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We present a method for multiple hypothesis testing that maintains control of the
False Discovery Rate while incorporating prior information about the hypotheses.
The prior information takes the form of p-value weights. If the assignment of
weights is positively associated with the null hypotheses being false, the procedure
improves power, except in cases where power is already near one. Even if the
assignment of weights is poor, power is only reduced slightly, as long as the
weights are not too large. We also provide a similar method to control False
Discovery Exceedance.

1 Introduction

Data from DNA microarray experiments, genetic epidemiology, functional Magnetic Reso-

nance Imaging (fMRI) experiments, and astronomical imaging have spurred renewed interest

in the multiple testing problem – controlling overall error rates when performing simultaneous

hypothesis tests. These data sets share two features that distinguish them from multiple-

testing examples in traditional linear models. First, there are often many thousands, even

millions, of null hypotheses to test. This exacerbates the trade-off between power and Type I

error control, making it more difficult to detect small effects, which are often of the greatest

interest. With fMRI experiments, for example, applying methods such as Bonferroni to con-

trol the familywise error rate (FWER) often wipes out any evidence for significant effects.

Second, the tests are related by a scientifically meaningful structure. In fMRI, each test

corresponds to a specific brain location; in microarray studies, each test corresponds to a

specific gene. Both scientific and spatial prior information can thus be exploited to improve

the performance of testing procedures. Put simply, all null hypotheses are not created equal.

The introduction of the False Discovery Rate (FDR) and a procedure to control it by

Benjamini and Hochberg (BH, 1995) gave an effective way to address the first issue above.

FDR control lets investigators increase power while maintaining a principled bound on error.

The BH procedure is fast and easy to compute even with large data sets and performs well

1This work was partially supported by funding from National Institutes of Health grants NS047493-01
(CG) and MH057881 (KR, LW) NSF Grant DMS-0104016 (CG, LW).
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in sparse cases where there are relatively few true alternatives (Genovese and Wasserman,

2002). Let P(1) < . . . < P(m) be the ordered p-values from m hypothesis tests, with P(0) ≡ 0.

Then, the BH procedure rejects any null hypothesis for which P ≤ T with

T = max
{
P(i) : P(i) ≤

αi

m

}
; (1)

this controls the FDR at level αm0/m, where m0 is the number of true null hypotheses.

Adaptive variants of the BH procedure can increase power further at little additional com-

putational expense; see Benjamini, Krieger, and Yekutieli (2004) and Storey (2002).

But neither the BH procedure nor its variants deal with the second issue above, structure

and prior information, because they treat all null hypotheses interchangeably. For example,

previous studies can suggest that some null hypotheses are more (or less) likely to be false.

Similarly, in spatial problems, the false nulls are more likely to be clustered than true nulls.

In this paper, we consider the potentially powerful approach of expressing prior information

through weights on each null hypothesis.

The idea of weighting hypotheses is not new. We distinguish two approaches: p-value

weighting, as above, and loss weighting, where each weight is placed on the loss or error cri-

terion for the corresponding incorrect decision. Holm (1979) introduced the idea of p-value

weights, describing them as “positive constants indicating the importance of the hypothe-

ses...”. A larger weight can be used to suggest it is more likely that the null hypothesis is

false a priori. Holm (1979) showed that his sequential step-down test maintains control of

the family-wise error rate when the p-values are divided by weights, as long as the step-down

constants are adjusted appropriately. Benjamini and Hochberg (1997) investigated the use of

weighting in a variety of settings. They used weights in the definition of the error rate (loss

weighting) to indicate the importance of each hypothesis. Here, we use p-value weighting as

a frequentist method for including prior information about the hypotheses, leaving the error

measure unchanged.

Such prior information is often available in practice. In fMRI studies, for example, in-

formation on the functional response to a stimulus can be gleaned from previous studies,

pilot data, and direct neural recording in animals. Detailed anatomical information is also

available from structural images of each subject. Similarly, in genetic epidemiology tens of
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thousands of genomic regions may be tested in a genetic association study to locate alleles

that increase the risk for complex diseases. Frequently the association study is conducted af-

ter genetic linkage studies have been published. In contrast to an association study, which is

designed to pinpoint genetic variants associated with disease, linkage analysis points to very

broad regions of the genome that appear to contain genetic variants of interest. These regions

often contain tens or even hundreds of genes. Initially it might seem that such information

would not be refined enough to offer reliable weights; however, coupled with the partial

knowledge of genetic function available from the human genome project, linkage studies are

likely to provide useful guidance for choosing weights in an association study.

In general, p-value weighting raises several important questions. How can we choose

weights so as to maintain control of a suitable error criterion, such as FDR? How much

power can we gain if we guess well in the weight assignment? How much power can we lose if

we guess poorly? In this paper, we will present a p-value weighting procedure that controls

FDR. We will show that under moderately informative guessing, weighting improves power

nontrivially and that under even mis-informative guessing, the worst-case loss in power is

small. We also explore the role of weights when controlling False Discovery Exceedance (FDX;

Genovese and Wasserman 2004a, 2004b; and van der Laan, Dudoit, and Pollard 2004). The

reader interested primarily in our procedures can read only Section 3 for FDR control and

Section 5 for FDX Control.

2 P-value Weighting

Consider the simplest case where, based on previous studies and results, an investigator can

partition the m null hypotheses into two groups, where the null is a priori more plausible

in one and the alternative in the other. In this setting is seems reasonable to consider using

different thresholds for hypotheses in each of the two groups. If the (random) thresholds are

T0 and T1, say, and j(i) is the group for the ith null hypothesis, we can write Pi ≤ Tj(i) as

Pi ≤ WiT , or equivalently Pi/Wi ≤ T , where T = (T0 + T1)/2 and Wi = 2Tj(i)/(T0 + T1).

Thus using different thresholds for the groups corresponds to using a single threshold but

weighting the p-values. Note that when T0 6= T1, the weights will be bigger than 1 in one
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group and less than 1 in the other. There is, of course, no restriction to binary weighting

schemes in general.

Whatever information one uses to construct p-value weights, the weight assignment re-

mains a guess. We treat this guess as if it is made a priori, that is, before seeing the p-values,

and for the purposes of analysis, we model the weights as random variables that are related

to the underlying truth or falsehood of each null hypothesis.

Let P m = (P1, . . . , Pm) denote the observed p-values, with P(1) < . . . < P(m) denoting the

ordered p-values and P(0) ≡ 0. Define hypothesis indicator variables Hm = (H1, . . . , Hm),

where Hi = 0 (or = 1) if the ith null hypothesis is true (or false). Let the p-value weights be

random variables W m = (W1, . . . , Wm) that are conditionally independent of P m given Hm.

See Figure 1.

We will assume that the p-values are drawn independently from the following mixture

model:

H1, . . . , Hm
iid←− Bernoulli(a) (2)

ξ1, . . . , ξm
iid←− L (3)

Pi | Hi = 0, ξi ←− Uniform(0, 1) (4)

Pi | Hi = 1, ξi ←− ξi, (5)

where 0 < a < 1 and where L is a probability distribution on a class of p-value probability

cdfs. Let F =
∫

ξdL(ξ) be the marginal alternative, which we assume stochastically smaller

than the Uniform. Marginally, the p-values are drawn iid from the cdf G = (1− a)U + aF ,

where U is the cdf of a Uniform(0, 1).

We consider two models for generating W m. The first is essentially general; the second is

a special case but makes analysis easier and more concrete.

General Weighting. We assume that

Wi | Hi = 0 ←− Q0

Wi | Hi = 1 ←− Q1,

for probability distributions Q0, Q1 on (0,∞). The marginal distirbution of W is then Q =
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(1− a)Q0 + aQ1. For j = 0, 1, let µj = E (W | H = j), the means of Q0 and Q1 respectively,

and let µ = (1− a)µ0 + aµ1 be the marginal mean..

Under this model, define D(t) = P{P/W ≤ t}. Then, we have

D(t) =

∫
P

{
P

W
≤ t

∣∣∣ W = w

}
dQ(w)

=

∫ 1∑

h=0

P

{
P

W
≤ t

∣∣∣ W = w, H = h

}
f(h|w) dQ(w)

=

∫ 1∑

h=0

P

{
P ≤ wt

∣∣∣ H = h
}

f(h|w)dQ(w)

=

∫ 1∑

h=0

(
(1− h)tw + hF (tw)

)
f(h|w)dQ(w)

=

1∑

h=0

∫ (
(1− h)tw + hF (tw)

)
dQ(w|h)f(h)

= (1− a)

∫
twdQ(w|h = 0)f(h) + a

∫
F (tw)dQ(w|h = 1)

= (1− a)µ0t + a

∫
F (wt)dQ1(w). (6)

Binary Weighting. In this case, the weights W1, . . . , Wm can take on two possible values

w0 ≤ 1 ≤ w1 and satisfy (1/m)
∑

Wi ≈ 1. The two values w0 and w1 correspond to guesses

that the null or alternative is true. (This can easily be extended to any fixed finite num-

ber of weight values.) This guessing scheme has three parameters: γ, which determines the

prevalence of alternative guesses, η, which determines the informativeness of guessing, and

r, which determines the strength of weighting.

Let Um = (U1, . . . , Um) be Bernoulli random variables representing prior guesses for each

of the hypotheses, with U = 1 corresponding to an alternative and U = 0 to a null. Let

Um = 1
m

∑m
i=1 Ui. Assume that Um and P m are conditionally independent given Hm.

We assume that each Ui is drawn marginally from a Bernoulli(γ) with

P{Ui = 1 | Hi = 1} =
γη

aη + 1− a
(7)

P{Ui = 1 | Hi = 0} =
γ

aη + 1− a
. (8)

Thus, η = P{U = 1 | H = 1} /P{U = 1 | H = 0}, a measure of the informativeness of guess-

ing. When η = 1, Um and Hm are independent; for η > 1, there is greater likelihood of
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guessing correctly, and for 0 ≤ η < 1, incorrectly. We will typically assume that the (Pi, Ui)

pairs are independent. Note the following constraint coupling γ and η:

0 ≤ γ ≤ min

(
aη + 1− a, a +

1− a

η

)
. (9)

We usually take γ > 0.

Based on the Uis, we define weights Wi as follows:

Wi =
1 + (r − 1)Ui

1 + (r − 1)Um

. (10)

Each of these weights takes on one of two values: w0 = 1/(1 + (r − 1)Um) and w1 =

r/(1 + (r − 1)Um). Note that

r =
w1

w0

and that the mean weight satisifes W m = 1. When the parameter r = 1, we return to the

unweighted case.

Because of the Um in the denominator above, it is convenient for analysis to use weights

that only approximately satisfy W m = 1. Define

W̃i =
1 + (r − 1)Ui

1 + (r − 1)γ
. (11)

Note that

1

m

m∑

i=1

W̃i = 1 +
1√
m

√
m(Um − γ)

1 + (r − 1)γ
= OP

(
1√
m

)
(12)

W̃i −Wi

W̃i

=
1√
m

(r − 1)
√

m(Um − γ)

1 + (r − 1)γ + (r − 1)(Um − γ)
= OP

(
1√
m

)
, (13)

so for now, we will ignore the difference between the two weighting schemes and write Wi

for W̃i.

3 FDR Control With Prior Weighting

If we reject all hypotheses for which Pi ≤ T , for some (possibly random) threshold T , then

the false discovery proportion FDP is defined to be

FDP(T ) =
false rejections

rejections
=

∑n
i=1 1{Pi ≤ T } (1−Hi)∑n

i=1 1{Pi ≤ T } (14)
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where the ratio is defined to be 0 when the denominator is 0. For threshold T , FDR is defined

to be E(FDP(T)).

We now define a procedure, which we call wBH, for incorporating prior p-value weights

while maintaining control of FDR. Following Holm, we weight the p-values using prior weights

Wi. Define Qi = Pi/Wi where Wi > 0. In practice the weights adjust the threshold for

rejection: rejecting when Qi ≤ T is equivalent to rejecting when Pi ≤ WiT .

Storey (2002) and Genovese and Wasserman (2002) noted that the BH threshold can be

written as

TBH = sup

{
t : B̂(t) ≤ α

}
(15)

where

B̂(t) =
t

Ĝm(t)
.

This suggests incorporating the weights by defining:

TwBH = sup

{
t : R̂(t) ≤ α

}
. (16)

where

R̂(t) =
t
∑m

i=1 Wi∑m
i=1 1{Pi ≤ Wit}

=
tW m

D̂m(t)
, (17)

where Wm is the average of the weights and D̂m(t) is the empirical cdf of Pi/Wi.

The procedure is as follows:

1. Assign weights Wi > 0 to each null hypothesis such that 1
m

∑
i Wi = 1. (This latter

condition need only be approximately met in practice.)

2. For each i = 1, . . . , m, compute Qi = Pi/Wi.

3. Apply the BH procedure at level α to the Qis.

In Section 4, we show that wBH controls FDR at the nominal level. In Sections 6 and 7,

we investigate the power of the procedure.

Remark 3.1. It is possible to replace the BH procedure in Step 3 above with an adaptive

FDR-controlling procedure. We expect that this will improve power, although we do not
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investigate this question fully here. Using an adaptive procedure corresponds to inserting an

estimate of the proportion of true nulls in the expression for R̂. For example, define

R̂+(t) =
̂(1− a)tW m

D̂m(t)
. (18)

The estimator in Storey (2002) is a reasonable candidate.

4 wBH Controls FDR

In this section, we show that wBH is a valid FDR-controlling procedure under the general

weighting scheme. We begin with a finite-sample result and then describe the asymptotic

behavior of the wBH threshold.

Theorem 4.1. wBH controls FDR at the level α(1− a)µ0 and conditionally on Hm, at

the level αµ0
1
m

∑
i(1 − Hi). If µ0 ≤ 1/(1 − a), which occurs for instance when µ ≤ 1, then

wBH ensures FDR ≤ α.

Proof. Our approach is based on the method of Benjamini and Yekutieli (2001). First,

let Qi = Pi/Wi with sorted values Q(i) as usual. Note that the wBH threshold for the Qis

T = sup

{
t :

tW m

D̂m(t)
≤ α

}

can be equivalently written as

T = sup

{
Q(i) : Q(i) ≤

αi∑
Wj

}
.

Let qk = αk/
∑

j Wj. If we require
∑

j Wj = m, then qk = αk/m.

Define the events

Rk,i =

{∑

j 6=i

1{Qj ≤ qk} = k − 1

}
. (19)

For each i, the events Rk,i for k = 1, . . . , m form a partition: they are disjoint and ∪m
k=1Rk,i

must occur. To see the last point, note that for each realization k 7→ 1 +
∑

j 6=i 1{Qj ≤ qk}
is a non-decreasing function from {1, . . . , m} into {1, . . . , m} and thus has a fixed point.
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Then,

E (FDP(T ) | Hm)

=
∑

i : Hi=0

m∑

k=1

1

k
P

(
{Pi ≤ Wiqk} ∩Rk,i

∣∣∣ Hi = 0, Hm
)

(20)

=
∑

i : Hi=0

m∑

k=1

1

k
E

(
P

(
{Pi ≤ Wiqk } ∩Rk,i

∣∣∣ Hi = 0, Hm, W m
) ∣∣∣ Hi = 0, Hm

)
(21)

=
∑

i : Hi=0

E

(
m∑

k=1

1

k
P{Pi ≤ Wiqk | Hi = 0, Hm, W m} P(Rk,i | Hm, W m)

∣∣∣ Hm, Hi = 0

)

(22)

=
∑

i : Hi=0

E

(
m∑

k=1

αWi∑
j Wj

P(Rk,i | Hm, W m)
∣∣∣ Hm, Hi = 0

)
(23)

=
∑

i : Hi=0

E

(
αWi∑

j Wj

m∑

k=1

P(Rk,i | Hm, W m)
∣∣∣ Hm, Hi = 0

)
(24)

=
∑

i : Hi=0

E

(
αWi∑

j Wj

∣∣∣ Hi = 0, Hm

)
. (25)

Equation (22) follows from the (conditional) independence of Pi and P−i. In the case of

discrete test statistics, equality in (23) need not hold, but it can be replaced by a ≤ as

mentioned by Benjamini and Yekutieli (2001).

Because
∑

j Wj ≡ m, it follows that

E (FDP(T ) | Hm) = αE (W1 | H1 = 0)
1

m

∑

i

(1−Hi) = αµ0
1

m

∑

i

(1−Hi). (26)

This proves the second claim. Taking expectations under the mixture model produces αµ0(1−
a) on the right hand side. If µ = 1, then µ0 ≤ 1/(1− a), so this bound is ≤ α. �

Remark 4.1. In general, if E
∑

j Wj = m, we have

E (FDP(T ) | Hm) = αE

(
W1

W m

∣∣∣ H1 = 0, Hm

)
1

m

∑

i

(1−Hi), (27)

so FDR = αµ0(1− a) + O(m−1/2).

Now define

C(t) =
D(t)

tµ
, (28)
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Ĉm(t) =
D̂m(t)

t×W m

, (29)

and corresponding threshold

t∗ = sup

{
t : C(t) ≥ 1

α

}
, (30)

Tm = sup

{
t : Ĉm(t) ≥ 1

α

}
. (31)

(Note that Tm is an equivalent expression for TwBH.) Recall also that G and D are, respectively,

the marginal cdfs of Pi and Pi/Wi, and that F is the marginal alternative distribution. We

then have the following.

Lemma 4.1. If F is strictly concave on [0, 1], then (i) G is strictly concave on [0, 1],

(ii) D is strictly concave on [0, 1], and (ii) C is monotone decreasing on (0, 1).

Proof. Because G = (1− a)U + aF , the first claim follows immediately. Similarly, by

equation (6), D(t) = (1− a)µ0t + a
∫

F (wt)dQ1(w). Hence, for 0 ≤ λ ≤ 1,

D((1− λ)t0 + λt1) = (1− a)µ0((1− λ)t0 + λt1) + a

∫
F (w((1− λ)t0 + λt1))dQ1(w)

> (1− λ)D(t0) + λD(t1), (32)

where the final inequality is strict because Q1 has all its mass on (0,∞). This proves the

second claim.

Finally, let 1 > t1 > t0 > 0 and note that F (0) = 0 implies D(0) = 0. Note that

C(t1) =
D(t1)

t1
=

(1− t0
t1

)D(0) + t0
t1

D(t1)

t0
≤ D(t0)

t0
= C(t0), (33)

which proves (iii). �

Theorem 4.2. Assume that F is strictly concave. Then,

Tm → t∗ almost surely (34)

E |FDP(Tm)− FDP(t∗)| → 0 (35)

and thus

E (FDP(Tm)) ≤ α + o(1). (36)
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Proof. First assume that the Wis are not constrained to have average 1, and are thus

independent. Fix b, ε > 0. Then, C(t∗ + b) < 1/α, so C(t∗ + b) = 1/α− δ for some δ > 0. We

have, using Lemma 4.1, that for every t > t∗ + b,

Ĉm(t) =
D̂m(t)

t×W m

≤ D(t) + supu |D̂m(u)−D(u)|
tµ− t|W m − µ|

≤ D(t) + ε

t(µ− ε)
(37)

= C(t)

(
µ

µ− ε

)
+

ε

t(µ− ε)

≤ C(t∗ + b)

(
µ

µ− ε

)
+

ε

(t∗ + b)(µ− ε)

=

(
1

α
− δ

)(
µ

µ− ε

)
+

ε

(t∗ + b)(µ− ε)
<

1

α
, (38)

for large enough m. Equation (37) follows for large m from the Gilvenko-Cantelli Theorem

(which implies supu |D̂m(u)−D(u)| → 0 a.s.) and the Strong Law of Large Numbers (which

implies W m → µ a.s.). Hence, Tm < t∗ + b. Combined with a similar argument applied to

t < t∗ − b, this implies that

|Tm − t∗| ≤ b almost surely

for all large m.

Now,

FDP(Tm) =
m−1

∑
i(1−Hi)1{Pi/Wi ≤ t}

m−1
∑

i 1{Pi/Wi ≤ t} =
V̂m(Tm)

D̂m(Tm)
. (39)

Then, for all large m,

|D̂m(Tm)−D(t∗)| = |D̂m(Tm)−D(Tm) + D(Tm)−D(t∗)|

≤ sup
u
|D̂m(u)−D(u)|+ |D(Tm)−D(t∗)|

→ 0

by the Gilvenko-Cantelli and Continuous Mapping Theorems. By similar argument, V̂m(Tm)−
V (t∗) = o(1) almost surely, where

V (t) = E (1−Hi)1{Pi/Wi ≤ t} = (1− a)tµ0 ≤ tµ.

11



If the Wis are constrained to have average 1, we proceed as follows. Write Wi = Ui/Um

for iid variables U1, . . . , Um. Let W̃i = Ui/E U1. It follows that

D̂m(t) =
1

m

∑

i

1

{
Pi

Wi
≤ t

}

=
1

m

∑

i

1

{
Pi

W̃i

≤ t
E U1

E U1 + (Um − E U1)

}

≤ 1

m

∑

i

1

{
Pi

W̃i

≤ t
E U1

E U1 − ε

}

≤ P

{
Pi

W̃i

≤ t
E U1

E U1 − ε

}
+ ε,

for large enough m, uniformly in t. Similarly,

D̂m(t) ≥ 1

m

∑

i

1

{
Pi

W̃i

≤ t
E U1

E U1 + ε

}

≥ P

{
Pi

W̃i

≤ t
E U1

E U1 + ε

}
− ε,

Because ε > 0 is arbitrary, we conclude that supu |D̂m(t)− ̂̃Dm(t)| → 0 almost surely, where

D̃(t) = P

{
Pi/W̃i ≤ t

}
and

̂̃
Dm is the corresponding empirical cdf. The remainder of the

proof is the same.

Thus, |FDP(Tm)−FDP(t∗)| → 0 almost surely, and because this is bounded, dominated

convergence yields the second claim. The third claim follows immediately. �

5 Weighted Exceedance Control

In this section, we present an approach to weighted testing that controls False Discovery

Exceedance (FDX). The method generalizes the approaches in Genovese and Wasserman

(2004a, 2004b), van der Laan, Dudoit and Pollard (2004), and Perone Pacifico, Genovese,

Verdinelli, and Wasserman (2004a, 2004b). Those methods begin with a familywise test and

then augment the familywise rejection region by adding in extra rejections.

First, we introduce some notation that is helpful for this section. Let S = {1, . . . , m} and

let

S0 ≡ S0(P) = {j : Hj = 0} (40)
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be the set of true nulls. We call any (possibly random) R ⊂ S a rejection region and say

that R controls familywise error rate at level α if

P{#(R ∩ S0(P)) > 0} ≤ α,

where #(B) denotes the number of points in a set B. The FDP of a rejection set R is then

FDP =

∑m
j=1(1−Hj)1{j ∈ R}∑m

j=1 1{j ∈ R} (41)

where the ratio is defined to be zero if the denominator is zero.

Instead of controlling the mean of the FDR, we will instead control the FDP exceedance.

Specifically, our goal in this section is to use the weighted p-values to find a rejection set R
such that

FDX ≡ P{FDP > c} ≤ α (42)

for given c and α. We call such an R a (c, α) rejection region and we say that R provides

(c, α) exceedance control. The inequality (42) will be valid for all finite m and will not make

assumptions about the form of the dependence between the p-values.

We begin by introducing weighted familywise tests. Then we use these famliywise tests

to construct exceedance control methods.

Let us recall two popular methods for familywise control. Let

P(1) ≤ · · · ≤ P(m)

denote the sorted p-values. The Bonferroni method uses

R0 =

{
j : Pj ≤

α

m

}
.

Holm’s (1979) method takes

R0 =

{
j : Pj ≤ T

}

where T = 0 if P(1) ≥ α/m and T = P(k) otherwise, where k = max{j : P(j) < α/(m− j)}.
In what follows, we assume that P

{
W m = 1

}
= 1, for simplicity. This means that the

Wis are not independent but we do continue to assume that they are (marginally) identically

distributed. The weighted Bonferroni rejection set is

R0 =
{
j : Qj ≤

α

m

}
. (43)

13



Lemma 5.1. The weighted Bonferroni procedure controls familywise error at level (1 −
a)µ0α, which is ≤ α if µ = 1, as assumed above.

Proof.

P{#(R∩ S0(P)) > 0} = P

{
Pj ≤

αWj

m
for some j ∈ S0

}

≤
m∑

j=1

P

{
Pj ≤

αWj

m
and Hj = 0

}

=

m∑

j=1

P

{
Pj ≤

αWj

m

∣∣∣ Hj = 0

}
P{Hj = 0}

= (1− a)
m∑

j=1

∫
P

{
Pj ≤

αw

m

∣∣∣ Hj = 0, W m = wm
}

dQ0(w)

= (1− a)
α

m

m∑

j=1

∫
wdQ0(w)

= (1− a)αµ0 ≤ α.

�

Holm’s (1979) weighted procedure for controlling familywise error is as follows. Let Qi =

Pi/Wi and let

Q(1) ≤ · · · ≤ Q(m)

denote the sorted values. Let

H(1), . . . , H(m), and W(1), . . . , W(m)

denote the His and Wi’s sorted correspondingly. If Q(1) ≥ α/m, set R0 = ∅. Otherwise, find

the largest j for which

Q(j) <
α∑m

i=j W(j)

and let R0 be the indices corresponding to the j smallest Q′
js. Holm proved that

P{#(R0 ∩ S0(P)) > 0} ≤ α

when the weights and His are regarded as fixed. Let us now prove that the same is true for

random weights and random His by adapting his proof.
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Lemma 5.2. The weighted Holm procedure controls familywise error at level α.

Proof. Let Hm = (H1, . . . , Hm), W m = (W1, . . . , Wm), N0 =
∑m

i=1 Wi(1 − Hi) and

let π(h) denote the marginal probability mass function for the vector Hm. Also, we write

S0 = S0(H
m) to make explicit the dependence of S0 on Hm. Define the event

A =

{
Qi >

α

N0
for all i ∈ S0

}
.

Then,

P(A)

= 1− P

{
Qi ≤

α

N0
for some i ∈ S0

}

= 1−
∑

h

∫
P

{
Qi ≤

α

N0
for some i ∈ S0

∣∣∣ W m = w, Hm = h

}
dQ0(w)π(h)

≥ 1−
∑

h

∫ ∑

i∈S0(h)

P

{
Qi ≤

α

N0

∣∣∣ W m = w, Hm = h

}
dQ0(w)π(h)

= 1−
∑

h

∫ ∑

i∈S0(h)

P

{
Pi ≤

wiα

N0

∣∣∣ W m = w, Hm = h

}
dQ0(w)π(h)

= 1−
∑

h

∫ ∑

i∈S0(h)

wiα

N0

dQ0(w)π(h)

= 1− α
∑

h

∫
1

N0

∑

i∈S0(h)

widQ0(w)π(h)

= 1− α
∑

h

∫
N0

N0

dQ0(w)π(h)

= 1− α
∑

h

∫
dQ0(w)π(h)

= 1− α.

Assume A occurs. Let ν = min{j : H(j) = 0}. Then,

Q(ν) >
α

N0
=

α∑
i∈S0

Wi
≥ α∑m

i=ν W(i)

which implies that S0 ∩ R0 = ∅. �

LetR0 be the rejection region from either the weighted Bonferroni method or the weighted

Holm method. DefineR as follows. If #(R0) < (1−c)/c takeR = ∅. Otherwise takeR = R0∪
A where A ⊂ S is any set of hypotheses such that A∩R0 = ∅ and #(A)/(#(A)+#(R0)) ≤ c.
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Theorem 5.1. If R is constructed as defined above then

P{FDP > c} ≤ α. (44)

The proof is essentially the same as the proofs for the unweighted case in Genovese and

Wasserman (2004a, 2004b) or van der Laan, Dudoit and Pollard (2004).

There is freedom in choosing the extra rejections A. Two alternatives are to choose

the k hypotheses not in R0 with the smallest Q-values or the smallest P-values, where

k ≈ #(R0)c/(1− c). The former will have somewhat higher power when the weights are well

chosen and the latter will be more robust to mis-specification of the weights. Based on the

methods in Genovese and Wasserman (2004b) it is possible to construct versions with even

higher power but we shall not pursue them here.

6 Power of the Weighted Procedures

Having established that our procedures control FDR or FDX, we next turn to the question

of what effect weighting has on power. To make weighting worthwhile, power should improve

substantially when guessing is informative but not drop too low when guessing is poor.

The asymmetry between null and alternative makes this possible. With F stochastically

smaller than the Uniform, assigning small weights to true alternatives can still allow the

corresponding null hypotheses to be preferentially rejected, and similarly for large weights

assigned to true nulls. This “power arbitrage” does in fact appear to hold practice. Indeed,

if weighting is “informative,” in that the weights are positively associated with the null

hypothesis being false, we would expect weighting to improve power over the corresponding

unweighted procedure. In this section, we provide some theoretical support for this idea.

Let Q0 and Q1 be weight distributions as in Section 2, with respective means µ0 and µ1.

We assume that µ = (1− a)µ0 + aµ1 ≡ 1, so 0 < µ0 < 1/(1− a) and 0 < µ1 < 1/a. We call

µ1 > 1 the informative case and µ1 < 1 the mis-informative case.

Define the type I error rate and power as a function of threshold:

I(t) = P{P ≤ Wt | H = 0} = µ0t (45)

H(t) = P{P ≤ Wt | H = 1} =

∫
F (wt) dQ1(w). (46)
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Note that under informative weighting, the Type I error rate drops.

Now, let tw and t0 denote the asymptotic thresholds (defined from the population cdfs)

for the weighted and unweighted method. Then, we have that the ratio of power is

H(tw)

F (t0)
=

tw

t0

[
1 + (µ1 − 1)

aα

1− (1− a)α

]
. (47)

To see this, note that at the specified threshold

tw

D(tw)
= α =

t0

G(t0)
. (48)

Solving for H(tw) on the left side yields H(tw)/tw = 1/aα− µ0(1− a)/a = 1/aα + µ1− 1/a,

by the relationship between µ0 and µ1. A similar calculation for F (t0) shows that F (t0)/t0 =

1/aα− (1− a)/a.

Equation (47) is less than satisfying on its own because the thresholds t0 and tw depend on

F and H as well. To investigate how the threshold changes with the weighting, we introduce

a one parameter family. Fix Q1 and for 0 ≤ λ ≤ 1, let W λ = λW + 1− λ. Then E W λ = 1

and for j = 0, 1

µλ
j = E (W λ | H = j) = 1 + λ(µj − 1). (49)

Let tλ be the asymptotic threshold defined by tλ/Dλ(tλ) = α, where t0 is the BH threshold

and D0 = G. Exploiting this equality as λ varies, we can define

R(t, λ) =

∫
F ((λW + 1− λ)t)

t
dQ1(w)− λ(µ1 − 1)− F (t0)

t0
. (50)

Then, R(tλ, λ) ≡ 0 for 0 ≤ λ ≤ 1. Computing the partial derivatives of R at (t0, 0) and

applying the Implicit Function Theorem yields

dtλ

dλ

∣∣∣∣
t0 ,0

= (µ1 − 1)t0
f(t0)− t0

F (t0)− t0f(t0)
, (51)

where F (t0)− t0f(t0) > 0 by the strict concavity of F . To first order then, we have

tλ

t0
= 1 + (µ1 − 1)t0

f(t0)− t0
F (t0)− t0f(t0)

, (52)

and plugging this in to equation (47) gives to first order that

H(tλ)

F (t0)
=

[
1 + (µ1 − 1)t0

f(t0)− t0
F (t0)− t0f(t0)

] [
1 + (µ1 − 1)

aα

1− (1− a)α

]

=

[
1 + (µ1 − 1)t0

f(t0)− t0
F (t0)− t0f(t0)

] [
1 + (µ1 − 1)t0

1

F (t0)

]
(53)
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In the informative case, the only term that is possibly negative here is f(t0)−t0. By concavity,

this is a measure of distance between the alternative F and the uniform. For fixed a and

α, t0 is determined by the intersection of F with a fixed line of slope 1−(1−a)α
aα

. An F with

mass concentrated near zero intersects that line where the density is small; an F close to the

uniform intersects the line at larger density. When f(t0) is very small, there is less room for

improvement in power because most of the alternatives will have been rejected at t0.

Consider the above expression for the family of Normal(θ, 1) alternatives. In this case,

for all θ ≤ 5 at least, f(t0) > t0, so informative weighting improves power for large m. Figure

2 gives a representative contour plot of the power ratio as a function of θ and µ1 in this

family..

This also suggests that for small α, f(t0) > t0 so informative weighting should improve

power in this case as well. In particular, if f(α) > α, then because t0 ≤ α, f(t0) ≥ f(α) >

α ≥ t0, and informative weighting improves power. In the Normal(θ, 1) family, fθ(t) =

exp(−1
2
θ2 + θΦ−1(1 − t)), so informative weighting improves power at least for all θ ≤ θα,

where

θα = Φ−1(1− α) +

√
(Φ−1(1− α))2 − 2 log α. (54)

For example, θ0.05 = 4.59 and θ0.01 = 6.15. (As Figure 2 shows, these are conservative; in

practice, the boundary θ will be higher.)

7 Simulation Studies

In this section, we present simulations and power calculations to evaluate the power of wBH

under a variety of weighting regimes. We limit our attention to binary weighting schemes

with γ = a but allow for a wide range on η and r.

Figures 3–5 compare the power of wBH to the standard BH method and the BH “Oracle,”

which takes a as known. We consider Normal(θ, 1) alternatives for θ ∈ {2, 2.5, 3, 3.5, 4} and

a ∈ {0.01, 0.05, 0.1}. We ran 10000 iterations for each configuration, computing results for

all methods on the same data. This amounts to 360000 iterations for each of the BH results

because they are not affected by η or r.

FDR was controlled at the nominal level, within simulation error, for all cases. But as
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expected from Theorem 4.1, wBH ensures FDR ≤ (1−a)µ0α. So under informative guessing,

it both improves power and reduces FDR below the nominal level. This suggests an adaptive

method for gaining further power by estimating µ0 from the data.

To investigate the power of the weighted Holm-based method for FDX control, we also

conducted a simulation using the same settings as above. The results are given in Figures

6–8.

We discuss the power results fully in Section 8.

8 Discussion

Scientific inquiries that aim to test vast numbers of well-defined hypotheses using a common

database have become more and more common. These studies have been plagued by low

power. In response to this new scientific environment, new paradigms for multiple testing

that increase power are required. Methods that incorporate additional information such as

the spatial structure of the hypotheses or prior information can improve the chances of

detecting small, but important effects.

In cases where there is spatial structure among the tests, one approach is to focus on in-

ference for significant regions. Pacifico Perone, Genovese, Verdinelli, and Wasserman (2004a,

2004b) show how to control the proportion of false regions in a random field context. Taylor

(2004) alters the null hypothesis to account for adjacency and devises a procedure that is

better able to distinguish structure signal from scattered noise.

We present a new multiple testing approach wBH that allows one to incorporate prior

information in the form of weights to increase the chance of discovering the non-null hy-

potheses. In our analytical investigation we show that wBH controls FDR at, or below, the

nominal level. Moreover, we obtain an expression that readily permits power comparisons

under various conditions.

Our simulation results (Figures 3–8) confirm that, while controlling FDR or FDX, weight-

ing can lead to substantial gains in power when the weights are well chosen (µ1, η > 1)

whereas the potential loss in power is small even when the weights are poorly chosen

(µ1, η < 1). Remarkably, the loss of power is not serious even if the weights are completely
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wrong (η = 0).

Much research has been done on estimating a to construct adaptive FDR-controlling

procedures with higher power than BH. The gain in power from such adaptive procedures,

however, is bounded above by the difference in heights of the two horizontal lines in Figures

3–5. Notice that the potential gain in power from informative weighting is at least as large

and often substantially larger.

Comparing Figures 3–5 to Figures 6–8, we see that FDR control typically provides higher

power than FDX control, as expected given the stronger guarantee of the latter, but that the

weighted FDX-controlling procedures are more robust to poorly chosen weights. The power

below η = 1 drops an essentially negligible amount. This suggests using a large value of r

for FDX control, whereas smaller r’s seem warranted for FDR control.

Other weighted multiple testing methods have been proposed. In contrast to Benjamini

and Hochberg (1997)’s weighted approach, our procedure aims to weight hypothesis highly

if they are more likely to be non-null, a priori. For a threshold T , wBH defines the weighted

false discovery proportion as

∑m
i=1(Pi ≤ WiT )(1−Hi)∑m

i=1(Pi ≤ WiT )
.

Benjamini and Hochberg (1997) weight hypotheses based on the relative consequences of

making a false discovery on the ith hypothesis. They define the weighted false discovery

proportion as ∑m
i=1 Wi(Pi ≤ T )(1−Hi)∑m

i=1 Wi(Pi ≤ T )
.

With the former approach every false discovery is counted equally. The weights define varying

thresholds for rejection. Heavily weighted hypotheses are rejected more easily. With the latter

approach, heavily weighted hypotheses count more when assessing the false discovery rate.

But all hypotheses are rejected or accepted with an equal threshold value. Clearly both of

these appraoches have merit and which is preferable is dependent upon the context of the

experiment.

In considering the use of prior information to improve testing, a Bayesian approach comes

to mind. Indeed, the Bayesian method given in Genovese and Wasserman (2003) can easily
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be extended to incorporate distinct priors for each hypothesis. Storey (2002) and Efron,

Storey, Tusher and Tibshirani (2002) have given Bayesian interpretations of FDR. It is an

interesting question as the relationship between a weighted version of their procedures and

a fully Bayesian approach.
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Figure 1: Graphical representation of the joint distribution of (P, W, H). Note that P and
W are conditionally independent given H.
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Ratio of Weighted to Unweighted Power in Normal( θ, 1 ) family
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