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Multiple testing methods to control the False Discovery Rate
(FDR), the expected proportion of falsely rejected null hypothe-
ses among all rejections) have received much attention. It can be
valuable instead to control not the mean of this false discovery
proportion (FDP) but the probability that the FDP exceeds a
specified bound. In this paper, we construct a general class of
methods for exceedance control of FDP based on inverting tests
of uniformity. The method also produces a confidence envelope
for the FDP as a function of rejection threshold. We discuss how
to select a procedure with good power.
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1 Introduction

Multiple testing procedures to control the False Discovery Rate, first in-

troduced by Benjamini and Hochberg (1995), have recently received much

attention: see Benjamini and Yekutieli (2001), Efron, Tibshirani and Storey

(2002), Finner and Roters (2002), Sarkar (2002), Storey (2002, 2003), and

Storey, Taylor and Siegmund (2003). These methods can attain high power

even when testing thousands or millions of hypotheses. They are ideal for

large scale multiple testing problems that occur in bioinformatics, imaging

and many other areas.

The False Discovery Rate (FDR) is the expected value of what we call the

False Discovery Proportion (FDP), namely the proportion of falsely rejected

null hypotheses among all rejected null hypotheses. In some cases, it can be

useful to control, not the expected FDP, but the probability that the FDP

exceeds a specified bound. We call this exceedance control of the FDP.

1Research supported by NSF Grant SES 9866147.
2Research supported by NIH Grant R01-CA54852-07 and NSF Grant DMS-98-03433

and NSF Grant DMS-0104016.
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Genovese and Wasserman (GW, 2004) introduced a method for exceedance

control based on a confidence envelope for the unobserved FDP. Perone Paci-

fico, Genovese, Verdinelli and Wasserman (PGVW, 2003) extended this ap-

proach to random fields. And van der Laan, Dudoit and Pollard (VDP, 2004)

proposed a method based on augmenting familywise tests.

In this paper, we extend the approach of GW and PGVW, leading to

a class of procedures that can achieve higher power and handle arbitrary

dependence among tests. In particular, we find that using a test statistic

based on the minimum p-value has suboptimal power. We also examine the

relationship between this approach and the VDP method.

2 Background

Let X1, . . . , Xn be random vectors drawn iid from a distribution P. We con-

sider m hypotheses of the form

H0j : P ∈ Mj versus H1j : P 6∈ Mj j = 1, . . . , m, (1)

for sets of probability distributions M1, . . . ,Mm. (The hypothesis testing

testing notation from VDP is rather elegant, and we will use a similar no-

tation.) For the typical cases we have in mind, m >> n. A common case is

when each vector Xi = (Xi1, . . . , Xim) comprises m measurements on subject

i. For example, in microarray studies, Xij might be the gene expression level

of gene j for subject i; in brain imaging studies, Xij might be a statistic

computed at brain location j for subject i; and in astronomical imaging, Xij

might be a photon count at sky location j for session i. In each of these

examples, the Mjs might be defined as Mj = {P : EP(Xij) = µj} for some

constant µj.

Define hypothesis indicator variables Hm = (H1, . . . , Hm) such that Hj =

1{P 6∈ Mj }. Let S = {1, . . . , m} and let

S0 ≡ S0(P) = {j : Hj = 0} (2)

be the set of true nulls. For each j ∈ S, let Zj = Zj(X1, . . . , Xn) be a

test statistic for the null hypothesis H0j . Let Pm = (P1, . . . , Pm) denote the
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corresponding p-values. We assume that if Hj = 0 then Pj ∼ Unif(0, 1).

Denote the ordered p-values by P(1) < · · · < P(m), and define P(0) ≡ 0. For

any W ⊂ S, define PW = (Pi : i ∈ W ).

We call any R = R(P1, . . . , Pm) ⊂ S a rejection region and say that R

controls familywise error rate at level α if

P{#(R ∩ S0(P)) > 0} ≤ α,

where #(B) denotes the number of points in a set B. More generally, say

that R controls the k-familywise error rate at level α if

P{#(R ∩ S0(P)) > k} ≤ α.

We define the false discovery proportion (FDP) of a rejection set R by

Γ(R) ≡ FDP =
false rejections

rejections
=

∑m
j=1(1 −Hj)1{R 3 j}∑m

j=1 1{R 3 j} (3)

where the ratio is defined to be zero if the denominator is zero. The false

discovery rate FDR is defined by FDR = E(FDP).

Our goal in this paper is to find a rejection region R = R(P1, . . . , Pm)

such that

P{Γ(R) > c} ≤ α (4)

for given c and α. We call such an R a (c, α) rejection region. Typically,

R = {j ∈ S : Pj ≤ T} for some random threshold T = T (P1, . . . , Pm), in

which case we may write Γ(T ) for the FDP. A 1− α confidence envelope for

FDP is a random function Γ(C) = Γ(C;P1, . . . , Pm) such that

P
{
Γ(C) ≥ Γ(C), for all C

}
≥ 1 − α. (5)

For rejection regions based on a fixed p-value threshold t, it is convenient to

write Γ(t) and Γ(t). Specifying the function t 7→ Γ(t) is sufficient to determine

the entire envelope for rejection regions of the form {j ∈ S : Pj ≤ T}.

3 Exceedance Control

In this section, we describe two approaches to controlling FDP exceedance

and then we show that the two are related. The first, called inversion, was first
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described in GW. This produces a confidence envelope for FDP by inverting

a set of uniformity tests. The second, called augmentation, was described

in VDP. This produces a rejection region controlling FDP exceedance by

expanding the rejection region from a familywise test.

The inversion method involves the following steps:

1. For every W ⊂ S, test at level α the hypothesis that PW = (Pi : i ∈
W ) is a sample from a Uniform(0, 1) distribution:

H0 : W ⊂ S0 versus H1 : W 6⊂ S0. (6)

Formally, let Ψ = {ψW : W ⊂ S} be a set of non-randomized tests

such that P
{
ψW (U1, . . . , U#(W )) = 1

}
≤ α whenever U1, . . . , U#(W ) ∼

Unif(0, 1).

2. Let U denote the collection of all subsets W not rejected in the previous

step:

U = {W : ψW (PW ) = 0}. (7)

3. Define

Γ(C) =





max
B∈U

#(B ∩ C)

#(C)
if C 6= ∅,

0 otherwise.

(8)

4. Choose R = R(P1, . . . , Pm) such that Γ(R) ≤ c. (Typically, R is of the

form R = {j : Pj ≤ T} where the confidence threshold T = sup{t :

Γ(t) ≤ c}.)

It follows that Γ is a 1 − α confidence envelope for FDP and R is a (c, α)

rejection set.

If U is closed under unions, then

Γ(C) =
#(U ∩ C)

#(C)
(9)

where U = ∪{V : V ∈ U}. Moreover, U is a confidence superset for S0 in

the sense that

P{S0 ⊂ U } ≥ 1 − α. (10)

One can also use exceedance control for FDR:
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Lemma 3.1 (PGVW). Let c ∈ (0, α). If P{Γ(T ) > c} ≤ β and β =

(α− c)/(1 − c) then E(Γ(T )) ≤ α.

Remark 3.1. One can choose any level α uniformity test in (6), but the

choice of test does impact the results. Starting in the next section, we discuss

this issue in detail.

The augmentation approach of VDP is described in the next theorem.

Theorem 3.1. (VDP) Suppose that R0 is a rejection region that controls

familywise error at level α. If R0 = ∅ take R = ∅. Otherwise, let A be a set

with A ∩ R = ∅ and set R = R0 ∪ A. Then, P{Γ(R) > c} ≤ α, where

c = #(A)/(#(A) + #(R0)).

The same logic easily gives a confidence envelope, as follows.

Theorem 3.2. Suppose that R0 = {j : Pj ≤ Q} for some Q and that

R0 controls familywise error at level α. Define

Γ(C) =





#(C − R0)

#(C)
if C 6= ∅,

0 otherwise.

(11)

Then, Γ is a 1 − α confidence envelope for FDP.

The following result generalizes the augmentation method. The proof is

straightforward.

Theorem 3.3. Suppose that Rk controls k-familywise error at level α.

Let A be a set with A∩Rk = ∅, and set R = Rk∪A. Then, P{Γ(R) > c} ≤ α

where c = (#(A) + k)/(#(A) + #(Rk)).

The relationship between inversion and augmentation is explained in the

following two results.

Theorem 3.4. Let Γaug be the 1−α confidence envelope from (11) and

let Raug be such that Γaug(Raug) ≤ c. Let Γinv be the 1−α confidence envelope

from (8) with the test in (6) is defined as follows: ψW (PW ) = 1 if R0∩W 6= ∅.
Then Γaug = Γinv and in particular, Γinv(Raug) ≤ c.

5



There is also a partial converse to the theorem above whose proof is

straightforward.

Theorem 3.5. Let Ψ be a class of uniformity tests and let Γinv be the

resulting 1 − α confidence envelope and let Rinv be such that Γinv(Rinv) ≤ c.

Let U be the unrejected sets as defined in (7) and suppose that U is closed

under unions. Let U = ∪V ∈UV . Then R0 = U c controls familywise error

at level α. Let Γaug be the resulting augmentation envelope defined by (11).

Then, Γinv = Γaug. Moreover, Rinv = R0 ∪A where A = Rinv −R0, and hence

Rinv is an augmentation rejection set.

Hence, we see that the two methods lead to the same rejection regions.

That is, the rejection region from any given augmentation procedure, is the

rejection region of some inversion procedure. Conversely, under suitable con-

ditions on the tests, the rejection set from any given inversion procedure, is

the rejection region of some augmentation procedure. The exception is when

U is not closed under unions. In that case, the inversion method produces

a valid rejection region but it does not correspond to an augmentation of a

familywise test. In the next section we discuss specific choices of Ψ, some of

which have this property.

4 The P(k) Tests

In choosing the tests Ψ for (6), we have two goals:

1. (Power). The envelope Γ should be close to Γ and thus result in rejection

regions with high power.

2. (Computational Tractability). The envelope Γ should be easy to com-

pute.

Until Section 8, we assume the p-values are independent.

Now we discuss how to choose the class of tests Ψ. We expect significant

results to manifest themselves as small p-values. This suggests using a test

that is sensitive to departures from uniformity in the left tail. An obvious

choice is to use the minimum order statistic P(1) as in PGVW and VDP.
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A natural generalization is to use the kth order statistic P(k). We will see

that taking k > 1 can yield procedures with mich higher power than k =

1. Traditional uniformity tests, like the Kolmogorov-Smirnov test, do not

fare well. The Kolmogorov-Smnirov test looks for deviations from uniformity

equally though all the p-values. The following theorem gives the envelope Γk

that results from using P(k) to test (6).

Let φk,r(v1, . . . , vr) be the kth smallest value of v1, . . . , vr or 1 if r < k.

Let ψW (PW ) = 1 if

φk,#(W )(PW ) < B−1
k,#(W )(α) (12)

where Ba,b is the cdf of a Beta(a, b) random variable. We call Φ = {φW : W ⊂ S}
the P(k) test.

Theorem 4.1. (The P(k) test.) The inversion-based confidence envelope

Γk is as follows. Define

Jk = min

{
j : P(j) ≥ B−1

k,m−j+1(α)

}
, (13)

or Jk = m + 1 if no such j exists. Then,

Γk(C) =





#({π(k), . . . , π(Jk)} ∩ C)

#(C)
if Jk ≤ m

1 otherwise

(14)

where π(j) is defined by

Pπ(j) = P(j). (15)

In particular, with tk = P(Jk),

Γk(t) =





1 t ≤ P(k−1)

k−1

mĜ(t)
P(k−1) < t ≤ tk

1 − Jk−k+1

mĜ(t)
t > tk

(16)

where Ĝm is the empirical cdf of the p-values. A (c, α) rejection region is

Rk = {j : Pj ≤ Tk} where Tk = sup{t : Γk(t) ≤ c} and Tk = 0 if no such t

exists.
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Lemma 4.1. When k > 1, the collection U derived from Ψ need not be

closed under unions.

Remark 4.1. The method in PGVW corresponds to taking k = 1. The

augmentation method in VDP with R0 based on their step-down procedure

corresponds to the k = 1 method, except that the Beta quantiles are replaced

by bootstrap estimated quantiles.

Theorem 4.2. For k > 1, the rejection region Rk = {j : Pj ≤ P(Jk)}
controls k−1 familywise error rate at level α and the set R = {Pj : Pj ≤ Tk}
corresponds to augmenting Rk with A = {j : P(Jk) < Pj ≤ Tk}.

Figure 1 shows some plots of Γk for selected values of k. Notice that

the curves are anti-unimodal (except k = 1) and that as k increases, the

minimum gets larger but moves to the right. This means that Tk moves to

the right (leading to higher power) unless the minimum is above c in which

case Tk = 0. Thus, the optimal k involves a delicate tradeoff. We return to

this in the next section.

5 Power and Optimality

The k = 1 test corresponds to using the maximum test statistic over each

subset. This is common practice; see for example GW, PGVW, and VDP.

The literature on testing random fields also uses the supremum of a test

process which is the continuous analogue of k = 1.

The following heuristic suggests that k = 1 might be sub-optimal. Let

R = {j : Pj ≤ Tm} be the rejection region using a k = 1 procedure. Now

make 1000 copies of each p-value. The resulting increase in m causes the Beta

quantiles (or whatever quantiles are used by the procedure) to shrink towards

0, and hence the proportion of rejections decreases. In contrast, it is easy to

see from the results in Genovese and Wasserman (2002) that the Benjamimi-

Hochberg procedure rejects exactly the same proportion of hypotheses.

In this section, we show that the k = 1 test – indeed, any fixed k – is,

in general, sub-optimal. We begin by introducing a specific model for the
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p-values that permits some simple analysis. There are at least two, interest-

ing asymptotic regimes. Recall that the p-values are based on test statistics

depending on a sample of size n. In the first regime, we let n stay fixed but

let m grow. We believe this is the most interesting and relevant regime for

large scale testing problems. In the second regime, we also let n get large.

Assuming the test statistics correspond to consistent tests, and that n grows

sufficiently quickly with respect to m, this will force the p-values of the non-

null hypothesis to approach 0. Eventually this will cause all the alternative

p-values to become smaller than all the null p-values. This is the asymptotic

regime studied in (VDP). Our emphasis is on the first case.

We consider the following model for the p-values. Let H1, . . . , Hm ∼
Bernoulli(a), Pj | Hj = 0 ∼ Uniform(0, 1) and Pj | Hj = 1 ∼ Fj for some

Fj. Further, assume that the Fj’s are randomly drawn distributions from an

arbitrary probability measure over the set of all cdfs. It follows that the

marginal distribution of Pj is

G = (1 − a)U + aF (17)

where U(p) = p and F (p) = E(Fj(p)).

Since our goal is only to establish that any fixed k need to be optimal, it

suffices to specialize the model to permit simpler analysis. We take F = Fβ(t),

the cdf of a Uniform distribution on [0, 1/β] with β > 1. The fixed n regime

corresponds to keeping β fixed. The large n regime is obtained by letting

β → ∞. We show that fixed k procedures are sub-optimal in this class of

problems. First we establish the optimal threshold.

Theorem 5.1. Suppose that (1 − a)/ξ < c where

ξ = (1 − a) + aβ > 1. (18)

Let

T∗ =

{
tm if (1 − a)/ξ < c ≤ 1 − a
1 if c > 1 − a

(19)

where

tm =

(
a

1 − a

)(
c− σzα√

m

1 − c+ σzα√
m

)
≥ t0, (20)
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t0 =

(
a

1 − a

)(
c

1 − c

)
, (21)

and σ > 0 is described in the proof. Then:

1. R∗ = {j : Pi ≤ T∗} is an asymptotic (c, α) rejection region, that is,

lim sup
m→∞

P{Γ(R) > c} ≤ α.

2. R∗ is optimal in the following sense: if R = {j : Pi ≤ Tm} is an

asymptotic (c, α) rejection region then

P{R ⊂ R∗} ≥ 1 − α.

The following result shows that Tk is far from the optimal threshold T∗.

Theorem 5.2. For any fixed k, the P(k) threshold Tk = oP (1) and

T∗/Tk
p→ ∞.

6 Combining P(k) tests

In many cases, the P(1) test can yield poor power. Using a larger k can in

some cases improve power but there is a risk that the rejection region might

be empty. In particular, mint Γk(t) = (k − 1)/Jk, and if (k − 1)/Jk > c then

Rk = ∅.
As shown in the previous section, using any fixed k is suboptimal. Ideally,

one could estimate the optimal k and use the corresponding P(k̂), but this has

two basic problems. When k̂ is larger than the optimal k, the rejection region

can be trivial, leading to rather fragile performance. Also, the stochastic

dependence between k̂ and Γ complicates analysis of the coverage properties.

A reasonable compromise is to combine P(k) envelopes over a range of

ks. This ensures reasonable power over at least one k while maintaining a

nontrivial rejection region.
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The algorithm is as follows. Let Qm ⊂ {1, . . . , m} be a set of integers and

let qm be the number of elements in Qm. For each k ∈ Qm, let Γk be the

confidence envelope for FDP based on the P(k) test at level α/qm. Let

Γ = min
k∈Qm

Γk. (22)

It follows that Γ is a valid confidence envelope for Γ and R = {j : Pj ≤ T}
is a (c, α) rejection set, where T = sup{t : Γ(t) ≤ c}.

In our examples, we take Qm = {1, . . . , bâcmc}, where â is an estimate

of the fraction of alternatives, such as â = 2(Ĝ(1/2) − 1/2) which converges

to a = 2(G(1/2)− 1/2) ≤ a; see Storey (2002). Technically, we should adjust

the envelope to account for the randomness of â but since â−a = OP (m−1/2),

this has a neglibible affect on the coverage as confirmed by our simulation

studies in the next section.

Remark 6.1. We also considered an approach based on data splitting,

where the optimal k is estimated from the training set and P(k̂) is applied to

the test set. But the performance of this method was poor; variability in k̂

made this much more fragile than even using P(k̂) for the entire sample.

7 Simulation Studies

In this section, we report some simulation studies that show that the fixed k

envelopes do not have uniformly reliable performance but that the combined

procedure does.

The simulations illustrate a simple case of the mixture model (17) where

the alternative test statistics are drawn iid from a Normal(θ, 1) and the

nulls are drawn iid from a Normal(0, 1). Using 1000 iterations in each con-

figuration, we compute the mean FDP and power (the proportion of true

alternatives rejected). In all cases, the coverage was controlled as predicted

by the theory, that is, FDP ≤ 0.2 with probability at least 0.95.

Results are given in Table 1 for the combined procedure, P(1), and P(10).

We computed other P(k) tests as well and the results are simialr.
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8 Dependence

So far we have assumed that the p-values are independent. Extending the

method to handle dependence is straightforward. We continue to assume that

the marginal distribution of each Pj is Unif(0,1) under the null, but, we allow

the joint distribution to be arbitrary.

Theorem 8.1. Replace Jk in equation (13) with

Jk = min

{
j : P(j) ≥

kα

m− j

}
. (23)

Then the P(k) procedure (and its extensions in Section 6) are valid for arbi-

trary dependence among the p-values.

The above result follows from the earlier results together with the fact

that if Y1, . . . , Yq are such that Yj ∼ Unif(0, 1), then P
{
Y(k) ≤ c

}
≤ cq/k. To

see this, let N be the number of Yjs less than c. Then,

P
{
Y(k) ≤ c

}
= P{N ≥ k} ≤ EN

k
=

∑q
j=1 P{Yj ≤ c}

k
=
cq

k
.

This upper bound is achieved by the following distribution. Draw Yj ∼
Unif((j− 1)k/q, jk/q) for j = 1, . . . , q/k. Now, create k− 1 copies of each Yj

and call these Yq/k+1, . . . , Yq.

A different approach to dependence is suggested by VDP. Then estimate

the quantiles of P(k) either by bootstrapping or by estimating the covariance

matrix of the underlying statistics Z1, . . . , Zm. This is less conservative than

using the bound P
{
Y(k) ≤ c

}
≤ cq/k. But unless n is very large compared to

m, such an approach will be unlikely to succeed. Indeed, one needs at least

O(m2) observations to estimate the covariance matrix.

9 FNP

Our methods can also be used to bound the false nondiscovery proportion

(FNP). The FNP of a rejection region R is defined by

Λ(R) =

∑m
j=1Hj1{R 63 j}∑m

j=1 1{R 63 j} (24)
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where the ratio is defined to be zero if the denominator is zero. Let S1 = Sc
0.

For each A ⊂ S we test

H0 : A ⊂ S1 versus H1 : A 6⊂ S1.

Define

Λ(B) = sup
A∈U

#(A ∩B)

#(B)
(25)

where U is the set of non-rejected A. Then Λ is a 1 − α confidence envelope

for Λ.

In general, it is not possible to find a non-trivial confidence envelope that

is valid for all cdfs F for the same reason that one cannot bound the power

of a test unless the alternative is forced to be some distance from the null.

Thus, let V be an invertible function such that 1 ≥ V (t) ≥ t for 0 ≤ t ≤ 1

and define

F = {cdfs F : F ≥ V }.
Our goal is to find an envelope valid over all F . For example, suppose that

the test statistics are N(0,1) under the null and N(θ, 1) under the alternative.

If we consider all alternatives such that θ > θ0 for some fixed θ0 > 0, then

the cdf F of the p-value distribution under every alternative, satisfies

F (t) ≥ V (t) ≡ S(S−1(t) − θ0)

where S(t) = 1 − Φ(t) and Φ(t) is the cdf of a standard Normal.

We will develop here the analogue of the k = 1 procedure. The extension

to other k is similar to the FDP case. We begin by assuming independent

p-values.

Theorem 9.1. Let

c(α, `) = V −1
(
(1 − α)1/`

)
. (26)

Define the test

ψ(A) =

{
1 if max

i∈A
Pi > c(α,#(A))

0 otherwise.
(27)
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Suppose we reject H0 : A ⊂ S1 when ψ(A) = 1. Then,

sup
F∈F

PF (ψ(S1) = 1) ≤ α. (28)

Let Λ be the envelope from this test.

Corollary 9.1. Using the above test, Λ is a valid 1 − α confidence

envelope for Λ.

Theorem 9.2. Using the above test,

Λ(t) =

{
1−Ĝ(s)

1−Ĝ(t)
t < s

1 t ≥ s
(29)

where s = P(r) and

r = min{j : P(j) ≤ c(α,m− j + 1)}. (30)

Theorem 9.3. The above results are valid in the dependent case if we

replace c(α, `) with

c(α, `) = V −1(1 − α). (31)

10 Discussion

This paper, together with GW, PGVW and VDP, show that there is a rich

class of methods for controlling FDP exceedance. This expands the set of

tools available for false discovery control in multiple testing. While FDP

exceedance methods can be more conservative than FDR-controlling proce-

dures, they give a stronger guarantee and can be tuned to achieve a desired

level of confidence.

One of the key challenges for false discovery control is handling depen-

dence among the tests while maintaining reasonable power. We have pre-

sented variants of our method designed for the completely independent case
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and for arbitrary dependence. If more information is available about the na-

ture of the dependence, it is possible that power can be improved, though

to what degree is an open question. One approach might be to estimate the

covariance and construct the quantiles for the uniformity tests based on the

estimated covariance. VDP did this in the k = 1 case, assuming no prior

information on the covariance. Such a method will typically require n >> m,

which may not be realized in practice. We suspect that this constraint can

be loosened with structural assumptions, such as local covariance in spatial

problems.

It is an open question which of the available methods is optimal in which

situations, but one result that seems evident is that using the maximum test

statistic (e.g., P(1)) is suboptimal in general.

11 Proofs

In this section, we prove our preceding results.

Proof of Theorem 3.4.

Note first that the tests ψW specified in the statement of the theorem

lead to a set U that is closed under union, by construction. Moreover, U =

∪B∈U = Rc
0. It follows that

Γinv(C) = max
B∈U

#(B ∩ C)

#(C)
(32)

=
#(U ∩ C)

#(C)
(33)

=
#(C ∩ Rc

0)

#(C)
(34)

= Γaug(C). (35)

�

Proof of Theorem 4.1. Let qkj = B−1
k,j−k+1(α). Define

m∗
0k = m+ k − min{k ≤ j ≤ m : P(j) ≥ qk,m−j+1},
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where we take m∗
0k = 0 if the min is not satisfied. Define the maximal con-

figuration h∗k by

h∗ki =





0 if Pi = P(j) for some j < k
1 if Pi = P(j) for some k ≤ j < m−m∗

0k + k
0 if Pi = P(j) for some j ≥ m−m∗

0k + k.

To see that the lemma holds, define j∗ = min{k ≤ j ≤ m : P(j) ≥
qk,m−j+1}. Then, the vector h∗k defined above will not be rejected by the

corresponding test and has the largest pointwise FDP of any other such h

vector. This is because for any other h vector for which the test is not rejected,

the kth p-value with hi = 0 (of rank say j in the whole vector) must be above

qk,
∑

(1−hi)
≥ qk,m−j+k. Hence, P(j) ≥ qk,m−j+k and j ≥ j∗. This implies that

Γ(·; h, Pm) ≤ Γ(·; h∗k, Pm). �

Proof of Lemma 4.1. Let k = 2 and m = 4. Let q4 and q3 be the

quantiles for the P(2) test on sets of size 4 and 3 respectively. Note that

q4 < q3. If we have P(1) < P(2) < q4 < q3 < P(3) < P(4). Then U1 = {1, 3, 4}
and U2 = {2, 3, 4} are both in U , but their union {1, 2, 3, 4} is not. �

Proof of Theorem 4.2. The proof of this theorem mimics the proof

of Theorem 3.4. �

Proof of Theorem 5.1. For the proof, it is sufficient to work with

the envelope Γ(t). Define

Ht =





1 − a

ξ
t ≤ 1/β

(1 − a)t

(1 − a)t+ a
t > 1/β.

Fix any small δ > 0. From Genovese and Wasserman (2003), supt≥δ |Γ(t) −
Ht| → 0, a.s. First suppose that, (1 − a)/ξ < c ≤ 1 − a. Then Ht0 = c and

1/β < t0 < 1. By the central limit theorem and Slutsky’s theorem,

√
m(Γ(tm) −Htm) N(0, σ)
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for some σ > 0. Hence, with Z ∼ N(0, 1),

P{Γ(tm) > c} → P{Z > zα} = α.

This establishes (1). If P{T ≤ T∗} < 1 − α, then a simlar calculation shows

that P{Γ(T ) > c} > α. This establishes (2). In the case, c > 1−a, Ht < c for

all t and so Γ(1) < c with probability tending to 1. Both (1) and (2) follow.

�

Proof of Theorem 5.2. Fix an integer k and ε > 0. Let ` = 3ξqk/ε

where qk is the α quantile of a Gamma(k, 1) distribution. Let q(α, k,m− j+

1) = B−1
k,m−j+1(α). Then, q(α, k,m− j + 1) ∼ qj/(m− j + 1) as m→ ∞. Let

N be the number of p-values less than or equal to q(α, k,m− ` + 1). Then,

N ∼ Binomial(m, θm) where

mθm = mG(q(α, k,m− `+ 1)) = mξq(α, k,m− `+ 1) ≤ 2ξqk

for all large m. Thus,

P{Jk ≥ `} = P
{
P(j) ≤ q(α, k,m− j + 1), j = 1, . . . , `

}

≤ P
{
P(j) ≤ q(α, k,m− `+ 1), j = 1, . . . , `

}

≤ P{N ≥ `}

≤ EN

`
≤ 2ξqk

`
< ε.

So, Jk = OP (1) as m→ ∞. From (16), Tk satisfies,

Ĝm(Tk) ≤
Jk − k + 1

m(1 − c)
.

Thus, the number of observations less than or equal to Tk is no more than

(OP (1) − k + 1)/(1 − c), with probability tending to one. It follows that

Tk = oP (1). �

Proof of Theorem 9.1. Let ` = |S1| and let c = c(α, `). For any

F ∈ F , F (t) ≥ V (t) for all t. So,

PF (φS1 = 1) = PF (max
i∈S1

Pi > c) = 1 − F (c)` ≤ 1 − V (c)` = α.

17



�

Proof of Theorem 9.3. For the dependent case, note that, regardless

of the dependence, PF{maxi∈S1 Pi > c} ≤ 1 − F (c). Thus, replacing c(α, `)

with c(α, `) = V −1(1 − α) yields a valid confidence envelope. �
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Figure Captions

Figure 1. P(k) confidence envelopes, expressed as a function of threshold, for

k = 1, 10, 25, 50, 100. The 0.05 FDP level is marked. The P(1) envelope starts

at 0 and strictly increases. The P(k) envelopes for k > 1 start at 1, decrease

to a minimum and then increase again.
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m a θ FDP Combined Power Combined FDPP(1) Power P(1) FDPP(10) Power P(10)

100 0.01 5 0 1 0 1 0 0

0.05 5 0.2 1 0.2 1 0 0

0.1 5 0.2 1 0.2 1 0 0

0.01 4 0 1 0 1 0 0

0.05 4 0 1 0 1 0 0

0.1 4 0.077 1 0 0.917 0 0

0.01 3 1 0 1 0 0 0

0.05 3 0 0.25 0 0.5 0 0

0.1 3 0 0.5 0 0.5 0 0

0.01 2 0 0 0 0 0 0

0.05 2 0 0 0 0 0 0

0.1 2 0 0.1 0 0.2 0 0

1000 0.01 5 0.091 1 0.167 1 0 0

0.05 5 0.183 1 0.14 1 0.183 1

0.1 5 0.162 1 0.101 1 0.173 1

0.01 4 0.286 0.5 0.286 0.5 0 0

0.05 4 0.151 0.957 0 0.596 0.182 0.957

0.1 4 0.12 0.957 0 0.707 0.137 0.957

0.01 3 0 0 0 0 0 0

0.05 3 0.114 0.62 0 0.34 0 0

0.1 3 0.104 0.674 0 0.281 0.113 0.708

0.01 2 0 0 0 0 0 0

0.05 2 0 0.016 0 0.032 0 0

0.1 2 0 0.07 0 0.05 0 0

10000 0.01 5 0.102 0.98 0 0.889 0.118 0.98

0.05 5 0.179 0.994 0.004 0.917 0.172 0.994

0.1 5 0.178 0.998 0.001 0.905 0.162 0.997

0.01 4 0.08 0.741 0.022 0.407 0.109 0.759

0.05 4 0.125 0.95 0 0.424 0.045 0.887

0.1 4 0.164 0.974 0.002 0.436 0.044 0.915

0.01 3 0 0.265 0 0.098 0 0

0.05 3 0.127 0.623 0 0.106 0.05 0.463

0.1 3 0.137 0.79 0 0.087 0.018 0.472

0.01 2 0 0 0 0.01 0 0

Table 1: Simulation Results
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