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Abstract

The penalized quasi-likelihood (PQL) approach is the most com-
mon estimation procedure for the generalized linear mixed model
(GLMM). However, it has been noticed that the PQL tends to un-
derestimate variance components as well as regression coefficients in
the previous literature. In this paper, we numerically show that the
biases of the variance components are systematically related to the
biases of the regression coefficient estimates, and also show that the
biases of the variance components estimates of the PQL increase as
random effects become more heterogeneous.
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1 Introduction

The generalized linear mixed effects model (GLMM) has been widely used in

biometry and medical studies where random effects explain subject specific

variations. For example, the heritability or the genetic correlation in the

GLMM can be represented as a function of variance components: param-

eters related to the random effects of the GLMM. Thus, the estimation of

∗Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213,
wjang@stat.cmu.edu

†Department of Statistics, Texas A & M University, College Station, TX 77843-3143,
johanlim@stat.tamu.edu

1



the variance components are of great interest as well as that of regression

coefficients.

In most of random effects models including the GLMM, exact likelihood

functions involve intractable high–dimensional integrations and are hard to

compute. Accordingly, several approximations to the likelihood functions

have been proposed in the previous literature. Among many of them, the

penalized quasi-likelihood (PQL) by Breslow and Clayton (1993) is the most

popular. It approximates the high-dimensional integrations using the well–

known Laplace approximation and the approximated likelihood functions

have those of Gaussian distributions. Subsequently, it suggests to use the

similar iterative numerical procedures introduced in Harville (1977) to max-

imize the PQL. It should be noted that the Laplace approximation, in fact,

is the most simple approximation procedure for multiple integrations and

there are various estimators equivalent to the PQL in the literature includ-

ing Schall (1991), Wolfinger (1993) and McGilchrist (1994). Especially,

Wolfinger’s algorithm becomes the basic routine for the SAS procedure.

Even though the PQL is widely used in many different applications, it has

been noticed that estimating the variance components is quite challenging

due to their unobservability. Accordingly, several different types of the likeli-

hood functions of the variance components have been proposed including the

restricted maximum likelihood (REML) estimator by Harville (1977) and

the maximum adjusted profile h-likelihood (MAPHL) estimator by Lee and

Nelder (1996). However, most of such variance components estimators have

not got as much attention as regression coefficients estimators have. Fur-

thermore, they have not been understood well when observations are from

non-Gaussian distributions.

In this paper, we numerically study the performance of the PQL esti-

mates along with the REML estimates of the variance components which

are the most commonly used in practice. In the remainder of the paper, the

PQL estimates assumes that the REML estimates are used for the variance

components.

This paper is composed of two folds. First, we investigate the performance

of the PQL estimates and show that the biases of the variance components es-

timate results in systematic biases of the the regression coefficient estimates.
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A simulation study shows that the PQL underestimates both the regression

coefficients and variance components in the GLMM, and also shows that the

biases of the regression coefficient are closely related to those of the variance

components estimates. Here, the conjectured close relationship between the

biases of the estimates of the regression coefficients and those of the variance

components is consistent with the previous study stating that the regres-

sion coefficient estimate is biased downward to 0 if the random effects are

mistakenly ignored (Neuhaus , 1998; Henderson and Oman , 1999).

Second, we investigate the performance of the PQL estimates in the

GLMM when the random effects are heterogeneous. Here, heterogeneous

random effects imply the distributions of random effects are different from

one group of subjects to the other group of subjects. Such heterogeneous ran-

dom effects have recently reported and studied by Qiou et al (1999). The

second simulation study shows that the biases of the variance components

estimates by the PQL as well as those of the regression coefficient estimates

increase as the random effects become more heterogeneous.

This paper is organized as follows. Section 1 is a brief introduction.

In Section 2, we review the GLMM and the PQL. Section 3 implements

two simulation studies on the performance of the PQL estimators. Finally,

Section 4 provides discussion and summarizing our results.

2 Models and Methods

In this section, we review the GLMM and the PQL by Harville (1977) and

Breslow and Clayton (1993).

2.1 Generalized Linear Mixed Models

The generalized linear models with random effects have been studied over

two decades and are the most common models for longitudinal data analysis

in recent studies.

Suppose that the repeated observations yi,1, yi,2, · · · , yi,ni
of the ith subject

are observed along with the covariates xi,1, xi,2, · · · , xi,ni
(each xi,j is a p × 1

vector) for fixed effects and zi,1, zi,2, · · · , zi,ni
(each zi,j is a q × 1 vector) for
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random effects. Here, N subjects are assumed.

Let the unobserved random effects be b = (b1, · · · , bN ), where each bi is a

q × 1 vector. Then, it is assumed that, given b, yijs are independent of each

other and are from a distribution with mean and variance as:

E(yij|b) = µb
ij and Var(yij | b) = φa−1

ij V (µb
ij), (1)

where φ is a disperson parameter, aij is a prior weight and V(·) is a variance

function, subjectively specified. Further, the link function in the GLMM is

specified as

g(µb
ij) = xT

ijα + zT
ijb. (2)

Equivalently, it can be expressed as using a matrix notation as:

g(µb
i) = XT

i α + ZT
i b. (3)

where µb
i = (µi,1, . . . , µ

b
i,ni

)T and the design matrix Xi and Zi have rows xT
i,j

and zT
i,j. Here, α is a q×1 vector of the fixed effects and the random effects b

follow a multivariate normal distribution with mean 0 and covariance matrix

D = D(θ), and θ is a c × 1 unknown vector of the variance components. In

this paper, we assume that the disperson parameter φ and the prior weight

ai,j are unities and D = diag(θs ⊕ Iqs
) for s = 1, . . . , c and

∑c
s=1 qs = q.

In other words, we assume that the random effects are independent to each

other.

2.2 Penalized Quasi-Likelihood Method

Let y∗

ij be a linearized form of the link function which is specified as

y∗

ij = g(yij) = g(µb
ij) + (yij − µb

ij)g
′(µb

ij).

Then, based on the original model, one can describe the distribution of y∗

ij

as a linear model with structure,

Y ∗

i = Xiα + Zib + εi,

where

Y ∗

i = (y∗

i,1, . . . , y
∗

i,ni
)T , εi ∼ N(0, W−1

i ),
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and Wi is the diagonal matrix of wi,1, . . . , wi,ni
, where

wi,j = {V (µb
i,j)(g

′(µb
i,j))

2}−1
, for j = 1, . . . , ni, i = 1, . . . , N.

It is then natural to extend Harville’s approach to this setting. We briefly

summarize the procedures as follows:

Step 1 Given θ, α and b, one can estimate the fixed effect α by solving the

normal equation

N∑

i=1

XT
i V −1

i Xiα =
N∑

i=1

XT
i V −1

i Y ∗

i ,

where Vi = W−1
i + ZiDZT

i .

Step 2 The random effects b can be estimated as

b̂ =
N∑

i=1

DZT
i V −1

i (Y ∗

i − Xiα̂).

Step 3 Subsequently, the REML estimators for θ are

θ̂s =

∑
n∈Qs

b̂2
n∑

n∈Qs
(1 − tnn)

, for s = 1, . . . , c,

where

Qs = {n :
s−1∑

i=1

qi < n ≤
s∑

i=1

qi}, S = W − WX(XT WX)−1XT W

XT = (X1,
T , . . . , XT

N), ZT = (ZT
1 , . . . , ZT

N), W = diag(W1, W2, · · · , WN),

and tnn is the nth diagonal element of T = (I + ZT SZD)−1.

Step 4 One then updates Y ∗

i at the end of each iteration. The PQL estimators

are defined to be those upon convergence.

Finally, the covariance matrix of the estimates can be computed at the

value α = α̂ and b = b̂ by

Cov(α̂) =
{ N∑

i=1

XT
i V −1

i Xi

}
−1

, Cov(θ̂) = H−1.
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Here H has components

hst =
[
1

2

∑

i∈Qs

∑

j∈Qt

(
ZT

(i)PZ(j)

)2
]
,

where

ZT
i,n = (zi,1n, . . . , zinin), ZT

(n) = (ZT
1n, . . . , ZT

Nn),

V −1 = diag(V −1
1 , · · · , V −1

N ), P = V −1 − V −1XCov(α̂)XT V −1.

More details on this section can be referred from Harville (1977) and

Breslow and Clayton (1993).

3 Simulation Studies

In this section, we implemented two simulation studies to investigate the

performance of the PQL estimates in the GLMM. First, we study how the

regression coefficient estimates vary according to the magnitude of the biases

of the variance components estimates. Second, we evaluate the performance

of the estimates by the PQL for heterogeneous random effects at various

levels of the heterogeneity.

In both simulations, simple logistic regressions with random intercepts

are used. Each simulated data set has 50 subjects with 4 repetitions in each

subject. Bernoulli random variables, yijs, are generated at each subject with

conditional mean µb
ij given by

log
(

µb
ij

1 − µb
ij

)
= bi + α0 + α1xij1 + α2xij2,

where xij1 and xij2 are independently from N(0, 1) for i = 1, . . . , 50 and

j = 1, . . . , 4..

The fixed effects are set to be αT = (0.5, 2.0, 0.0) and the random effects

b are generated from a multivariate normal distribution with mean 0 and

covariance D =diag(θ1, θ2)⊕ I25. In other words, the first 25 subjects would

have random intercepts with variance θ1 while those in the second half of the

subjects have random intercepts with variance θ2.
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θ α0(= 0.5) α1(= 2.0) α2(= 0.0)

0.1 0.4456 (0.2166) 1.7695 (0.2730) -0.0038 (0.1766)
0.5 0.4438 (0.2286) 1.7959 (0.2617) -0.0057 (0.1821)
1.0 0.4602 (0.2238) 1.8772 (0.2728) -0.0030 (0.1896)
1.5 0.4657 (0.2304) 1.9430 (0.2945) 0.0076 (0.2123)
2.0 0.4959 (0.2397) 1.9916 (0.2837) 0.0001 (0.2031)

Table 1: Average of fixed effects and variance components estimates over 500
hundreds data sets; the numbers in parenthesis are the standard deviation
of the estimates.

3.1 Downward Bias of the PQL estimates

To show the effects of the variance components estimates to the regression

coefficient estimates, we computed the PQL estimates with fixed values of

the variance components. To be specific, five hundreds data sets of 200

observations (50 clusters with 4 repetitions) were generated under the above

settings with θ1 = θ2 = 1.0 (true value). The PQL estimates are computed

after fixing the variance component as constants 0.1, 0.5, 1.0, 1.5, and 2.0. In

the estimation process, we used the following initial values α1 = α2 = α3 =

0, bi = 0 for i = 1, . . . , 50.

Table 1 shows the estimates of the regression coefficient estimates for

different values of θ(= θ1 = θ2). Two interesting observations come from

Table 1. First, it can be found that even we set the variance components

as its’ true value (= 1.0), the PQL estimates of the regression coefficient

are still underestimated, in absolute values. This indicates the downward

biases of the regression coefficient estimates are not exclusively from the

underestimated variance components estimates. Second, it can be found

that, as the fixed values of the variance components decrease, the regression

coefficients estimates α1 also decrease toward 0. As pointed out in Section 1,

this observations are compatible to the well known results that the regression

coefficients are downward biased to 0 when the random effects are mistakenly

disregarded (Neuhaus , 1998; Henderson and Oman , 1999).
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Scenario α0(= 0.5) α1(= 2.0) α2(= 0.0) θ1(= 0.5) θ2

1 0.4971 1.9488 -0.0037 0.4585 0.4782(0.5)
2 0.4824 1.8972 -0.0063 0.4257 0.7881(1.0)
3 0.4716 1.8600 -0.0049 0.4051 1.0958(1.5)
4 0.4653 1.8311 -0.0045 0.3879 1.3863(2.0)

Table 2: Average of fixed effects and variance components estimates over 100
data sets

3.2 Bias in Heterogeneous Random Effects

To see the effect of the heterogeneous random effects, one thousand data sets

of 200 observations were generated with the same data structure (50 subjects

with 4 replications). Simulation study implemented under the following 4

scenarios;

Scenario 1: θ = (0.5, 0.5);

Scenario 2: θ = (0.5, 1.0);

Scenario 3: θ = (0.5, 1.5);

Scenario 4: θ = (0.5, 2.0).

Table 2 contains the average of the estimates of the fixed effects and

variance components. Each row in Table 2 shows the average for the cor-

responding scenarios. The true parameter values for α0, α1, α2 and θ1 are

reported inside the parentheses next to the parameters while the true value

of θ2 for each scenario is reported inside the parentheses after the estimates

of θ2.

Using the estimates of α1 as a typical example of the estimated fixed

effects, one may find that the percentage of the biases of α̂1s is 2.6% in senario

1, 5.1% in senario 2, 7% in scenario 3, and 8.4% in senario 4. In other wrods,

the larger θ2 is , the larger the biases of the fixed effects estimates are. In the

variance components estimates, the percentage of biases of θ̂2s dramatically

increases from 0.4% to 30.7% as θ2 increases. The effect of increasing θ2 on

the direction of the biases of θ̂1s is almost the same as on the direction of
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Scenario α0 α1 α2 θ1 θ2

1 Est. 0.2125 0.2939 0.1933 0.6396 0.6482
Monte. 0.2215 0.3045 0.1939 0.4930 0.5113

2 Est. 0.2164 0.2886 0.1937 0.6207 0.7509
Monte. 0.2248 0.2996 0.1897 0.4662 0.6681

3 Est. 0.2202 0.2850 0.1942 0.6089 0.8517
Monte. 0.2298 0.2963 0.1890 0.4504 0.7945

4 Est. 0.2236 0.2823 0.1950 0.5987 0.9486
Monte. 0.2330 0.2866 0.1891 0.4319 0.9101

Table 3: Comparisons of Estimated and Monte Carlo simulated Standard
Errors

those of θ̂2s, but the percentage of the biases of θ̂1s are much smaller than

those of θ̂2s as θ2 increases.

Table 3 shows the comparisons of the estimated and the Monte Carlo

simulated standard errors. The “Est.” and “Monte” correspond to the esti-

mated and the Monte Carlo simulated standard errors. In the fixed effects,

the Monte Carlo simulated standard errors are slightly higher than the esti-

mated standard errors which are derived from the information matrix. The

ratios of the Monte Carlo simulated and the estimated variance estimators

are almost 1 for all scenarios. However, for the variance components, the

Monte Carlo simulated standard errors are much smaller than the estimated

standard errors. One may note that the difference between the Monte Carlo

and the estimated standard errors of θ̂2s decreases as θ2 increases.

Figure 1 and Figure 2 show the distributions of θ̂s. In Figure 1, two

boxplots were plotted for θ̂1 (bottom) and θ̂2 (top) for each scenario. The

true parameter values are indicated in each plot. Figure 2 is similar to Figure

1 except that the boxplots were replaced with corresponding kernel density

estimators.

We also observed the long right tails in all θ̂s which is consistent with Lin

(1997). Lin pointed out that θ̂ is not exactly normally distributed, unless

that the number of clusters is really large and the θs are bounded away form

the boundary, 0.
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Figure 1: Boxplots θ̂

4 Discussion

In this paper, two simulations studies are implemented to investigate the

performance of the PQL estimates. The first simulation study shows that

the biases of regression coefficients estimates increase as those of the vari-

ance components increase. Also, it reassures that the PQL underestimates

both the regression coefficients and the variance components which are briefly

pointed out in Breslow and Clayton (1993). Second simulation shows that,

using the PQL, the variance components were underestimated while the stan-

dard errors of the variance components were overestimated when the random

effects are heterogeneous. We also find that regression coefficients are under-

estimated.
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