j—;) A —1)?2 = Sp(A)—EZAjaj
j=1 j=1
-~ 1 &~
— 2 2
— RP(A)—gj;A-U +0,(1)

Applying the above result with (29) yields

p

2

j=1

(9 - A—Z) G202 —1) — 202 (\2 — 1)) = 0,(1).

n

For the second term,

S (e 0oy — D — )55 — 00,0y — 1) — 1>o—jk) ,

1<k<j<p
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one can show it is bounded by

> (0,055 = 0,00053) (% — (A — 1)

k<j

|3 0300 (s = DO — 1) - @—1)@—1))’. (30)

k<j

The first term in (30) can be bounded by

S 0,005 — 0,6k05) (N = D = D] < |35 = Dk = 1)(0,0, — 0;60)5
k<j k<j
+ > 10,0kl — or-
k<j

Since ;. is a consistent estimator of o, and >~ |0;6| is bounded, one can

show )
> 16,0415 — o3| = O, (—) :
= v
Furthermore,
Yo D> = DO = 10,0, — 0,0,)55
1<k<ji<p
S Z Z )\ —1 )\k—l)(e —‘9 Gkajk )\k—l)(ek—ﬁk)e Ok
1<k<j<p l<k<j<p
< Z Z 9—9 Hkajk\—i-z Z ’ eke%k‘
1<k<j<p 1<k<j<p
<

p p
Ch Z 0; — 0;] + sz |0 — Okl
=1 =1

_ Op<%).

Now it remains to show convergence of the second term in (30) to 0.

> " 0,0k0[(N — D — 1) — (3 — D\ — 1)]

k<j
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=3 ejekajk«Xj =2k = A) = k + DG = 4) = (4 + DA — Xk))-

k<j
Out first goal is to show that

p

J
DD 0o+ DG = Ny)
j=2 k=1
Let C;(0) = 327 _ 0310 (M + 1). Since 0;’s are bounded, C;(6) = O(1).
Then,

= op(1).

P J
Z O+ D — N)| < Cj(e)‘
2 k=1 j=
p R . p
< DGy — NP C(0)
j=2 J=2

- o(%)
= 0,(1).

Applying the same argument for the rest of terms provides convergence of
each term to 0. Therefore ?22@) is a uniformly consistent estimator of 72(X).
We already showed in Lemma 4.4 that the pivot process does not approach
a degenerate distribution.

Finally,

POeD,) - P (i(ej vty +sp<X>>

Therefore, D, is a uniform asymptotic 1-a confidence set for 6. [

5 Numerical Examples

In this section, we apply the REACT density estimator to some examples. As
test cases, we use the uniform distribution and the mixture Normal distribu-
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samplesize |1 2 3 4 5 6 7 8 9 10 11 12 13 14
1000 95 94 84 82 90 92 8 92 88 81 89 91 91 &5
5000 98 96 90 81 80 83 97 92 89 94 84 85 88 17
10000 98 93 92 8 8 82 95 95 98 96 86 86 90 81
100000 98 96 90 81 80 83 97 92 89 94 8 8 88 17

Table 1: 95% Confidence band coverage for each densities with different sam-
ple size

tion examples from Marron and Wand (1992). Some of the mixture models
are modified for simplicity.

We use a nested subset selection class as A, instead of monotone class for
simplicity. In other words, A has a form of A = (1,...,1,0,...,0). Then the
corresponding orthogonal density estimator is

J
F) =1+ 0;0;(y),
j=1

where J minimizes the risk function estimator

J ~2 P ~2

SP(J):Z%+ (ef.—%).
j=1

j=J+1

Figure 1 show the true densities, the projection densities and the density
estimators in each model.

Table 1 reports the coverage of confidence balls for the coefficients of
uniform and each mixture Normal with four different sample sizes. Since we
estimate the projection f, of the true density, the coverage for projection
densities is presented.

The performance of the confidence set is uneven. However, the reader
should bear in mind that many of the test cases we constructed by Marron
and Wand to be difficult. Thus, it is not surprising that the coverage is low
in some cases.
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Figure 1: : Densities(solid), Projection densities(dotted) and Density Esti-
mators(dashed) with sample size 20000
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6 Discussion

We have shown how to construct a nonparametric confidence ball for a density
function. To our knowledge, this is the first such construction.

An important area for future research is to see if the condition p = o(n'/3)

can be weakened although we note that the same condition appears in Nuss-
baum (1996).

Our preliminary numerical investigations show that the coverage is good

in certain cases but can be poor in other cases. Diagnosing and improving
these cases of undercoverage remains a challenge.

Appendix: Empirical Process Theory for the
Dependent Case

Let S = Z?:l S; where S7,5s,...,5, are stochastic processes on an index
set 7 from probability space (2, A, P) with norm ||z||7 = sup,es |2(t)].

Suppose the process S has continuous sample paths with respect to some
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metric d on 7. Define the covering number
N(u,T,dg) =min{#7,: 7y C T,ting dg(te,t) <u VteT},
0€lo
and further define the uniform covering number

N(u,T)=sup N(u,T,dg),
Q
where dg(s,t)? = [(s — t)?dQ and Q varies over all probability measures.
Theorem 6.1 and 6.2 are modified versions of the maximal inequality
and the functional central limit theorem for sums of dependent stochastic
processes.

THEOREM 6.1. Suppose that S(tg) = 0 for some ty € T and that all
the finite dimensional distributions of S° =S — E(S) have Gaussian limits.

Suppose that

supz Z ‘Cov (S7(s), S(t ‘—0 1). (31)

s,t€T 1<i#j<n

Then,

Ds
E(|IS — E(S)|l7) < CE / g N(u, T, ps)du,
0

where lA?S = sup,e7 ps(t, to).

PROOF. For any finite subset {¢y,...,t,,} of 7, the condition (31) implies
N\ 1/2
(E 15°(£) — S°()] ) < d(s,t)+o(l) foralls,teT.  (32)

Since the finite dimensional distribution of S° has a Gaussian limit, S°(y)
converges to a Normal for £ =1,...,m. In other words,

‘ EU(S°(t) — EU(mZy) |— 0, asn— oo,

where ¥(z) = exp (%), n: = E[S°(t,)]%, n* = maxp<,n; and Z,’s are
standard Normal random variables.
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With the Jensen’s inequality, one can show

eXP(E(II?Sa%JS(I;];)F)) = W<E(I&a$|50(tk)|>>
E (max w(|°(t,)))

<m
iwswk )

k=1

E (W(ImZel)) +o(m)

IA

IA

VAN
Ly

B
Il

1

IA
o

m + o(m) = O(m).

Consequently,

(E(max|So(tk)\2)l/2 < C logmrkngaric (E [So(tk)]2)l/2+0(1). (33)

k<m

Using the standard chaining method with the inequalities (32) and (33),
it follows that

(E1s3) " < (Ersw2) +CZE(%\/logNW?”l,T,ﬁs))-

Let 6; = lA)S/Qi. Then

E (5i\/log N, T, ﬁs)) < 4E ( / o JIog N(u, T, ﬁs)du).

0it2

Combining the above two inequalities yields

1/2 Ds
[E(IS18) | "< CE | log N, T, ps)du.
0

1/2
and E||S°||1 g[ E(||S°|I%) } which proves the theorem. O

The next theorem establishes the convergence of stochastic processes in the
sense of Hoffmann-Jorgensen (1984). To prove that, we need to show finite
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dimensional convergence to a Gaussian limit and stochastic equicontinuity.
Assuming finite dimensional convergence to a Gaussian limit, it remains to
show stochastic equicontinuity, in other words,

P*( sup |S°(s) — S°(t)| > x) — 0, asn— oo.

p(st)<e

THEOREM 6.2. Suppose that the summability of covariance condition
(81) holds and the finite dimensional distribution of S° has a Gaussian limit.

If

S_E(Islr) = o, (34)

SCE(HISOIF > udIStlF) = o), (35)

i=1

e(n) .
/ Vg N(u, T, ps)du 250 whenever e(n) 1 0, (36)
0

then Y (Si(t) — E[Si(t)]) is asymptotically equicontinuous and converges
weakly to a Gaussian process.

PROOF. Let A, C R™ be a set of all vectors (51(t) — Si(s),...,(t) —
Sn(s)) for t,s such that pg(t,s) < e(n).
By the Markov’s inequality, for every x > 0,

p( sup i(Sf(s) - s;(m\ > x) <le (p( sup i(gg@) - Sz-"(t))D

p(s,t)<e(n) i=1 € s,t)<e(n) i=1

Define F? = Y7 ||Si(t)]|5>. Then by a similar argument in the proof of
Pollard (1990) Theorem 10.6,

E< sup zn:(Sf(s) - Sf(t))D < E(IRI(@a/ 2,

p(Sﬂf)Se(n) i=1

where I'(r?) = [ y/log N(u|F,|, T, ps)du and 6, = sup,, |> " a; .
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Then for fixed r > 0, depending on |F,,| > r or not, the right hand side
can be bounded by

1/2
eD(1)+E (\Fn\F(min{l,én/Qe})) < el(1)+ [(E F,f) (E r?(min{l,(sn/ze}))}
While the condition (34) ensures E|F,|? < oo, we need to show
ET?(min{1,d,/2¢}) = o(1).

Since I' is a continuous increasing function with I'(0) = 0, our task is now to
show that ¢,, converges to 0 in probability.

From here, we simply follow the classical empirical processes theory for
the rest of the proof. See van der Vaart and Wellner (1996) Theorem 2.11.1
(See also Pollard 1990, Theorem 10.6) for the proof of convergence of ¢, to
0 in probability. [
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