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Posterior consistency can be thought of as a theoretical justification of the Bayesian method. One
of the most popular approaches to nonparametric Bayesian regression is to put a nonparametric
prior distribution on the unknown regression function using Gaussian processes. In this paper,
we study posterior consistency in nonparametric regression problems using Gaussian process
priors. We use an extension of the theorem of Schwartz (1965) for nonidentically distributed
observations, verifying its conditions when using Gaussian process priors for the regression
function with normal or double exponential (Laplace) error distributions. We define a metric
topology on the space of regression functions and then establish almost sure consistency of the
posterior distribution. Our metric topology is weaker than the popular L1 topology. With
additional assumptions, we prove almost sure consistency when the regression functions have
L1 topologies. When the covariate (predictor) is assumed to be a random variable, we prove
almost sure consistency for the joint density function of the response and predictor using the
Hellinger metric.

1. Introduction. In this paper, we verify almost sure consistency for posterior distributions
in nonparametric regression problems when the prior distribution on the regression function is a
Gaussian process. Such problems involve infinite-dimensional parameters, and consistency of poste-
rior distributions is a much more challenging problem than in the finite-dimensional case. There are
several reviews on nonparametric Bayesian methods and posterior consistency such as Wasserman
(1998), Ghosal, Ghosh and Ramamoorthi (1999), Hjort (2002), Ghosh and Ramamoorthi (2003)
and Choudhuri, Ghosal and Roy (2003). In addition, there have been many results giving gen-
eral conditions under which features of posterior distributions are consistent in infinite-dimensional
spaces. For examples, see Doob (1949), Schwartz (1965), Barron, Schervish and Wasserman (1999),
Amewou-Atisso et al. (2003), Walker (2003) and Choudhuri, Ghosal and Roy (2004a,b).

Early results on posterior consistency have focused mainly on density estimation, that is on
estimating a density function for a random sample without assuming the density belongs to a
finite-dimensional parametric family. More recently, attention has turned to posterior consistency
in nonparametric and semiparametric regression problems. Some popular nonparametric Bayesian
regression methods are the techniques of orthogonal basis expansion, free-knot splines and Gaussian
process priors. An orthogonal basis expansion for a regression function η(x) is a representation
as η(x) =

∑∞
i=1 θiϕi(x) where, {ϕi(x)}∞i=1 is the orthonormal basis for an L2 space. Asymptotic

properties of these expansions have been studied by re-expressing the regression model as a problem
of estimating the infinitely parameters {θi}∞i=1. This approach is called the infinitely many normal
means problem and it has been studied extensively by Cox (1993), Freedman (1999), Zhao (2000)
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and Shen and Wasserman (2001). Briefly, one models the θi’s as independent normal random
variables with mean 0 and variance τ2

i . Freedman (1999) studied the nonlinear functional ‖η− η̂‖2,
where η̂ is the Bayes estimator, both from the Bayesian and the frequentist perspectives. His
main results imply consistency of the Bayes estimator for all {θi}∞i=1 ∈ `2 if

∑∞
i=1 τ2

i < ∞. Zhao
(2000) showed a similar consistency result and that the Bayes estimator attains the minimax rate
of convergence for certain class of priors. Shen and Wasserman (2001) investigated asymptotic
properties of posterior distribution and obtained convergence rates. Huang (2004) also considered
convergence rates of posterior distributions using sieve-based priors in the adaptive estimation,
where the smoothness parameter is unknown. Denison, Mallick and Smith (1998) and DiMatteo,
Genovese and Kass (2001) model η using free-knot splines. Specifically, they modeled η as a
polynomial spline of fixed order, while putting a prior on the number of the knots, the locations
of the knots and the coefficients of the polynomials. Generally, consistency in spline models can
be shown using the the same methods as those used for orthonormal basis expansions as in Huang
(2004). However, in free-knot spline models, consistency has not been investigated yet.

The approach on which we focus in this paper is to model η as a Gaussian processes a pri-
ori. Gaussian processes are a natural way of defining prior distributions over spaces of functions,
which are the parameter spaces for nonparametric Bayesian regression models. O’Hagan (1978)
and Wahba (1978) suggested the use of Gaussian processes as nonparametric regression priors, and
essentially the same model has long been used in spatial statistics under the name of “kriging”.
Gaussian processes have been used successfully for regression and classification, particularly in ma-
chine learning (Seeger, 2004). Neal (1996) has shown that many Bayesian regression models based
on neural networks converge to Gaussian processes in the limit as the number of nodes becomes
infinite. This has motivated examination of Gaussian process models for the high-dimensional appli-
cations to which neural networks are typically applied (Rasmussen, 1996). Applications of Gaussian
processes as priors in spatial statistics applications include Higdon, Swall and Kern (1998), Fuentes
and Smith (2001), Paciorek (2003) and Paciorek and Schervish (2004).

Posterior consistency in nonparametric regression problems with Gaussian process priors has
been studied mainly in the orthogonal basis expansion framework mentioned earlier. Brown and
Low (1996), Freedman (1999) and Zhao (2000) have exploited an asymptotic equivalence between
white-noise problems and nonparametric regression to prove that the existence of a consistent
estimator in a white-noise problem implies the existence of a corresponding consistent estimator
in a nonparametric regression problem. The white-noise problem is one in which an observation
process Y (x) is modeled as

Y (x) = η(x) + n−1/2ε(x),

where ε(x) is a Brownian motion. They use an infinitely many normal means prior for η and
show that the posterior mean of η is consistent in the white-noise problem under certain conditions
on the prior. The corresponding estimator in the nonparametric regression problem might not
be the posterior mean of η, however. In addition, to use a prior distribution in the white-noise
problem requires either knowing the eigenvalue decomposition of the desired covariance function
(analytically, not numerically) or letting the covariance function be determined by the orthogonal
basis. In many applications, such as those described by Neal (1996), Rasmussen (1996) and Seeger
(2004), one uses a particular form of covariance function (like squared exponential) in order to
model desired forms of dependence. In such cases, one would like to be able to verify consistency
for the particular prior distribution that one is using. For example, Choudhuri, Ghosal and Roy
(2004b) prove in-probability consistency of posterior distributions in binary regression problems
with mild conditions on the Gaussian process prior. They do this by extending a result of Schwartz
(1965) to the case of independent, not identically distributed observations.
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We follow the approach of Choudhuri, Ghosal and Roy (2004b) for nonparametric regression
problems with normal and other types of errors and unknown error variance while extending the
results to almost sure consistency. First, we show almost sure consistency in a topology that is
weaker than the L1 topology used by Choudhuri, Ghosal and Roy (2004b). The need for a weaker
topology arises from the fact that our regression functions can be unbounded. With the weaker
topology, we can handle both random and nonrandom design points. When the design points are
fixed, we strengthen the result to the case of the L1 topology. When the design points are random,
we prove almost sure consistency of the posterior probabilities of Hellinger neighborhoods of the
joint density of the response and design point. Finally, if we assume that the regression functions
are uniformly bounded, we prove almost sure consistency of L1 neighborhoods of the true regression
function.

The rest of the paper is organized as follows. In Section 2, we describe the model that we are
using. In Section 3, we define our metric topology on the set of regression functions to establish
almost sure consistency. In Section 4, we state the extension of Choudhuri, Ghosal and Roy (2004a).
In Section 5, we state the assumptions needed to prove consistency in nonparametric regression and
verify almost sure consistency. In Section 6, we give examples of covariance functions for Gaussian
processes that both satisfy the smoothness conditions of our theorems and are used in practice. In
Section 7, we discuss some directions on future work.

2. The model. Consider a random response Y corresponding to a single covariate X taking
values in a bounded interval T ⊂ IR. We are interested in estimating the regression function,
η(x) = E(Y |X = x) based on independent observations of (X,Y ). We do not assume a parametric
form for the regression function, but rather we assume some smoothness conditions. We model
the unknown function η as a random process with a Gaussian process (GP) prior distribution. A
Gaussian process is a stochastic process parameterized by its mean function µ : T → IR and its
covariance function R : T 2 → IR which we denote GP (µ,R). To say that η ∼ GP (µ, R) means
that, for all n and all t1, . . . , tn ∈ T ,, the joint distribution of (η(t1), . . . , η(tn)) is an n-variate
normal distribution with mean vector (µ(t1), . . . , µ(tn)) and covariance matrix Σ whose (i, j) entry
is R(ti, tj).

To be specific, the GP regression model we consider here, is the following.

Yi = η(Xi) + εi , i = 1, . . . , n,

εi ∼ N(0, σ2) or DE(0, σ) given σ,

σ ∼ ν,

η(·) ∼ GP(µ(·), R(·, ·)), independent of σ and (ε1, . . . , εn),

where ν is a probability measure with support IR+, and DE(0, σ) stands for the double exponential
(or Laplace) distribution with median 0 and scale factor σ. The objective of this paper is to identify
conditions on the GP prior distribution of η and the sequence of predictors {Xi}∞i=1 that guarantee
almost sure consistency of the posterior distribution under the model described above.

Suppose that the true response function, η0(x) as a function of the covariate X, is a continuously
differentiable function on a bounded interval T . Without loss of generality, we will assume that
T = [0, 1] for the remainder of this paper. Our work is similar to that of Choudhuri, Ghosal and Roy
(2004b) who give conditions for in-probability consistency of posteriors in general non-identically
distributed data problems. We identify conditions on the GP prior that allow us to verify the
conditions of their theorem, and we prove an extension of their theorem to the case of almost sure
consistency. Under somewhat different assumptions about the GP prior, we are able to verify the
conditions of this extension.
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3. Topologies on the set of regression functions. First, we need to be clear on what we
mean by the expression “almost surely consistent”. Let F be the set of Borel measurable functions
defined on T . For now, assume that we have chosen a topology on F . For each neighborhood N of
the true regression function η0 and each sample size n, we compute the posterior probability

pn,N (Y1, . . . , Yn, X1, . . . , Xn) = Pr({η ∈ N}|Y1, . . . , Yn, X1, . . . , Xn),

as a function of the data. To say that the posterior distribution of η is almost surely consistent
means that, for every neighborhood N , limn→∞ pn,N = 1 a.s. with respect to the joint distribution
of the infinite sequence of data values. Similarly, in-probability consistency means that for all N ,
pn,N converges to 1 in probability.

To make these definitions precise, we must specify the topology on F . This topology can be
chosen independently of whether one wishes to consider almost sure consistency or in-probability
consistency of the posterior. Popular choices of topology on F include the Lp topologies related to
a probability measure Q on the domain T of the regression functions. For 1 ≤ p < ∞, the Lp(Q)
distance between two functions η1 and η2 is ‖η1 − η2‖p =

[∫
T |η1 − η2|pdQ

]1/p. For p = ∞, the
L∞(Q) distance is

‖η1 − η2‖∞ = inf
A:Q(A)=1

sup
x∈A

|η1(x)− η2(x)|.

For example, Choudhuri, Ghosal and Roy (2004b) use the L1 topology related to Lebesgue measure
and prove in-probability consistency in the binary regression setting. Another topology on F is
the topology of in-probability convergence related to a probability Q, and we prove almost sure
consistency. This topology is weaker than the Lp(Q) topologies. As with the Lp(Q) topologies,
we must count as identical all functions that equal each other a.s. [Q]. Lemma 1 gives a metric
representation of the topology of in-probability convergence.

Lemma 1. Let (T,B,Q) be a probability space, and let F be the set of all real-valued measurable
functions defined on T . Define

dQ(η1, η2) = inf{ε : Q({x : |η1(x)− η2(x)| > ε}) < ε}.
Then dQ is a metric on the set of equivalence classes under the relation η1 ∼ η2 if η1 = η2

a.s. [Q]. If X has distribution Q, then ηn(X) converges to η(X) in probability if and only if
limn→∞ dQ(ηn, η) = 0.

It is well known that Lp(Q) convergence implies in-probability convergence, so that Lp(Q)
neighborhoods must be smaller than dQ neighborhoods in some sense. It is not difficult to show
that for every ε ∈ (0, 1), the ball of radius ε under dQ contains the ball of radius ε1+1/p in Lp(Q)
for all 1 ≤ p ≤ ∞. In addition, for every p and every δ > ε1+1/p, there exist functions in the ball
of radius δ under Lp(Q) that are not in the ball of radius ε under dQ. When the random variables
are all bounded, in-probability convergence implies Lp convergence for all finite p.

When the values of the predictor X are chosen deterministically (and satisfy a condition rela-
tive to Lebesgue measure λ) we prove almost sure consistency of posterior probabilities of L1(λ)
neighborhoods of the true regression function. When the values of the predictor X have a distribu-
tion Q, we prove almost sure consistency of posterior probabilities of dQ neighborhoods of the true
regression function. If we make an additional assumption that the regression function is uniformly
bounded by a known constant, we can prove almost sure consistency of posterior probabilities of
L1(Q) neighborhoods even when X is random.

An alternative to topologizing regression functions is to place a topology on the set of distribu-
tions. For the case in which the predictor X is random, we shall consider this alternative as well as
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the topologies mentioned above. In particular, we shall use the Hellinger metric on the collection
of joint distributions of (X, Y ). Suppose that X has distribution Q and Y has a density f(y|x)
with respect to Lebesgue measure λ given X = x. Then f(y|x) is a joint density of (X, Y ) with
respect to ν = Q × λ. Under the true regression function η0 with noise scale parameter σ0, we
denote the conditional density of Y by f0(y|x). In this case, the Hellinger distance between the
two distributions corresponding to (η, σ) and (η0, σ0) is the following:

dH(f, f0) =
∫ [√

f(y|x)−
√

f0(y|x)
]2

dν(x, y).

It is easy to show that dH(f, f0) is unchanged if one chooses a different dominating measure instead
of ν. For the case just described, we will show that, under conditions similar to those of our other
theorems, the posterior probability of each Hellinger neighborhood of f0 converges almost surely
to 1.

4. Consistency theorems for non-i.i.d. observations. Schwartz (1965) proved a theorem
that gave conditions for consistency of posterior distributions of parameters of the distributions of
independent and identically distributed random variables. These conditions include the existence
of tests with sufficiently small error rates and the prior positivity of certain neighborhoods of
η0. Choudhuri, Ghosal and Roy (2004a) extend the theorem of Schwartz to a triangular array
of independent non-identically distributed observations for the case of convergence in-probability.
We provide another extension of Schwartz’s theorem to almost sure convergence. Our extension is
based on both Amewou-Atisso et al. (2003) and Choudhuri, Ghosal and Roy (2004a). We present
this extension as Theorem 1 and also verify the conditions for a wide class of GP priors. The proofs
of all theorems stated in the body of this paper are given in an appendix at the end.

Theorem 1. Let {Zi}∞i=1 be independently distributed with densities {fi(·; θ)}∞i=1, with respect
to a common σ-finite measure, where the parameter θ belongs to an abstract measurable space Θ.
The densities fi(·; θ) are assumed to be jointly measurable. Let θ0 ∈ Θ and let Pθ0 stand for the
joint distribution of {Zi}∞i=1 when θ0 is the true value of θ. Let {Un}∞n=1 be a sequence of subsets
of Θ. Let θ have prior Π on Θ. Define

Λ(θ0, θ) = log
fi(Zi; θ0)
fi(Zi; θ)

,

Ki(θ0, θ) = Eθ0(Λ(θ0, θ)),
Vi(θ0, θ) = Varθ0(Λ(θ0, θ)).

(A1) Prior positivity of neighborhoods.
Suppose that there exists a set B with Π(B) > 0 such that

(i)
∞∑

i=1

Vi(θ0, θ)
i2

< ∞, ∀ θ ∈ B,

(ii) For all ε > 0, Π(B ∩ {θ : Ki(θ0, θ) < ε for all i}) > 0.

(A2) Existence of tests
Suppose that there exist test functions {Φn}∞n=1, sets {Θn}∞n=1 and constants C1, C2, c1, c2 > 0

such that

(i)
∞∑

n=1

Eθ0Φn < ∞,

5



(ii) sup
θ∈UC

n

T
Θn

Eθ(1− Φn) ≤ C1e
−c1n,

(iii) Π(ΘC
n ) ≤ C2e

−c2n.

Then
Π(θ ∈ UC

n |Z1, . . . , Zn) → 0 a.s.[Pθ0 ].(1)

The first condition (A1) assumes that there are sets with positive prior probabilities, which could
be regarded as neighborhoods of the true parameter θ0. We assume that the true value of the
parameter is included in the Kullback-Leibler neighborhood according to the prior Π. The second
condition (A2) assumes the existence of certain tests of the hypothesis θ = θ0. We assume that
tests with vanishingly small type I error probability exist. We also assume that these tests have
exponentially small type II error probability on part of the complement of a set Un containing θ0,
namely Θn ∩ UC

n .

5. Consistency in nonparametric regression. In this section, we apply Theorem 1 to
cases in which the prior Π is a GP distribution as described in Section 2. We must make assumptions
about the smoothness of the GP prior as well as about the rate at which the design points xi’s,
i = 1, . . . , n fill out the interval [0, 1]. For the latter, we consider two versions of the assumption on
design points, one for random covariates and one for nonrandom (fixed) covariates.

Assumption RD. The design points (covariates) {Xn}∞n=1 are independent and identically
distributed with probability distribution Q on [0, 1].

Assumption NRD. Let x1 ≤ x2 ≤ · · · ≤ xn be the design points on [0, 1] and let Si = xi+1−xi

i = 1, . . . , n− 1 denote the spacings between them. There is a constant 0 < K1 < 1 such that the
max1≤i<n Si < 1/(K1n).

Assumption NRD is obviously satisfied by the equally spaced design.
Our smoothness condition on the GP prior is slightly weaker than that of Choudhuri, Ghosal

and Roy (2004b).
Assumption P. The Gaussian process η(x) has a continuously differentiable mean function

µ(x) and the covariance function R(x, x′) has continuous fourth partial derivatives. In addition,
ν assigns positive probability to every neighborhood of the true variance σ2

0, i.e. for every ε > 0,

ν

{∣∣∣∣
σ

σ0
− 1

∣∣∣∣ < ε

}
> 0.

Assumption P can be verified for many popular covariance functions of Gaussian processes.
These include both stationary and nonstationary covariance functions. We will give some examples
in Section 6.

To apply Theorem 1 to the nonparametric regression problem, we use the following notation.
The parameter θ in Theorem 1 is (η, σ) with θ0 = (η0, σ0). The density fi(·; θ) is the normal density
with mean η(xi) and variance σ2 or the double exponential density with location parameter η(xi)
and scale parameter σ. The parameter space Θ is a product space of a function space Θ1 and IR+.
Let θ have prior Π, a product measure, Π1 × ν, where Π1 is a Gaussian process prior for η and ν
is a prior for σ. A sieve, Θn is constructed to facilitate finding uniformly consistent tests. Finally,
we define the sets that play the roles of Un and contain θ0 in terms of the various topologies that
we will use, one for dQ, one for L1, and one for Hellinger. In our theorems, these sets are the same
for all n.

Uε =
{

(η, σ) : dQ(η, η0) < ε,

∣∣∣∣
σ

σ0
− 1

∣∣∣∣ < ε

}
,(2)
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Wε =
{

(η, σ) : ‖η − η0‖1 < ε,

∣∣∣∣
σ

σ0
− 1

∣∣∣∣ < ε

}
,

Hε = {f : dH(f, f0) < ε} .

A point (η, σ) is in Uε so long as σ is close to σ0 and η differs greatly from η0 only on a set of
small Q measure. It doesn’t matter by how much η differs from η0 on that set of small Q measure.
Although Uε is not necessarily open in any familiar topology, it does contain familiar open subsets.
For each 1 ≤ p ≤ ∞, Uε contains Wε1+1/p . For the cases in which the noise terms have normal or
Laplace distributions, we will also show that for each ε there is a δ such that Hε contains Uδ.

In summary, the main theorems that we prove in the appendix are the following, in which
the data {Yn}∞n=1 are assumed to be conditionally independent with either normal or Laplace
distributions given η, σ and the covariates.

Theorem 2. Suppose that the values of the covariate in [0, 1] arise according to a nonrandom
design satisfying Assumption NRD. Assume that the prior satisfies Assumption P. Let P0 denote
the joint conditional distribution of {Yn}∞n=1 assuming that η0 is the true response function and σ2

0

is the true noise variance. Assume that the function η0 is continuously differentiable. Then for
every ε > 0,

Π
{

WC
ε

∣∣Y1, . . . , Yn, x1, . . . , xn

} → 0 a.s.[P0].

Theorem 3. Suppose that the values of the covariate in [0, 1] arise according to a design sat-
isfying Assumption RD. Assume that the prior satisfies Assumption P. Let P0 denote the joint
conditional distribution of {Yn}∞n=1 given the covariate assuming that η0 is the true response func-
tion and σ2

0 is the true noise variance. Assume that the function η0 is continuously differentiable.
Then for every ε > 0,

Π
{

UC
ε

∣∣Y1, . . . , Yn, x1, . . . , xn

} → 0 a.s.[P0].

Theorem 4. Suppose that the values of the covariate in [0, 1] arise according to a design satis-
fying Assumption RD. Assume that the prior satisfies Assumption P. Let P0 denote the joint dis-
tribution of each (Xn, Yn) and let f0 denote the joint density assuming that η0 is the true response
function and σ0 is the true noise scale parameter. Assume that the function η0 is continuously
differentiable. Then for every ε > 0,

Π
{

HC
ε

∣∣ (X1, Y1), . . . , (Xn, Yn)
} → 0 a.s.[P0].

Finally, when we deal with random covariates, we can prove consistency of posterior probabilities
of L1 neighborhoods for the case in which the support of the prior distribution contains only
uniformly bounded regression functions.

Assumption B. Let Π′1 and ν be a Gaussian process and a prior on σ satisfying Assumption
P. Let Ω = {η : ‖η‖∞ < M} with M > ‖η0‖∞. Assume that Π1(·) = Π′1(· ∩ Ω)/Π′1(Ω).

Theorem 5. Suppose that the values of the covariate in [0, 1] arise according to a fixed design
satisfying Assumption RD. Assume that the prior satisfies Assumption B. Let P0 denote the joint
conditional distribution of {Yn}∞n=1 given the covariate assuming that η0 is the true response function
and σ2

0 is the true noise variance. Assume that the function η0 is continuously differentiable. Then
for every ε > 0,

Π
{

WC
ε

∣∣ (X1, Y1), . . . , (Xn, Yn)
} → 0 a.s.[P0],
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6. Smoothness conditions on Gaussian process priors. In Assumption P, we required
some smoothness conditions on the covariance function in the Gaussian process as a prior distrib-
ution for η. The important consequence of Assumption P is that there exists a constant K2 such
that

∆h∆hR11(t, t) ≤ K2|h|2,
where

∆h∆hR11 ≡ R11(t + h, t + h)−R11(t + h, t)−R11(t, t + h) + R11(t, t)

and
R11(s, t) ≡ ∂2R(s, t)/∂s∂t

This condition guarantees the existence of continuous sample derivative η′(·) with probability 1.
(See Lemma 5 in the appendix.)

Many covariance functions of Gaussian processes, which are widely used in the literature men-
tioned earlier, satisfy Assumption P. We give some illustrations of these covariance functions in this
section.

6.1. Stationary Gaussian process X(t) with isotropic covariance function. The covariance func-
tion R(x, x′) depends on distance between x and x′ alone, i.e. R(x, x′) = R(|x− x′|)

• squared-exponential covariance function

R(h) = exp(−h2) = 1− h2 + O(h4), as h → 0

• Cauchy covariance function

R(h) =
1

1 + h2
= 1− h2 + O(h4), as h → 0

• Matérn covariance function with ν > 2

R(h) =
1

Γ(ν)2ν−1
(αh)νKν(αh),

where α > 0 and Kν(x) is a modified Bessel function of order ν.

It is known from Abrahamsen (1997, p. 43) that for n < ν then

d2n−1R(h)
dh2n−1

∣∣∣∣
h=0

= 0

and
d2nR(h)

dh2n

∣∣∣∣
h=0

∈ (−∞, 0)

Consequently, it is straightforward that if ν > 2, then there exists a constant ξ > 0 such that

R(h) = R(0)− ξh2 + O(h4), as h → 0

Clearly, in all three of the above cases,

|∆h∆hR11(t, t)| = |R11(t + h, t + h)− 2R11(t, t + h) + R11(t, t)|
= |2R11(0)− 2R11(h)|
≤ K2h

2
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6.2. Nonstationary Gaussian process. Let Y (t) = σ(t)X(t), t ∈ [0, 1] where σ(t) is a twice
continuously differentiable function and X(t) is one of the stationary Gaussian processes listed
above

Cov{Y (s), Y (t)} ≡ RY (s, t) = σ(t)σ(s)Cov{X(s), X(t)}
= σ(t)σ(s)R(|t− s|)

It can be shown that for some positive constants, K2,K3,K4 > 0

∆h∆hRY
11(t, t) = K2

{
σ′(t + h)− σ′(t)

}2 + 2σ′(t + h)σ′(t)K2[λh2 −O(h4)]
≤ K2 sup

t∈[0,1]
|σ′′(t)|2|h|2 + 2K3 sup

t∈[0,1]
|σ′(t)|2h2

≤ K4h
2

6.3. Convolution of white noise process with convolution kernel.

Z(s) =
∫

IR
Ks(u)X(u)du,(3)

where X(s) is a white-noise process and Ks(·) is a kernel. (The integral in (3) is understood in the
mean-square sense.)

By Fubini’s theorem,

E{Z(s)} =
∫

IR
Ks(u)E(X(u))du

Cov{Z(s), Z(t)} = E{Z(s)Z(t)} − E{Z(s)}E{Z(t)}
=

∫

IR

∫

IR
E{Ks(u)X(u)Kt(w)X(w)}dudw

=
∫

IR
Ks(u)Kt(u)du ≡ RZ(s, t)

For example, take

Ks(u) = φ(s− u) =
1√
2π

exp
(
−1

2
(s− u)2

)

Then

RZ(s, t) =
∫

R

1√
2π

exp
(
−1

2
(s− u)2

)
1√
2π

exp
(
−1

2
(t− u)2

)
du

=
1
2π

exp
(
−1

4
(s− t)2

)
,

which belongs to the previous stationary Gaussian processes case
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6.4. Nonstationary processes proposed by Higdon, Swall and Kern (1998) or Paciorek and
Schervish (2004).

R(s, t) =
∫

IR

1√
2πσs

exp
(
− 1

2σ2
s

(s− u)2
)

1√
2πσt

exp
(
− 1

2σ2
t

(t− u)2
)

du

=
1√

2π(σ2
s + σ2

t )
exp

(
− 1

2(σ2
s + σ2

t )
(s− t)2

)

Thus,

R10(s, t) =
∂

∂s
R(s, t)

= − 2σsσ
′
s

(τ2
s + σ2

t )
√

2π(σ2
s + σ2

t )
exp

(
− 1

2(σ2
s + σ2

t )
(s− t)2

)

+
1√

2π(σ2
s + σ2

t )
exp

(
− 1

2(σ2
s + σ2

t )
(s− t)2

)
1
2

(−2(s− t)(σ2
s + σ2

t ) + (s− t)22σsσ
′
s

(σ2
s + σ2

t )2

)

and by the tedious calculation, it turns out that if σs and σt are continuously differentiable, R11(s, t)
can be written as

R11(s, t) ≤
{
K1(s− t)2 + K2(s− t) + K3

}
exp

(−K4(s− t)2
)

for some positive constants K1, . . . , K4. Consequently, there exsts a positive constant K5 such that

|∆h∆hR11(t, t)| = |R11(t + h, t + h)− 2R11(t, t + h) + R11(t, t)|
≤ K5h

2,

which also satisfies Assumption P.

7. Discussion. We have provided almost sure consistency of posterior probabilities of various
metric neighborhoods of the true regression function in nonparametric regression problems using
Gaussian process priors. We have also verified that the conditions for consistency hold for several
classes of priors that are already used in practice.

We found that the case of random covariates is more challenging than nonrandom covariates.
This is due to the fact that it is difficult to insure that the covariates will spread themselves
uniformly enough to obtain consistency at all smooth true regression functions. The problem arises
when we consider regression functions with arbitrarily large upper bound. In this case, we can
find functions η that are far from the true regression function η0 in L1 distance, but differ from
η0 very little over almost all of the covariate space. A random sample of covariates will not have
much chance of containing sufficiently many points x such that |η(x)− η0(x)| is large. The metric
dQ declares such η functions to be close to η0 while the L1 metric might declare them to be far
apart. Also, when the noise distribution is normal or Laplace, functions that are close to η0 in
dQ distance produce similar joint distributions for the covariate and response in terms of Hellinger
distance. These distinctions disappear when the space of possible regression functions is known to
be uniformly bounded a priori.

There are several open issues that are worth further consideration. First, we need to treat
the case of multidimensional covariates. There are some subtle issues concerning almost sure
smoothness of sample paths of Gaussian processes with multidimensional index set. Second, we
have said nothing about rates of convergence. Ghosal and van der Vaart (2004) present general

10



results on convergence rates for non i.i.d observations which include nonparametric regression cases.
They mention the general results for nonparametric regression but do not consider specific prior
distributions. Third, we need to think about the case in which the covariance function of the
Gaussian process has (finitely many) parameters that need to be estimated. That is, we assume
that η has a distribution GP (µ,Rϑ) conditional on ϑ. This is a typical case in applications where the
various parameters that govern the smoothness of the GP prior are not sufficiently well understood
to be chosen with certainty. It is true that every result that holds with probability 1 conditional
on ϑ for all ϑ holds with probability 1 marginally. However, the posterior distribution of η that is
computed when ϑ is treated as a parameter is not the same as the conditional posterior given ϑ, but
rather it is the mixture of those posteriors with respect to the posterior distribution of ϑ. Additional
work will be required to deal with this case. Fourth, Assumption NRD is perhaps a bit strong.
Choudhuri, Ghosal and Roy (2004b), in a problem with uniformly bounded regression functions,
use a condition on the design points that is weaker than Assumption NRD. We have not tried to
find the weakest condition that guarantees almost sure consistency. Fianlly, we have assumed that
the form of the error distribution is known (normal or Laplace). However, the results of Kleijn and
Van der Vaart (2002) suggests that misspecification of the error distribution does not matter for
regression with uniformly bounded regression function. It would be interesting to investigate the
extent to which misspecification of the error distribution matters in Gaussian process regression.

APPENDIX
A.1. Overview of proofs. This appendix is organized as follows. In Section A.2, we prove

the general Theorem 1. Section A.3 contains the proof of Lemma 1. The rest of the appendix
contains the proofs of the main consistency results. We stated several theorems with different
conditions on the design (random and nonrandom designs) and different topologies (L1, dQ, and
Hellinger). The proofs of these results all rely on Theorem 1, and thereby have many steps in
common. Section A.4 contains the proof of condition (A1) of Theorem 1, which is virtually the
same for all of the main theorems. Section A.5 shows how we construct the sieve that is used in
condition (A2). We also verify subcondition (iii) in that section. In Section A.6, we show how to
construct uniformly consistent tests. This is done by piecing together finitely many tests, one for
each element of a covering of the sieve by L∞ balls. This section contains two separate results
concerning the spacing of design points in the random and nonrandom covariate cases (Lemmas 8
and 10). Section A.7 explains why regression functions that are close in dQ metric lead to joint
distributions of (X,Y ) that are close in Hellinger distance. This proves Theorem 4. Finally, we
verify that Assumption B leads to consistency of posterior probabilities of L1 neighborhoods in
Section A.8.

A.2. Proof of Theorem 1. The posterior probability (1) can be written as

Π(θ ∈ UC
n |Z1, . . . , Zn) =

∫
UC

n ∩Θn

∏n
i=1

fi(Zi,θ)
fi(Zi,θ0)dΠ(θ) +

∫
UC

n ∩ΘC
n

∏n
i=1

fi(Zi,θ)
fi(Zi,θ0)dΠ(θ)

∫
Θ

∏n
i=1

fi(Zi,θ)
fi(Zi,θ0)dΠ(θ)

≤ Φn +
(1− Φn)

∫
UC

n ∩Θn

∏n
i=1

fi(Zi,θ)
fi(Zi,θ0)dΠ(θ) +

∫
UC

n ∩ΘC
n

∏n
i=1

fi(Zi,θ)
fi(Zi,θ0)dΠ(θ)

∫
Θ

∏n
i=1

fi(Zi,θ)
fi(Zi,θ0)dΠ(θ)

= Φn +
I1n(Z1, . . . , Zn) + I2n(Z1, . . . , Zn)

I3n(Z1, . . . , Zn)
.(4)
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The remainder of the proof consists of proving the following results:

Φn → 0 a.s.[Pθ0 ],(5)
eβ1nI1n(Z1, . . . , Zn) → 0 a.s.[Pθ0 ] for some β1 > 0,(6)
eβ2nI2n(Z1, . . . , Zn) → 0 a.s.[Pθ0 ] for some β2 > 0,(7)
eβnI3n(Z1, . . . , Zn) → ∞ a.s.[Pθ0 ] for all β > 0.(8)

Letting β > max{β1, β2} will imply (1).
The first term on the right hand side of (4) goes to 0 with probability 1, by the first Borel-Canteli

lemma from (A2) (i). We show that the two terms in the numerator, I1n and I2n are exponentially
small and for some β1 > 0 and β2 > 0, eβ1nI1n and eβ2nI2n goes to 0 from (A2) (ii) and (iii) with
Pn

θ0
probability 1. Finally, we show eβrI3n → ∞, with Pn

θ0
probability 1 for all β > 0, using

Kolmogorov’s strong law of large numbers for independent but not identically distributed random
variables under the condition (A1).

First, we prove (5). By the Markov inequality, for every ε > 0, Pθ0(|Φn| > ε) ≤ Eθ0(|Φn|). By (i)
of (A2), we have

∑∞
n=1 Pθ0(|Φn| > ε) < ∞. By the first Borel-Cantelli lemma, Pθ0(|Φn| > ε i.o.) = 0.

Since this is true for every ε > 0, we have (5).
Next, we prove (6). For every nonnegative function ψ,

Eθ0

[
ψn(Z1, . . . , Zr)

∫

C

n∏

i=1

f(Zi, θ)
f(Zi, θ0)

dΠ(θ)

]
=

∫

C
Eθ(ψn)dΠ(θ),(9)

by Fubini’s theorem. Let ψ = 1− Φn and get

Eθ0I1n(Z1, . . . , Zn) = Eθ0

[
(1− Φn)

∫

Θn∩UC
n

n∏

i=1

fi(Zi, θ)
fi(Zi, θ0)

dΠ(θ)

]

=
∫

Θn∩UC
n

Eθ[(1− Φn)]

≤ sup
θ∈Θn∩UC

n

Eθ(1− Φn)

≤ C1e
−c1n,

where the final inequality follows from condition (ii) of (A2). Thus,

Pθ0

{
(1− Φn)

∫

Θn∩UC
n

n∏

i=1

fi(Zi, θ)
fi(Zi, θ0)

dΠ(θ) ≥ e−c1
n
2

}
≤ C1e

c1
n
2 e−c1n = C1e

−c1
n
2

An application of the first Borel-Cantelli Lemma yields

(1− Φn)
∫

Θn∩UC
n

n∏

i=1

fi(Zi, θ)
fi(Zi, θ0)

dΠ(θ) ≤ e−c1
n
2

all but finitely often with Pθ0 probability 1. Therefore,

ec1
n
4 I1n → 0 a.s.[Pθ0 ]

Next, we prove (7). Applying (9) and condition (iii) of (A2), we get
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Eθ0I2n(Z1, . . . , Zn) = Eθ0

[∫

UC
n ∩ΘC

n

n∏

i=1

fi(Zi, θ)
fi(Zi, θ0)

dΠ(θ)

]

≤ Π(ΘC
n )

≤ C2e
−c2n,

Again, the first Borel-Cantelli Lemma implies

ec2
n
4 I2n → 0 a.s.[Pθ0 ].

Next, we prove (8). Define log+(x) = max{0, log(x)} and log−(x) = −min{0, log(x)}. Also,
define

Wi = log+

fi(Zi, θ)
fi(Zi, θ0)

,

K+
i (θ0, θ) =

∫
fi(z, θ0) log+

fi(z, θ0)
fi(z, θ)

dz,

K−
i (θ0, θ) =

∫
fi(z, θ0) log−

fi(z, θ0)
fi(z, θ)

dz.

Then

Varθ0(Wi) = E(W 2
i )− {K+

i (θ0, θ)}2

≤ E(W 2
i )− {K+

i (θ0, θ)−K−
i (θ0, θ)}2

= E(W 2
i )− {Ki(θ0, θ)}2

≤
∫

fi(Zi, θ0)
(

log+

fi(Zi, θ0)
fi(Zi, θ)

)2

+
∫

fi(Zi, θ0)
(

log−
fi(Zi, θ0)
fi(Zi, θ)

)2

− {Ki(θ0, θ)}2

=
∫

fi(Zi, θ0)
(

log+

fi(Zi, θ0)
fi(Zi, θ)

− log−
fi(Zi, θ0)
fi(Zi, θ)

)2

− {Ki(θ0, θ)}2

= Vi(θ0, θ),

where the next-to-last equality follows from the fact that log+(x) log−(x) = 0 for all x. It follows
that

∑∞
i=1 Varθ0(Wi)/i2 < ∞ for all θ ∈ B, the set define in condition (A1).

According to Kolmogorov’s strong law of large numbers for independent non-identically distrib-
uted random variables,

1
n

n∑

i=1

(
Wi −K+

i (θ0, θ)
) → 0, a.s.[Pθ0 ].(10)

For each θ ∈ B, with Pθ0 probability 1

lim inf
n→∞

(
1
n

n∑

i=1

log
fi(Zi, θ)
fi(Zi, θ0)

)
≥ − lim sup

n→∞

(
1
n

n∑

i=1

log+

fi(Zi, θ0)
fi(Zi, θ)

)

= − lim sup
n→∞

(
1
n

n∑

i=1

K+
i (θ0, θ)

)

≥ − lim sup
n→∞

(
1
n

n∑

i=1

Ki(θ0, θ) +
1
n

n∑

i=1

√
Ki(θ0, θ)/2

)

≥ − lim sup
n→∞


 1

n

n∑

i=1

Ki(θ0, θ) +

√√√√ 1
n

n∑

i=1

Ki(θ0, θ)/2


 ,
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where the second line follows from (10), the third line follows from Amewou-Atisso et al. (2003,
Lemma A.1), and the fourth follows from Jensen’s inequality.

Let β > 0, and choose ε so that ε +
√

ε/2 ≤ β/8. Let C = B ∩ {θ : Ki(θ0, θ) < ε for all i}. For
θ ∈ C, n−1

∑n
i=1 Ki(θ0, θ) < ε, so for each θ ∈ C,

lim inf
n→∞

1
n

n∑

i=1

log
fi(Zi, θ)
fi(Zi, θ0)

≥ −(ε +
√

ε/2).

Now,

I3n ≥
∫

C

n∏

i=1

fi(Zi, θ)
fi(Zi, θ0)

dΠ(θ),

it follows from Fatou’s lemma that

enβ/4I3n →∞, a.s.[Pθ0 ], for all β > 0.

A.3. Proof of Lemma 1. Clearly, dQ(f, g) = dQ(g, f), dQ(f, g) ≥ 0, and dQ(f, f) = 0. If
dQ(f, g) = 0 then f = g a.s. [Q]. All that remains for the proof that dQ is a metric is to verify the
triangle inequality.

For each f, g ∈ F , define Bf,g = {ε : Q({x : |f(x)− g(x)| > ε}) < ε}. Then dQ(f, g) = inf Bf,g.
We need to verify

inf Bf,g ≤ inf Bf,h + inf Bh,g.(11)

We will show that if ε1 ∈ Bf,h and ε2 ∈ Bh,g then ε1 + ε2 ∈ Bf,g, which implies (11). Let ε1 ∈ Bf,h

and ε2 ∈ Bh,g. Then

{x : |f(x)− g(x)| > ε1 + ε2} ⊆ {x : |f(x)− h(x)| > ε1}
⋃
{x : |h(x)− g(x)| > ε2}.

It follows that

Q ({x : |f(x)− g(x)| > ε1 + ε2}) ≤ Q ({x : |f(x)− h(x)| > ε1}) + Q ({x : |h(x)− g(x)| > ε2})
≤ ε1 + ε2.

Hence ε1 + ε2 ∈ Bf,g.
To prove the equivalence of dQ convergence and convergence in probability, assume that X has

distribution Q. First, assume that ηn(X) converges to η(X) in probability. Then, for every ε > 0,
limn→∞Q({x : |ηn(x) − η(x)| > ε}) = 0. So, for every ε > 0 there exists N such that for all
n ≥ N , Q({x : |ηn(x) − η(x)| > ε}) < ε. In other words, for every ε > 0, there exists N such
that for all n ≥ N , dQ(ηn, η) ≤ ε. This is what it means to say limn→∞ dQ(ηn, η) = 0. Finally,
assume that limn→∞ dQ(ηn, η) = 0. Then, for every ε > 0 there exists N such that for all n ≥ N ,
dQ(ηn, η) ≤ ε, which is equivalent to Q({x : |ηn(x) − η(x)| > ε}) < ε. Hence, ηn(X) converges to
η(X) in probability.

A.4. Prior positivity conditions. In this section, we state and prove those results that
allows us to verify condition (A1) of Theorem 1.

Lemma 2. Let ε > 0 and define

B =
{

(η, σ) : ‖η − η0‖∞ < ε ,

∣∣∣∣
σ

σ0
− 1

∣∣∣∣ < ε

}
.

Then
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(i) For all ε > 0, Ki(θ0, θ) < ε for all i

(ii)
∞∑

i=1

Vi(θ0, θ)
i2

< ∞, ∀ θ ∈ B,

Proof. We break the proof into two main parts, and each main part is split into two subparts.
The main parts correspond to the noise distribution. First, we deal with normal noise and later
with Laplace noise. The subparts deal with the nonrandom and random designs separately.

1. If Yi ∼ N(η0(xi), σ2
0)

(a) Nonrandom design:

Ki(θ0; θ) = Eθ0(Λ(θ0; θ))

= Eθ0 log
fi(Zi; θ0)
fi(Zi; θ)

=
1
2

log
σ2

σ2
0

+ Eθ0

[
−1

2
(Yi − η0(xi))2

σ2
0

]
− Eθ0

[
−1

2
(Yi − η(xi))2

σ2

]

=
1
2

log
σ2

σ2
0

− 1
2

(
1− σ2

0

σ2

)
+

1
2

[η0(xi)− η(xi)]2

σ2
.

It follows from the assumptions of Lemma 2 that, for all i,

Ki(θ0; θ) ≤ log
σ

σ0
+

1
2

(σ2 − σ2
0)

σ2
0

∣∣∣∣
σ2

0

σ2

∣∣∣∣ +
1
2
‖η0 − η‖2∞

σ2
0

∣∣∣∣
σ2

0

σ2

∣∣∣∣
≤ C0ε, where C0 is some constant.

Let Z = [Yi − η0(xi)]/σ0, which has standard normal distribution. Then

Vi(θ0; θ) = Varθ0(Λ(θ0; θ))

= Varθ0

(
−

[
(Yi − η0(xi))2

2σ2
0

]
+

1
2

[
σ0

σ

Yi − η0(xi) + η0(xi)− η(x)
σ0

]2
)

= Var
([
−1

2
+

1
2

σ2
0

σ2

]
Z2 +

σ2
0

σ2
[η(xi)− η0(xi)]Z

)

=
[
−1

2
+

1
2

σ2
0

σ2

]2

Var(Z2) +
[
σ2

0

σ2
[η(xi)− η0(xi)]

]2

Var(Z),

= 2 ·
[
−1

2
+

1
2

σ2
0

σ2

]2

+
[
σ2

0

σ2
[η(xi)− η0(xi)]

]2

< ∞, uniformly in i.

(b) Random design:

Ki(θ0; θ) = E (Eθ0(Λ(θ0; θ))|Xi)

=
1
2

log
σ2

σ2
0

− 1
2

(
1− σ2

0

σ2

)
+

1
2

∫
[η0(xi)− η(xi)]2

σ2
dQ.

≤ C0ε, where C0 is some constant.
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Vi(θ0; θ) = E [Varθ0(Λ(θ0; θ))|Xi] + Var [Eθ0(Λ(θ0; θ))|Xi]

= 2 ·
[
−1

2
+

1
2

σ2
0

σ2

]2

+
∫ [

σ2
0

σ2
[η(xi)− η0(xi)]

]2

dQ

< ∞, uniformly in i.

2. If Yi ∼ DE(η0(xi), σ0), similar calculation verifies

(a) Nonrandom design:

Ki,n(θ0; θ) = log
σ

σ0
+ Eθ0

[
−|y − η0(xi)|

σ0

]
− Eθ0

[
−|y − η(xi)|

σ

]

≤ log
σ

σ0
+

∣∣∣σ0

σ

∣∣∣
∣∣∣∣1−

σ

σ0

∣∣∣∣ +
∣∣∣σ0

σ

∣∣∣
(‖η0(xi)− η(xi)‖∞

σ0

)

≤ C ′
0ε, where C ′

0 is some constant.

Vi,n(θ0; θ) = Varθ0

(
−

∣∣∣∣
y − η0(xi)

σ0

∣∣∣∣ +
∣∣∣∣
y − η(xi)

σ

∣∣∣∣
)

≤ Eθ0

(∣∣∣∣
y − η0(xi)

σ0

∣∣∣∣
2
)

+ Eθ0

(∣∣∣∣
y − η(xi)

σ

∣∣∣∣
2
)

≤ 2 +
σ2

0

σ2

(
1 +

|η0(xi)− η(xi)|2
σ2

0

+ 2
|η0(xi)− η(xi)|

σ2
0

)

< ∞, , uniformly in i.

It follows that
∞∑

i=1

Vi(θ0; θ)
i2

< ∞.

(b) Random design:

Ki,n(θ0; θ) ≤ log
σ

σ0
+

∣∣∣σ0

σ

∣∣∣
∣∣∣∣1−

σ

σ0

∣∣∣∣ +
∣∣∣σ0

σ

∣∣∣
(‖η0(xi)− η(xi)‖∞

σ0

)

≤ C ′
0ε, where C ′

0 is some constant.

Vi,n(θ0; θ) ≤ 2 +
σ2

0

σ2

(
1 +

∫ |η0(xi)− η(xi)|2
σ2

0

dQ + 2
∫ |η0(xi)− η(xi)|

σ2
0

dQ

)

< ∞, , uniformly in i.

¤

Lemma 3. Let ε > 0 and define

B =
{

(η, σ) : ‖η − η0‖∞ < ε ,

∣∣∣∣
σ

σ0
− 1

∣∣∣∣ < ε

}
.

Then, Π(B) > 0 under Assumption P.
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Proof. Under Assumption P, we know that ν

{∣∣∣∣
σ

σ0
− 1

∣∣∣∣ < ε

}
> 0. Thus, to verify Π(B) > 0,

it suffices to show that Π1(η : ‖η − η0‖∞ < ε) > 0. The prior distribution of η is η ∼ GP (µ,R),
where ‖µ‖∞ < C3 and ‖µ′‖∞ < C4 for some constants C3 and C4.

To show Π1(η : ‖η − η0‖∞ < ε) > 0, we follow the same approach as in Choudhuri, Ghosal and
Roy (2004b).

Without loss of generality we assume µ ≡ 0. Otherwise we can work with η∗ = η − µ and
η∗0 = η0 − µ. Because η0 is a uniformly continuous function on [0, 1], there exists δ0 such that
|η0(s)− η0(t)| < ε/3 whenever |s− t| < δ0. Consider an equi-spaced partition 0 = s0 < s1 < . . . <
sk = 1 with |sj − sj−1| < δ0 for all j. Define Ij = [sj−1, sj) for j = 1, 2, . . . , k.

For each 0 ≤ s ≤ 1,

|η(s)− η0(s)| ≤ |η(s)− η(sj)|+ |η0(s)− η0(sj)|+ |η(sj)− η0(sj)|,(12)

where sj is the partition point closest to s. By design, the middle term on the right side of (12) is
at most ε/3 for all s by choossing δ smaller than some δ0. Consider the sets

E =

{
sup

s∈[0,1]
|η(s)− η0(s)| < ε

}

E1 =

{
max
1≤j≤k

sup
s∈Ij

|η(s)− η(sj)| < ε/3

}

E2 =
{

max
1≤j≤k

|η(sj)− η0(sj)| < ε/3
}

It follows that E1 ∩ E2 ⊂ E. Therefore it is enough to show that Π1(E1 ∩ E2) > 0.
We can write Π1(E1 ∩ E2) = Π1(E2)Π1(E1|E2). Let uk = (u(s0), u(s1), . . . , u(sk))T where

u(si) = η(si)− η0(si). Then uk has a multivariate normal distribution with a mean vector 0(k) and
a nonsingular covariance matrix Σk whose (i, j) element is R(si, sj). Then

Π1(E2) = Π1

(
max
0≤j≤k

|u(sj)| < ε

3

)
.

Because k-dimensional Lebesgue measure is absolutely continuous with respect to the distribution
of uk and {(u1, . . . , uk) : maxj |uj | < ε/3} has positive Lebesgue measure, it follows that Π(E2) > 0.

In order to estimate Π1(E1|E2) we shall use the sub-Gaussian inequality in van der Vaart and
Wellner (1996), (Corollary 2.2.8, page 101). Consider the Gaussian process w(·) whose distribution
is the conditional distribution of η given ηk = (η(s0), η(s1), . . . , η(sk)). By Assumption P, the
intrinsic semimetric for the η process is given by

ρ(s, t) =
√

Var(η(s)− η(t)) =
√

R(s, s)−R(s, t)−R(t, s) + R(t, t)
≤

√
|t− s|{R01(t, ξ1)−R01(u, ξ1)}

≤ sup
t1,t2∈[0,1]

√
R11(t1, t2)|s− t| ≤ C5|s− t|

using the mean value theorem for the covariance function R(s, t), where R01(s, t) ≡ ∂R(s, t)/∂t and
0 < ξ1, ξ2 < 1.

Thus, the process w(·) is sub-Gaussian with respect to the distance d(s, t) ≤ C5|s− t| because
the conditional variance for w(s)− w(t) given ηk is smaller than the variance of η(s)− η(t). Then
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by Corollary 2.2.8 of van der Vaart and Wellner (1996), we have

Π1

(
max
1≤j≤k

sup
s∈Ij

|w(s)− w(sj)| > ε

3

)
≤ 3

ε
E

(
max
1≤j≤k

sup
s∈Ij

|w(s)− w(sj)|
)

≤ 3C6

ε

∫ δ

0

√
log

δ

u
du ≤ C7δ

ε

for some constant C6 and C7. We can choose δ such that 1− C7δ/ε > 1/2.
Therefore,

Π1(E1|E2) = Π1

(
max
1≤j≤k

sup
s∈Ij

|η(s)− η(sj)| < ε/3

∣∣∣∣∣ E2

)

=
∫

. . .

∫

E2

Π1

(
max
1≤j≤k

sup
s∈Ij

|η(s)− η(sj)| < ε/3

∣∣∣∣∣ η(k)

)
dΠ1(η(k))

≥
(

1− C7δ

ε

)
> 0.

It follows that Π1(E1 ∩ E2) > 0, hence Π1(E) > 0. ¤
A simple corollary to Lemma 3 is that, in Assumption B, Π′1(Ω) > 0, so that Π1 is well-defined.

Also, it is clear that Π1 in Assumption B also satisfies the conclusion of Lemma 3.

A.5. Constructing the sieve. To verify (A2) of Theorem 1, we first construct a sieve and
then construct a test for each element of the sieve.

Let Mn = O(n1/2), and define Θn = Θ1n × IR+, where

Θ1n = {η : ‖η‖∞ < Mn , ‖η′‖∞ < Mn}.

The nth test is constructed by combining a collection of tests, one for each of finitely many elements
of Θn. Those finitely many elements come from a covering of Θ1n by small balls. The following
lemma is straightforward from Theorem 2.7.1 of van der Vaart and Wellner (1996).

Lemma 4. The ε-covering number N(ε,Θ1n, ‖ · ‖∞) of Θ1n in the supremum norm satisfies

log N(ε,Θ1n, ‖ · ‖∞) ≤ K4Mn

ε
.

Proof. The proof follows from Theorem 2.7.1. of van der Vaart and Wellner (1996) or from
Lemma 2.3 of van de Geer (2000). We choose the former approach.

According to Theorem 2.7.1. of van der Vaart and Wellner (1996), let X be a bounded convex
subset of IR with nonempty interior and let C1

1 (X ) be the set of all continuous functions f : X 7→ IR

with ‖f‖1 ≡ sup
x
|f(x)|+ sup

x,y

|f(x)− f(y)|
|x− y| ≤ 1. Then, there exists a constant K such that

log N(ε, C1
1 (X ), ‖ · ‖∞) ≤ Kλ(X )

(
1
ε

)
,

for every ε > 0, where λ(X ) is the Lebesgue measure of the set {x : ‖x−X‖ < 1}.

18



For the proof of Lemma 4, we replace f(x) with η(x)/2Mn when η(x) ∈ Θn, then

‖f‖1 = sup
x
|f(x)|+ sup

x,y

|f(x)− f(y)|
|x− y|

= sup
x

∣∣∣∣
η(x)
2Mn

∣∣∣∣ + sup
x,y

|η(x)− η(y)|
2Mn|x− y|

≤ 1
2

+
supx |η′(x)|

2Mn
≤ 1

In addition, the ε-covering number for η is identical to the ε/2Mn-covering number for f and
X is a interval of [0, 1].

Therefore,

log N(ε,Θn, ‖ · ‖∞) ≤ K ′
(

Mn

ε

)
,

with a constant K ′ > 0. ¤
For the proof of subcondition (iii) of (A2), we make use of the assumed smoothness in As-

sumption P. Lemma 5 below shows that under Assumption P, the sample paths of the Gaussian
process are almost surely continuously differentiable and the first derivative process is also Gaussian.
Furthermore, the the probability of being outside of the sieve becomes exponentially small.

Lemma 5. Let η(·) be a mean zero Gaussian process on [0,1] with a covariance kernel R(·, ·)
which satisfy Assumption P. Then η(·) has continuously differentiable sample paths and the first
derivative process η′(·) is also a Gaussian process.

Further, there exist constants A and d such that

Pr{ sup
0≤s≤1

|η(s)| > M} ≤ A exp(−dM2)

Pr{ sup
0≤s≤1

|η′(s)| > M} ≤ A exp(−dM2)

Proof. First, we show that the process has continuously differentiable sample paths. By Sec-
tion 9.4 of Cramer and Leadbetter (1967), the sample derivative η′(t) is continuous with probability

one if ∆h∆hR11(t, t) ≤ C

| log |h||a , a > 3, where

∆h∆hR11 ≡ R11(t + h, t + h)−R11(t + h, t)−R11(t, t + h) + R11(t, t)

and
R11(s, t) ≡ ∂2R(s, t)/∂s∂t.

Under the Assumption P, there exists a constant K2 such that

∆h∆hR11(t, t) ≤ K2|h|2,

because

∆h∆hR11 = R11(t + h, t + h)−R11(t + h, t)−R11(t, t + h) + R11(t, t)
= sup

(t,t)∈T 2

|R22(t, t)|h2
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where
R22(s, t) ≡ ∂4R(s, t)/∂2s∂2t.

Further, if ∆h∆hR11(t, t) ≤ K2|h|2, then ∆h∆hR11(t, t) ≤ C

| log |h||a , a > 3 because h2 =

O(1/| log |h||a) for every a.
Secondly, the limit of a sequence of multivariate normal vectors is again a multivariate normal

if and only if the means and covariance matrices converge,1 and η′(t) = limh→0(η(t + h)− η(t))/h.
It follows that η′(·) is again a Gaussian process because the covariance kernel R(·, ·) is four times
continuously differentiable.

Moreover, E(η′(t)− η′(s))2 may be obtained as E
(

limh→0
η(s + h)− η(s)− η(t + h) + η(t)

h

)2

.

This follows by the uniform integrability of (η(t+h)−η(t))2/h2, which is a consequence of the fact
that

E
(

η(t + h)− η(t)
h

)4

=
3(∆h∆hR(t, t))2

h4
≤ 3 sup

t∈[0,1]
R11(t, t) < ∞,

because,

∆h∆hR(t, t) = R(t + h, t + h)−R(t + h, t)−R(t, t + h) + R(t, t)
= h ·R01(t + h, t + ξh)− h ·R01(t, t + ξh)
= h2 ·R11(t + ξh, t + ξh)

Then,

E(η′(s)− η′(t))2 = lim
h→0

E{η(s + h)− η(s)− η(t + h) + η(t)}2/h2

= lim
h→0

[∆h∆hR(s, s)− 2∆h∆hR(s, t) + ∆h∆hR(t, t)]/h2

= lim
h→0

(
∆h∆hR(s, s)−∆h∆hR(s, t)

h2
+

∆h∆hR(t, t)−∆h∆hR(s, t)
h2

)

= R11(s, s)−R11(s, t) + (R11(t, t)−R11(s, t))
= ∆s−t∆s−tR11(t, t)
≤ K2|s− t|2

because,

lim
h→0

∆h∆hR(t, t)−∆h∆hR(s, t)
h2

= lim
h→0

{
R(t + h, t + h)− 2R(t, t + h) + R(t, t)

h2

+
−R(t + h, s + h) + R(t + h, s) + R(s, t + h)−R(t, s)

h2

}

= lim
h→0

(
R10(t, t + h)−R10(t, t)

h
− R01(t + h, s)−R01(t, s)

h

)

= R11(t, t)−R11(t, s)

Similar calculations show that the variance of η′(s) is R11(s, s) for all s. Hence the covariance
kernel for η′(·) is given by

Cov(η′(s), η′(t)) = R11(s, t).
1In the Gaussian case on IRn, the derivative processes are also Gaussian processes and the joint distributions of

all of these processes are Gaussian (Adler, 1981, p. 32).
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because,

E(η′(s))2 = lim
h→0

E{η(s + h)− η(s)}2/h2

= lim
h→0

[∆h∆hR(s, s)]/h2

= R11(s, s)

E(η′(s)) = lim
h→0

E{η(s + h)− η(s)}/h = 0

Without loss of generality we can assume the process to have zero mean. Otherwise

Pr(η : ‖η‖∞ > M) ≤ Pr(η : ‖η(·)− µ(·)‖∞ > M − ‖µ‖∞)
≤ Pr(η : ‖η(·)− µ(·)‖∞ > M/2).

Also without loss of generality σ(0) = 1. Then for K > 1

N(ε, [0, 1], | · |) ≤ K/ε,

where N is the ε-covering number.
Then by applying Theorem 5.3. of Adler (1990, page 43) and Mill’s ratio, we have

Pr(sup
s
|η(s)| > M) ≤ 2Pr(sup

s
η(s) > M)

≤ CαMΨ(M/σT )
≤ exp(−dM2),

where Cα is a constant and Ψ(·) =
∫ ∞

x
φ(x)dx, provided that sup

s∈T
Var{η(s)} ≡ σ2

T < ∞.2 ¤

Lemma 6. For a given α > 0, there exists a constant K5 such that if Mn ≥ K5n
α, then

Π(ΘC
n ) ≤ C8 exp(−c8n

2α) for some positive constants C8 and c8.

Proof. Since

Π(ΘC
n ) = Π((ΘC

1n ×R+) ∪ (Θ1n × (R+)C)
= Π((ΘC

1n ×R+))
= Π1(ΘC

1n)× ν(R+)
= Π1(ΘC

1n),

it suffices to show that there exist constants A and d such that

Pr{ sup
0≤s≤1

|η(s)| > M} ≤ A exp(−dM2)

Pr{ sup
0≤s≤1

|η′(s)| > M} ≤ A exp(−dM2),

which clearly follows from Lemma 5. ¤
2Since sample path of XT is continuous a.s and T is a compact, the boundedness is achieved.
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A.6. Construction of tests. For each n and each ball in the covering of Θ1n, we find a test
with small type I and type II error probabilities. Then we combine the tests and show that they
satisfy subconditions (i) and (ii) of (A2). The following relatively straightforward result is useful
in the construction.

Proposition 1. (a) Let X1, . . . , Xn and Y1, . . . , Yn be independent random variables. If

Pr(Xi ≤ a) ≤ Pr(Yi ≤ a), ∀a ∈ IR

then, ∀c ∈ IR,

Pr

(
n∑

i=1

Xi ≤ c

)
≤ Pr

(
n∑

i=1

Yi ≤ c

)
.

(b) For every random variable X with unimodal distribution symmetric around 0 and every c ∈ IR,

Pr(|X| ≤ x) ≥ Pr(|X + c| ≤ x).

The main part of test construction is contained in Lemma 7. For the random design cases, we
first condition on the observed values of the covariate. In Lemma 7, understand all probability
statements as conditional on the covariate values X1 = x1, . . . , Xn = xn in the random design case.

Lemma 7. Let η1 be a continuous function on T and define ηij = ηi(xj) for i = 0, 1 and
j = 1, . . . , n. Let ε > 0, and let r > 0. Let cn = n3/7. Let bj = 1 if η1j ≥ η0j and −1 otherwise.
Let Ψ1n and Ψ2n be respectively the indicators of the following two sets:

1. If Yj ∼ N(η0j , σ
2
0)





n∑

j=1

bj

(
Yj − η0j

σ0

)
> 2cn

√
n



 , and





n∑

j=1

(Yj − η0j)2

σ2
0

> n(1 + ε) or < n(1− ε)



 ,

2. If Yj ∼ DE(η0j , σ0)





n∑

j=1

bj

(
Yj − η0j

σ0

)
> 2cn

√
n



 , and





n∑

j=1

∣∣∣∣
Yj − η0j

σ0

∣∣∣∣ > n(1 + ε) or < n(1− ε)



 ,

Define
Ψn[η1, ε] = Ψ1n + Ψ2n −Ψ1nΨ2n.

Then there exists a constant C3 such that for all η1 that satisfy

n∑

j=1

|η1j − η0j | > rn,(13)

EP0(Ψn[η1, ε]) < C3 exp(−2c2
n). Also, there exist constants C4 and C9 such that for all sufficiently

large n and all η and σ satisfying |σ/σ0 − 1| > ε and ‖η − η1‖∞ < r/4,

EP (1−Ψn[η1, ε]) ≤ C4 exp(−nC9ε),

where P is the joint distribution of {Yn}∞n=1 assuming that θ = (η, σ).
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Proof.

1. Normal data:

(1) Type I error:

EP0(Ψn[η1, ε]) ≤ EP0(Ψ1n) + EP1(Ψ2n).

EP0(Ψ1n) = P0





n∑

j=1

bj

(
Yj − η0j

σ0

)
> 2cn

√
n





= P0





1√
n

n∑

j=1

bj

(
Yj − η0j

σ0

)
> 2cn





= 1− Φ(2cn)

≤ φ(2cn)
2cn

=
1

2
√

2π

exp(−2c2
n)

cn
.

Let W ∼ χ2
n. Then, for all 0 < t1 < 1/2 and t2 < 0,

EP0(Ψ2n) = P0




n∑

j=1

(
Yj − η0j

σ0

)2

> n(1 + ε)


 + P0




n∑

j=1

(
Yj − η0j

σ0

)2

< n(1− ε)




= Pr (W > n(1 + ε)) + Pr (W < n(1− ε))
≤ exp (−n(1 + ε)t1) E (exp(t1W )) + exp (−n(1− ε)t2) E (exp(t2W ))
= exp (−n(1 + ε)t1) (1− 2t1)−n/2 + exp (−n(1− ε)t2) (1− 2t2)−n/2.

Take

t1 =
1
2

(
1− 1

1 + ε

)
and t2 =

1
2

(
1− 1

1− ε

)
.

Then,

EP0(Ψ2n) ≤ exp
(
−nε

2
+

n

2
log [1 + ε]

)
+ exp

(nε

2
+

n

2
log [1− ε]

)

≤ exp
(
−n

[
ε2

4
− ε3

6

])
+ exp

(
−n

ε2

4

)
,

where the last line follows from the fact that log(1 + x) ≤ x − x2/2 + x3/3, x > 0 and
log(1− x) ≤ −x− x2/2, x > 0.

Therefore, EP0(Ψn) ≤ exp(−2c2
n) for sufficiently large n.

(2) Type II error:

We know that EP (1−Ψn[η1, ε]) ≤ min{EP (1−Ψ1n), EP (1−Ψ2n)}. Hence, we need only show
that at least one of the Type II error probabilities for Ψ1n and Ψ2n is exponentially small.
There are three types of alternatives: (i) ‖η− η1‖∞ < r/4, σ = σ0, (ii) η = η0, |σ/σ0− 1| > ε
and (iii) ‖η − η1‖∞ < r/4, |σ/σ0 − 1| > ε.
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First, assume that σ ≤ (1 + ε)σ0, and n is large enough so that cn/
√

n < r/(4σ0). This will
handle alternative (i) and part of alternative (iii). Let η∗j = η(xj) for j = 1, . . . , n. In this
case,

EP (1−Ψn[η1, ε]) ≤ EP (1−Ψ1n)

= P





n∑

j=1

bj

(
Yj − η0j

σ0

)
≤ 2cn

√
n





= P





1√
n

n∑

j=1

bj

(
Yj − η∗j

σ

)
+

1√
n

n∑

j=1

bj

(
η∗j − η1j

σ

)

+
1√
n

n∑

j=1

∣∣∣∣
η1j − η0j

σ

∣∣∣∣ ≤ 2cn
σ0

σ





≤ P





1√
n

n∑

j=1

bj

(
Yj − η∗j

σ

)
≤ r

√
n

4σ
− r

√
n

σ
+ 2cn

σ0

σ





≤ P





1√
n

n∑

j=1

bj

(
Yj − η∗j

σ

)
≤ − r

√
n

4σ0(1 + ε)





= Φ
(
− r

√
n

4σ0(1 + ε)

)

≤ 4σ0(1 + ε)
r
√

2πn
exp

(
− nr2

32σ2
0(1 + ε)2

)
,

where the last inequality is by Mill’s ratio.

For the next case, assume that σ > (1 + ε)σ0. This handles the rest of alternative (iii) and
half of alternative (ii). Let W ∼ χ2

n and let W ′ have a noncentral χ2 distribution with n
degrees of freedom and noncentrality parameter

∑n
j=1(η∗j − η0j)2. Then, for all t < 0,

EP (1−Ψn[η1, ε]) ≤ EP (1−Ψ2n)

= P



n[1− ε] ≤

n∑

j=1

(
Yj − η0j

σ0

)2

≤ n[1 + ε]





≤ P





n∑

j=1

(
Yj − η0j

σ1

)2 σ2

σ2
0

≤ n[1 + ε]





= Pr
(

W ′ ≤ n
σ2

0

σ2
[1 + ε]

)

≤ Pr
(

W ≤ n
σ2

0

σ2
[1 + ε]

)
,

≤ Pr
(

W ≤ n

1 + ε

)

= Pr
{

exp(Wt) ≥ exp
(

nt

1 + ε

)}
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≤ exp
(
− nt

1 + ε

)
(1− 2t)−n/2.

Let t = −ε/2 to get

EP (1−Ψn[η1, ε]) ≤ exp
(

n

2

[
ε

1 + ε
− log(1 + ε)

])
≤ exp

(
−n

ε2 − ε3

4(1 + ε)

)
,

where the last inequality follows from the fact that log(1 + x) > x− x2/2.

Finally, assume that σ < (1− ε)σ0 to handle the rest of alternative (ii). Let W be as in the
previous case. Then, for all t > 0,

EP (1−Ψn[η1, ε]) ≤ EP (1−Ψ2n)

= P



n[1− ε] ≤

n∑

j=1

(
Yj − η0j

σ0

)2

≤ n[1 + ε]





≤ P



n[1− ε] ≤

n∑

j=1

(
Yj − η0j

σ1

)2 σ2

σ2
0





≤ Pr
(

n
σ2

0

σ2
[1− ε] ≤ W

)
,

≤ Pr
(

n

1− ε
≤ W

)

= Pr
{

exp(Wt) ≥ exp
(

nt

1− ε

)}

≤ exp
(
− nt

1− ε

)
(1− 2t)−n/2.

Let t = ε/2 to get

EP (1−Ψn[η1, ε]) ≤ exp
(

n

2

[
− ε

1− ε
− log(1− ε)

])
≤ exp

(
−n

ε2

2(1− ε)2

{
3− 5ε

3(1− ε)

})
,

where the last inequality follows from the fact that log
(

1
1− x

)
= log

(
1 +

x

1− x

)
and

log(1 + x) < x− x2/2 + x3/3, x > 0.

2. Laplace data:

(1) Type I error:

EP0(Ψn[η1, ε]) ≤ EP0(Ψ1n) + EP1(Ψ2n).

EP0(Ψ1n) = P0





n∑

j=1

bj

(
Yj − η0j

σ0

)
> 2cn

√
n





= P0



t ·

n∑

j=1

bj

(
Yj − η0j

σ0

)
> t · 2cn

√
n



 0 < t < 1
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≤ exp
(−t · 2cn

√
n
) (

1− t2
)−n

= exp
([
−2t

cn√
n

+ log
(

1 +
t2

1− t2

)]
· n

)

≤ exp
([
−2t

cn√
n

+
t2

1− t2

]
· n

)

Take t =
2cn√

n
. Then,

EP0(Ψ1n) ≤ exp

([
−4

c2
n

n
+

4c2n
n

1− 4c2n
n

]
· n

)

≤ exp

([
−4 +

1
n

4c2n
− 1

]
· c2

n

)

≤ exp
(−2c2

n

)

because it is clear that
4c2

n

n
<

2
3

if n is large.

Let V ∼ Gamma(n, 1). Then, for all 0 < t1 < 1 and t2 < 0,

EP0(Ψ2n) = P0




n∑

j=1

∣∣∣∣
Yj − η0j

σ0

∣∣∣∣ > n
√

1 + ε


 + P0




n∑

j=1

∣∣∣∣
Yj − η0j

σ0

∣∣∣∣ < n
√

1− ε




= Pr
(
V > n

√
1 + ε

)
+ Pr

(
V < n

√
1− ε

)

≤ exp
(−n(

√
1 + ε)t1

)
E (exp(t1V )) + exp

(−n(
√

1− ε)t2
)
E (exp(t2V ))

= exp
(−n(

√
1 + ε)t1

)
(1− t1)−n + exp

(−n(
√

1− ε)t2
)
(1− t2)−n.

Take
t1 = 1− 1√

1 + ε
and t2 = 1− 1√

1− ε
.

Then,

EP0(Ψ2n) ≤ exp
(−n(

√
1 + ε− 1) + n log

[
1 +

√
1 + ε− 1

])

+ exp
(
n(1−√1− ε) + n log

[
1− (1−√1− ε

])

≤ exp
(
−n

[
(
√

1 + ε− 1)2

2
− (

√
1 + ε− 1)3

3

])
+ exp

(
−n

(1−√1− ε)2

2

)
,

where the last line follows from the fact that log(1 + x) ≤ x − x2/2 + x3/3, x > 0 and
log(1− x) ≤ −x− x2/2, x > 0.

Therefore, EP0(Ψn) ≤ C3 exp(−2c2
n) for sufficiently large n.

(2) Type II error:

Again, there are three types of alternatives to deal with : (i) ‖η − η1‖∞ < r/4, σ = σ0, (ii)
η = η0, |σ/σ0 − 1| > ε and (iii) ‖η − η1‖∞ < r/4, |σ/σ0 − 1| > ε.
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As in the previous Type II error calculation for normal case, first, assume that σ ≤ (1+ ε)σ0,
and n is large enough so that cn/

√
n < r/(4σ0). This handles alternative (i) and part of

alternative (iii). Let η∗j = η(xj) for j = 1, . . . , n. In this case,

EP (1−Ψn[η1, ε]) ≤ EP (1−Ψ1n)

= P





n∑

j=1

bj

(
Yj − η0j

σ0

)
≤ 2cn

√
n





= P





n∑

j=1

bj

(
Yj − η∗j

σ1

)
+

n∑

j=1

bj

(
η∗j − η1j

σ

)

+
n∑

j=1

∣∣∣∣
η1j − η0j

σ

∣∣∣∣ ≤ 2cn

√
n

σ0

σ





≤ P





n∑

j=1

bj

(
Yj − η∗j

σ

)
≤ rn

4σ
− rn

σ
+ 2cn

√
n

σ0

σ





≤ P





n∑

j=1

bj

(
Yj − η∗j

σ

)
≤ −rn

4σ0(1 + ε)





= exp
([
−t

r

σ0(1 + ε)
− log(1− t2)

]
· n

)
, for some t, 0 < t < 1

≤ exp(−ξ · n), ∃ ξ(= C9ε) > 0

The last inequality is established by the following argument.

Let c > 0 and f(t) = −t · c− log(1− t2), 0 < t < 1. Then,

⇒ f ′(t) = −c +
2t

1− t2

Set f ′(t) = 0

⇒ t∗ =
−1±√1 + c2

c
, 0 < t∗ < 1

⇒ f(t∗) = 1−
√

1 + c2 + log
c2

2(−1 +
√

1 + c2)

= 1−
√

1 + c2 + log(
√

1 + c2 + 1)− log 2

Let g(x) = 1− x + log(x + 1)− log 2, x > 1. Then,

g′(x) = −1 +
1

x + 1
=

−x

1 + x
< 0

⇒ g(1) = 0 ⇒ g(x) < 0, x > 1

Therefore, f(t) can have negative values.

For the next case, assume that σ > (1 + ε)σ0. This handles the rest of alternative (iii) and
half of alternative (ii). Let V ∼ Gamma(n, 1)
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EP (1−Ψn[η1, ε]) ≤ EP (1−Ψ2n)

= P



n[1− ε] ≤

n∑

j=1

∣∣∣∣
Yj − η0j

σ0

∣∣∣∣ ≤ n
√

1 + ε





≤ P





n∑

j=1

∣∣∣∣
Yj − η0j

σ

∣∣∣∣
σ

σ0
≤ n

√
1 + ε





= P





n∑

j=1

∣∣∣∣
(

Yj − η∗j
σ

)
+

(
η∗j − η0j

σ

)∣∣∣∣ ≤ n
σ0

σ

√
1 + ε





≤ P





n∑

j=1

∣∣∣∣
Yj − η∗j

σ

∣∣∣∣ ≤ n
σ0

σ

√
1 + ε



(14)

= Pr
{

V ≤ n
σ0

σ

√
1 + ε

}

≤ Pr
{

exp(V t) ≥ exp
(

nt√
1 + ε

)}
, t < 0, σ > (1 + ε)σ0

≤ exp
(
− nt√

1 + ε

)
(1− t)−n

The inequality (14) follows from Proposition 1.

Finally, let t = 1−√1 + ε to get

EP (1−Ψn[η1, ε]) ≤ exp
(

n

[
1− 1√

1 + ε
− log

(
1 +

√
1 + ε− 1

)])
= exp (−nC9ε) ,

where −C9ε =
[
1− 1√

1 + ε
− log

(
1 +

√
1 + ε− 1

)]
< 0, ε > 0

Finally, assume that σ < (1− ε)σ0 to handle the rest of alternative (ii). For all t > 0,

EP (1−Ψn[η1, ε]) ≤ EP (1−Ψ2n)

= P



n[

√
1− ε] ≤

n∑

j=1

∣∣∣∣
Yj − η0j

σ0

∣∣∣∣ ≤ n[
√

1 + ε]





≤ P



n[

√
1− ε] ≤

n∑

j=1

∣∣∣∣
Yj − η0j

σ

∣∣∣∣
σ

σ0





≤ P1



n[

√
1− ε]

σ0

σ
≤

n∑

j=1

∣∣∣∣
Yj − η0j

σ

∣∣∣∣





≤ Pr
{

n√
1− ε

≤ V

}

= Pr
{

exp(V t) ≥ exp
(

nt√
1− ε

)}

≤ exp
(
− nt√

1− ε

)
(1− t)−n
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Let t = 1−√1− ε to get

EP (1−Ψn[η1, ε]) ≤ exp
(

n

[
1− 1√

1− ε
− log(

√
1− ε)

])
= exp (−nC9ε) ,

where −C9ε =
[
1− 1√

1− ε
− log(

√
1− ε)

]
< 0, ε > 0.

¤
To create a test that doesn’t depend on a specific choice of η1 in Lemma 7, we make use of

the covering number of the sieve. Let r be the same number that appears in Lemma 7. Let
t = min{ε/2, r/4}. Let Nt be the t covering number of Θ1n in the supremum (L∞) norm. With
Mn = O(n1/2) and cn = n3/7, we have log(Nt) = o(c2

n) from Lemma 4. Let η1, . . . , ηNt ∈ Θ1n

be such that for each η ∈ Θ1n there exists j such that ‖η − ηj‖∞ < t. If ‖η − η0‖1 > ε, then
‖ηj − η0‖1 > ε/2. Similarly, if dQ(η, η0) > ε, then dQ(ηj , η0) > ε/2. Define

Ψn = max
1≤j≤Nε

Ψn[ηj , ε/2].

If we can verify that there exists r such that (13) holds for every such ηj , then

EP0Ψn ≤
Nt∑

j=1

EP0Ψn[ηj , ε/2]

≤ C3Nt exp(−2c2
n)

= expC3(log[Nt]− 2c2
n)

≤ C3 exp(−c2
n).

For θ = (η, σ) ∈ UC
ε ∩ Θn or in Wε ∩ Θn, the type II error probability of Ψn is no larger than the

minimum of the individual type II error probabilities of the Ψn[ηj , ε/2] tests. Hence, we have a
uniformly consistent test Ψn, which has exponentially small type II error evaluated at θ.

Verifying (13) is done differently for the random and nonrandom design cases.
For the random design case, Lemma 8 tells us that (13) occurs all but finitely often with

probability 1. Since there are only finitely many ηj to consider for each n, this suffices to complete
the proof of Theorem 3.

Lemma 8. Assume Assumption RD. Let η be a function such that dQ(η, η0) > ε. Let 0 < r < ε2,
and define

An =

{
n∑

i=1

|η(Xi)− η0(Xi)| ≥ rn

}
.

Then there exists C11 > 0 such that Pr(AC
n ) ≤ exp(−C11n) for all n and An occurs all but finitely

often with probability 1. The same C11 works for all η such that dQ(η, η0) > ε.

Proof. Let B = {x|η(x) − η0(x)| > ε}, so that Q(B) > ε. Let Z = n − ∑n
i=1 IB(Xi), and

notice that Z has a binomial distribution with parameters n and 1−Q(B). Let q = r/ε < ε, and
let Z ′ have a binomial distribution with parameters n and 1− ε so that Z ′ stochastically dominates
Z. Then

Pr(AC
n ) ≤ Pr(Z > n[1− q]) ≤ Pr(Z ′ > n[1− q]).
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Write

Pr(Z ′ > n[1− q]) = Pr(exp(tZ ′) > exp(tn[1− q])), for all t > 0,
≤ [ε + [1− ε] exp(t)]n exp(−tn[1− q]).

Let

t = log
(

ε(1− q)
q(1− ε)

)
> 0,

C11 = q log
(q

ε

)
+ (1− q) log

(
1− q

1− ε

)
> 0.

Then Pr(AC
n ) ≤ exp(−C11n), and C11 doesn’t depend on the particular η. The probability one

claim follows from the first Borel-Cantelli lemma. ¤
For the nonrandom design case, we verify (13) for all η1 that are far from η0 in L1 distance.

Lemma 9. Assume Assumption NRD. Let λ be Lebesgue measure. Let K1 be the constant
mentioned in Assumption NRD. Let V > 0 be a constant. For each integer n, let An be the set
of all continuously differentiable functions γ such that ‖γ′‖∞ < Mn + V . For each function γ and
ε > 0, define Bε,γ = {x : |γ(x)| > ε}. Then for each ε > 0 there exist an integer N such that, for
all n ≥ N and all γ ∈ An,

n∑

i=1

|γ(xi)| ≥ (λ(Bε,γ)K1n− 1)
ε

2
.(15)

Proof. Let N be large enough so that (Mn + V )/(K1n) < ε/2 for all n ≥ N . Because γ is
continuous, Bε,γ is an open set and it is the union of a countable collection of disjoint open intervals,
i.e. Bε,γ = ∪∞i=1Bi, where Bi = (xL,i, xR,i) is an open interval whose length is λ(Bi) = xR,i−xL,i ≥
0. Some of the Bi intervals might lie entirely between successive design points. Let x0 = 0 and
xn+1 = 1. Define, for j = 0, . . . , n,

aj = {i : xj < xR,i < xj+1},
bj = {i : xj < xL,i < xj+1},
`j = inf{xL,i : i ∈ aj},
uj = sup{xR,i : i ∈ bj}.

Then the open interval Fj = (`j , uj) contains the same design points as

Dj =
⋃

i∈aj∪bj

Bi.

If xj ∈ Fj (for j ∈ {1, . . . , n}), then `j < uj−1 and (`j−1, uj) contains the same design points
as Dj−1 ∪ Dj . By combining all of the overlapping Fj intervals, we obtain finitely many disjoint
intervals E1, . . . , Em whose total length is at least λ(Bγ,ε) (because their union contains Bε,γ) and
that contain the same design points as Bε,γ . Write each Ej = (fj , gj) and Lj = gj−fj , and assume
that the intervals are ordered so that gj < fj+1 for all j. Let E = ∪m

j=1Ej . Let bac denote the
integer part of a. Each Ej contains at least bLjK1nc design points because the maximum spacing
is assumed to be less than or equal to 1/(K1n). For each j such that fj > x1, let x∗j be the largest
xi ≤ fj . Then x∗j 6∈ E, the the derivative of γ is at most Mn + V , and |x∗j − fj | < 1/(K1n). Hence,

|γ(x∗)| > ε− Mn + V

K1n
>

ε

2
.
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If we include x∗j with the design points already in Ej , we have, associated with each j such that
fj > x1, at least dLjK1ne design points x with |γ(x)| > ε/2, where dae is the smallest integer
greater than or equal to a. There is at most one j such that fj ≤ x1 for which we have at least
dLjK1ne − 1 design points with |γ(x)| > ε/2. Since we have not counted any design points more
than once, we can add over all j to see that there are at least λ(Bγ,ε)K1n − 1 design points x in
Bε/2,γ so long as n ≥ N . Hence we satisfy (15). ¤

Lemma 10. Assume Assumption NRD. For each integer n, let An be the set of all continuously
differentiable functions η such that ‖η‖ < Mn and ‖η′‖∞ < Mn. Then for each ε > 0 there exist
an integer N and r > 0 such that, for all n ≥ N and all η ∈ An such that ‖η − η0‖1 > ε,∑n

i=1 |η(xi)− η0(xi)| ≥ rn.

Proof. Let V be an upper bound on the derivative of η0. Let 0 < δ < ε and let N be large
enough so that (Mn + V )/n < 2K1(ε − δ) for all n ≥ N . Let r = K1(ε − δ)/2 and Di = {x :
(i− 1)δ < |η(x)− η0(x)| < iδ}.

Let λ be Lebesgue measure. Then, ‖η − η0‖1 can be bounded as follows.
∑

i

iδλ(Di) ≥ ‖η − η0‖1 > ε.(16)

Let ζ(x) = |η(x)−η0(x)| and ζm(x) = min{mδ, ζ(x)}, for m = 0, . . . , n. Note that ζd(Mn+V )/δe(x)
is the same as ζ(x).

For m = 1, . . . , n, define Bm ≡ {x : ζm(x) > (2m − 1)δ/2}. Then, for all x ∈ Bm, ζm(x) −
ζm−1(x) > δ/2. Thus, Lemma 9 (with γ = ζm − ζm−1 and ε = δ/2) implies

n∑

i=1

(ζm(xi)− ζm−1(xi)) ≥ (λ(Bm)K1n− 1)
δ

4
.

Now, write

n∑

i=1

|η(xi)− η0(xi)| =
n∑

i=1

ζd(Mn+V )/δe(xi)

=
n∑

i=1

d(Mn+V )/δe∑

m=1

{ζm(xi)− ζm−1(xi)}

=
d(Mn+V )/δe∑

m=1

n∑

i=1

{ζm(xi)− ζm−1(xi)} ,

≥
d(Mn+V )/δe∑

m=1

[λ(Bm)K1n− 1]
δ

4
.(17)

Also, for m = 1, . . . , n,

Bm ⊃
d(Mn+V )/δe⋃

i=m+1

Di.

It follows that

d(Mn+V )/δe∑

m=1

δλ(Bm) ≥
d(Mn+V )/δe∑

i=2

(i− 1)δλ(Di)
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≥
d(Mn+V )/δe∑

i=2

iδλ(Di)− δ

≥ ε− δ,

where the last inequality follows from (16). Combining this with (17) gives

n∑

i=1

|η(xi)− η0(xi)| ≥ K1n(ε− δ)− Mn + V

4
≥ n

K1(ε− δ)
2

,

for all n ≥ N . ¤

A.7. Proof of Theorem 4. First, we calculate the Hellinger distance between two density
functions, dH(f, f0), where f is the joint density of (X,Y ) when η and σ are arbitrary, and f0 is
the density when η = η0 and σ = σ0.

Let ν be the product of Q and Lebesgue measure λ. Then the joint densities of X and Y defined
above with respect to ν are given by

f(y|x) =
1√

2πσ2
exp

{
− [y − η(x)]2

2σ2

}
and f0(y|x) =

1√
2πσ2

0

exp

{
− [y − η0(x)]2

2σ2
0

}

or

f(y|x) =
1
2σ

exp
{
−|y − η(x)|

σ

}
and f0(y|x) =

1
2σ0

exp
{
−|y − η0(x)|

σ0

}

To simplify the calculation, we consider the quantity h(f, f0) defined as

h(f, f0) =
1
2
d2

H(f, f0) = 1−
∫ √

ff0dµ

and h(f, f0) is calculated as follows.

1. Yi|Xi
ind∼ N(η(Xi), σ2)

h(f, f0) = 1− 1√
2πσσ0

∫ ∫
exp

{
− 1

4σ2
[y − η(x)]2 − 1

4σ2
0

[y − η0(x)]2
}

dydQ

= 1−
∫ ∫

exp

{
−

(
1

4σ2
+

1
4σ2

0

)[
y −

(
η(x)
4σ2

1

+
η0(x)
4σ2

0

)/ (
1

4σ2
+

1
4σ2

0

)]2
}

1√
2πσσ0

× exp

{
−η(x)2

4σ2
− η0(x)2

4σ2
0

+
(

η(x)
4σ2

+
η0(x)
4σ2

0

)2 /(
1

4σ2
+

1
4σ2

0

)}
dydQ

= 1−
∫ √

2σσ0

σ2 + σ2
0

exp
{
− 1

16σ2σ2
0

[η(x)− η0(x)]2
/(

1
4σ2

+
1

4σ2
0

)}
dQ(18)

The integral in (18) is of the form
∫

c1 exp(−c2[η(x)− η0(x)]2)dQ(x), where c1 can be made
arbitrarily close to 1 by choosing |σ/σ0 − 1| small enough and c2 is bounded when σ is close
to σ0. It follows that for each ε there exists a δ such that (18) will be less than ε2/2 whenever
|σ/σ0 − 1| < δ and dQ(η, η0) < δ.
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2. Yi|Xi
ind∼ DE(η(Xi), σ)

h(f, f0) = 1− 1√
4σσ0

∫ ∫
exp

{
− 1

2σ
|y − η(x)| − 1

2σ0
|y − η0(x)|

}
dydQ

≤ 1−
∫ ∫

exp
{
−

(
1
2σ

+
1

2σ0

) ∣∣∣∣y −
(

η(x) + η0(x)
2

)∣∣∣∣
}

1√
4σσ0

× exp
{
−

(
1
4σ

+
1

4σ0

)
|η(x)− η0(x)|

}
dydQ

≤ 1−
∫ [

1√
4σσ0

× exp
{
−

(
1
4σ

+
1

4σ0

)
|η(x)− η0(x)|

}
×

(
1
4σ

+
1

4σ0

)−1
]

dQ(19)

The integral in (19) is of the form
∫

c1 exp(−c2|η(x) − η0(x)|)dQ(x), where c1 can be made
arbitrarily close to 1 by choosing |σ/σ0 − 1| small enough and c2 is bounded when σ is close
to σ0. It follows that for each ε there exists a δ such that (19) will be less than ε2/2 whenever
|σ/σ0 − 1| < δ and dQ(η, η0) < δ.

A.8. Proof of Theorem 5. For bounded functions, convergence in probability is equivalent
to Lp convergence for all finite p. In particular, for every ε > 0 and every finite p, there exists an
ε′ such that Uε′ ⊆ Wε. Hence, Theorem 3 implies the conclusion to Theorem 5 as long as the GP
prior defined in Assumption B also satisfy all the conditions required in Theorem 3.

If a GP satisfies the smoothness conditions that follow from Assumption P, then the conditional
process given a set of bounded functions with positive probability also satisfies the smoothness
conditions. We have already verified the prior positivity condition (A1). For subpart (iii) of (A2),
we note that, if A and d are the constants guaranteed by Lemma 5 for Π′1, then

Π1

{
sup

0≤s≤1
|η′(s)| > M

}
≤ A exp(−dM2)/Π′1(Ω).
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