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We present a method that scans a random field for localized clus-

ters while controling the fraction of false discoveries. We use a

kernel density estimator as the test statistic and correct for the

bias in this estimator by a method we introduce in this paper.

We also show how to combine information across multiple band-

widths while maintaining false discovery control.

1 Introduction

A problem that arises in a wide variety of applications is to identify unusual

clusters among events scattered over space or time. Astronomers, for exam-

ple, look for clustering in the position of objects on the sky to distinguish real

groupings from happenstance alignments. Epidemiologists look for clustering

in the incidence of a disease to detect outbreaks. What constitutes an event

and a cluster varies with each application, but from a mathematical per-

spective, we consider data as drawn from spatial or temporal point process

with a cluster corresponding to a region of high intensity. In this paper, we

consider the problem of finding clusters from point process data, extending

the method in Perone Pacifico, Genovese, Verdinelli and Wasserman (2004),

henceforth denoted by PGVW.

Let X = (X1, . . . , XN) be a realization of a point process with intensity

function ν(s) defined on a compact set S ⊂ Rd. We assume that conditional

on N = n, X = (X1, . . . , Xn) is an iid sample from the density f(s) =

ν(s)/
∫

S
ν(u) du. We also assume that ν(s) = ν0 for all s in an unknown

subset S0 ⊂ S and that ν(s) > ν0 for s /∈ S0. The connected components of

S1 = Sc
0 are called clusters.

An important method for cluster detection is based on scan statistics

(Glaz, Naus, and Wallenstein 2001, Patil and Taillie 2003). The usual ap-

proach begins with the number of points Ns observed in a fixed window
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(such as a rectangle or circle) centered at each s ∈ S. The null hypothesis

that there are no clusters is tested via the statistic T = sups∈S Ns, where the

null is rejected if T is large enough. The p-value for T is computed under the

uniform distribution on S, and the threshold is designed to control family-

wise type I error over S. Finding ways to compute the p-value is an area of

active interest; see, for example, Naiman and Priebe (2001).

Controlling familywise error provides a strong guarantee, but it can be

conservative in the sense of low power. PGVW presented a method that

instead controls the False Discovery Proportion (FDP): the area of false

rejections divided by the area of rejections. (For more on false discovery

proportions, see Benjamini and Hochberg 1995, Genovese and Wasserman

2002, 2004 and Storey, Taylor, and Siegmund 2003.) Using a kernel density

estimator as a test statistic, PGVW tested the set of local null hypotheses:

H0s : s ∈ S0 versus H1s : s /∈ S0, (1)

for every s ∈ S, and used the results of these tests to devise a threshold

T (X) such that the random set LT = {s ∈ S : X(s) ≥ T (X)} approximates

S1 with a specified error bound. PGVW left open two problems: (i) how to

choose the bandwidth of the density estimator and (ii) how to correct for the

fact that density estimators are biased. The present paper addresses both

problems.

Specifically, we perform our test using a set of bandwidths. We then adjust

the rejection region of the test – by appropriately reducing the size of the

rejection region – to account for smoothing bias. Very small bandwidths yield

low power because of the test statistic’s high variance while large bandwidths

yield low power because they require large bias adjustment. Between these

extremes lie bandwidths with higher power. We show how to combine across

bandwidths while maintaining control of the false discovery proportion. We

also show that the validity of the Gaussian approximation underlying our

test statistic is preserved over the range of bandwidths.
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2 The Test Statistic

Testing the null hypotheses in (1) is equivalent to testing H0s : f(s) =

ν0/
∫

S
ν(s)ds. The value of the integral

∫
S

ν(s)ds is not known, but
∫

S
ν(s)ds ≥

ν0 ·λ(S), where λ(·) denotes Lebesgue measure. Thus, a conservative test can

be obtained by testing

H0s : f(s) ≤ ν0 versus H1s : f(s) > ν0. (2)

where

ν0 =
1

λ(S)
. (3)

Remark 1. Actually, we do have some information about
∫

S
ν(s) ds through

the total number of observed points N . Under more specific assumptions,

such as a Poisson distribution for N , we could construct a confidence interval

for
∫

S
ν(s) ds that is consistent with the constraint

∫
S

ν(s)ds ≥ ν0 · λ(S).

Nonetheless, in this paper, we use the simpler and more general approach

described above. �

We use the kernel density estimator

f̂H(s) =
1

n

n∑

i=1

KH(s − Xi) (4)

as a test statistic, where the kernel KH , based on some d-dimensional density

ϕ, is defined for any s ∈ S and for any bandwidth matrix H by

KH(s) =
1

det H
ϕ
(
H−1s

)
, (5)

and det H denotes the determinant of the matrix H. We take H to be diag-

onal, but, with the possible exception of Lemma 3, the theory holds for any

symmetric, positive definite matrix. In one-dimensional cases, H denotes a

positive real number.

Let the smoothed density fH be defined by

fH(s) ≡ E[f̂H(s)] =

∫
KH(s − x)f(x) dx 6= f(s). (6)
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For one dimension, the asymptotic distribution of f̂H − fH as n → ∞, was

first derived in Bickel and Rosenblatt (1973). We have been unable to find

a similar result for higher dimensions that holds uniformly over a set of

bandwidths. The following theorem provides such a result; the proof is in

Section 9.

Theorem 1 Suppose the kernel KH satisfies (53). Given a decreasing se-

quence of constants cn ↓ 0, define the sets of bandwidth matrices

Hn = {H : H is a diagonal bandwidth matrix with det H ≥ cn} .

Let

rd,n =

{
(log n)d

√
n

d = 1, 2
(log n)3/2

n1/(2d+2) d ≥ 3.
(7)

For each δ ∈ [0, 1], there exists mean 0 Gaussian processes An(s, H) over R
d,

indexed by H ∈ Hn, with covariance

C(An(s, H), An(r, L)) =

(det H · det L)δ

(∫
KH(s − x)KL(r − x)dF (x) − fH(s)fL(r)

)
(8)

such that

sup
s∈Rd,H∈Hn

∣∣∣(det H)δ
√

n
(
f̂H(s) − fH(s)

)
− An(s, H)

∣∣∣ = O

(
rd,n

c1−δ
n

)
a.s. (9)

Theorem 1 states that

√
n
(
f̂H(s) − fH(s)

)
(10)

converges to a mean zero Gaussian process as n → ∞ and that this conver-

gence is uniform for H in an appropriate class Hn of bandwidth matrices.

This resolves an open question raised in Chaudhuri and Marron (2000), which

required a fixed lower bound on the bandwidth to get convergence.

In light of this result, we use the test statistic process

ZH(s) =
f̂H(s) − ν0

σH(s)
(11)
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where σH(s) =

√
V(f̂H(s)). Under the null hypothesis H0s, fH(s) ≤ ν0 and

ZH(s) is approximately a normal random variable with mean less than or

equal to 0. The variance σH(s) does depend on the unknown density and can

be estimated from the data, but for many clustering problems, departures

from the null occur only in small localized regions. In such cases it suffices

to use, as an approximation, the variance under the global null hypothesis

fH(s) = 1
λ(S)

, which is

σ2
H ≈ 1

λ(S)

∫
KH(s − x)2dx − 1

λ(S)2
. (12)

We use this approximation in our examples.

A complication is that nonparametric density estimates are biased, that

is, fH(s) 6= f(s). This bias can lead to excessive rejections. Put another way, a

test based on f̂H does not really test (2), rather it tests the biased hypotheses

H0s : fH(s) ≤ ν0 versus H1s : fH(s) > ν0. (13)

We address this problem in Section 4. But first, we discuss the general prob-

lem of testing the mean of a Gaussian process using false discovery methods.

This is the subject of the next section.

3 False Discovery Control for Gaussian Pro-

cesses

Let Z(s) be a Gaussian process on S with known covariance function. Let

µ(s) = E(Z(s)) and suppose that µ(s) ≤ 0 for s ∈ S0 ⊂ S and µ(s) > 0 for

s ∈ S1 = Sc
0. Consider testing the set of hypotheses

H0s : µ(s) ≤ 0 versus H1s : µ(s) > 0. (14)

Suppose we reject H0s for all s ∈ B ⊂ S. Define the false discovery

proportion (FDP) of B by

Γ(B) =
λ(B ∩ S0)

λ(B)
(15)
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where the ratio is defined to be zero when the denominator is zero. The idea

of controlling the mean of the FDP in multiple testing problems is due to

Benjamini and Hochberg (1995). Omnibus tests for Gaussian random fields

are discussed, for example, in Worsley (1994, 1995).

Given t ∈ R, define the level set

Lt = {s ∈ S : Z(s) > t}. (16)

PGVW proposed a rejection region LT based on a data-dependent threshold

T that controls the false discovery exceedance (FDX),

FDX ≡ P(Γ(LT ) > γ) ≤ α (17)

for given α and γ. This procedure – which we call inversion – is based on

first finding a confidence superset U that contains S0 with probability 1−α:

P(U ⊃ S0) ≥ 1 − α. (18)

PGVW give an algorithm to compute U . The algorithm is based on inverting

the class of tests

H0 : A ⊂ S0 versus H1 : A 6⊂ S0 (19)

for every subset A ⊂ S, using the test statistic sups∈A Z(s).

The confidence superset U can be described as follows. Let P denote the

law of the Gaussian process Z and let P0 denote the law of a mean zero

Gaussian process with the same covariance. Then,

U =
⋃{

A ⊂ S : P0

(
sup
s∈A

Z(s) > sup
s∈A

z(s)

)
≥ α

}
(20)

where z(s) is the observed value of the process Z(s). Since P(U ⊃ S0) ≥ 1−α,

Γ(B) ≡ λ(U ∩ B)

λ(B)
(21)

is a confidence envelope for Γ(B), meaning that

P
(
Γ(B) ≤ Γ(B) for all B

)
≥ 1 − α. (22)
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Then PGVW chose

LT = {s ∈ S : Z(s) ≥ T}
where

T = inf

{
t ∈ R : Γ(Lt) ≤ γ

}
. (23)

This guarantees FDX control as in (17).

Remark 2. The tail probability P0 (sups∈A Z(s) > sups∈A z(s)) in (20) can be

approximated with the formulas in, for example, Adler (1981, 1990, 2000),

Piterbargh (1996) and Worsley (1994, 1995). �

A different method for exceedence control, called augmentation, is pro-

posed in van der Laan, Dudoit and Pollard (2004), hereafter referred to as

VDP. Their method was defined for finite S, however, it is easy to see that

it works for the random field setting as well. Let R ⊂ S be any (random)

rejection region that controls the familywise error rate in the sense that

P(R ∩ S0 6= ∅) ≤ α. (24)

Define

augγ(R) =

{
∅ if R = ∅
R ∪ A otherwise

(25)

where A is any set such that A ∩ R = ∅ and

λ(A)

λ(R) + λ(A)
≤ γ. (26)

Then the augmented rejection set augγ(R) controls FDX. More formally:

Theorem 2 (VDP) If R satisfies (24), then P(Γ(augγ(R)) > γ) ≤ α. Also,

Γ(B) = λ((augγ(R))c ∩ B)/λ(B) is a confidence envelope.

It is not difficult to see that the superset U in (20) is a continuous version

of a stepdown testing method. Specifically, note that

U = {s ∈ S : Z(s) < Q}

7



with

Q = inf

{
t ∈ R : P0

(
sup

{z(s)≤t}
Z(s) > t

)
< α

}
. (27)

Clearly T < Q, hence the rejection region LT can be written as

LT = R ∪ A

where

R = U c = {s ∈ S : Z(s) ≥ Q} (28)

and A = {s : T ≤ Z(s) < Q}.
This gives an explanation of the procedure in PGVW in terms of VDP.

More precisely, the above calculations prove the following result, described

in more detail in Genovese and Wasserman (2004b).

Theorem 3 Inversion and augmentation yield the same procedure, that is,

LT = augγ(R).

Although our focus is on false discovery methods, it is worth noting that

the region R in (28) provides a new familywise test, more powerful than the

commonly used test based on sups∈S Z(s), namely,

W = {s ∈ S : Z(s) ≥ Q′} (29)

with

Q′ = inf

{
t ∈ R : P0

(
sup
s∈S

Z(s) > t

)
< α

}
. (30)

Theorem 4 Let R and W be the rejection regions (28) and (29) respectively.

Then, W ⊂ R.

Proof: Since

sup
{z(s)≤t}

Z(s) ≤ sup
s∈S

Z(s),

then for all t,

P0

(
sup

{z(s)≤t}
Z(s) > t

)
≤ P0

(
sup
s∈S

Z(s) > t

)
.

Hence, Q ≤ Q′ and thus W ⊂ R. �
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4 Bias Correction

In this section we let S0 = {s : f(s) ≤ ν0} denote the set of points satisfying

the true null hypothesis in (2) and let

S0,H = {s : fH(s) ≤ ν0} (31)

denote the set of points satisfying the biased null hypothesis in (13). Let

augγ(RH) = RH ∪ AH denote the rejection set giving exceedance control for

the biased null S0,H . Here, RH controls familywise error for the biased null:

P(RH ∩ S0,H 6= ∅) ≤ α. (32)

Our goal is to adjust augγ(RH) to give exceedance control for S0.

Figure 1 is an illustration of the bias problem in cluster detection. Assume

there are only three clusters as shown in the figure. The true density, the mean

of a kernel estimator and typical realizations of the estimator are shown for

increasing bandwidths. For large bandwidth, f̂H is close to its mean but

the mean distorts the clusters. Specifically, {s : f̂H(s) > t} is larger than

{s : f(s) > t} for some values of t, leading to an excess in false discoveries. We

want to correct for this kernel smoothing bias. In general, correcting the bias

of a kernel density estimator is difficult. This is because the pointwise bias

of f̂H(s) is, asymptotically, proportional to f ′′(s) and derivative estimation

is harder than estimating f . However, in our case, we need only correct the

bias of the edges of the level sets {s ∈ S : f̂H(s) > t} rather than the density

estimate itself. To illustrate this point, Figure 2 shows the rejection regions,

both bias-corrected (called shaved, panel B) and not bias-corrected (called

unshaved, panel A) as a function of the bandwidth, for the previous example.

We now define the bias correction method – which we call shaving – in

detail. The Minkowski sum of two sets A and B is

A ⊕ B = {a + b : a ∈ A, b ∈ B}.

The Minkowski difference is

A 	 B = {s : s + B ⊂ A} = (Ac ⊕−B)c
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where −B = {−s : s ∈ B}. Let CH denote the support of the kernel KH ,

with bandwidth matrix H. We assume that CH is a connected, compact set

and that CH is symmetric: −CH = CH .

The bias corrected procedure replaces augγ(RH) with

augγ(sh(RH)), (33)

where

sh(RH) = (R 	 CH) (34)

is the shaved version of RH . Schematically, the procedure is as follows:

RH
shave−→ sh(RH)

augment−→ augγ(sh(RH)) (35)

To show that augγ(sh(RH)) controls the FDX, we need to make some

assumptions about S1 = Sc
0. The key assumption is the following separation

condition:

for every s ∈ (S1 ⊕ CH) − S1, (s ⊕ CH)
⋂

(S1 ⊕ CH)c 6= ∅. (36)

This condition precludes clusters from being very close together. See Figure

3.

The proof of the following lemma is straightforward and is omitted.

Lemma 1 A sufficient condition for the separation condition is that S1 is

the union of finitely many connected, compacts sets C1, . . . , Ck such that

min
i6=j

inf
s∈Ci,t∈Cj

d(s, t) > wH (37)

and

min
i

inf
s∈Ci,t∈∂S

d(s, t) > wH (38)

where wH is the diameter of CH , d is Euclidean distance, and ∂S is the

boundary of S.
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Theorem 5 Suppose that KH has compact, symmetric support, and that the

separation condition (36) holds. Then, sh(RH) controls familywise error for

S0 at level α and augγ(sh(RH)) controls the FDP for S0 at level γ with

probability at least 1 − α.

Proof: From Theorem 2 it suffices to show that P(sh(RH) ∩ S0 6= ∅) ≤ α

where sh(RH) = RH	CH . First, because {s : fH(s) > ν0} = {s : ZH(s) > 0} ⊂
(S1 ⊕ CH), we have, using the symmetry of CH , that

S0 	 CH = (Sc
0 ⊕−CH)c = (S1 ⊕ CH)c ⊂ {s : fH(s) ≤ ν0} = S0,H . (39)

Next we show that

sh(RH) ∩ S0 6= ∅ implies that RH 6⊂ S1 ⊕ CH . (40)

Suppose that RH ⊂ S1 ⊕ CH . Let s ∈ S0. Consider two cases: (i) s ∈ Rc
H

and (ii) s ∈ RH . For case (i), clearly s /∈ sh(RH) For case (ii), argue as

follows. If s ∈ RH ∩ S0, then s ∈ (S1 ⊕ CH) − S1. From the separation

condition, there exists y ∈ (S1⊕CH)c ⊂ Rc
H such that y ∈ s⊕CH . Therefore,

s /∈ RH 	 CH = sh(RH). This establishes

RH ⊂ S1 ⊕ CH implies that sh(RH) ∩ S0 = ∅. (41)

and (40) thus follows. Now RH 6⊂ S1 ⊕CH implies that RH ∩ (S1 ⊕CH)c 6= ∅.
But (S1 ⊕ CH)c = (Sc

0 ⊕ CH)c = (Sc
0 ⊕−CH)c = (S0 	 CH). So we have that

sh(RH) ∩ S0 6= ∅ implies that RH ∩ (S0 	 CH) 6= ∅. (42)

Finally,

P(sh(RH) ∩ S0 6= ∅) ≤ P(RH ∩ (S0 	 CH) 6= ∅) from (42)

≤ P(RH ∩ S0,H 6= ∅) from (39)

≤ α from (32).

That augγ(sh(RH)) controls the FDP for S0 at level γ with probability at

least 1 − α follows by construction. �
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Remark 3. The theorem above applies to kernels with bounded support. In

practice, it is sometimes convenient to use Gaussian kernels, which have un-

bounded support. Without kernels of compact support, the previous theorem

is no longer true, but our numerical experience is that the procedure still

works well, by taking CH to be a compact set with high probability under

KH . Also, if the separation condition fails then clusters that are too close

together will get blended together. �

Remark 4. A similar procedure is used by Taylor (2004) for a different purpose.

He shows that by replacing ZH(s) with a new test statistic, one can remove

small, isolated portions of the rejection region while still preserving false

discovery control. Moreover, the rejection region for the new statistic seems

to be related to the shaving operation. Also, Walther (1997) uses similar tools

for optimal level set estimation. �

5 Power and Bandwidth Selection

Now we consider the problem of choosing a bandwidth H. In density esti-

mation, one usually tries to choose an H that balances bias and variance to

optimize mean squared error. But this is not our goal here. Indeed, Figure

4 shows that the density estimator based on a bandwidth that is optimal

for “testing” (shown in the left panel) is different from the density estimator

using a bandwidth that is optimal for estimation (right panel).

First, some notation. Define the realized power of a rejection region B by

π(B) =
λ(B ∩ S1)

λ(S)
.

Given a set of possible bandwidths Hn, define

π∗(α) = sup
H∈Hn

π(augγ(sh(RH(α))))

which is the power of the best, single bandwidth procedure. Rather than try-

ing to find this best bandwidth, our proposal is to combine rejection regions

over the bandwidths in Hn as follows.
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Take Hn to be a finite set of bandwidths. We combine the shaved rejection

regions from the individual bandwidths and augment. Define

∆ = B ⊕ Λε = B ∪ Aε (43)

where

B =

(
⋃

H∈Hn

sh
(
RH

( α

m

)))
, (44)

m is the number of elements in Hn, Λε is a sphere of radius ε and Aε =

(B ⊕ Λε) − B. Here, ε is the largest number such that

λ(Aε)

λ(Aε) + λ(B)
≤ γ. (45)

Notice that ∆ is just an augmentation of B. Here is a summary of the steps:

RH
shave−→ sh(RH)

combine−→ B =
⋃

H

sh(RH)
augment−→ ∆ = B ⊕ Λε

Remark 5. One could of course use other augmentations although this aug-

mentation is simple and does not increase the number of clusters. �

The set ∆ controls FDP and has power close to the optimal with high

probability.

Theorem 6 We have that P(Γ(∆) > γ) < α and

P

(
π(∆) ≥ π∗(α/m) − γ

1 − γ

)
≥ 1 − α.

Proof: Without loss of generality, take λ(S) = 1. By Bonferroni’s inequality,

B controls familywise error at level α. Hence, the augmented set ∆ controls

FDP at level γ with probability at least 1−α. Let RH = augγ(sh(RH(α/m))).
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For each H we have λ(AH) ≤ γ

1−γ
λ(sh(RH)), since λ(AH)/(λ(AH)+λ(sh(RH))) ≤

γ. Hence,

π(∆) = λ(∆ ∩ S1) ≥ λ(B ∩ S1) = λ(B) − λ(B ∩ S0)

≥ λ(B) with probability at least 1 − α

≥ λ(sh(RH)), for every H ∈ Hn

= λ(RH) − λ(AH) ≥ λ(RH ∩ S1) − λ(AH)

≥ λ(RH ∩ S1) −
γ

1 − γ
λ(RH)

≥ λ(RH ∩ S1) −
γ

1 − γ
= π(RH) − γ

1 − γ
.

This completes the proof. �

Remark 6. Regarding the choice of Hn, there are several possibilities. In one

dimension, we recommend choosing m equally spaced points in the interval

[cn, hOS] where

cn =
σ̂(log n)3

n
, (46)

hOS is the oversmoothing bandwidth from Scott (1992), and σ̂ is the sample

standard deviation. Thus, the minimum bandwidth cn satisfies r2
1,n/cn → 0

where r1,n is defined in (7). The condition r2
1,n/cn → 0 is needed for Theorem

1 to apply. The maximum bandwidth is hOS commonly recommended as an

upper bound for the bandwidth. Our experience suggests that the choice of

m is not crucial; one can even let m increase with n, for example, m = n.

For d-dimensional data, we suggest taking

H = h




σ̂1 0 · · · 0
0 σ̂2 · · · 0
...

...
...

...
0 0 0 σ̂d




where σ̂j is the standard deviation of the jth variable. Then, h is allowed

to vary in a finite set as in the one-dimensional case. However the set of

bandwidth matrices is constructed, the smallest determinant cn over the set
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of bandwidth matrices should again satisfy r2
d,n/cn → 0 where rd,n is defined

in (7). �

Remark 7. An alternative that eliminates the need to use control at level

1 − α/m is data-splitting. Randomly split the data into two sets of equal

size. Choose Ĥ to maximize λ(RH(α)) using the first half of the data. Now

apply the procedure to the second half of the data using bandwidth Ĥ. This

controls FDX conditionally (on the first half) and hence marginally. �

Remark 8. Our work may also be viewed as a contribution to the scale-space

approach to smoothing esposed by Chaudhuri and Marron (2000). They con-

sider finding modes of a density f by finding points where f ′
H(x) = 0 and

then plotting the results as a function of H. In our setting, we could simi-

larly display the significant clusters as a function of H. Viewed this way, our

method fits nicely in their framework, the main differences being our focus on

FDR and on clusters rather than modes. Indeed, Figure 1 can be thought of

as a scale-space representation of clustering. We believe that the scale-space

approach could be quite useful in some applications. But in other cases it is

desirable to correct bias and combine information across bandwidths. �

6 A One-Dimensional Example

In this section, we report the results of a simulation for a one dimensional

example. We draw a sample of n = 1, 000 observations from a uniform density

over [0, 1] with 3 clusters of different heights. The true density (shown in the

left panels of Figure 1) is

f(s) =
4

9
×





3 s ∈ cluster 1

6 s ∈ cluster 2

9 s ∈ cluster 3

1 elsewhere.

(47)

The density estimation has been performed using the R function density

with a Gaussian kernel. The estimate has been evaluate over a grid of 1,024
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equally spaced points over [0, 1]. Figure 1 shows the bias as a function of

bandwidth for this example.

The exceedence control procedure (with α = 0.05 and γ = 0.1) was

applied using 50 different bandwidths between 0.0001 and the approximate

oversmoothing bandwidth,

hOS = 1.1 ×
(

4

3n

) 1
5

σ

suggested in Scott (1992, page 181). Here, σ is the standard deviation which,

in practice, is estimated using the sample standard deviation or a robust

estimate of scale. Figure 2 A shows the clusters identified without any bias

correction procedure (augγ(RH)) as the bandwidth varies, similarly clusters

obtained after shaving (augγ(sh(RH))) are shown in plot B of the same figure.

The increasing bias in the non-shaved clusters is evident. Shaving is ef-

fective at reducing the bias. Cluster 1 is hard to detect; its height is 4/3 and

is barely higher than 1/λ(S) = 1. Panel A in figure 5 compares the width of

shaved and non shaved rejection regions. Except for extremely small band-

widths, the area of non-shaved rejected regions is increasing and this is basi-

cally due to bias. If one looks at the area of shaved regions, there is a local

maximum (which could be used as a single-bandwidth procedure).

Figure 5 B compares the behavior of the FDP for shaved and non-shaved

rejected regions. The improvement due to shaving is evident. Conversely,

shaving causes a loss of power. However, as shown in Figure 5 C, the loss of

power does not seem to be comparable to what was gained in terms of FDP.

Figure 6 shows the set ∆. The corresponding FDP and power are 0.0474 and

0.196. In this case ∆ is more powerful than even π∗(α) = 0.186.

The simulation was repeated 1,000 times drawing different samples from

density (47). Plots in Figure 7 show that the behavior of FDP and power is

almost the same for all simulations. In all of the simulations, the power was

greater than π∗(α) − γ

1−γ
.
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7 A Two Dimensional Example

Figure 8 B shows the clusters detected using our proposed procedure with a

sample of n = 15, 000 observations from the density shown in Figure 8 A.

The true density is a mixture of uniforms over subsets of [0, 1]2

f(s) =
256

466
×





3 s ∈ cluster 1 and 6

6 s ∈ cluster 2 and 5

9 s ∈ cluster 3 and 4

1 elsewhere

(48)

where the clusters are enumerated clockwise from top-left.

The density estimation was performed using the R package MASS with a

Gaussian kernel and the estimate was evaluated over a grid of 256 × 256

equally spaced points.

We applied the exceedence control procedure (with α = 0.05 and γ =

0.1) using 20 different bandwidths ranging between the pixel size and the

oversmoothing bandwidth,

hOS = 1.1 × σ · n− 1
6 .

Figure 9 A, C, E show the clusters identified without any bias correction

procedure (augγ(RH)) for very small, intermediate and large bandwidth re-

spectively, panels B, D, F in the same figure show the clusters obtained after

shaving (augγ(sh(RH))).

Figure 10 A shows the behavior of the area of the clusters obtained with

and without shaving. Figure 10 B compares the behavior of FDP for shaved

and non shaved rejected regions, as the bandwidth varies. In this case too,

the loss of power due to shaving is small respect to the reduction of FDP.

The final set has null FDP (there are no false rejections) and power 0.098,

which is again higher than π∗(α) = 0.073.

8 Asymptotic Mean Control

Our main interest is in exceedance control. However, for completeness, we

also discuss mean control. There are at least two methods for obtaining mean
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control. The first method is from PGVW, Theorem 4b. It relies on the simple

fact that P(Γ(B) > β) < α implies that E(Γ(B)) ≤ γ = β + (1 − β)α.

Lemma 2 Let γ ∈ (0, 1). Choose any β ∈ (0, γ) and let T be a (β, α) confi-

dence threshold with α = (γ − β)/(1 − β). Then,

FDR = E(Γ(LT )) ≤ γ.

The second method is asymptotic. While it gives up exact control, it

appears to often have higher power. Define

T = inf

{
z ∈ R :

λ(S)(1 − Φ(z))

λ({s ∈ S : ZH(s) > z}) ≤ γ

}
(49)

where Φ is the cdf of a standard Normal. Now suppose we reject the null

when ZH(s) > T . As we now explain, this controls, asymptotically, the FDR.

Theorem 7 Suppose that λ(∂S) = λ(∂S0) = 0 and that the equation

E(λ({s : ZH(s) > t}))
λ(S)

− 1 − Φ(t)

γ
= 0 (50)

has a unique root for all large n. Let T be defined as in (49). Then, for testing

the biased null,

E[Γ(LT )] ≤ λ(S0)

λ(S)
γ + o(1) ≤ γ + o(1)

as n → ∞, uniformly for H ∈ Hn.

The proof is in the next section.

Remark 9. Condition (50) will hold with reasonable regularity conditions on

f . �
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9 Theoretical Background

9.1 Asymptotics for the Density Estimator

For any bandwidth matrix H and any s ∈ Rd, the kernel density estimator

f̂H(s) and its expectation fH(s) are

f̂H(s) =
1

n

n∑

i=1

KH(s − Xi) =

∫
KH(s − x) dF̂n(x), (51)

fH(s) =

∫
KH(s − x) dF (x) (52)

where F̂n and F are the empirical and the true distribution function respec-

tively. We will suppose that the kernel is of the form:

KH(s) =
1

det H
ϕ(H−1s) =

1

det H

[
b1W1(H

−1s) − b2W2(H
−1s)

]
(53)

where b1 and b2 are two positive constants and W1 and W2 are two cdfs over

Rd.

Remark 10. In the univariate case, condition (53) requires the kernel to be

right-continuous and to have bounded variation. Right-continuity is not an

issue, since one can always “adjust” a density over a set with zero Lebesgue

measure. All the most common univariate kernels have bounded variation,

including all the options for the R function density. Unfortunately there is

no straightforward extension of the notion of bounded variation to higher

dimensions. For a discussion on this topic see, for example, Koenker and

Mizera (2004). In any case, condition (53) is satisfied by many multivariate

densities, in particular by products of right-continuous univariate kernels

with bounded variation. �

Before proving Theorem 1 we state four lemmas.

Lemma 3 If the kernel KH satisfies (53), H is diagonal, and W is a cdf,

then
∫

KH(s − x) dW (x) =

∫
W (s − x) dKH(x). (54)
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Proof: Write KH as in (53) and let X, X1, and X2 be drawn independently

from W , W1, and W2 respectively. Because H is positive definite, the func-

tions x 7→ W (H−1x), x 7→ W1(H
−1x), and x 7→ W2(H

−1x) are all cdfs. (of

HX, HX1, and HX2 respectively). The integrals in (54) can be written

b1

detH

∫
W1(H

−1(s − x)) dW (x) − b2

detH

∫
W2(H

−1(s − x)) dW (x)

=
b1

detH

∫
W (s − x) dW1(H

−1x) − b2

detH

∫
W (s − x) dW2(H

−1x),

and the corresponding terms on both sides are equal, representing the con-

volutions of independent random variables. �

Lemma 4 below summarizes a number of results, all reported in Massart

(1989).

Lemma 4 Let Ĝn =
√

n(F̂n − F ) be the centered empirical process over Rd

and define rd,n as in (7). There exists a sequence Gn of centered Gaussian

processes with covariance

C(Gn(s), Gn(r)) = F (s ∧ r) − F (s)F (r)

such that

sup
s∈Rd

|Ĝn(s) − Gn(s)| = O(rd,n) a.s.

Note that the distribution of the processes Gn does not depend on n.

For multidimensional spaces, the expression s ∧ d in the covariance is the

componentwise minimum.

Lemma 5 If the kernel KH satisfies (53) and W is bounded over Rd, then

∣∣∣∣
∫

W (s) dKH(s)

∣∣∣∣ ≤ sup
s∈Rd

|W (s)| b1 + b2

det H
.
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Proof:
∣∣∣∣
∫

W (s) dKH(s)

∣∣∣∣ =

=

∣∣∣∣
∫

1

det H
W (s) dϕ(H−1s)

∣∣∣∣ =
1

det H

∣∣∣∣
∫

W (Ht) dϕ(t)

∣∣∣∣

=
1

det H

∣∣∣∣b1

∫
W (Hs) dW1(s) − b2

∫
W (Hs) dW2(s)

∣∣∣∣

≤ 1

det H

(
b1

∣∣∣∣
∫

W (Hs) dW1(s)

∣∣∣∣ + b2

∣∣∣∣
∫

W (Hs) dW2(s)

∣∣∣∣
)

≤ 1

det H

(
b1 sup

s∈Rd

|W (s)| + b2 sup
s∈Rd

|W (s)|
)

= sup
s∈Rd

|W (s)|b1 + b2

det H
.

�

Lemma 6 The function F (s ∧ t) is a cumulative distribution function over

R
2d and for each function w : R

2d 7→ R we have

∫∫

R2d

w(s, t) dF (s ∧ t) =

∫

Rd

w(s, s) dF (s). (55)

Proof: Let X be a random variable in Rd with cumulative distribution func-

tion F and let Y be such that Y = X almost surely. The joint cumulative

distribution function of (X, Y ) is

FX,Y (s, r) = P(X ≤ s, Y ≤ r) = P(X ≤ s, X ≤ r) = P(X ≤ s ∧ r) = F (s ∧ r).

The left hand side of (55) can be viewed as the expectation of w(X, Y )

E(w(X, Y )) =

∫∫
w(s, r) dFX,Y (s, r) =

∫∫
w(s, r) dF (s ∧ r)

but, since Y = X almost surely, w(X, Y ) = w(X, X) and

E(w(X, Y )) = E(w(X, X)) =

∫
w(s, s) dF (s)

that gives (55). �
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Proof of Theorem 1: As a consequence of Lemma 3 we can write

f̂H(s) =

∫
KH(s − x) dF̂n(x) =

∫
F̂n(s − x) dKH(x)

fH(s) =

∫
KH(s − x) dF (x) =

∫
F (s − x) dKH(x).

Let Gn =
√

n(F̂n − F ) be the process in Lemma 4 and

An(x, H) = (det H)δ

∫
Gn(s − x) dKH(x);

we have

(det H)δ
√

n
(
f̂H(s) − fH(s)

)
=

= (det H)δ

∫ √
n
(
F̂n(s − x) − F (s − x)

)
dKH(x)

= (det H)δ

∫
Ĝn(s − x) dKH(x)

= An(s, H) + (det H)δ

∫ (
Ĝn(s − x) − Gn(s − x)

)
dKH(x).

From Lemmas 4 and 5 it follows, almost surely

∣∣∣∣(det H)δ

∫
(Ĝn(s − x) − Gn(s − x)) dKH(x)

∣∣∣∣ ≤

≤ (det H)δ sup
s∈Rd

∣∣∣Ĝn(s) − Gn(s)
∣∣∣ b1 + b2

det H

≤ (det H)δ O(rd,n)

det H
≤ O(rd,n)

c1−δ
n

that gives (9).

Since Gn is a centered Gaussian process, An is also Gaussian with zero
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mean and covariance

C(An(s, H), An(r, L)) =

= (det H det L)δ

∫∫
C(Gn(s − x), Gn(r − y)) dKH(x)dKL(y)

= (det H det L)δ

∫∫
[F ((s − x) ∧ (r − y)) − F (s − x)F (r − y)] dKH(x)dKL(y)

= (det H det L)δ

[∫∫
F ((s − x) ∧ (r − y)) dKH(x)dKL(y)

−
∫

F (s − x) dKH(x)

∫
F (r − y) dKL(y)

]
.

The last term in the covariance is
∫

F (s − x) dKH(x)

∫
F (r − y) dKL(y) = fH(s)fL(r).

Since KH(x)·KL(y) is right-continuous with bounded variation over R2d and,

from Lemma 6, F (x ∧ y) is a cumulative distribution function, we can use

(54) and (55) and obtain

∫∫
F ((s − x) ∧ (r − y)) dKH(x)dKL(y) =

∫∫
KH(s − x)KL(r − y) dF (x ∧ y)

=

∫
KH(s − x)KL(r − x) dF (x)

from which the covariance in (8) is obtained. �

9.2 Proof of Theorem 7

We will use a result analogous to the one proved in Benjamini and Yekutieli

(2001) for discrete problems. To be consistent with the notation of their

paper, we switch to the p-value scale. Hence we consider the process p : S 7→
[0, 1] defined as p(s) = 1− Φ(ZH(s)). The p-value, p(·) is continuous as long

as Z is continuous. For t ∈ [0, 1], define

G(t) =
λ({s ∈ S : p(s) ≤ t})

λ(S)
H(t) =

λ({s ∈ S0 : p(s) ≤ t})
λ(S)

.
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Using the threshold T in (49) and rejecting all Z(s) ≥ T is equivalent to

rejecting all p(s) ≤ T , where

T = sup

{
t ∈ [0, 1] : G(t) − t

γ
≥ 0

}
.

On the p-value scale, the false discovery proportion at each t is

Λ(t) ≡ λ({s : p(s) ≤ t} ∩ S0)

λ({s : p(s) ≤ t}) =

{
H(t)
G(t)

if G(t) > 0

0 if G(t) = 0.

Thus Λ(t) corresponds to Γ(Lt) on the test statistic scale.

To use the result by Benjamini and Yekutieli (2001), we consider a se-

quence of discrete problems converging to the continuous problem at hand.

Thus, for each m, partition S into Nm subsets, all with the same measure

λ(S)/Nm. The partitions must be nested and degenerating in the sense of

PGVW. By choosing one point from each element of the partition, we select

Nm points s1, · · · , sNm and we put on each of them mass λ(S)/Nm. For each

Borel set A ⊂ S, consider the measure λm:

λm(A) =
λ(S)

Nm

∑

sj∈A

IA(sj),

so to define discrete analogous of G, H, and Λ as follows:

Gm(t) =
λm({s ∈ S : p(s) ≤ t})

λ(S)
, Hm(t) =

λm({s ∈ S0 : p(s) ≤ t})
λ(S)

,

and

Λm(t) =

{
Hm(t)
Gm(t)

if Gm(t) > 0

0 if Gm(t) = 0.

The following lemma shows uniform convergence (denoted as
u→) of all the

discrete functions defined above as m → ∞, for fixed n.

Lemma 7 Under the hypotheses of Theorem 7, Gm
u→ G and Hm

u→ H,

almost surely. Moreover, for every δ > 0, Λm
u→ Λ, almost surely, over the

random set {t ∈ R : G(t) ≥ δ}.
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Proof: Weak convergence of λm to λ is easy to prove. Hence, if Ym and Y

are random vectors over S, with distribution

λm(·)
λm(S)

and
λ(·)
λ(S)

respectively, then Ym → Y in distribution.

The continuous mapping theorem guarantees almost sure convergence

of the distribution of p(Ym) to p(Y ), because the process p is continuous

almost surely. Since Gm is the cdf of p(Ym) and G the cdf of p(Y ), then

Gm → G at each continuity point for G. Continuity of G ensures almost sure

pointwise convergence. With a proof analogous to that of Glivenko-Cantelli

Theorem (see, for instance, van der Vaart (1998), page 266) we obtain uniform

convergence.

Uniform convergence of Hm to H can be proved similarly, but considering

respectively

λm(· ∩ S0)

λm(S0)
and

λ(· ∩ S0)

λ(S0)

as distributions of Ym and Y . Uniform convergence of Λm to Λ is straightfor-

ward (but note that each path converge on a different set). �

Proof of Theorem 7: From the limiting Normal approximation and the

form of the covariance function of ZH , the p-value process satisfies the posi-

tive dependence condition of Benjamini and Yekutieli (2001) a.s. for all large

n. Hence, from their main result, we have that

E(Λm(Tm)) ≤ λm(S0)

λm(S)
γ

with

Tm = sup

{
t ∈ [0, 1] : Gm(t) − t

γ
≥ 0

}
.

For each ω such that uniform convergence of gn to g holds, we have (omitting

the dependence on ω from the notation) that:
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• T is the unique solution of equation G(t)− t
γ

= 0 and G(t)− t
γ

is strictly

positive for all t < T . Thus there exists mt such that Gm(t) − t
γ

> 0

for all m ≥ mt. Hence t ≤ infm≥mt Tm ≤ lim inf Tn. It follows T ≤
lim inf Tm.

• For each x > T , we have maxt∈[x,1](G(t)− t
γ
) < 0. Hence, from uniform

convergence of Gm to G, there exists mx such that, for all m ≥ mx,

supt∈[x,1](Gm(t) − t
γ
) < 0. Then Tm < x for all m ≥ mx and x ≥

lim sup Tm. It follows that T ≥ lim sup Tm. This proves that T = lim Tm.

• If G(T ) > 0, then continuity of Λ and uniform convergence of Λm give

Λm(Tm) → Λ(T ). If G(T ) = 0, then Λ(T ) = 0.

In either case, Λ(T ) ≤ lim inf Λm(Tm).

All the above hold almost surely, hence Λ(T ) ≤ lim inf Λm(Tm) almost

surely. By Fatou’s Lemma

E(Λ(T )) ≤ E(lim inf Λm(Tm)) = lim inf E(Λm(Tm))

≤ lim inf

[
λm(S0)

λm(S)
γ

]
=

λ(S0)

λ(S)
γ.

�

10 Discussion

We have presented a method for finding clusters in a spatial process that

controls proportion of false discoveries. As shown in PGVW, such methods

can be adapted to control the fraction of false clusters, instead of false pro-

portion. The same can be done with the method in this paper although we

do not pursue it here.

An open question is whether there exists some optimal way to choose the

finite candidate set of bandwidths Hn. There is a tradeoff in power by taking

Hn too large (making α/m small) or too small (making the set of rejection

regions being combined small). Our experience suggests, however, that the

choice of the size of Hn is not crucial in practice.
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Another open question is the relationship between the bias correction

method used here and the new testing method proposed by Taylor (2004).

The contexts are quite different: we are reducing bias due to smoothing while

he begins with a Gaussian process and derives new test statistics to elimi-

nate small, insignificant clusters. However, both involve set reduction via

Minkowski subtraction so it is possible that there is a connection between

the procedures.
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A B

C D

E F

Figure 1: In plots A, C and E the solid line is the true density and the dashed

line is the mean of the kernel density estimator for a small bandwidth (A),

medium bandwidth (C) and large bandwidth (E). The plots B, D and E show

the mean (dashed line) and typical kernel estimates (solid line).
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A B

Figure 2: Rejection regions (A: non-shaved, B: shaved) for different band-

widths. Vertical lines delimit the true clusters. As the bandwidth H (vertical

axis) increases, the size of the rejection region increases (left panel). This is

due to the increasing bias of the density estimate. This results in extra false

discoveries not necessarily controlled by the testing procedure. The shaved

rejected region is shown in the right panel. The extra false rejections have

been eliminated.
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�
S1 S1

(S1 ⊕ CH) − S1

(S1 ⊕ CH)c

S

Figure 3: The separation condition (36) fails. S1 consists of two clusters (the

two dark rectangles) and (S1 ⊕ CH) − S1 is the light gray area. The black

dot is a point s ∈ (S1 ⊕CH)− S1. The hatched circle is (s⊕ CH). Note that

(s ⊕ CH) ∩ (S1 ⊕ CH)c = ∅ because the two clusters are close together.
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Figure 4: Density estimates with bandwidth chosen for testing (left) by the

exceedance control method and bandwidth chosen for estimation to minimize

the integrated mean squared error (right).
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Figure 5: Area (A), FDP (B) and power (C) of non shaved (dashed line)

and shaved (solid) rejected regions as functions of the bandwidth. Note that

shaving keeps the FDP below the nominal level but without sacrificing too

much power.
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True clusters

Detected clusters
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Figure 6: The true clusters and the detected clusters (the set ∆).
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Figure 7: FDP of non shaved (A) and shaved (C) detected clusters, power

of non shaved (B) and shaved (D) detected clusters. Minimum, mean and

maximum in 1000 simulations.
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A B

Figure 8: True density (A) and detected clusters (B).
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A B

C D

E F

Figure 9: Rejection regions (left: without shaving augγ(RH), right: shaving

the clusters augγ(sh(RH))) for small, intermediate and large bandwidths.
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Figure 10: Area (A), FDP (B) and power (C) of non shaved (dashed line)

and shaved (solid) rejected regions as functions of the bandwidth.
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