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Summary. Bayesian hierarchical models are built to fit multiple health

endpoints from a dose-response study of a toxic chemical, perchlorate. Per-

chlorate exposure results in iodine uptake inhibition in the thyroid, with

health effects manifested by changes in blood hormone concentrations and

histopathological effects on the thyroid. We propose linked empirical models

to fit blood hormone concentration and thyroid histopathology data for rats

exposed to perchlorate in the 90-day study of Springborn Laboratories Inc.

(1998), based upon the assumed toxicological relationships between dose and

the various endpoints. All of the models are fit in a Bayesian framework, and

predictions about each endpoint in response to dose are simulated based on

the posterior predictive distribution. A hierarchical model tries to exploit

possible similarities between different combinations of sex and exposure du-

ration, and it allows us to produce more stable estimates of dose-response
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curves. We also illustrate how the hierarchical model allows us to address

additional questions that arise after the analysis.

Key words: Dose-response study; Perchlorate; Hierarchical prior distrib-

ution; Logistic regression; Multivariate regression; MCMC; Optimal design

point.

1. Introduction

In this paper, we develop a statistical approach to integrate and compare

different toxicity studies in human and ecological risk assessment. Our pro-

posed approach for this purpose is to apply Bayesian statistical techniques for

harmonizing several different health endpoints studies or methods. A hier-

archical Bayesian framework for fitting toxicological relationships in human

and ecological receptors can be applied to evaluate relationships in dose-

response among multiple health endpoints; different exposure conditions or

durations; varying population characteristics such as age or gender within

a given species; multiple target species. Hierarchical methods are applied

using results for multiple health endpoints associated with exposure to a sin-

gle chemical, perchlorate, for a single species, rats, allowing a hierarchy for

gender and exposure period.

Perchlorate (ClO−

4
) is an oxidizing anion that originates as a contaminant

in ground and surface water from the dissolution of ammonium, potassium,

magnesium, or sodium salts. Perchlorate is exceedingly mobile in aqueous

systems and can persist for many decades under typical ground or surface

water conditions. Large-scale production of perchlorate-containing chemicals

in the United States began in the mid-1940s and perchlorate began to be dis-

covered at various manufacturing sites and in well water and drinking water
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supplies after 1997. There are 20 states with confirmed releases of perchlo-

rate to ground or surface water, and there are 40 states that have confirmed

the presence of perchlorate manufacturers or users. Increasing attention is

being paid to perchlorate because of existing uncertainties in the toxicolog-

ical database that make it difficult to adequately address the potential for

perchlorate at low levels in drinking water to produce ecological and human

health effects. The EPA recently listed perchlorate as a contaminant that

required additional research and occurrence information before regulatory

determinations could be made.

Exposure to perchlorate is known to inhibit the uptake of iodide in the

thyroid of animals and humans, thereby causing a reduction in the hormones

thyroxine (T3) and triiodothyronine (T4), and an increase in thyroid stim-

ulating hormone (TSH) in blood. Circulating hormone levels (T3, T4 and

TSH) and histopathology data on thyroid tissue can be monitored for a haz-

ard identification. Other potential concerns involving perchlorate include car-

cinogenic, neurodevelopmental, reproductive, and immunotoxic effects that

may result from changes in thyroid function.

Bayesian statistical techniques have proven useful in clinical and envi-

ronmental epidemiological applications to evaluate and integrate available

information (Berry and Stangl, 1996 ; Wilson, 2001). Because Bayesian tech-

niques provide probabilistic estimates of effects, data expressed as incidence

can be readily combined with continuous measures. Hierarchical Bayesian

techniques can be used to elucidate common and divergent endpoints for use

in risk assessment based on the consideration of taxonomy and the mode of

action of perchlorate. We focus on one laboratory animal bioassay for am-
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monium perchlorate; the Springborn 90-day study (Springborn Laboratories

Inc., 1998).

The Springborn 90-day study includes different experimental results at

three time points during the study: day 14, day 90 and day 120 (after a

30-day recovery period); We analyzed the results from days 14 and 90.

In this study, assays for T3, T4, and TSH were performed and histopathol-

ogy endpoints were measured. Crofton and Marcus (2001) reanalyzed the

original data and report the checked data for T3, T4, and TSH, and we used

this as our source of data for the blood hormone endpoints. The thyroid

histopathology, as reviewed and reported by the pathology working group

(PWG), can be found in Wolf (2001), and we used these results as our data

source for these endpoints.

In Section 2, we introduce the data, the Springborn 90-day study, consist-

ing of the 14-day sacrifices (i.e., rats within a 14-day exposure period) and the

90-day sacrifices. In Section 3, we describe two models that we consider in

the analysis, including a mechanistic model based on expert knowledge and

an empirical model constructed from various statistical models. In Section 4,

we summarize the results using a hierarchical Bayesian approach with both

models. In Section 5, we illustrate how to address a serious issue that arose

from the analysis. In particular, there is a wide gap between the highest and

next-to-highest dose in the study. Some of the dose-response curves that we

fit increase significantly between those two doses. Hence, the data set gives

us very little information about the shape of the dose-response curve in the

region where it is changing the most. We illustrate how to use the posterior

distribution of the model parameters to choose a new dose level that would
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most help to reduce the uncertainty about the shape of the dose-response

curve. In Section 6, we conclude and discuss our results and future work.

2. Springborn 90-day study

The Springborn Laboratories Inc. (1998) study was a 90-day study of the

effects of ammonium perchlorate (NH4ClO4) on the thyroid system of labo-

ratory rats. The study was part of a bioassay testing strategy that consisted

of oral administration of ammonium perchlorate via drinking water to male

and female Sprague-Dawley rats. The rats were dosed for up to 90 days, with

a 30 day recovery period for some of the rats. Several endpoints were mea-

sured at three different time points (14-day, 90-day and 120-day) and thyroid

hormone analyses were performed at the 14, 90, and 120-day sacrifices.

In each laboratory experiment of the 14-day and 90-day sacrifices, 120

Sprague-Dawley rats were divided into 12 groups of 10 rats each. There were

6 groups of males and 6 groups of females. Each group received one of the

following six doses of ammonium perchlorate in the drinking water: 0, 0.01,

0.05, 0.2, 1.0, and 10 mg/kg-day (Springborn Laboratories Inc., 1998). Mea-

surements were taken of the concentration of several thyroid hormones in the

blood and, among these thyroid hormones, our main interests are in the ef-

fects of perchlorate on T3, T4 and TSH. The other important endpoints were

histopathology endpoints of the thyroid that included the incidence of colloid

depletion, hypertrophy and hyperplasia. The histopathology measurements

were reported as the numbers of incidences out of the (usually ten) rats in

each dose group.
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3. Models

3.1 Mechanistic Model

According to biological theory about the toxicological effects of perchlo-

rate, there are cause-and-effect relationships among the toxicological end-

points that we consider, i.e. T3, T4, TSH, colloid depletion, hypertrophy

and hyperplasia. We illustrate these effects in Figure 1. In structuring our

model, we consulted toxicologists with expertise on perchlorate’s mode-of-

action in the thyroid, and the relationships in Figure 1 are compatible with

the general mode of action for perchlorate as determined by the U.S.EPA

(U.S.Environmental Protection Agency, 1998).

[Figure 1 about here.]

Figure 2 shows the assumed causative relationships on which we base our

overall model. Figure 2 is extracted from Figure 1, and we call this our

mechanistic model. In spite of the relation between the mechanistic model

and the assumed mode-of-action, the observed data are not fit well by the

mechanistic model. This poor fit may result from several problems in the lab-

oratory studies themselves. For example, all of the dependent measurements

including hormone and histopathology data, were taken at the same time

point and these measurements may not be suitable for supporting the un-

derlying cause-and-effect relationships, which involve dynamic systems that

may exhibit time delays. Instead of adhering to the mechanistic approach,

we next consider empirical models based on the observed data.

[Figure 2 about here.]
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3.2 Empirical model

A notable difference between the mechanistic and empirical models is

that the latter proposes a direct relationship from dose to TSH. That is, the

empirical models do not introduce intermediate steps in which T3 and T4

predict TSH as in the mechanistic model. This approach seems reasonable

since it is known that T3 and T4 decrease with dose while TSH increases

with dose, and we do not observe the proper sequencing from T3 and T4

to TSH in the observed data. In addition, there are some modifications

at the final stage for predicting the histopathology measures (hypertrophy

and hyperplasia) in response to dose, T4 or both. Although the assumed

mechanistic relationship for the final stage is to predict histopathology data

only from T4 hormone values, the observed data indicate that considering

both the dose level and T4 hormone levels is useful. This is due in part to

the fact that the histopathology data are reported only by dose group rather

than for each individual rat.

The empirical models fall into three classes: the first model with every

dependent measurement explained by dose alone; the second model, different

from the first only in that hypertrophy and hyperplasia are predicted by T4

instead of dose; and the third model, a combination of first two models,

allowing hypertrophy and hyperplasia to be predicted from both dose and

T4. Within the three classes of models we have the issue of how to treat

the explanatory variable dose. For this, we consider two sub-models: one

with raw dose itself, and the other with a logarithmic transformation of the

dose. In taking the logarithm of dose, we need a way to deal with the zero

nominal dose group. We choose to add a small value, denoted δ, to all of
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the doses. This is a device that is necessary in order to take logarithms.

We shall see later whether the extra parameter in the model provides a

sufficiently better fit. Another alternative would be to add a small amount,

such as δ, only to the zero nominal dose group. Our approach is to add δ

to every dose level for the following reason. We interpret δ as if it were a

background dose of contaminants that also affect the measured endpoints.

The administered doses are added to this background to produce the total

contaminant exposure. We treat the value δ as a parameter and estimate it in

the model. Since δ is estimated, we can let δ have different values for different

stages or different endpoints by regarding them as different parameters in

the different model stages. For the remainder of this paper, we refer to these

parameters as the “dose increments”.

From this point of view, we have several empirical models proposed.

To help choose between them, we use a model selection criterion approach

combined with expert knowledge. Although cross-validation is an excellent

method for assessing the predictive power of a model, the data set being

modeled is not sufficiently large to make meaningful cross-validation com-

parisons. Among the other overall fit measures, we choose a quantity known

as the Bayesian information criterion (BIC) (Schwarz, 1978). For parametric

model k with maximum likelihood estimator (MLE) θ̂k, number of parame-

ters p, and sample size n, the BIC is defined by

BIC(k) ≡ −2 log L(θ̂k) + p log n

Models with small values of the BIC are assumed to fit better than models

with large BIC.

Finally, we choose two models to study more closely. The first model,

8



which we call Model A, is the model that has the lowest BIC value while the

second model, which we call Model B, has the second lowest BIC value and

more closely reflects the expert opinion that T4 affects the incidence of HT

and HP. For reference, Table 1 shows the BIC values for the two models that

we use.

[Table 1 about here.]

As mentioned above, our data are incomplete in regard to the histopathol-

ogy data, specifically the incidence of colloid depletion, hypertrophy and

hyperplasia. These data were reported only by dose group while the thyroid

hormones, T3,T4 and TSH were measured and reported for individual rats.

We address this incomplete information by using summary statistics such

as the average hormone levels for each dose group when we must model the

histopathology data as a function of hormones.

We divide each of our final two models (A and B) into three steps: mod-

eling colloid depletion, modeling the three hormone values, and modeling

hypertrophy and hyperplasia. We assume independence between the para-

meters in the different steps.

According to our experts, the observed effects on the histopathology end-

points should not decrease with dose. Hence, we put constraints on the slopes

in the logistic regression models for the histopathology data. For example,

because the histopathology endpoints are known to increase with dose, we

require the slopes of dose to be positive. Also, since log T4 is known to

have negative effects on HT and HP, we require that the slope of log T4 be

negative. In our descriptions of the models in the following subsections, the

distribution denoted PN is a conditional normal distribution constrained to
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be nonnegative, and the distribution denoted NN is a conditional normal

distribution constrained to be nonpositive.

Throughout the analysis, our approach is based upon Bayesian hierar-

chical modeling and we use WinBUGS software to fit our models via the

Markov Chain Monte Carlo (MCMC) method. Since our approach is based

upon Bayesian analysis, the prior distributions on parameters need to be

specified. We consider two types of prior distributions. Noninformative pri-

ors are normal prior distributions with high variances. Hierarchical priors

have hyperparameters for both sex and exposure time (14-day and 90-day).

In the hierarchical structure (see Figure 3) we treat the parameters for female

and male rats at the same time point as sampled from a distribution with

common hyperparameters within each time point. Then, we introduce hyper-

parameters for the 14-day and 90-day time points as sampled from another

distribution with common hyperparameters between exposure times.

[Figure 3 about here.]

3.2.1 Step 1 : Dose ⇒ Colloid Depletion The first step is to model the

effect of dose on colloid depletion (CD). We use a logistic regression model for

the probability of colloid depletion given dose. The explanatory and response

variables, respectively dose and the number of rats with CD, were reported

by group. That is, rather than a separate indicator of the presence of CD in

each rat, we have only the 12 counts of rats that exhibited CD out of the ten

rats in each of the 12 groups. These data are shown in Table 2 along with

the hypertrophy (HT) and hyperplasia (HP) data that are relevant for Step

3.
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[Table 2 about here.]

The following equations describe our models for Step 1.

• Logistic regression: response = CD, explanatory = dose. We have

separate parameters for the four combinations of male/female and 14-

day/90-day but otherwise the models are identical. In the superscripts,

s stands for sex (male or female) and t stands for time (14-day or 90-

day).

• Model structure:

– For the ith dose group (i = 1, . . . , 6), rCD,s,t
i is the number of

incidences of CD, ni is the number of rats observed, and pCD,s,t
i is

the probability of exhibiting CD.

– rCD,s,t
i ∼ Bin(ni, p

CD,s,t
i )

– Model A : logit(pCD,s,t
i ) = αCD,s,t

1
+ αCD,s,t

2
dosei

Model B : logit(pCD,s,t
i ) = αCD,s,t

1
+ αCD,s,t

2
log(dosei + δs,t

1
),

• Prior distributions:

– Noninformative prior distribution:

αCD,s,t
1

∼ N(0, 103), αCD,s,t
2

∼ PN(0, 103), δs,t
1

∼ Exp(5).

All parameters are independent.

– Hierarchical prior distribution

αCD,s,t
1

∼ N(µt
1
, (σt

1
)2), αCD,s,t

2
∼ PN(µt

2
, (σt

2
)2), δs,t

1
∼ Exp(γt).
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For i = 1, 2: µt
i ∼ N(µi, σ

2

i ), (σt
i)

2
∼ Gamma(ai, bi), γ−1

t ∼ Gamma(aδ, bδ)

µi ∼ N(0, 103), 1/σ2

i ∼ Gamma(0.001, 0.001),

ai ∼ Gamma(2, 1.2), bi ∼ Gamma(2, 1.2),

aδ ∼ Gamma(2, 2), bδ ∼ Gamma(2, 0.2)

3.2.2 Step 2 : Dose ⇒ T3, T4 and TSH The second step in our model

is to predict the effects on T3, T4 and TSH from dose. Expert knowledge

suggests that T3 and T4 levels in the blood drop and the TSH level in the

blood rises with increasing dose of perchlorate. Even though it is suggested

by expert knowledge that the rates of change in the three hormone levels

are quickened once CD has occurred, the data do not record which rats had

CD, so we cannot compare hormone levels for rats with and without CD.

Therefore, we predict the hormone variables by dose alone. Previous analy-

ses of the hormone data, such as Crofton (1998) and Crofton and Marcus

(2001), used an ANOVA approach. Our approach is to view the dose level

as a continuous measurement and fit a regression model. In addition, the

three hormones T3, T4 and TSH are related in the mechanistic model and

exhibit noticeable correlation. Therefore, our proposed model for Step 2 is a

multivariate linear regression model with the logarithmic transformation of

dose level as the predictor. The dose measurements were 0, 0.01, 0.05, 0.2,

1.0 and 10 mg/kg-day with ten rats of each sex at each dose level. Taking

the logarithm of the dose level adjusts the scale of dose level so as to im-

prove the linear fitting of hormone variables. Once we take the logarithmic

transformation, we must deal with the zero dose level. We address this is-

sue by introducing additional parameters, namely the δ’s that we described
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earlier. We consider two ways of introducing the δ’s: three distinct δ’s, one

for each hormone, and one common δ for all three hormones. The choice

between these two ways of introducing δ’s are made as part of the overall

model selection exercise described in Table 1.

We do not impose constraints on the slopes of the three hormones as we

did in Step 1 because we did not know for sure at what point the sacrifices

would occur in the feedback mechanism illustrated in Figure 1. When TSH

increases, the thyroid tries to replenish the reduced levels of T3 and T4. Al-

though we expected rats to have decreased levels of T3 and T4 and increased

levels of TSH, we did not want to force the model to fit constrained slopes.

In the following description of the model, some notation appears repeat-

edly. A vector of all 0’s is denoted 0, and the following two special matrices

are used in several places:

Σ =




1.0 −0.5 0.5

−0.5 1.0 0.5
0.5 0.5 1.0



 × 10−2, Ω =




1.0 0.5 −0.5
0.5 1.0 −0.5

−0.5 −0.5 1.0



 × 10−2.

• Multivariate regression: response = (log(T3), log(T4), log(TSH)), ex-

planatory = dose. We have separate parameters for the four combina-

tions of male/female and 14-day/90-day but otherwise the models are

identical. In the superscripts, s stands for sex (male or female) and t

stands for time (14-day or 90-day).

• Model structure :

– Y s,t
j : three-dimensional response vector for jth individual, j =

1, . . . , 60 (with missing values).

– Y s,t
j ∼ MVN3

(
µs,t

j
, Σs,t

)
, trivariate normal distribution,
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– Model A : µs,t

j
= νs,t + γs,t log(doses,t

j + δs,t),

Model B : µs,t

j
= νs,t + γs,t log(doses,t

j + δs,t
c

).

(Here, δs,t
2

= (δs,t
2,1, δ

s,t
2,2, δ

s,t
2,3) is a vector of three δ values for the

three hormones, and δs,t
c

is a common δ value for all three hor-

mones.)

• Prior distribution

– Noninformative prior distribution

νs,t
∼ MVN3 (0, Σ) , γs,t

∼ MVN3 (0, Σ) , (Σs,t)−1
∼ Wishart (Ω, 3) ,

δs,t
2,i ∼ Exp(5), i = 1, 2, 3, δs,t

c ∼ Exp(5).

– Hierarchical prior distribution

νs,t
∼ MVN3

(
µt

ν
, Σt

ν

)
, γs,t

∼ MVN3

(
µt

γ
, Σt

γ

)
, (Σs,t)−1

∼ Wishart (Ω, 3) ,

µt

ν
∼ MVN3

(
µ

ν
, Σν

)
, (Σt

ν)
−1

∼ Wishart (Ω, 3) , µt

γ
∼ MVN3

(
µ

γ
, Σγ

)
,

(Σγ)
−1

∼ Wishart (Ω, 3) , µ
ν
∼ MVN3

(
µ, Σ

)
, µ

γ
∼ MVN3

(
µ, Σ

)

δs,t
2,k ∼ Exp(γt), k = 1, 2, 3, δs,t

c ∼ Exp(γt)

γ−1

t ∼ Gamma(aδ, bδ), aδ ∼ Gamma(2, 2), bδ ∼ Gamma(2, 0.2)

3.2.3 Step 3 : (Dose , T4) ⇒ Hypertrophy and Hyperplasia The final

step predicts the incidence of hypertrophy (HT) and hyperplasia (HP) from

dose only, from T4 level only or from a combination of both dose and T4. In

this step, we fit two logistic regression models as we did in the first step. The

first logistic regression is for the probability of HT, and the second logistic

regression is for the conditional probability of HP given the incidence of HT.
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The response variables are the incidences of HT and HP, and the explanatory

variables are dose level and/or the amount of T4 (after a logarithmic trans-

formation). The data on HT and HP are available only as counts within each

group and dose level is measured by group, whereas T4 is measured on each

individual rat. Because one explanatory variable (T4) is known separately

for each rat, special attention is needed when T4 is used as a predictor. We

choose to use the average of the ten T4 values for each group. In addition, we

need to consider both HT and HP simultaneously because HT must occur in

order for HP to occur. That is, the biological assumption from expert knowl-

edge suggests that it is not plausible for a rat to have HP without having

HT first.

The following equations show our models for the final step.

• Logistic regressions : responses = HT and HP, explanatory = dose

and/or T4. We have separate parameters for the four combinations of

male/female and 14-day/90-day but otherwise the models are identical.

In the superscripts, e stands for endpoint (HT or HP), s stands for sex

(male or female) and t stands for time (14-day or 90-day).

• Model structure:

– For the ith group (i = 1, . . . , 6), re,s,t
i is the number of incidences

of the endpoint, ns,t
i is the number of rats observed, pe,s,t

i is the

probability of having the endpoint, (for e = HP it is the condi-

tional probability of getting HP given that the rat has HT) and

T4
s,t

i is the average of 10 values of T4.
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– rHT,s,t
i ∼ Binomial(ns,t

i , pHT,s,t
i ), rHP,s,t

i ∼ Binomial(rHT,s,t
i , pHP,s,t

i )

given rHT,s,t
i .

– Model A : logit(pe,s,t
i ) = αe,s,t

1
+ αe,s,t

2
dosei.

– Model B : logit(pe,s,t
i ) = αe,s,t

1
+ αe,s,t

2
dosei + αe,s,t

3
log(T4

s,t

i ).

• Prior distributions

– Noninformative prior distribution

αe,s,t
1

∼ N
(
0, 103

)
, αe,s,t

2
∼ PN

(
0, 103

)
, αe,s,t

3
∼ NN

(
0, 103

)
, δs,t

5
∼ Exp(5).

– Hierarchical prior distribution

αe,s,t
1

∼ N(µe,t
1

, σ2e,t

1
), αe,s,t

2
∼ PN(µe,t

2
, σ2e,t

2
), αe,s,t

3
∼ NN(µe,t

3
, σ2e,t

3
), δs,t

5
∼ Exp(γt)

For i = 1, 2, 3: µe,t
i ∼ N(µe

i , σ
2e

i ), σ2e,t

i ∼ Gamma(ae
i , b

e
i )

µe
i ∼ N(0, 103), τ e

i = 1/σ2e

i ∼ Gamma(0.001, 0.001), γ−1

t ∼ Gamma(aδ, bδ)

ae
i ∼ Gamma(2, 1.2), be

i ∼ Gamma(2, 1.2), aδ ∼ Gamma(2, 2), bδ ∼ Gamma(2, 0.2)

3.3 Implementation and prediction

To make the units of predictors from different situations, i.e. dose and

log T4, more similar in the hierarchical framework, we use a standardized

version of each predictor. That is, we subtract the sample mean and divide

by the sample standard deviation of each predictor before fitting the models.

With multiple studies (e.g., 14-day and 90-day), the issue arises as to how to

standardize the predictors. We prefer standardizing the predictors in each

study separately rather than standardizing all of them together. That is,

the sample means and standard deviations are calculated separately for the
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different data sets of predictors by sex (F/M) and exposure time (14/90).

Another alternative is to standardize all of them together by pooling all data

sets into one data set and calculating the sample mean and standard de-

viation for the combined set. This alternative has some drawbacks in the

framework of multiple studies. For example, if a new study were to be con-

sidered, we would need to recalculate the overall sample mean and standard

deviation. This would change the interpretations of the prior distributions

used for the parameters of the earlier data sets.

After fitting the models, prediction of the future data can be made based

on the posterior predictive distribution. We illustrate this by drawing plots

based on such predictions.

4. Results

4.1 Step 1

We obtained 2000 posterior samples for all parameters for each combi-

nation of female or male rats in the 14-day or 90-day study under different

prior distributions (noninformative and hierarchical prior distributions) for

both Model A and Model B. For 101 dose levels between 0 and 10 mg/kg-day

with a spacing of 0.1mg/kg-day and for each of the 2000 simulated parameter

vectors from the MCMC output, we calculated the probability of getting CD

at each dose for each sex in each study.

There were some differences apparent between not only males and females

but also Models A and B and between the two different specifications of

prior distributions. The most notable case that we could observe in the

prediction plots where Models A and B and the priors matter was with

female rats in the 14-day study. In this case there were no incidences of CD
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at any of the dose levels less than 10.0 mg/kg-day. (See Table 2.) In terms

of model fitting, the six incidences of CD for female rats from the 14-day

study at dose level 10.0 are not enough to estimate the intercept and slope

of a logistic regression and the resulting parameters are unstable with high

standard deviation. This instability was reduced by the hierarchical approach

and the standard deviations for most parameters became smaller than in the

case of a noninformative prior distribution. In particular, the less informative

female rat data in the 14-day study is complemented by information from

male rats and 90-day data in the hierarchical structure. Figure 4 illustrates

predictions from the four combinations of model and prior for this case. In

addition, the prediction plots from Model B show a greater effect of lower

dosages on the prediction curve, due to the logarithmic transformation of

dose.

[Figure 4 about here.]

4.2 Step 2

In Step 2, Model A uses the different dose increments (δi’s) for each of

the three hormones and Model B uses a single dose increment for all three

hormones. If a small δ value is estimated, then this δ value makes the zero

dose level very far from the other dose levels on the logarithmic scale. In

contrast, when large δ values are estimated, the zero dose case is treated as

closer to the nonzero doses on the logarithmic scale.

Figure 5 illustrates the difference between separate δ’s and common δ.

It is observed that prediction plots based on model A provide better fitting

than those based on model B, which can be interpreted as the advantage of

using separate δ’s.
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[Figure 5 about here.]

4.3 Step 3

The probabilities of getting HT and of getting HP conditional on having

HT were computed as follows. Since Step 3 of Model B includes T4 as a

predictor, we used the average of the log(T4) level of all rats in each dose

group as a predictor for HT and HP. Model A includes only dose level as

a predictor, so probabilities are calculated more simply. In drawing the

prediction plots, we used the same strategy as for Step 1. For each of the

101 dose levels that we used in Step 1 and for each of the 2000 simulated

parameter vectors from the MCMC output, we simulated the average of 10

log(T4) levels for rats at the given dose and used this average as the predictor

for HT and HP in Model B. The probability of HP in the graphs refers to

the marginal probability of HP, calculated as the product of the probability

of HT and the conditional probability of HP given the occurrence of HT.

In Model A, some of the predicted probabilities for HT and HP at the

lower levels of dose (0, 0.01, and 0.05) are indistinguishable, while the pre-

dicted probabilities for HT and HP under Model B reflect the use of log(T4)

as a predictor. The effect arises because the decrease of log(T4) at the lower

dose levels is so significant. This change in log(T4) helps to explain the in-

crease in the probability of getting HT at the lower dose levels as in the case

of male rats in the 90-day study. Although the differences between the two

models are not very striking in the 14-day study, we see some slight improve-

ment in the fit at low dose levels in the 90-study from the use of log(T4) in

model B, as shown in Figure 6

[Figure 6 about here.]
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In the 90-day study, male and female rats show similar patterns of HP oc-

currence, with only one non-zero observation at the highest dose level. As a

result, the probability curves for HP for both sexes in the 90-day study get to

be determined by the single dose at which HP occurred. Under the noninfor-

mative prior distribution, the estimates for the parameters of the HP model

are rather unstable but, if we consider the hierarchical prior distribution,

more stable results are obtained.

As we have noted several times, a serious problem with the histopathology

data is the insensitivity to dose, i.e. the small numbers of HT and HP

incidences at most of the dose levels in the 14-day study. Of course, if these

dose levels and the 14-day time point are all that are of interest, then there

is some evidence that perchlorate has little effect on the probability of HP

for both male and female rats. Because there is little or no change in the

incidence of HP in the 14-day study, it is virtually impossible to get stable

estimates for the parameters of the models that relate dose to probability

of HP in the 14-day study. In addition, it doesn’t much matter which prior

distribution or model we use, the data don’t tell us much more than the fact

that the probability of incidence is low and doesn’t change much over the

dose levels in the design. Figure 7 illustrates this result.

[Figure 7 about here.]

Once again, the observed data are not sufficiently informative to fit a logistic

regression model, which is similar to the situation that arose in Section 4.1

when we tried to predict the probability of getting CD for female rats in the

14-day study. In Section 5, we discuss a way to use our model fit to suggest

what further data could be collected to help alleviate this lack of information.
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5. How to collect more informative data

Suppose that the same laboratory experiment could be performed with one

additional dose level. We would like to determine the optimal additional dose

level from the point of view of reducing some of the uncertainty in the model

fit. We use a method based on a preposterior analysis of our fitted Bayesian

models to evaluate the value (expected variance reduction) of additional in-

formation (Müller, 1999). For this purpose, we chose to look at the variation

in model fit that one sees in Figure 4. When performing a Bayesian analysis,

one hopes that different choices of prior distribution and similar models will

produce similar predictions. If they produce vastly different predictions, that

is evidence that the data are not sufficiently informative to provide a good

model fit, as we have already noted with the CD data. As a quantitative

measure of uncertainty, we chose the following measure of spread between

the four plots in Figure 4. Label the four plots i = 1, 2, 3, 4. Label the mean

curve in each plot j = 1, label the 5th percentile curve j = 2, and label the

95th percentile curve j = 3. Let ui,j,k be the height of curve j in plot i at

dose equal to k for k = 0, 1, . . . , 10. Let u.,j,k = 1

4

∑
4

i=1
ui,j,k be the average

height for each curve/dose combination. Our measure of spread between the

four plots is then

V =
3∑

j=1

10∑

k=0

1

3

4∑

i=1

(ui,j,k − u.,j,k)
2, (1)

the total of the sample variances of the four heights for all of the curve/dose

combinations. The smaller V is, the more similar the four plots look, and

the less difference the different model/prior combinations make to the pre-

dictions. In our analysis, V = 0.3587 was observed.
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Now, we ask how we could make the value of V smaller by collecting a

little more data. Specifically, if we were to sample another set of ten rats with

a new dose d, which value of d would reduce V the most? We addressed this

question by simulating new data at different dose levels, fitting the model

again including the new data, and computing a corresponding value of V from

(1). To be precise, we chose doses from 1.5 to 9.5 in steps of 0.5 together with

doses of 1.1, 5.3, 5.6, 6.7, and 9.9. For each dose, we simulated 200 new sets

of rats at that dose as follows. First, we selected one of the four model/prior

combinations at random, Second, we selected one of the 2000 vectors of

parameters from the posterior sample that was obtained while fitting that

model/prior combination. Third, we computed the probability p of CD given

the selected parameter and the chosen dose, Fourth, we simulated a binomial

random variable Y with parameters 10 and p, and treated Y as if it were

part of the original data.

For each simulated data set, we fit all four model/prior combinations and

computed a V from (1) as if Figure 4 had been plotted again. We then

averaged the 200 values of V and plotted them against dose in Figure 8.

[Figure 8 about here.]

We see that a new dose around 5mg/kg-day would be expected to lower the

value of V quite a bit, thereby making the four plots in the resulting version

of Figure 4 more similar.

6. Conclusion and Discussion

We have developed several models to fit perchlorate dose-response functions

using data from the Springborn 90-day study of Springborn Laboratories Inc.
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(1998), based upon a mechanistic model derived from the assumed toxicolog-

ical relationships between dose and the various endpoints. All the models

were estimated and predictions were simulated in a fully Bayesian framework.

Predictions about each endpoint in response to dose exposure are simulated

based on the posterior predictive distribution. The hormone data, consisting

of T3, T4 and TSH, were fit well by a multivariate regression model, using

a logarithmic transformation of dose plus a dose increment δ to deal with

zero doses. By introducing different δ values for each hormone, a more flex-

ible model fitting is possible but it is not clear that different values provide

much improvement over a common δ. Some of the histopathology end points

were not very sensitive to the changes in dose that were represented in the

Springborn study. For this reason, it was difficult to fit dose-response curves

separately to each sex/sacrifice date combination. A hierarchical model that

tries to exploit possible similarities between different combinations of sex and

exposure duration was able to produce more stable estimates of dose-response

curves.

There are some further issues yet to be resolved. First, we chose two em-

pirical models to fit the data based upon a mechanistic model, but there is

still the issue of model selection between two competitive models. Model A is

simpler than Model B and superior to Model B based on the model selection

criterion BIC; however, Model B may reflect expert knowledge better than

Model A in terms of the use of the T4 level in Step 3. This difference re-

sulted in different predictions of the probability of HT, in particular, for the

predictions at lower dose levels. Second, we chose a particular hierarchical

structure to combine different sexes and exposure durations. Other hierar-
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chical structures are available, and some might be more reasonable based on

expert opinion.

Incomplete or sparse information, particularly in the histopathology data,

was a serious problem in the analysis. To improve the estimation, one might

try to find the optimal dose level at which to conduct an additional experi-

ment. We did this via a simulation version of preposterior analysis.

The model that we developed can be evaluated by experts and estimates

can be used to identify the hazardous effects of perchlorate exposure. In

Schmitt et al. (2004), we pursue this approach by computing quantities of

interest to regulators together with associated uncertainties.
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Figure 1. Perchlorate’s effect
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Figure 4. Probability of CD for female rats in 14 day study. First row is
Model A, while second row is Model B. First column is noninformative prior,
while second column is hierarchical prior. Solid lines are means, dashed lines
are medians of the 2000 MCMC simulations. Dotted lines show pointwise
90% credible intervals for the probability of CD at each dose.
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Figure 5. Effects of perchlorate dosage on T3, T4 and TSH for male rats
in 14 day study. First row is Model A using separate δ’s, while second row
is Model B using common δ. Solid lines are means, dashed lines are medians
of the 2000 MCMC simulations. Dotted lines show pointwise 90% credible
intervals of MCMC simulations at each dose.
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Figure 6. Probability of HT for male rats in 90-day study for Models A and
B in both 14 and 90-day studies
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Figure 7. Probability of HP for female rats in the 14-day study and the
90-day study crossed with different models

32



1.1 2 3 4 4.5 5 5.5 6 7 8 9 9.5 9.9
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

dose : (mg/kg−day)

me
as

ur
e o

f v
ar

iat
ion

 : d
iss

im
ila

rity

CD for female rats in the 14−day study  

Measure of variation without any additional dose : 0.3587 

Measure of variation at different additional dose levels 

Minimum achieved at between 4.5 −5.6 mg/kg−day 

Figure 8. Finding the optimal design point : e.g. CD for female rats in the
14-day study

33



Table 1

BIC values for two best models at each step

Step Model BIC (14 day) BIC (90 day) BIC (Total)

1 dose 42.76032 40.01666 82.77698
log(dose + δ) 55.63924 46.00789 101.6471

2 log(dose + δ) -502.4542 -528.8523 -1031.307
log(dose + δc) -496.8823 -530.1983 -1027.081

3 dose 71.83565 65.3227 137.1583
dose + log(T4) 82.73969 76.22593 158.9656

Note : In step 2, δ denotes a separate dose increment for each blood hormone
endpoint, whereas δc denotes a common dose increment for all three.
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Table 2

Histopathology data from Wolf (2001). Here, n stands for the number of
rats with observed histopathology

14-day 90-day
Female Male Female Male

dose n CD HT HP n CD HT HP n CD HT HP n CD HT HP

0 10 0 1 0 7 3 4 3 10 0 0 0 10 0 1 0
0.01 10 0 1 0 10 0 5 1 10 0 0 0 10 1 2 0
0.05 10 0 0 0 10 5 5 2 10 1 3 0 10 1 0 0
0.2 10 0 0 0 10 5 3 0 10 1 2 0 10 1 2 0
1.0 10 0 1 0 10 4 7 4 10 1 1 0 10 2 3 0
10.0 10 4 8 0 9 7 5 2 10 4 5 3 10 9 8 4
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