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Abstract

We present a nonparametric method for galaxy clustering in astronomical sky sur-
veys. We show that the cosmological definition of clusters of galaxies is equivalent
to density contour clusters (Hartigan , 1975) Sc = {f > c} where f is a proba-
bility density function. The plug-in estimator Ŝc = {f̂ > c} is used to estimate
Sc where f̂ is the multivariate kernel density estimator. To choose the optimal
smoothing parameter, we use cross-validation and the plug-in method and show
that cross-validation method outperforms the plug-in method in our case. A new
cluster catalogue, database of the locations of clusters, based on the plug-in esti-
mator is compared to existing cluster catalogs, the Abell and Edinburgh/Durham
Cluster Catalogue I (EDCCI). Our result is more consistent with the EDCCI than
with the Abell, which is the most widely used catalogue. We use the smoothed
bootstrap to asses the validity of clustering results.

Key words: Galaxy clustering, Density contour cluster, Plug-in estimator,
Cross-validation, Smoothed bootstrap.

1 Introduction

It is widely assumed that the universe is homogeneous and isotropic which
means that it looks the same in all directions and matter is distributed evenly
throughout space. This is a key assumption in modern cosmology. There is
evidence that supports this assumption on large scales, but on smaller scales,
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one can find significant deviations from homogeneity and isotropy such as
walls, filaments, and clusters of galaxies (Mart́ınez and Saar , 2002).

Knowing how the universe has evolved would lead to the answers for discrep-
ancy of the structure at different scales. According to the classic scenario, the
universe has been expanding since the Big Bang. Due to small fluctuations
which were present at early epochs, the universe has been clumped and clus-
tered since then. Clusters of galaxies play an important role in finding where
the local structure fades away into a homogeneous and isotopic distribution.
However, the availability of complete, accurate cluster catalogs for such studies
is very limited.

The Abell catalogue has been one of the most widely used catalogs for cos-
mological research. It was published by George Abell in 1958 and covers the
whole northern hemisphere. A catalogue of the southern hemisphere of the
sky, was completed by Abell and his colleagues in 1989. It contains 4,073 clus-
ters over the entire sky. Much cosmological research have been done based
on the Abell catalogue. However, the Abell catalogue was constructed by a
visual scan of photographic material, thus it is subjective and not consistent
with other catalogs. Cosmologists have been suspicious that inconsistency of
the Abell catalogue would undermine scientific results based on it and they
started to build new, objective and accurate large area cluster catalogs which
would eventually replace the Abell catalogue. Thus, large area sky surveys
using present new technologies, 8-meter optical telescopes, new X-ray and
microwave satellites, are currently planned or underway.

The power of modern technology is opening a new era of massive astronom-
ical data that is beyond the capabilities of traditional methods for galaxy
clustering. The advent of new massive sky survey brings statisticians to cos-
mologists and the explosion of the data in cosmology is a blessing and a curse
to statisticians. It is a blessing because the amount of data makes nonpara-
metric statistical methods very effective. The same features also limits the
use of nonparametric statistical methods without efficient data management.
Therefore, efficient automated clustering algorithms will be critical to make
the use of nonparametric statistical methods in cosmology.

There has been great progress in the development of new automated clus-
tering algorithms in cosmology. The first generation of automated clustering
algorithms are simple variants on the peak-finding algorithm (Lumsden et al
, 1992). In recent years, several new, more sophisticated, algorithms have be-
come available including the adaptive matched-filter (AMF) algorithm (Kep-
ner et al , 1999). The idea behind the AMF algorithm is to identify clusters
by finding peaks in a kind of likelihood map. To generate the map, a filter,
based on a model of the distribution of galaxy, is matched with the data and
contour is produced based on the model. To find clusters, one chooses a thresh-
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old given by cosmological theory, then all the data below this threshold are
removed and what remains are regarded as clusters. The AMF algorithm is
very complicated and not rigorously justified. Moreover, the size of the filter
(smoothing parameter) is arbitrarily chosen.

The goal of this paper is to produce a catalogue based on nonparametric
methods and compare the catalogue with the Abell and EDCCI, the first
catalogue based on the AMF algorithm.

This paper is organized as follows. Section 1 is a brief introduction. In Section
2, we explain how to model the spatial locations of galaxy clusters. Then the
data, the Edinburgh-Durham Southern Galaxy Catalogue (EDSGC) which are
used in our analysis, are described in Section 3. Section 4 outlines nonpara-
metric methods. Section 5 summarizes the results. Finally, we discuss scientific
contributions of our results and address possible extensions in Section 6.

2 Stochastic Model of the Galaxy Distribution

Let Y1, . . . , Yn be the positions of the galaxies in a region C. We assume that
Yi is a realization of a Poisson process with the intensity measure Λt(C) =∫
C λ(y)dy, the mean number of galaxies inside C at time t. Here λ(y) is the

intensity function.

Let ρt(y) be the mass density function of objects such as galaxies at time t,
i.e., ∫

A

ρt(y)dy ≡ total mass in a region A.

Cosmologists assume the mean number of galaxies inside a region C is directly
proportional to the total mass inside the region. Hence the intensity measure
Λt(C) is

Λt(C) ∝
∫

C

ρt(y)dy.

Define the overdensity

δt(y) ≡ ρt(y) − ρ̄

ρ̄
,

where ρ̄ ≡ ∫
U ρ(y)dy/

∫
U dy.

The overdensity is a kind of normalized mass density function and used as a
scale free reference threshold. For example, it is believed that galaxies form at
overdensity ≈ 1.
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Cosmology theory also assumes that the overdensity δ0(x) is a realization of
a Gaussian process and has evolved, at time t, to δt = H(δo, t). Here, H(·, ·)
is a complicated nonlinear function.

The early universe was very hot and dense, but began to cool down due to the
expansion after the Big Bang. As a result, small fluctuations began to exist
due to temperature differences. The fluctuations, large localized overdensities,
eventually collapsed to form virialized objects or self-gravitating objects such
as clusters due to gravitational instability. After overdensites are virialized,
the universe is in the form of stability or balance. In other words, the universe
is in some form of dynamic equilibrium. To reach dynamic equilibrium, the
mass of virialized object must satisfy the following geometric condition.

C =

{
y

∣∣∣∣∣ ρt(y) > δc

}
, (1)

where δc is the present day (t = 0) overdensity that has collapsed and viri-
alized at time t and can be expressed as a function of unknown cosmological
parameters. See Reichart et al (1999) for the details.

Since the mass density function ρt is modeled as a random process, the Poisson
model results in a double-stochastic process, i.e. the Cox process.

From the condition (1), it is clear that one must estimate the intensity function
to understand the spatial locations of clusters of galaxies. In fact, similar
problems can be found in spatial statistics literature (Diggle , 1985; Cressie ,
1991) where the kernel density estimator was used to estimate the intensity
function. Since the mass density function ρt can be considered as a probability
density function, the cosmological definition of clusters is indeed the same as
Hartigan’s density contour clusters: the connected components of level sets.
In other words, galaxy clustering is equivalent to level set estimation.

A naive estimator for the level set is the plug-in estimator Ŝc ≡ {f̂ > c}
where f̂ is a nonparametric density estimator. The consistency of the plug-in
estimator with the kernel density estimator was proved by Cuevas and Fraiman
(1997) in terms of a set metric such as the symmetric difference dµ and the
Hausdorff metric dH ,

dµ ≡ µ(T∆S), dH(T, S) ≡ inf{ε > 0 : T ⊂ Sε, T ε ⊂ S},

where ∆ is symmetric difference, µ is Lebesgue measure and Sε is the union
of all open balls with a radius ε around points of S.

Therefore, we can use the plug-in estimator to estimate a level set given density
estimates and use the connected components of level set estimates as clusters
of galaxies.
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Fig. 1. 10× 10 degree subset of EDSGC

3 Astronomical Sky Survey Data

The source of galaxy data used in our analysis is the EDSGC, which consists of
survey plates scanned with the Edinburgh plate measuring machine COSMOS.

The equatorial system is used to list the locations of objects in the catalogue.
Each objects list the right ascension (RA) and declination (DEC), the longi-
tude and latitude with respect to the Earth. The right ascension takes values
from 0 to 360 degrees of in hours, minutes and seconds (24 hrs = 360 degree)
while declines takes values from 0 to 90 degrees for objects in northern hemi-
sphere and -0 to -90 degrees for objects in the southern hemisphere. EDSGC
is located from 22 to 3 hrs (through 0 hrs) and -23 to -42 degree. A 10 × 10
degree subset of EDSGC is used in our data analysis and it is located from 0
hrs to 0 hrs 40 mins and -28 to -38 degree.

The catalogue contains 1.5 × 106 galaxies and because of its size, a 10 degree
subset of the EDSGC is used in our data analysis. The origin of subset is 0 hr
and -28 degree. It contains 41,171 galaxies and each galaxy has 7 attributes.

Figure 1 shows the 10 degree subset of the EDSGC. According to the Abell
catalogue, there are 43 clusters in that area while the EDCCI, the first cata-
logue based the AMF algorithm, shows 42 clusters (Lumsden et al , 1992).

Figure 2 shows the Abell and EDCCI catalogs. The points in Abell and EDCCI
catalogs represent the locations of clusters. Both of them find clusters at the
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Fig. 2. Abell and EDCCI Catalogue

upper left corner and lower right corner which are obvious from data. However,
there is inconsistency between two catalogs. A cluster in the upper right side
in the Abell is not found in the EDCCI and the cluster pattern doesn’t look
similar. By overlapping two catalogs, roughly a half of them are located within
a reasonable Euclidean distance according to cosmologists.

4 Methodology

Suppose Y1, . . . , Yn are independent observations from a distribution with den-
sity f where Yi = (Yi1, . . . , Yid), d- dimensional vector. In our case, Yi is the
location of ith galaxy with d = 2. We define clusters as connected components
of the plug-in estimator. Hence one must estimate the density f first. We use
the kernel density estimator for the estimation of f .

4.1 Multivariate kernel density estimation

The general d dimensional kernel estimator is given by

f̂(y) =
1

n|H|1/2

n∑

i=1

K
(
H−1/2(y − Yi)

)
,

where H, bandwidth matrix, is a symmetric positive definite d × d and K is
a bounded, compactly supported d-variate kernel satisfying

∫
K(y)dy = 1,

∫
yK(y)dy = 0, and

∫
yytK(y)dy = µ2(K)I.

Here µ2(K) =
∫

y2
i K(y) is independent of i (Wand and Jones , 1995).
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We assume that the contour of the kernel is ellipsoidal and elliptical axes of
the kernel are aligned with the coordinate axis. In other words, we assume the
bandwidth matrix is a diagonal matrix.

H ∈ H2 = {diag(h2
1, . . . , h

2
d) : h1, . . . , hd > 0}.

Then, the density estimator is given by

f̂(y) =
1

nh1 · · ·hd

n∑

i=1

K
(

y1 − Yi1

h1
, · · · , yd − Yid

hd

)
.

However, it is a d-dimensional optimization problem and could be very com-
putationally expensive.

We often assume a simpler form of the bandwidth matrix. Suppose that the
contour of the kernel is spherically symmetric. Then the bandwidth is a class
of

H1 = {h2I : h > 0}.

Another simple class of the bandwidth matrix is a class of

C = {h2 · diag(σ2
1, · · · , σ2

d)},

where σ2
i is the variance of the ith coordinate variable. As pointed out in

Wand and Jones (1993), this scaling approach is not always better than to
use H ∈ H1. In our case, the variance of each coordinate are the almost
same because the universe is almost homogenous. Therefore there was little
difference to use either H ∈ C1 or H ∈ H1 in our case.

4.2 Binned Kernel Estimation

To make the nonparametric density estimation effective with huge datasets,
one must provide efficient algorithms to calculate the density estimates. The
original formula requires O(n2) evaluation to calculate density estimates at
every data point which easily can be a daunting task even with a moderate
size of data.

The binned kernel estimation is an appealing way of approximation of kernel
estimation with the fast Fourier transform (FFT).

Suppose that K is a symmetric kernel and define bins by equally spaced mesh
of points over the support. If the support is infinite, one can replace it with
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“effective support”, whose outside is negligible. For example, we can use [−4, 4]
as the effective support of the standard normal distribution.

Let nj a number of data points in bin Bj which is centered at tj and j =
1, . . . , m. Then, the binned kernel estimator is given by

f̂(y) =
1

m

m∑

j=1

nj

|H|1/2
K

(
H−1/2(y − tj)

)
.

The binned kernel estimator only requires O(m) evaluation to calculate a den-
sity estimate. Furthermore, with FFT, it only requires O(m log m) to evaluate
density estimates at every grid point.

The rule of thumb for the number of grid points is between 100 and 500 and
the approximation is better as m increase (Wand and Jones , 1995).

For higher dimension, one may consider the Weighted Averaging of Rounded
Points (WARPing) of Härdle and Scott (1992) to reduce computational com-
plexity. The cost of the WARP and FFT are quite similar for the bivariate
case, since both of them are based on equally spaced grid points.

4.3 Bandwidth Selection

Cosmologists have been paid more attention to the shape of the filter (kernel)
than the size of the filter (bandwidth). Indeed it is well known in statistics
that the choice of bandwidth is crucial in density estimation not the choice of
the kernel.

Define the risk function

R(f, f̂) = E[ISE(H)].

Here ISE(H) is the integrated square error (ISE) which is given by,

ISE(H)=
∫

(f̂(y;H) − f(y))2dy

=R(f̂) − 2
∫

f̂(y;H)f(y)dy + C,

where C =
∫
(f(y))2dy does not depend on H and R(f̂) =

∫
(f̂(y;H))2dy.

In terms of minimizing the risk function, the choice of the optimal bandwidth
is far more important than the choice of kernel.

8



To choose the optimal density estimator (optimal bandwidth) is to find the
estimator which minimizes the risk function. Therefore, finding the optimal
bandwidth is equivalent to finding the bandwidth matrix which minimizes
the first two terms. The idea of cross-validation method is to find bandwidth
matrix which minimizes an unbiased estimator of the first two terms using
leave-one-out.

Define

CV(H) =
∫

f̂(y;H)2dy − 2

n

n∑

i=1

f̂−i(yi;H),

where

f̂−i(y;H) =
1

(n − 1)h1 · · ·hd

∑

j 6=i

K(H−1(y − Yj)).

Assuming K is the multivariate standard normal density, CV(H) is given by

CV (h1, · · · , hd) =
1

(2
√

2π)dnh1 · · ·hd

+
1

(2
√

2π)dn2h1 · · ·hd

× ∆,

where

∆ =
∑

i6=j

[
exp

{
−1

4

d∑

k=1

(
yik − yjk

hk

)2
}
− 2(d+2)/2 × exp

{
−1

4

d∑

k=1

(
yik − yjk

hk

)2
}]

.

See Sain, Baggerly and Scott (1994) for the details.

For H ∈ C,

CV(h) =
1

(2
√

2πh)dnσ1 . . . σd

+
1

(2
√

2πh)dn2σ1 · · ·σd

× ∆∗,

where

∆∗ =
∑

i6=j

[
exp

{
− 1

4h2

d∑

k=1

(
yik − yjk

σk

)2
}
− 2(d+2)/2 × exp

{
− 1

4h2

d∑

k=1

(
yik − yjk

σk

)2
}]

.

Whereas cross-validation method uses a direct approach by finding minimum
of ISE, the plug-in method uses asymptotic expansion of MISE, the expecta-
tion of ISE.
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Assuming H ∈ C,

MISE(h) = E
∫

(f̂(y;H) − f(y))dy

≈ 1

4
h4σ4

1 · · ·σ4
da

2
0

∫
{∇f(y)}2dy +

a1

nhdσ1 · · ·σd
,

where ∇f(y) =
∑d

i=1(∂
2/∂y2

i )f(y). Here a2
0 =

∫
y2K(y)dy and a1 =

∫
K2(y)dy.

Then, one can find the optimal bandwidth by numerical methods such as the
Newton-Raphson method. However the solution still depends on an unknown
functional ∇f(x) which we need to estimate. Wand and Jones (1995) proposed
d-stage estimator to address the issue.

4.4 Assessment of Variability

To address the reliability of other catalogs based on our result, we want to as-
sess the variability of our kernel estimates first. The bootstrap is a compelling
method to assess variability of estimate in case the distributions of estimators
are intractable. The key idea of the bootstrap is to use θ(Fn) to estimate a
functional θ(F ) where F and the cumulative density function and Fn is the
empirical cumulative distribution function. Since Fn is discrete, in some situ-
ations a smooth estimate of F might be better. Silverman and Young (1987)
showed that when the smoothed bootstrap works better.

The usual cases to use the smoothed bootstrap is where the effects of discreet-
ness cause serious problems such as estimating density or sample median. For
example, Silverman (1985) used a smoothed bootstrap test for multimodality.

The main idea of the smoothed bootstrap is to resample y∗ from the kernel
estimate f̂ instead of the raw data. The resampling steps are as follows.

Step 1 Choose integers I1, . . . , In with equal probability from 1, · · · , n.
Step 2 Generate random variable zi from K(yi) for i = 1, . . . , n.
Step 3 Let y∗

i = yIi
+ h · zi for i = 1, . . . , n.

Step 4 Repeat step 1-3 N times.
Step 5 Construct bootstrap estimate f̂ ∗

j based on each resample y∗j = (y∗j
1 , . . . , y∗j

n )
for j = 1, . . . , N.

Step 6 Find clusters defined by {y : f̂ ∗
j (y) > c} in the jth resample for j = 1, . . . , N

where c is a threshold.

If h = 0, the smoothed bootstrap estimate is the same as the naive bootstrap
estimate.
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Fig. 3. Contour plot by Plug-in and Cross-validation

20
40

60
80

100

X20

40

60

80

100

Y

 0
10

20
30

40
50

60
70

Z

20
40

60
80

100

X20

40

60

80

100

Y

 0
50

10
0

15
0

20
0

25
0

Z

Fig. 4. Density estimates by Plug-in and Cross-validation

Once we have the smoothed bootstrap estimates, we are able to find a cluster
map from each estimate. The frequency of appearance of a cluster within
a reasonable range from the same position is a measure of consistency of the
cluster in that position. In other words, the more we observe a cluster within a
range from the same position at each bootstrap estimate, the more confidence
we have that the cluster is not due to noise.

5 Results

The optimal bandwidth was selected by cross-validation and the plug-in method.
The contour plots of density estimates and 2 dimensional plug-in bandwidth
selection were implement by the R library “Kernsmooth” developed by Matt
Wand.
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Fig. 5. Density Contours by Plug-in and Cross-validation

To calculate CV(h), R with Fortran subroutine was used and the minimum of
CV(h) was found by “nlm” function in R. The program for cross validation
method is available upon request.

The optimal bandwidth matrices by the plug-method and cross-validation are
diag(0.005046, 0.005065) and diag(0.000734, 0.000701) respectively. Figure 3
and 4 show contour plots and density estimates by the plug-in and cross-
validation.

As pointed out by Loader (1999), the “plug-in” method often oversmooths.
Finding clusters is equivalent to finding sharp and high peaks which requires
the smaller bandwidth. To find clusters from the Plug-in estimator {f̂ > c},
one must determine the threshold c.

While determining the exact threshold from cosmological consideration is an
ongoing research problem, contemporary cosmological theory provides a short
range of possible threshold values. Within the range of the threshold, we first
compare the plug-in method with cross-validation. Figure 4 gives a snapshot
of density contours by both methods given a threshold within the range. It
is clear that we can find at most a dozens of clusters by the plug-in method
while cross-validation captured the feature of the data well within the range.

Neither the Abell nor EDCCI catalogs were built based on the threshold from
cosmological theory. Hence, we use an ad-hoc method to choose a threshold to
compare our catalogue with them. Specifically, we choose a threshold within
the range such that we can find 42-43 clusters, the number of clusters in the
Abell and EDCCI by cross-validation method.

To convert density contours into to clusters, we first find a subset of equally
spaced grid points belonging to {f̂ > c} and find clusters by agglomerating
the grid points. In other words, we use

⋃kn

i=1 B(ti, r) to approximate {f̂ > c}
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Table 1
Number of clusters in 4 quadrants at each catalogue

catalog Upper Left Upper Right Lower Right Lower Left Total

Abell 12 5 11 15 43

EDCCI 18 2 12 10 42

Cross-validation 21 3 11 8 43

where B(ti, r) is a closed ball centered at ti with radius r. Here ti’s are equally
spaced grid points such that f̂(ti) > c and r is a half of the grid size. If
two balls are adjacent to each other, we consider them to belong to the same
cluster. In case a density contour has a region with more than one peak, we
consider it as one cluster as long as they are connected components of the
density contour. See Jang (2004) for the details.

In practice, it is not easy to check frequencies of appearance of clusters. Fur-
thermore, cosmologists are not interested in the locations of clusters, but the
number and size of the clusters, that is the mass distribution of the clusters.
Hence we focus on the number of clusters. In figure 5, by the plug-in method,
we only find a dozen of clusters, while 43 clusters are found by cross-validation
method. The number of common clusters within a reseasonable Euclidean dis-
tance between the EDCCI and ours is 27 while the number between the Abell
and ours is 20. Also the pattern of clusters in the EDCCI is more similar to
ours.

Figure 6 shows 20 smoothed bootstrap estimates. Each bootstrap estimate
was constructed based on resample y∗j = (y∗j

1 , . . . , y∗j
n ) for j = 1, . . . , 20. To

resample y∗j, we used the following steps.

(1) Choose Ii from {1, . . . , n} with probability 1/n for i = 1, . . . , n
(2) zi is generated from bivariate normal with mean yT

i = (yi1, yi2) and vari-
ance matrix diag(σ2

1, σ
2
2). Here σ2

j is the variance of jthe coordinate vari-
able.

(3) Let y∗
j = yIi

+h ·zi where h is the optimal bandwidth by cross-validation.

(4) Find clusters from density contours {y : f̂ ∗
j (y) > c} where c is the thresh-

old which was used to find clusters in the Abell and EDCCI catalogue
and f̂ ∗

j is the kernel density estimator based on y∗
j .

It is not easy to match the clusters from smoothed bootstrap estimates to
smoothed bootstrap estimates since the number of clusters may not be the
same. Instead of comparing the locations of clusters, we count the number
clusters at each quadrant and use it as a heuristic measure of consistency.

To compare them more precisely, we divide each catalogue into 4 quadrants.
Table 1 reports the number of clusters in each quadrant for the Abell, EDCCI
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Table 2
Number of cluster in 4 quadrants at smoothed bootstrap catalogs

Upper Left Upper Right Lower Right Lower Left Total

1 16 3 8 7 34

2 17 4 8 12 41

3 20 4 7 11 42

4 19 2 7 11 39

5 17 3 7 9 36

6 19 3 7 10 39

7 18 2 8 11 39

8 15 3 8 8 34

9 22 4 7 13 46

10 12 3 8 8 31

11 17 2 7 11 37

12 18 2 7 12 39

13 19 2 8 8 37

14 10 4 9 11 34

15 13 3 8 7 31

16 19 4 8 11 42

17 18 4 6 13 41

18 17 5 9 7 38

19 22 2 8 7 39

20 19 3 8 10 40

Average 17.35 3.1 7.65 9.85 37.95

Median 18 3 8 10.5 39

and our new catalogue. Since we use a union of balls to approximate clusters,
we assigned the clusters to each quadrant depending on the centroid of the
union of the ball. While the total number of clusters in each catalogue is almost
the same, the number of clusters in each quadrant is quite different. Indeed,
almost a half of clusters in the EDCCI and our catalogue are located in upper
left quadrant but one can find more clusters in lower left quadrant than any
other quadrants in the Abell catalog.

Table 2 shows the smoothed bootstrap results which are consistent with the
EDCCI and our catalogue; upper left quadrant is the most crowded area.
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Fig. 6. Smoothed bootstrap estimates

One discrepancy between our result and the smoothed bootstrap is the total
number of clusters. The average and median of total number of clusters in the
smoothed bootstrap are 37.95 and 39. We found more clusters in the upper left
and lower right quadrant, but less in the lower left quadrant in our catalogue.
We suspect that some of those tiny clusters in the upper left and lower right
quadrant in our catalogue are random noises. For the lower left quadrant, the
smoothed bootstrap result shows the bimodality of the number of clusters and
certainly our result belongs to the higher mode.

Another interesting result is that there is a cluster near the origin in the Abell
and EDCCI, but is not found in our new catalogue. In figure 6, among 20
smoothed bootstrap estimates, only 7 of them have a cluster near origin. An-
other cluster in the upper right corner which is not found in the EDCCI, is
found in every smoothed bootstrap estimates. Based on the smoothed boot-
strap we suspect the cluster near origin is a random noise but the cluster on
upper right side is real.
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6 Discussion

The choice of bandwidth selectors are still widely on debate. For our case,
contemporary cosmological theory agrees to the result provided by cross-
validation method. While the convergence rate of the cross-validation selector
to a true bandwidth is much slower that by plug-in selector’s rate (Duong and
Hazelton , 2004a), we are more interested in the behavior of plug-in estimator
{f̂ > c}. Also the faster convergence rate of bandwidth selectors does not
imply that the plug-in estimator is asymptotically inefficient estimate (Loader
, 1999). Furthermore, the difference between two selectors convergence rates
for bivariate is small ( ≈ 2.6 ) even for n = 100, 000.

Recently Duong and Hazelton (2004b) suggested to the use of full bandwidth
matrix and introduced a new version of a smooth cross-validation method for
full bandwidth matrix which might be beneficial for our case.

We also tested the reliability of other catalogs. The Abell catalogue shows in-
consistency whereas the EDCCI works reasonably well. We used the smoothed
bootstrap to assess the variability of the estimates.
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