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Summary

Currently, images acquired via Magnetic Resonance Imaging (MRI) and functional

Magnetic Resonance Imaging (fMRI) technology are reconstructed using the discrete

inverse Fourier transform. While computationally convenient, this approach is not able

to filter out noise. This is a serious limitation because the amount of noise in MRI

and fMRI can be substantial. In this paper, we propose an alternative approach to

reconstruction, based on penalized likelihood methodology. In particular, we focus on

non-linear shrinkage estimators and show that this approach achieves a great reduc-

tion in Integrated Mean Squared Error (IMSE) of the estimated image with respect to

the currently used estimator. This approach is extremely fast and easy to implement

computationally. In addition, it can be combined with various alternative approaches

to MR image reconstruction and can be easily adapted to other, non-MRI contexts, in

which the observed data and the quantities of interest are related via a linear transform.

Key Words: image reconstruction, Magnetic Resonance Imaging, penalized likelihood,

shrinkage estimation, Bayes estimation
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1 Introduction

Magnetic Resonance Imaging (MRI) is a widely used technique for imaging internal

body tissue. One of its main advantages is that it is non-invasive, unlike other imaging

methods, such as X-ray radiation or Positron Emission Tomography (PET). However,

one of its shortcomings is that the images obtained from MRI technology can be very

noisy due to various factors, such as motion-related artifacts and the presence of other

signal sources [1]. This is particularly true of functional MRI (fMRI), which is used

to study the activation patterns of the brain. In fMRI, a series of MR images of the

brain is acquired as the subject performs a particular task or activity. Because many

processes in the brain occur very rapidly, the images should be obtained at a high speed

in order to detect activation associated with these processes. Thus, in fMRI the spatial

resolution of each individual image is sacrificed in favor of the temporal resolution

between consecutive images, leading to a larger amount of noise in the data.

For these reasons, a reconstruction technique that controls the variance of the image

estimator is desirable in MRI and even more beneficial in fMRI. The current approach to

image reconstruction uses the discrete inverse Fourier transform to convert the observed

signal data to an image. Although it produces an unbiased estimator of the image and is

computationally convenient, this approach does not reduce the variance of the estimated

image and is, therefore, highly sensitive to noise. This paper introduces an alternative

approach to reconstruction, based on penalized likelihood methodology, that balances
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the goals of reducing bias and reducing variance at the same time. The work presented

here focuses on a particular form of the penalized likelihood: shrinkage estimation. In

particular, we consider non-linear shrinkage estimators because they have been shown

to perform better than their linear counterparts when a quadratic loss function is used

([2], [3]). Although in this work the proposed model was specifically considered in the

context of MRI, it is applicable to a wider class of problems, as discussed later in the

paper.

The following section introduces the data observed in MRI experiments, the cur-

rently used modeling approach, and the proposed penalized likelihood model for recon-

struction. Section 3 discusses hyperparameter selection for the proposed model. Section

4 evaluates the performance of the proposed approach for simulated MRI data. Finally,

Section 5 discusses major conclusions from this work.

2 MRI Data and Reconstruction Approaches

A basic review of MRI technology, as well as that of the standard reconstruction ap-

proach, can be found in Bradley and Stark [4], Lange [5], Edelman et al. [6], Haacke et

al. [7], and Bushong [8].

When performing MRI, one obtains a number of signals, each with its own frequency

t and phase k. By its physical nature, each individual MR signal, denoted by s(t, k), is

the 2-dimensional continuous Fourier transform of the image function of interest m(x, y)
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plus noise ε:

s(t, k) =

∫

X

∫

Y

m(x, y) e2πi(tx+ky) dx dy + ε, (1)

where t = 0, ...., n − 1 and k = 0, ..., d − 1. For computational convenience, in MRI n

and d are usually taken to be powers of 2, and the most common values are 128 and

256.

2.1 Formulation of the Basic Framework

Let {bjv} be an infinite set of basis functions for the image function m(x, y), i.e.,

m(x, y) =
∞
∑

j=1

∞
∑

v=1

βjvbjv(x, y). (2)

Then the expression in (1) can be rewritten as

s(t, k) =
∞
∑

j=1

∞
∑

v=1

βjvwjv(t, k) + ε, (3)

where wjv(t, k) is the continuous 2-dimensional Fourier transform of the (j, v)th basis

function bjv(x, y):

wjv(t, k) =

∫

X

∫

Y

bjv(x, y) e2πi(tx+ky) dx dy. (4)

The expression in (3) can be written as

s = Wβ + ε, (5)

where snd×1 = {s(t, k)}, W nd×∞ is a matrix consisting of entries wjv(t, k) as defined in

(4), β
∞×1 is the vector of coefficients βjv, and εnd×1 is the error vector. If the individual
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elements of the error vector ε are assumed to be independently and identically normally

distributed each with mean 0 and variance σ2, we have

s|β ∼ N(Wβ, σ2Ind×nd). (6)

The problem of obtaining the image function therefore amounts to estimating the

coefficient vector β. Although in theory this vector is infinite-dimensional, in practice

the number of basis functions is truncated to some value l × h. Typically, l and h are

taken to be equal, but for clarity we will keep the two letters separate. The estimated

image function is then given by

m̂(x, y) =
l
∑

j=1

h
∑

v=1

β̂jvbjv(x, y), (7)

or

m̂ = Bβ̂, (8)

where m̂ is the vector of the estimated image values at each location of interest (x, y),

B is a matrix whose [h(j − 1) + v]th column is the (j, v)th basis function evaluated at

all locations of interest (x, y), and β̂ is an lh × 1 vector of estimated coefficient values

β̂jv.

We can now introduce the currently used discrete inverse Fourier transform ap-

proach, as well as the proposed penalized likelihood approach to obtaining the coeffi-

cient vector estimate β̂.
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2.2 The Discrete Inverse Fourier Transform Approach

Since the observed signal is the continuous 2-dimensional Fourier transform of the image

function plus error, the most obvious way to estimate the image function would be to

take the inverse continuous Fourier transform of the signal. However, this is impossible

because frequencies t and phases k are observed finitely discretely. Therefore, the

current approach to the problem is to approximate the image function with the discrete

inverse Fourier transform:

m(x, y) =
n−1
∑

t=0

d−1
∑

k=0

s(t, k) e−2πi(tx+ky). (9)

In the framework established in Section 2.1, this approach to the solution is equiv-

alent to using the Fourier basis, given by

bjv(x, y) = e−2πi[(j−1)x+(v−1)y], j = 1, ..., n; v = 1, ..., d, (10)

and using the ordinary least squares estimate of β:

β̂ = (W
T

W )−1W
T

s = s, (11)

where W denotes the conjugate of the complex matrix W . The second equality in (11)

follows from the fact that when the Fourier basis of dimension nd is used, W is the

identity matrix of dimension nd × nd. The least squares estimator is unbiased for the

first nd elements of β, but it does not control the variance, resulting in a highly variable

estimate of the image function. This shortcoming of the current estimation approach

led us to consider an estimator that is better able to manage the bias/variance tradeoff.
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2.3 A Penalized Likelihood Approach

An estimator of the image function that strikes a compromise between achieving a per-

fect fit and eliminating roughness (or variance) can be obtained by finding the function

m(x, y) that minimizes the penalized likelihood

∫

X

∫

Y

[Lm(x, y)]2 +
n−1
∑

t=0

d−1
∑

k=0

[s(t, k) − ŝ(t, k)]2 , (12)

where L is a functional operator and ŝ(t, k) is the expected signal given by

ŝ(t, k) =

∫

X

∫

Y

m(x, y) e2πi(tx+ky) dx dy. (13)

Wahba and Kimeldorf [9] showed that the minimizer of (12) can be expressed in

Bayesian terms. Specifically, selecting the form of the operator L is equivalent to

choosing a prior distribution for the coefficient vector β introduced in Section 2.1, and

the minimizer of (12) is the value of m̂ obtained by plugging in the Bayes estimate of β

into (8). Note that the current approach to reconstruction, the discrete inverse Fourier

transform, is a special case of the penalized likelihood approach with improper prior

distributions placed on the first n2 elements of β and one-point priors at 0 used for the

remaining elements.

In this paper we use the Bayesian formulation as a convenient tool for obtaining an

estimate of the image since it is equivalent to the original penalized likelihood formula-

tion [9], while having the advantage of being more mathematically tractable. However,

we do not make any further use of the Bayesian framework. In particular, in Section 4.1
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we use a frequentist measure, the Integrated Mean Squared Error (IMSE), to evaluate

the performance of our estimator.

2.3.1 Proposed Models

Recall that when the Fourier basis is used, the matrix W of Fourier transforms of the

basis functions is the identity matrix. Thus, assuming normal iid errors in the data,

from (6) we have

s|β ∼ N(β, σ2Ind×nd). (14)

The number of coefficients we will fit in each dimension is equal to the number of

observations for each dimension, i.e., l = n and h = d.

The Fourier basis functions are complex-valued, implying that the coefficient vector

β is also complex-valued. As a consequence of this, we can place prior distributions

on the real and imaginary parts of β separately, or we can model them together. We

considered both options. Let

s̃2nd×1 =









sR

sI









and β̃2nd×1 =









βR

βI









, (15)

where the subscripts R and I denote the real and imaginary parts, respectively. Now

consider the following two mixture prior distributions and models:
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I. The “unconstrained” shrinkage model:

s̃|β̃ ∼ N(β̃,
σ2

2
I2nd×2nd)

β̃|T 2 ∼ N(02nd×1, diag T 2

2nd×1),

(16)

where T 2
jvq, j = 1, ..., n, v = 1, ..., d, q = 1 for the real part and q = 2 for the

imaginary part of the coefficient, are independently distributed and

T 2
jvq =















τ 2
1 with probability p

τ 2
2 with probability 1 − p,

(17)

where τ 2
2 > τ 2

1 for all j, v, and q. Note that the variance of each element of s̃ is σ2/2

because one meaning of the specification in (6) is that the real and imaginary parts

of individual elements of the error vector have independent normal distributions,

each with mean 0 and variance σ2/2. When the prior distribution in (16) is

placed on β̃, a different amount of shrinkage is allowed for the real and imaginary

parts of individual elements of β. For this reason, we refer to this prior as the

“unconstrained” prior.

Using the Integrated Mean Squared Error (IMSE) of the estimated image func-

tion m̂ as the criterion, the Bayes estimate of β̃ is the posterior mean E(β̃|s̃),

consisting of individual elements

ˆ̃
βjvq = E(β̃jvq|s̃jvq) =

[

1

1 + σ2

2τ2

1

1

1 + g(s̃jvq)
+

1

1 + σ2

2τ2

2

(

1 − 1

1 + g(s̃jvq)

)

]

s̃jvq,(18)

where s̃jvq is the (j, v, q)th element of s̃, and

g(s̃jvq) =

√

σ2 + 2τ 2
1

σ2 + 2τ 2
2

1 − p

p
exp

[

s̃2
jvq

(

1

σ2 + 2τ 2
1

− 1

σ2 + 2τ 2
2

)]

. (19)
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Then the estimate of β consists of individual elements

β̂jv = ˆ̃βjv1 + i × ˆ̃βjv2, (20)

where i =
√
−1.

II. The “constrained” shrinkage model:

s|β ∼ N(β, σ2Ind×nd)

β|T 2 ∼ N(0nd×1, diag T 2

nd×nd),

(21)

where T 2
jv, j = 1, ..., n, v = 1, ..., d, are independently distributed

T 2
jv =















τ 2
1 with probability p

τ 2
2 with probability 1 − p,

(22)

and τ 2
2 > τ 2

1 for all j and v. In this case, the prior distribution is placed on β

rather than β̃, thus requiring that the same amount of shrinkage be applied to

the real and imaginary parts of every element of β. For this reason, we refer to

this prior as the “constrained” prior.

Using the IMSE of m̂ as the criterion, the Bayes estimate of β is the posterior

mean E(β|s), consisting of individual elements

β̂jv = E(βjv|sjv) =

[

1

1 + σ2

τ2

1

1

1 + g(sjv)
+

1

1 + σ2

τ2

2

(

1 − 1

1 + g(sjv)

)

]

sjv, (23)

where sjv is the (j, v)th element of s (j = 1, ..., n and v = 1, ..., d), and

g(sjv) =

√

σ2 + τ 2
1

σ2 + τ 2
2

1 − p

p
exp

[

‖sjv‖2

(

1

σ2 + τ 2
1

− 1

σ2 + τ 2
2

)]

, (24)

with ‖sjv‖2 = (Re(sjv))
2 + (Im(sjv))

2.
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2.3.2 General Remarks

Penalized likelihood has several forms that are well known to a wide statistical audience.

For example, when L in (12) is the mth derivative, the resulting function is the smooth-

ing spline of order 2m− 1. On the other hand, a very familiar example of the Bayesian

formulation of penalized likelihood is ridge regression since the coefficient estimator in

that case arises from using N(0, τ 2I) prior distribution on the coefficient vector. Like

the estimators introduced in Section 2.3.1, the ridge regression estimator is a shrinkage

estimator, but in contrast to the proposed estimators, it is linear. Antoniadis and Fan

[10] proposed various nonlinear penalty functions in the context of wavelet estimation

and showed that the resulting estimators possess good statistical properties, such as

being adaptively minimax.

It should be noted that penalized likelihood methodology has been applied previ-

ously by MRI researchers. For example, Sutton et al. [11] used a particular form of

penalized likelihood, quadratic regularization, to obtain MR images in the presence of

magnetic field inhomogeneities, which proved to be successful at correcting for field

distortions, both in simulations and in a real dataset. In contrast to our approach,

however, their solution is iterative and is, thus, more computationally intensive. An-

other difference from our approach is that Sutton et al. use linear shrinkage estimators,

which are less flexible than nonlinear shrinkage estimators, as discussed later in this

section.
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MR image reconstruction has received attention in the statistical community. Besag

[12], for example, modeled images as Markov random fields in a Bayesian framework.

Hu et al. [13] took a very similar approach, using Gibbs random fields. In contrast to

these works, we chose to model the raw k-space data produced by MR scanners rather

than model the partially reconstructed image space data because this approach is more

direct.

Mixture priors have also been given a great deal of consideration in the statistical

community. Chipman et al. [14] used the mixture normal priors of the type intro-

duced in (16) and (21) in the context of wavelet coefficient estimation. Clyde et al.

[15] took a similar approach to wavelet coefficient estimation by using a mixture of a

normal distribution and a delta distribution at 0 as the prior. In addition, Vidakovic

[16] proposed the t prior distribution, which can be expressed as a mixture of normal

distributions, also in order to estimate wavelet coefficients. All of these authors found

that their respective mixture priors performed well in simulations and in applications

to real data because they allow for a higher degree of flexibility than do linear shrinkage

estimators.

The amount of shrinkage for each coefficient is adaptive in nature as it depends

on the magnitude of the coefficient, with the coefficients of smaller magnitudes shrunk

heavily toward 0 and those of larger magnitudes resulting in much less shrinkage. This

adaptability is the reason that the non-linear shrinkage estimator enjoys a lower Mean

Squared Error (MSE) than do the least squares and linear shrinkage estimators. The
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reader is referred to Figure 3.12 in [17] for a visual comparison of the MSEs of linear

and non-linear shrinkage estimators.

If the variance reduction with respect to the least squares estimator is great enough

to compensate for the addition in bias introduced by shrinkage, the resulting IMSE of

the shrinkage estimator will be below that of the least squares estimator of the image

function. Both the bias and the variance of the shrinkage estimator β̂ depend on the

true coefficient value β. With a prior mean of 0, the bias and the variance are both small

when real and imaginary parts of β are near 0 because the estimate will almost always

be shrunk toward the correct value near 0. When either the real or the imaginary part

of β is far enough from 0, there will be very little shrinkage, so the variance will be

very close to that of the least squares estimator, and the bias will be very close to 0, as

well. The magnitudes of β that fall between these two extremes are problematic for the

shrinkage estimator because in this case it is not clear how much shrinkage, if any, is

needed. Hence, both the bias and the variance and, consequently, the MSE, are above

those of the least squares estimator for these values. Thus, the non-linear shrinkage

estimator performs better than the least squares estimator in terms of the IMSE when

most values of β are either close to 0 or quite far away from 0 in magnitude.
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3 Choosing Prior Parameters

The values of prior parameters τ 2
1 , τ 2

2 , and p need to be chosen to implement both the

“unconstrained” and the “constrained” shrinkage estimators. We will consider the two

estimators separately.

3.1 “Unconstrained” Shrinkage Estimator

For the ease of notation, the indices jvq will not be used in this section and will be

implicit in the discussion. The “unconstrained” shrinkage estimator in (18) is the

discrete inverse Fourier transform, or least squares, estimator multiplied by a shrinkage

factor, namely

ˆ̃
β = f(s̃, τ 2

1 , τ 2
2 , p) · s̃, (25)

where

f(s̃, τ 2
1 , τ 2

2 , p) =
1

1 + σ2

2τ2

1

1

1 + g(s̃)
+

1

1 + σ2

2τ2

2

(

1 − 1

1 + g(s̃)

)

(26)

with g(s̃) as in (19). Instead of selecting the values of the parameters τ 2
1 , τ 2

2 , and p

directly, it is simpler to determine the desirable values of the three main characteristics

of the shrinkage factor function f(s̃):

1) the value of the function when s̃ = 0, f(0), which we denote by θ0, so

θ0
def
= f(0), (27)
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2) the asymptotic value of the function when s̃ tends to ∞, which we denote by θ∞,

so

θ∞
def
= lim

s̃→∞

f(s̃), (28)

3) the rate of change in the function from small to large magnitudes of s̃, controlled

by a parameter, denoted by θr and given by

θr
def
=

1

1 + σ2

2τ2

1

(29)

(the higher values of θr correspond to the lower rates of change in f(s̃)).

Note that by definition, θ0 is a convex combination of θr and θ∞, implying that 0 <

θr < θ0 < θ∞ < 1.

To illustrate the effect of these three parameters on the shrinkage factor function,

Figure 1 shows f(s̃) for positive values of s̃ (the shrinkage factor for negative values of

s̃ is just the mirror image of the plot in Figure 1 about the y-axis) when θr = 0.05,

θ0 = 0.1, and θ∞ = 0.999 and when θr = 0.09 while θ0 and θ∞ are kept the same (σ2 is

set to 1).

It can be easily shown that

τ 2
1 =

σ2

2
· θr

1 − θr

, (30)

τ 2
2 =

σ2

2
· θ∞
1 − θ∞

, (31)

and

p =

(

θ0 − θr

θ∞ − θ0
·
√

1 − θr

1 − θ∞
+ 1

)

−1

. (32)
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θr = 0.05,θ0 = 0.1,θ∞ = 0.999
θr = 0.09,θ0 = 0.1,θ∞ = 0.999

Figure 1: Shrinkage factor f(s̃) as a function of response s̃ with θr = 0.05, θ0 = 0.1, and

θ∞ = 0.999 (black solid line) and θr = 0.09, θ0 = 0.1, and θ∞ = 0.999 (black dashed

line). Red line shows the value of 0.1 of the function at 0 and green line shows the

function’s asymptotic value of 0.999.
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It is desirable for θ∞ to be close to 1 since high magnitudes of s̃ imply high magnitudes

of β̃, and, hence, there should be very little, if any, shrinkage at large |s̃|. At the same

time, θ∞ is always strictly below 1, so we arbitrarily set it equal to 0.999. This is a

tuning parameter that a user may set; similar results will be obtained with other values

of θ∞ less than but near 1. We will assume θ∞ = 0.999 for the remainder of this paper

and hence, from (31) we have that τ 2
2 = 499.5 × σ2.

3.1.1 Mean Squared Error profiles

It can be shown that the IMSE of the estimated image function m̂ depends on the

estimated coefficient vector β̂ entirely through the total MSE of β̂. Thus, to determine

the appropriate values of θ0 and θr for the “unconstrained” estimator, it is insightful

to study how these two values impact the shape of the MSE profile of the estimator β̂

as a function of the true coefficient β̃.

Since ˆ̃β = f(s̃) · s̃, the MSE of ˆ̃β in (18) is given by

MSE( ˆ̃β) = E( ˆ̃β − β̃)2 =

∫

∞

−∞

( ˆ̃β − β̃)2 1√
πσ

exp

(

−(s̃ − β̃)2

σ2

)

ds̃. (33)

This quantity can be computed using a Gaussian Quadrature approximation, described

in [18]. From the expression in (33), it is clear that MSE scaled by σ2, i.e., MSE/σ2,

depends on β̃ only through the quantity β̃/σ. This means that any conclusions about

the MSE profile scaled by σ2 as a function of β̃/σ are independent of the value of σ2.

Figure 2 shows the effect of changing the value of θr on the scaled MSE profile for
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β~ σ
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E

θr = 0.4,θ0 = 0.5,θ∞ = 0.999
θr = 0.2,θ0 = 0.5,θ∞ = 0.999
θr = 0.01,θ0 = 0.5,θ∞ = 0.999
Disc. inv. Fourier MSE of 0.5

Figure 2: Scaled MSE profile as a function of β̃/σ for the discrete inverse Fourier

transform estimator (red line) and the “unconstrained” shrinkage estimator with θ∞ =

0.999, θ0 = 0.5 and θr = 0.01 (dotted line), 0.2 (dashed line), and 0.4 (solid line).

positive values of β̃/σ (as in the case of the shrinkage factor, the MSE profile for negative

values of β̃/σ is just the mirror image of the profile for positive values). Figure 3, on the

other hand, shows the effect of changing the value of θ0 on the scaled MSE profile. Both

figures show the scaled MSE of 0.5 for the discrete inverse Fourier transform estimator

ˆ̃
βLS = s̃. In both plots, θ∞ = 0.999.

Both plots show that regardless of the values of of θr and θ0, the scaled MSE profile

of the shrinkage estimator of β̃ follows the same general shape. Starting below the

discrete inverse Fourier transform estimator’s MSE when β̃/σ is very close to 0, the

shrinkage estimator’s MSE increases and surpasses that of the discrete inverse Fourier

estimator as the value of β̃/σ increases away from 0, but reaches a maximum and
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θr = 0.1,θ0 = 0.2,θ∞ = 0.999
θr = 0.1,θ0 = 0.5,θ∞ = 0.999
θr = 0.1,θ0 = 0.8,θ∞ = 0.999
Disc. inv. Fourier MSE of 0.5

Figure 3: Scaled MSE profile as a function of β̃/σ for the discrete inverse Fourier

transform estimator (red line) and the “unconstrained” shrinkage estimator with θ∞ =

0.999, θr = 0.1 and θ0 = 0.2 (solid line), 0.5 (dashed line), and 0.8 (dotted line).

then decreases to just below the discrete inverse Fourier estimator’s MSE, finally slowly

growing quadratically and exceeding the discrete inverse Fourier MSE (this last stage

is not shown on the plots because this happens at very large values of β̃/σ).

These observations echo the discussion in Section 2.3.2: the shrinkage estimator

performs much better with respect to the discrete inverse Fourier estimator when the

true coefficient value is near 0 because in that range the estimated coefficient is shrunk to

the correct value of 0 and the shrinkage estimator marginally outperforms the discrete

inverse Fourier estimator when the true coefficient value is far enough away from 0

because, correctly, very little shrinkage is applied to the estimated coefficient in this

range (but only up to β̃/σ = 32 when θ∞ = 0.999). The “medium” values of β̃/σ
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are problematic for the shrinkage estimator as its MSE in this range can dramatically

exceed the discrete inverse Fourier MSE. Note that the lower endpoint of this range

depends entirely on the values of θr and θ0.

The values of θr and θ0 together also determine the amount of improvement in MSE

at values of β̃/σ close to 0: the higher values of θr produce a bigger improvement near 0,

but at the price of a much worse performance in the “medium” range, while the higher

values of θ0 result in the opposite effect. This is not surprising since the higher value

of θr corresponds to a slower rate of change in the shrinkage factor, so a great amount

of shrinkage toward 0 “lingers” for a greater range of β̃/σ values, making the estimator

a bigger gamble with greater returns near 0, but greater losses in the “medium” range.

The higher value of θ0 implies less extreme shrinkage at 0 and, hence, everywhere else,

making the shrinkage estimator a safer bet: the reduction in MSE is not as dramatic

near 0, but at the same time the losses incurred in the “medium” range are minimized.

3.1.2 Distribution of β̃/σ values

From the discussion so far, it is clear that the optimal values for θr and θ0 thus com-

pletely depend on the distribution of β̃/σ values that are typically encountered in MRI.

In order to obtain such a distribution, a 3-dimensional image of a normal adult brain was

simulated using the MRI Simulator software package developed at the McConnell Brain

Imaging Center of the Montreal Neurological Institute at McGill University [19]. The

reason simulated data were used for this purpose is because using real (non-simulated)
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data makes it impossible to distinguish the true image from noise.

The dimension of the simulated image is 128× 128× 128. Thus, 128 2-dimensional

slices of size 128× 128 can be extracted from this image in each of the three directions.

Figure 6 shows nine such slices. Since n = d = 128 in this case, each of the 2-dimensional

slices in turn produces 2 × 1282 values of true β̃/σ (a multiplier of 2 is due to the fact

that there is a real and and an imaginary component for each coefficient). Thus, a total

of 2 × 1283 = 4, 194, 304 values of β̃/σ can be obtained in each of the three directions.

The results discussed below are very similar in all three directions; hence, the findings

for only one direction, top-to-bottom (also known as axial), are illustrated here.

The values of θr and θ0 do not affect the MSE profile of the shrinkage estimator once

the shrinkage MSE surpasses that of the discrete inverse Fourier estimator for the second

time, which happens when β̃/σ equal to 32 in magnitude if θ∞ = 0.999. Therefore, to

determine the values of θr and θ0 we only need to consider the distribution of values of

β̃/σ less than 32 in magnitude.

Since typical signal-to-noise ratios in MRI fall between 50 and 100 [20], a reasonable

range for the values of σ is 0.5% to 2.5% of the median image value for each slice. While

it is impossible to consider every value of σ in the above range, it is most informative

to study the endpoint cases, i.e., σ = 0.005 × m̃ and σ = 0.025 × m̃, where m̃ is the

median value of the image function m for a given slice. If the conclusions are the same

or similar for these two cases, then we can assume that they also hold for all the values

of σ in the above range.
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Figure 4: Density histogram of |β̃|/σ values below 32 for σ = 0.005 × m̃(x).

Figure 4 shows the density histogram of absolute values of β̃/σ below 32 when

σ = 0.005 × m̃. The histogram suggests that values of β̃/σ close to 0 are prevalent.

As expected, this trend is even more pronounced at the high level of noise, i.e., σ =

0.025 × m̃ (the corresponding histogram is not shown here). Although the histogram

provides us with visual insight about the distribution of β̃/σ, a more formal approach

to setting the values of θr and θ0 is needed.

3.1.3 Contour plots of MSE/σ2

For a given combination of θr and θ0, we can calculate the average value of MSE/σ2 of

all 4,194,304 values of β̃/σ and determine the optimal values of θr and θ0 by comparing

the average MSE/σ2 values yielded by various combinations of the two parameters.
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Figure 5: Contour plot of average MSE/σ2 values of the “unconstrained’ shrinkage

estimator with θ∞ = 0.999 and σ = 0.005 × m̃.

Figure 5 shows the contour plot of the average MSE/σ2 values for all combinations of

θr and θ0 = 0.005, 0.055, 0.105, ..., 0.955, such that θr < θ0 (a total of 190 combinations)

with σ = 0.005 × m̃ and θ∞ = 0.999. The equivalent contour plot at the high level of

noise, σ = 0.025 × m̃, appears almost identical to the one in Figure 5 and is therefore

not shown here.

The contour plots show that at both levels of noise, the average MSE/σ2 of the

shrinkage estimator increases toward the discrete inverse Fourier MSE/σ2 value of 0.5

as θr and θ0 increase toward 1, as expected, because when these two parameters ap-

proach 1, the shrinkage estimator tends to the discrete inverse Fourier estimator. For

all combinations, the average MSE/σ2 is below 0.5, suggesting that any amount of
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shrinkage is beneficial. However, it is most beneficial at lower values of the two param-

eters for both noise levels. This is not surprising as both the histogram in Figure 4

and the equivalent histogram for the higher level of noise (not shown) suggest that the

values of β̃/σ tend to be close to 0. In particular, when σ = 0.005 × m̃, the minimum

MSE/σ2 (0.2) occurs at approximately 0.1 < θ0 < 0.3 and θr = 1.25 · θ0 − 0.125. When

σ = 0.025 × m̃, the minimum MSE/σ2 (0.15) is produced by 0.15 < θ0 < 0.4 and

θr = 1.4 · θ0 − 0.2. Note that, as expected, shrinkage is more beneficial for the high

level of noise. Putting the two ranges of optimal values of θr and θ0 together, we set

θr = 0.18 and θ0 = 0.25. Since θ∞ = 0.999, (30), (31), and (32) imply that the prior

variance for each element of β̃ has a 2-point distribution given by

T 2
jvq =















0.11 × σ2 with probability 0.27

499.5 × σ2 with probability 0.73

(34)

Thus, 27% of the time the coefficient’s prior is a relatively tight N(0, 0.11 × σ2) distri-

bution, favoring shrinkage, while the remaining 73% of the time the prior is a diffuse

N(0, 499.5 × σ2) distribution, suggesting little or no shrinkage.

3.2 “Constrained” Shrinkage Estimator

The general procedure discussed in Section 3.1 was used with minor adaptations to

obtain the prior parameter values in the case of the “constrained” shrinkage estimator.

This resulted in the following two-point prior mixture distribution for the variance of
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each element of β:

T 2
jv =















0.11 × σ2 with probability 0.21

999 × σ2 with probability 0.79

(35)

Thus, 21% of the time the coefficient’s prior is a tight N(0, 0.11×σ2) prior distribution,

while the remaining 79% of the time the prior is a diffuse N(0, 999 × σ2) distribution.

4 Performance of the Penalized Likelihood Approach

We can now compare the performance of the proposed penalized likelihood approach to

that of the currently used discrete inverse Fourier transform in terms of the IMSE/σ2

of the estimated image using simulated data. We scale IMSE by σ2 because this gives a

more meaningful comparison across the range of σ2 values that are typically encountered

in MRI.

It can be shown that the scaled IMSE of the discrete inverse Fourier transform

approach is given by

IMSE(m̂)

σ2
=

n2

2
+

1

σ2

(

∫

X

∫

Y

m2(x, y) dx dy −
n
∑

j=1

n
∑

v=1

‖αjv‖2

)

, (36)

where αjv is the normalized (j, v)th Fourier coefficient equal to

αjv =
1

‖bjv(x, y)‖

∫

X

∫

Y

bjv(x, y) m(x, y) dx dy, (37)

while the scaled IMSE of both shrinkage estimator approaches is given by

IMSE(m̂)

σ2
=

n
∑

j=1

n
∑

v=1

MSE(α̂jv)

σ2
+

1

σ2

(

∫

X

∫

Y

m2(x, y) dx dy −
n
∑

j=1

n
∑

v=1

‖αjv‖2

)

(38)
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with αjv as defined in (37).

Note that the second term in the sum on the right-hand side of (36) and (38) is

the same. Therefore, the comparison of the IMSEs of the two estimators amounts to

the comparison of the first terms in these two expressions. This comparison highlights

the fact that the discrete inverse Fourier transform approach has an advantage over the

shrinkage estimator only if the amount of noise in the data is very small because in

that case the average MSE/σ2 of the shrinkage estimator of the coefficient is above 0.5.

When the amount of noise in the data is not negligible, however, as in the case of MRI

and fMRI, the shrinkage estimator of the image yields a better performance in terms

of the IMSE, as is illustrated in the next section.

4.1 Simulated MRI Data

The same 3-dimensional simulated brain image as the one introduced in Section 3.1.2

was used. Nine 2-dimensional slices were chosen from the image at one-quarter length,

one-half length, and three-quarters length along each of the three directions. These

slices are shown in Figure 6.

Since the slices are of the size 128 × 128, n is equal to 128 in the first summand in

(36). MSEs scaled by σ2 in the first summand of (38) are obtained using a Gaussian

Quadrature approximation, as before, with prior parameters set to values given in (34)

and (35). Tables 1 and 2 show the total variance, the total bias squared, and the
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Figure 6: Nine slices of the simulated 3-dimensional image.
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σ = 0.005 × m̃ σ = 0.025 × m̃

Slice
∑V(α̂jv)

σ2

∑B2

(α̂jv)

σ2

∑MSE(α̂jv)

σ2

∑V(α̂jv)

σ2

∑B2

(α̂jv)

σ2

∑MSE(α̂jv)

σ2

1 1680.58 91.96 1772.54 1532.46 24.10 1556.56

2 1797.82 150.15 1947.97 1548.54 37.92 1586.46

3 1685.44 92.68 1778.12 1531.74 23.99 1555.73

4 1628.94 72.78 1701.72 1518.44 14.71 1533.15

5 1640.86 83.14 1724.00 1519.79 16.55 1536.34

6 1680.68 99.41 1780.09 1528.69 21.91 1550.60

7 1731.71 108.24 1839.95 1545.52 31.57 1577.09

8 1638.14 75.22 1713.36 1514.64 14.92 1529.56

9 1650.50 82.39 1732.89 1519.60 18.63 1538.23

Table 1: Total scaled variance, total scaled bias squared, and total scaled MSE of the

normalized estimated coefficients for the “unconstrained” shrinkage estimator.

total MSE of the normalized estimated coefficients (the first term on the right-hand

side of (38)), all scaled by σ2, for each of the nine slices at σ = 0.005 × m̃, and

σ = 0.025 × m̃ for the “unconstrained” and the “constrained” shrinkage estimators,

respectively. The values in the first and fourth columns of both tables should be

compared to 1282/2 = 8192, the total scaled variance for the discrete inverse Fourier

transform estimator. Since the discrete inverse Fourier transform estimator is unbiased,

its total scaled bias squared and total scaled MSE are 0 and 8192, respectively. Thus,
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σ = 0.005 × m̃ σ = 0.025 × m̃

Slice
∑

V(α̂jv)

σ2

∑

B2

(α̂jv)

σ2

∑

MSE(α̂jv)

σ2

∑

V(α̂jv)

σ2

∑

B2

(α̂jv)

σ2

∑

MSE(α̂jv)

σ2

1 1142.10 118.57 1260.67 995.96 31.31 1027.278

2 1250.44 189.02 1439.46 1009.93 49.51 1059.44

3 1144.69 116.77 1261.46 995.48 32.57 1028.05

4 1090.70 91.10 1181.80 985.49 20.03 1005.52

5 1100.84 103.67 1204.51 986.20 22.01 1008.21

6 1137.99 129.17 1267.16 995.33 29.77 1025.10

7 1186.55 133.03 1319.58 1012.16 40.03 1052.19

8 1097.35 94.01 1191.36 980.91 19.46 1000.37

9 1104.33 102.92 1207.25 984.46 25.18 1009.64

Table 2: Total scaled variance, total scaled bias squared, and total scaled MSE of the

normalized estimated coefficients for the “constrained” shrinkage estimator.
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Figure 7: IMSE/σ2 of the estimated image from one of the nine 2-dimensional slices

versus σ/m̃ for the discrete inverse Fourier transform estimator (solid line), the “uncon-

strained” shrinkage estimator (dashed line), and the “constrained” shrinkage estimator

(dotted line).

the values in the second and fifth columns should be compared to 0, while the values

in the third and sixth columns should be compared to 8192. As expected, the values in

the second and the fifth columns are greater than the analogous value for the discrete

inverse Fourier transform estimator. However, the values in the other columns are much

lower than the analogous discrete inverse Fourier transform counterparts.

Figure 7 shows the plot of the scaled IMSE for one of the nine slices and each of

the three estimators against σ/m̃ ranging from 0.005 to 0.025, as discussed in Section

3.1.2. The equivalent plots for the other 8 slices are very similar and are therefore not

shown here. The most striking feature of the plot is that both shrinkage estimators

have a much lower IMSE/σ2 than the discrete inverse Fourier transform estimator for
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all values of σ in the range that we have considered. The ratios of the IMSE of the

“unconstrained” estimator relative to that of the discrete inverse Fourier transform

estimator range from 0.39 to 0.71 when σ = 0.005 × m̃ and from 0.19 to 0.24 when

σ = 0.025 × m̃. The equivalent ratios for the “constrained” estimator range from 0.34

to 0.69 when σ = 0.005× m̃ and from 0.13 to 0.18 when σ = 0.025× m̃. As the values

of σ increase, the ratios decrease, as expected, because the shrinkage estimator controls

for both bias and variance and is especially beneficial at higher levels of noise.

The dramatic decrease in the scaled IMSE exhibited by the shrinkage estimators

is due to the fact that the values of the coefficients of the Fourier basis functions are

favorable to shrinkage toward 0 as a great majority of them are close to 0 when scaled

by the value of σ. The increase in bias was greatly compensated by a large decrease in

variance relative to the discrete inverse Fourier transform estimator. Specifically, for the

hyperparameter values obtained in Section 3.1.3, the scaled MSE of the “unconstrained”

shrinkage estimator is below that of the discrete inverse Fourier transform estimator

when the value of β̃/σ is either below 0.91 or between 4.99 and 32. In our simulated

data, at the low level of noise, 56% and 16% of β̃/σ values were in the two ranges,

respectively. The equivalent percentages at the high level of noise were 82% and 1%.

Thus, the “unconstrained” shrinkage estimator’s MSE was below that of the discrete

inverse Fourier estimator for a total of 72% of the values at the low level of noise and

83% of the values at the high level of noise, yielding a much lower IMSE for the entire

range of noise levels that we considered.
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Figure 7 also shows that the “constrained” estimator performs consistently better

than the “unconstrained” one, although the difference between these two estimators

is not as dramatic as the difference between them and the currently used discrete

inverse Fourier estimator. The ratios of the IMSE of the “constrained” estimator to

the IMSE of the “unconstrained” one range from 0.87 to 0.97 for σ = 0.005 × m̃

and from 0.67 to 0.75 for σ = 0.025 × m̃. As can be seen from Tables 1 and 2, the

better performance of the “constrained” estimator is due to the fact that its total

scaled variance is reduced enough relative to the variance of the “unconstrained” one

to compensate for its higher total scaled bias squared. The slightly better performance

of the “constrained” estimator over its “unconstrained” counterpart at all levels of

noise is a consequence of the slightly higher percentages of the scaled coefficients in the

“optimal” ranges: for the hyperparameters specified in Section 3.2, 74% and 87% of

the values of β/σ were in the ranges where the “constrained” estimator’s scaled MSE is

below that of the discrete inverse Fourier estimator for the low and high levels of noise,

respectively.

To illustrate the “unconstrained” and “constrained” shrinkage approaches and com-

pare them to the discrete inverse Fourier transform approach, the second image in the

bottom row of Figure 6 was used to generate the signal data both at low and high levels

of noise. Figure 8 shows the image estimates resulting from each of the three methods

at the two noise levels. The plot makes it clear that compared to the estimate obtained

via the discrete inverse Fourier method, the two shrinkage methods produce less noisy
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estimates that are more true to the original image at both levels of noise. As expected,

this difference is more pronounced at the high level of noise. In addition, there does

not appear to be a great visual difference between the two shrinkage estimators, which

agrees with the finding that their IMSE values are very close.

Figure 9 shows the residuals, i.e., the differences between the true image and the

estimated image, at each location of the image. As expected, there is no pattern

in the residuals for the discrete inverse Fourier method as the Fourier transform is

orthogonal and thus preserves the iid error structure of the assumed model. However,

there is a pattern in the residuals for the two shrinkage estimators: the edge of the

brain is outlined as the image intensity values produced by the shrinkage estimators

at the edges are systematically biased. This is due to the phenomenon referred to as

partial voluming: the pixels at the edges have much more highly variable magnetic

properties than the pixels in the other parts of the image, leading to a greater amount

of noise in the signal coming from these locations. The shrinkage estimator, therefore, is

particularly aggressive at reducing the variance at the edges, but does so at the expense

of introducing a greater amount of bias.

The edge outline pattern is much less apparent for the “constrained” estimator,

suggesting that it may be a better estimator than the “unconstrained” one. This also

agrees with the conclusion that the IMSE of the “constrained” estimator is lower than

that of the “unconstrained” estimator, although, as reported earlier, the difference is

not very large. The distributions of the residuals r for all three estimators and both
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Method Low noise High noise

r̄/σ sr/σ r̄/σ sr/σ

Discrete Inverse Fourier Transform -0.00104 1.0057 -0.00104 1.0057

“Unconstrained” Fourier Shrinkage -0.00656 0.7202 -0.00262 0.6046

“Constrained” Fourier Shrinkage -0.00656 0.6973 -0.00262 0.5381

Table 3: Summary statistics for the residual images obtained via discrete inverse Fourier

transform, “unconstrained” shrinkage and “constrained” shrinkage methods.

noise levels are all symmetric with the summary statistics shown in Table 3:

4.2 Computational Time and Implementation

The addition of the shrinkage steps to the current reconstruction processing routine, as

implemented in the FIASCO software package [21], results in an increase of 1.82 seconds

in computational time for a 128×128 image on a 2.4 GHz Intel Pentium 4 machine. The

coding of the procedure is very straightforward as it involves multiplying the individual

signal observations, either in the raw or already partially processed form, by shrinkage

factors. Thus, the method incurs very low computational and coding implementation

costs and can, therefore, be very easily added to the existing processing streams for

MRI and fMRI data.
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Figure 8: The estimates of the image using the discrete inverse Fourier transform (first

column), the “unconstrained” Fourier shrinkage (second column) and the “constrained”

Fourier shrinkage (third column) approaches at low (top row) and high (bottom row)

levels of noise.
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Figure 9: The differences between the estimated image and the true image for the

discrete inverse Fourier transform (first column), the “unconstrained” Fourier shrinkage

(second column) and the “constrained” Fourier shrinkage (third column) approaches at

low (top row) and high (bottom row) levels of noise.
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5 Discussion

The work discussed in this paper leads to the conclusion that a special case of penalized

likelihood, nonlinear shrinkage estimation, has great potential for image reconstruction

in the context of Magnetic Resonance Imaging. In particular, using simulated brain

images, we have shown that the shrinkage estimators outperform the currently used

discrete inverse Fourier transform approach in terms of the integrated mean squared

error. Our “constrained” shrinkage estimator performs the best, although the difference

between it and our “unconstrained” estimator does not appear to be substantial. While

shrinkage increases bias relative to the discrete inverse Fourier transform estimator, its

reduction in variance is much greater, thus yielding a much lower IMSE. As alluded to

in Section 2.3.2, the adaptability of the non-linear shrinkage estimator is the key to its

better performance relative to the currently used discrete inverse Fourier estimator, as

well as the linear shrinkage estimator.

In our simulations, the reductions in IMSE due to shrinkage were especially great at

lower levels of noise, and in general, the benefit of shrinkage increases as the signal-to-

noise ratio (SNR) decreases. Note that in some cases, SNRs in MRI fall even below the

typical range of 50-100 that was cited earlier, making our approach even more beneficial

relative to the currently used discrete inverse Fourier transform.

Aside from its desirable statistical properties, our nonlinear shrinkage method has

several practical advantages that are important to the MRI and fMRI users and re-
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searchers. As discussed in Section 4.2, computationally, it is extremely fast and easy

to implement in terms of coding, making it a very easy addition to the existing MRI

and fMRI data processing streams. In addition, our method can be easily combined

with various recent improvements on the basic model for the MRI signal. For example,

Sedarat and Nishimura [22] introduced an optimal gridding reconstruction method to

deal with nonuniform sampling in k-space. Raw k-space data can first be processed us-

ing their approach of determining the optimal density compensation factors in order to

produce an approximation to the Cartesian grid, and then our shrinkage procedure can

be applied to the interpolated square-grid data. Schomberg and Timmer [23] addressed

the same issue. Their method involves convolving the observed signal space data with

a weight function and then deconvolving it in the image space. Their approach can also

be easily combined with our method, but in the opposite order: first, the signal space

data can be shrunk using our method and then the shrunk data can be put through

the convolution and deconvolution steps of the algorithm the authors proposed.

Our approach can also be used in conjunction with the recent work of Rowe [24], in

which he models both the phase and the magnitude of the the k-space signal, rather than

just the magnitude alone, as is normally done in fMRI. Our method can be combined

with models for the image space data, as well. For example, LaConte et al. [25] proposed

a method for denoising the images obtained in event-related fMRI experiments, using

wavelet transform-based Wiener filtering. The images can first be obtained using our

reconstruction technique and then filtered using their approach.
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It should be noted that some extensions of the basic MRI model do not lend them-

selves as easily to being used in conjunction with our approach. One such example is

the work by Sutton et al. [11], discussed in Section 2.3.2. Because they model inho-

mogeneities in the field, the relationship between the signal data and the underlying

image is much more mathematically complex than a Fourier transform, so there is no

easy way to put their approach in the same framework as ours. Another example is the

work by Twieg [26]. His model allows for modulation in the amplitude and phase of

the signal in the course of the acquisition, in contrast to the conventional assumption

that these signal parameters are constant. As a result, just as in the work by Sutton et

al., the relationship between the signal and the image cannot be modeled as a Fourier

transform, making it impossible to combine our approach easily with his.

While this incompatibility is a limitation of our approach, it can be argued that the

method strikes a compromise between performing a better-than-basic image reconstruc-

tion in terms of filtering out the noise in the signal data and computational feasibility.

Incorporating some extensions of the basic MR model can come at a price. For ex-

ample, in contrast to our method’s computational time of 1.82 seconds, Sutton et al.

report that their iterative procedure requires 4.4 seconds (20 iterations at 0.22 seconds

per iteration) to reconstruct a 64 × 64 image on a 2 GHz Pentium 4 machine (using

Matlab software package), while Twieg’s method takes 120–140 minutes for a 64 × 64

image on a 450 MHz Macintosh G4 computer (also using Matlab). Furthermore, the

complexity of the programming code needed to implement these authors’ procedures is
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much greater than in the case of our method. Moreover, the fact that our model does

not take into account special problems that arise in MRI and fMRI makes our approach

more universal and flexible. It can be used in any context, in which the measurements

and the quantities of interest can be related via a linear transform. In neuroimaging,

one example is Positron Emission Tomography (PET), in which the data are Radon

transforms of the image.

One direction for future work is to develop a computationally feasible and efficient

shrinkage method in conjunction with basis sets other than the Fourier basis used in

this work. In particular, the Haar wavelet basis may be a good candidate as its step

function shape can facilitate edge reconstruction and modeling of the jumps in the

image function that occur as a result of motion.

Finally, it is important to note that we used simulated, rather than real, data to

illustrate the advantage of the shrinkage estimator approach over the discrete inverse

Fourier transform approach. Using simulated data made the comparison of the two

approaches possible; however, certain issues that arise in dealing with real data, such

as dephasing of the signal caused by motion, could not be addressed as a result. Thus,

there is no true “gold standard” for assessing the performance of any approach to

reconstruction, and further work is needed in this area. Nonetheless, comparing the

performance of our approach to the current method using real MR data is one of the

high-priority items on our future work agenda.
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