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Abstract

The paper considers Edgeworth expansions for estimators of volatility. Unlike the usual
exapsions, we have found that in order to obtain meaningful terms, one needs to let the size
of the noise to go zero asymptotically. This is reflected in our expansions. The results have
application to Cornish-Fisher inversion and bootstrapping.
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1 Introduction

In this paper, we consider the Edgeworth expansion on the volatility estimator when the price
process is noisy.

Let {Y,}, 0=ty <t1 <---t, =T, be the observed (log) price of a security at time ¢; € [0, 7.
Suppose that these observed prices can be decomposed into an underlying (log) price process X
(the signal) and a noise term. That is, at each observation time ¢;, one can write

Yi, = Xt, + €. (1)
Let the signal (latent) process X follows an It6 process
dXt = ,utdt + O'tdBt (2)

where B; is a standard Brownian motion. Typically, py, the drift coefficient, and o7, the instanta-
neous variance of the returns process Xy, will be (continuous) stochastic processes.

Let the noise ¢, in (1) satisfy the following assumption,
€, i.i.d. with Ee;, =0, and Var(e,) = Ee?. Also € 1. X process (3)

where 1l denotes independence between two random quantities. Note that our interest in the noise
is only at the observation times t;’s, so, model (1) does not require that ¢; exists for every ¢.

In Zhang, Mykland, and Ait-Sahalia (2003), our focus is to construct a statistically sound
estimator for integrated volatility fOT o2dt of the true process, assuming model (1) and that Y;,’s
can be observed highly frequently. In search for a final estimator, we have touched a sequence of RV
estimators, which are from the statistically least desiarble to the most desirable: the all estimator
[V, Y] the sparse estimator [Y,Y]P97s¢) the optimal, sparse estimator [Y,Y](sParse.ort)  the
averaging estimator [Y,YL(‘“’\Q), the optimal, averaging estimator [Y, Y](“vg’of”t), and the final two
scale estimator (TSRV) (X, X). While the TSRV is consistent, the first four estimators are biased,
typically in proportion to the sampling frequency. When one looks at the stochastic terms in all
five estimators, they should be asymptotically normal. However, simulation results show that the
distribution of the stochastic term in the sparse estimators and the averaging estimator is far from
normality. We argue that the lack of normality is caused by the coexistence of small effective
sample size and small noise. In the current paper, we provide Edgeworth expansions to the sparse
estimators and the averaging estimator.

What makes the situation unusual is that the errors € are very small, and if they are taken to
be of order Op(1), their impact on the Edgeworth expansion may be exaggerated. Consequently,
the coefficients in the expansion may not accurately reflect which terms are important.

To deal with this, we here find expansions under the hypothesis that the size of |e| goes to zero,
as stated precisely at the beginning of Section 4.



Edgeworth expansions in small noise 3

We provide the coefficients, both conditional and unconditional, in the expansions for [V, Y] (sparse)

and [Y,Y] (@v9) | Tn particular, we shall see that not only does the latter have substantially less bias
than the former, but it is also much closer to a normal distribution, cf. the end of Section 4.

With the help of Cornish-Fisher expansions, our Edgeworth expansions can be used for the
purpose of setting intervals that are more accurate than the ones based on the normal distribution,
see, for example, Hall (1992). Since our expansions also hold in a triangular array setting, they
can also be used to analyse the behavior of bootstrapping distributions (for earlier theory on
bootstrapping in this setting, see Goncalves and Meddahi (2005)).

2 Estimators

Our estimators have the following forms.

First, [Y, Y]Sﬁ ") uses all the observations,

VY =3 (0, - Y0, (4)
t;€G
where G contains all the observation times ¢;’s in [0,7], 0 =tg < t1,...,<t, =T.

The sparse estimator uses a subsample of the data,

Y YIEed = ST (v, - (5)

ity + €M

where H is a strict subset of G, with sample size ngparse; Nsparse < n. And, if t; € H, then ¢;
denotes the following elements in H.

The optimal estimator [V, Y](Po75€:0P1) hag the same form as in (5) except replacing Nsparse With
1" sparse; Where n”g,q,s¢ is determined by minimizing MSE of the estimator.

The averaging estimator maintains a slow sampling scheme while using all the data,

[Y Y (o) K Z Z (Kfj,+ - }/tj)27 (6)

k=1¢;t; eGg®

v, v15)

where G*)’s are disjoint with union G. Let ng be the number of time points in Gy, 7 = >k Mk
would then be the average sample size across different grids G, k =1,..., K.

One can also consider the optimal, averaging estimator [Y,Y] (avg.0pt) by substituting 7 by 7*
where the latter is selected to balance the bias-variance trade-off in the error of averaging estimator.
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A special case of (6) when the sampling points are regularly allocated is of the form,
1 2
[K Y]giwg) = ? Z (Y;‘/j+K B Y;‘/]) )
tjtirk€G

where the sum-squared returns are computed only from subsampling every K-th observation times,
and then averaged with equal weights.

The TSRV has the form of

—

av n all
X, X)p = 1 YIE? - Sy (7)

that is, the volatility estimator (X, X), combines the sum squared estimators from two different

time scales, [Y, Y]g? “9) from the returns on a slow time scale whereas Y, Y]g? ") from the returns on

a fast time scale. 7 in (7) is the average sample size across different grids.

From model (1), the distributions of various estimators can be studied by decomposing the
sum-squared returns [Y, Y],

Y, Y]r = [X, X]|r + 2[X, €|r + [€, €] 7. (8)

The above decomposion applies to all the estimators in this section, with the samples suitably
selected.

3 Why Do We Need the Edgeworth Expansions?

3.1 Asymptotical Normality in theory: sparse estimator and averaging estima-
tor

3.1.1 sparse estimator

For the sparse estimator, we have shown in Zhang, Mykland, and Ait-Sahalia (2003) that
[Y Y]t(lfparse) (9)

or (T
/ O'zldt] 1/2 Ztotal s

nsparse 0

£ (X, X)p+ 2ngparseBe? + [Var(fe, $P79) + 8[X, XS Be? +

bias due to noise due to noise
due to discretization

total variance

where Var([e, e]gfp arse)) = dngparse et — 2Var(€?), and Zyopa is standard normal.

If the sample size ngpqerse is large relative to the noise, the variance due to noise in (9) would be

dominated by Var([e, e]gfp ame)) which is of order ngpqrseFet. However, at the co-presence of small
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Nsparse and small noise (say, Fe®), 8[X, X|77"*“ Ee? is not necessarily smaller than Var (e, e]gfp arse)y.

One then needs to add 8[X, X|77"*“Ee? into the approximation. We call this correction small-
sample, small-error adjustment. This type of adjustment is often useful, since the magnitude of
the microstructure noise is typically smallish as documented in the empirical literature (cite).

Of course, ngparse is selected either arbitrarily or in some ad hoc manner. In contrast, the sam-
pling frequency in the optimal-sparse estimator [Y, Y](Sp“rse’oz’t) can be determined by minimizing

the MSE of the estimator analytically. Distribution-wise, the optimal-sparse estimator has the

*

sparses Where for

same form as in (9), but, one replaces nspqrse by the optimal sampling frequency n

equidistant observations,
1/3

_ T [T
n;kparso = (Ee2) 2/3 <Z/ det> . (10)
0

n is optimal in the sense of minimizing the mean square error of the sparse estimator.

*
sparse

No matter whether ngpq,se is selected optimally or not, one can see from (9) that the de-biased
sparse estimator would be asymptotically normal.

3.1.2 averaging estimator
The optimal-sparse estimator only uses a fraction n},,,,../n of the data, and it faces the arbitrarity of
picking the beginning point of the sample. The averaging estimator overcomes both shortcomings.
Based on the decomposition (8), analysis in Zhang, Mykland, and Ait-Sahalia (2003) leads to
v, v)5) (11)

L av 8 av 4T [T
~ (X, X)p+ 2nEe + [Var([e,e]gﬂ g)) +E[X=X](T 9 Be? + 3_n/0 otdt 1% Ziora,

bias due to noise

due to noise due to discretization

total variance
where

Var([e, e]giwg)) = 4%]564 - %Var(g),

and Ziia 18 a standard normal term.

For the optimal-averaging estimator [Y, Y](@9:%P!) _its distribution has the same form as in (11)
but substituting 7 with the optimal sub-sampling size n*. To find n*, one determines K™ from the
bias-variance trade-off in (11) and then set K* ~ n/n*. In the equidistantly sampled case,

1/3

Rt = (ﬁ /OT Jf‘dt> : (12)

If one removes the bias in [Y, Y]g? °9) or in Y, Y]g? ©9:P") " the next term would follow asymptot-
ically normal.
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However, the distributions of the de-biased sparse estimators and the de-biased averaging esti-
mators are not exactly normal from the simulation results.

4 Edgeworth Expansions for the Distribution of the Estimators

An Edgeworth expansion up to second order can be found separately for each of the components
in (8) by first considering expansions for n=1/2([e, €](®) — 2nEe?) and n~ /2K ([e, e]gﬁwg) — 2REe?).
Each of these can be represented exactly as a triangular array of martingales. Results deriving such
an expansion can be found in Mykland (1993, 1995b,a).

It is easily seen that in the current case, the expansion takes on the usual Edgeworth form, see
for example Section 5.3 of McCullagh (1987). Note that with the exception of the term of type
n12K ([e,e]gﬂwg) — 2nF€?), the expansion can also be found from Bickel, Gétze, and van Zwet
(1986).

We assume that the “size” of the law of € goes to zero, formally that E|e|P — 0 for all p € (0, 8].
In particlular, say, O,(E|e®) = o,(E|e|?).

4.1 Conditional Cumulants

We start with the conditional cumulants for [Y,Y] and [Y,Y](@9)  given the latent process X. All
the expressions about [Y,Y] hold for both [V, Y] and [V, Y](P%5€) in the former case, n remains
to be the total sample size in G while in the latter n is replaced by ngparse- Similar notations apply
for [e, €] and for [X, X].

4.1.1 third-order conditional cumulants

Denote
c3(n) 2 cums([e, ] — 2nEe?), (13)
n—1

where [e, €] = Zizo (eti+1 - Eti)2'

From Lemma 1 in the Appendix,

cs(n) = 8|(n— Z) cum3(62) —7(n— g) cum3(6)2 +6(n — %) var(e)var(e2) (14)

= Op(nE["))
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and also because the €’s from the different grids are independent,

K
cums (K([e, e]l@va) — 2ﬁEe2)) = ; cums([e, ]®) — 2n, Be?) = Kes(n). (15)

For the conditional third cumulant of [Y,Y]:
cumg([Y,Y]r|X) = cums([e, €]r + 2[X, €]| X)
= cums([e, €]T) + 6cum([e, €] T, [€, €] T, [ X, €]7|X)
+ 12cum([e, €], [ X, €7, [X, €]7| X) + 8cums ([ X, €]7|X)
To proceed, define

1 if 1<i1<n-1
az-:{l Lo (16)
5 if i=0,n
and
AXtifl_AXti if 1SZSTL—1
bi=<{ AXy | if i=n (17)

—AXy, if 1=0
Note that [X, el = > biey,.
Then it follows that

n

cum([e, elr, e, €|z, [X, elr|X) = > bicum([e, €|r, [, €|r, e1,) = (bo+bn) 2B Ee*~3Ee®] = O, (n™?E[|¢|))
=0

because cum([e, €|, [¢, €], €,) = cum([€, €], [¢, €], € ), for i =1,--- ,n — 1.
Also

cum([e, €]r, [X, €], [X, ]| X)

n n n n—1 n n
2
= cum(2 E a;ep,, E bjet,, E brer, | X) — cum(2 E €t €t 1 E bjet,, E brer, | X)
=0 =0 k=0 =0 j=0 k=0

n n—1
=2 Z a;ib?Var(e?) — 4 Z bibis1(Var(e))?
i=0 =0

= 4[X, X]rEe* + 0,(n" Y2 E[€Y)

Finally,

n

cums([X, e]p|X) = Z b2 cums (e)

=0
n—1 n—1
= E(63)[_3 Z (AXy,_, )Q(Ath) +3 Z (AXtifl)(AXti)z]
i=1 i=1

= Op(n~ "2 E|e]*))
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Summing up,
cums([Y, Y| X) = cums([e, lr) + 48[X, X]Ee* + O, (n~Y2E]|¢]*)), (18)
where cums([e, €]7) is given in (14).
For [Y, Y]g,? “9) it is now obvious that

cuma(K[Y, Y59 X) = cumg(K[e, ") + 48K [X, X)\") Be* + O, (Kn ' 2E[e’])  (19)

4.1.2 fourth-order conditional cumulants

For the fourth-order cumulant, denote

ca(n) 2 cumy([e, ] — 2nEe?). (20)

It follows from Lemma 2 in the Appendix that

ca(n) = 16{(n — g)cum4(e2) + n(Ee4)2 - 3n(E62)4 +12(n — 1)var(e?)Ee*
1
—32(n — 1—;)E6360v(e2, €3) 4 24(n — £)E€2(E63)2 +12(n — z)cum3(62)Ee2}

Also here,
K
cumy (K([e, e]l@va) — 2ﬁEe2)) = Z cumy([e, €)™ — 2n, Ee?) = Key(n). (21)
k=1

For the conditional fourth-order cumulant, we know that
cumy([Y,Y]|X) = cumy([e, €]7) + 24cum([e, €|, [€, €], [ X, €], [ X, €] 7| X)
+ 8cum([e, €]1, [€, €], [€, €], [ X, €] 7| X)
+ 32cum(le, €]p, [X, €], [ X, €|, [X, €] 7| X)
+ 16cuma ([ X, €] X). (22)

Similar arguement as in deriving the third cumulant shows that the latter three terms in the right
hand side of (22) are of order O,(n~"2E[[¢|’]).

For the second term in equation (22),

cum([e, 6]T7 [67 6]T7 [X7 6]T7 [Xv E]T‘X) (23)
= Z bibjcum([e, €T, [€, €], €, etj)
i,J
n—1
= bleum(le, elr, [, €|, e, er,) + 2 bibiyrcum([e,elr, e, elr, e, €, ) (24)

) =0
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Note that cum([e, €|, [¢, €|T, €, €,) and cum([e, €T, €, €], €, €., ) are independent of i, except
close to the edges. One can take o and 3 to be

a=n"t Z cum([e, €|, [€, €], €1, , €t,)
i

B=n"! Z cum([e, €T, [€, €]T, €1, €4, 1)

Now following the two identities:
cum([e, €7, [€, €|, €, &) = cums([e, €], [e, €)1, €2) — 2(Cov([e, €, €))* — Var([e, e|r) Ee
cum([e, e]r, [€, €1, €, €i11) = cums([¢, |7, [€, €]r, €i€it1) — 2Cov([€, |1, €)Cov([e, |1, €i41),
also observing that that Cov([e, €]r,€;) = Cov([e, €], €i41), except at the edges,
2(a = ) = n” eums([e, dr) — 2Var([e, Jr) Ee* + Op(n~ '/ E[|¢[])
Hence, (24) becomes

cumy([e, €] T, [€, €lT, [ X, €], [X, €]7]|X)

= Z b+ 2 Z bibi+18 + Op(n_1/2E[|e|6])

=0 1=0
= 07X, X]reums([e, elr) — 2[X, X]rVar([e,]r)Ee® + Op(n 2 E[|¢|%)

where the last line is because

n

> b =2[X, X]r + Op(n~'?), beH1 —[X, X]7 + O, (n~Y/2).
=0

Therefore in the final analysis,

cumy([Y, Y]|X) = cumy([e, e]r) + 24[X, X]rn ™~ 'cums([e, €]r) — 48[X, X]rVar([e, e]r) Ee?
+ Op(n™2E[|¢”)) (25)
For the average estimator,
cumy(K[Y, Y]] X)
= cumy(Kle, ") + 24K x, x] {00 2210 s(7) —48E Y (X, X|PVar(le, d ) + Op(Kn V2 Elle]))

n
k

4.2 Unconditional Cumulants

To pass to the unconditional third cumulant, we use the general formulas (Brillinger (1969), Speed
(1983), see also Chapter 2 in McCullagh (1987)):
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cums(A) = Elcums(A|F)] + 3Cov[Var(A|F), E(A|F)] + cums[E(A|F)]
cumy(A) = Elcumy(A|F)] + 4Cov]cums(A|F), E(A|F)] + 3Var[Var(A|F)]
+ 6cums(Var(A|F), E(A|F), E(A|F)) + cuma(E(A|F))

4.2.1 unconditional cumulants for sparse estimators

Recall that, in Zhang, Mykland, and Ait-Sahalia (2003), we have derived that

E([Y,Y]r | X process) = [X, X]|r + 2nEé> (26)
also
Var([Y,Y]r|X) = 4nEe* — 2Var(e?) +8[X, X|rEe® + O, (E|e|*n~1/?), (27)
Var([e,e]T)

Put together the third and fourth conditional cumulants with the results from (26)-(27), and
we obtain the unconditional cumulants as in the following:

cums([Y,Y]r — (X, X)) = c3(n) + 48E(e") E[X, X]
+ 24V ar(e)Cov([X, X]r, [X, X]r — (X, X)) (28)
+ cumg([X, X — (X, X)7) + O(n~ B[]

and

cums([Y, Y]z — (X, X)) = es(n) + 24 cs(m) EX, X} — 48B[X, Xz BVar([e, )
+192Ee* Cov([X, X]r, [X, X]|7 — (X, X) 1)
+192(Var(e))*Var([X, X]7)
+ 48V ar(e)cums([X, X7, [X, X]|r — (X, X) 1, [X, X]r — (X, X)) (29)
+ cumy([X, X7 — (X, X) 1) + O(n~Y2E]|e[])

Example 1 (constant o and equidistant case). Suppose At; = At = T'/n (the equidistant case),
and when o, = o is a constant, (X, X)p is a constant which does not contribute to either of the
above cumulants. Also, [ X, X|r has distribution a2Atx? (x* with n degrees of freedom), so that
cumy,([X, X|7) = 02P(At)Pn x cumy(x?) = n~ P~ (02 T)Pcumy,(x3); recall that




Edgeworth expansions in small noise 11

It follows that in this case
cums([Y,Y]r — (X, X)) = c3(n) + 48E(e*) (0> T)
+ 48V ar(e)n~H(o*T)? (30)
+ 8072 T)3 + O(n~V2E[e])
Similarly for the fourth cumulant
cuma (Y, Y7 — (X, X)7) = ea(n) + 24%63(71)(0’2T) _ 48(02T)EV ar([e, )

+ 384(E€* + Var(e)*)n~Y(oT)?

+ 384V ar(e)n 2 (o*T)3 (31)

+54n73(0?T)* + O(n"Y2E|¢e]”))

It is obvious that one needs ¢, = 0,(n~'/2) to keep all the terms in (30) and (31) non-neglegible.

In the case of optimal-sparse estimator, (10) lends to € = O,(n~3/%), in particular ¢ = o,(n~'/?).
Hence, the expression works in this case, and also for many suboptimal choices of n.

For the special case of constant o and equidistant sampling times, the optimal sampling size is

. T 0_2 2/3
nsparse = Eﬁ . (32)

Plug (32) into (30) and (31) for the choice of n, then
cums([Y, Y70 — (X, X))

5 4
= 48(02T) 323 (Be%)? + 8(02T)3 (2E€2)* + O(Ee|7) (33)
and
cuma([Y. Y77 — (X, X) 1)
1
2m S o g, BE 3 4 2 24 2\ 2
= —192(0°T)?Fe¢ (T) + 384(E€” + Var(e)*)(o°T)3 (2E€”)?
7
+ 384(02T)3 25 (E2)? + 54(0>T)(2E€2)” + O(Ele| 7) (34)
respectively.

Note that under the optimal sampling,
Var([Y, Y]gfparse,opt)) - E <V(1T([K Y]g:eparse,opt) | X)) +Var <E([Y, Y]gfparse,opt) | X))

2
= 8<X,X >pE&+ ;(02T)2 + 0p(Be?)

4
3

= 2o®T)(2EE) + Op(EE),
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hence,

cums ((Ee2)_1/3

(VI — (X, X)p)) = O((Elel)™?)
cumy ((Be) (v, Y)E e — (X, X)) = O((El)Y?)

in other words, the third-order and the fourth-order cumulants indeed vanish as n — oo and
Ee? — 0.

4.2.2 unconditional cumulants for averaging estimator

Similarly, for the averaging estimators,

E(]Y, Y]gfwg) | X process) = [X, X]gﬂwy) + 2nFe?, (35)

av, av. 8 av. —
Var([Y, I 1X) = Var(le,df™) + 21X, X170 B + Oy (Bl (nK) %), (36)

with B 5
av n
VCLT([E, G]g—‘ g)) = 4EE€4 — ?VGT(Ez).

Invoking the relations between the conditional and the unconditional cumulants, one gets the
unconditional cumulants for the average estimator:

av 1 — 1 av
cums([Y, Y159 — (X, X)) = 2363 () +48ﬁE(e4)E[X, x)lavs)
1 av av
+ 24 Var(Cov([X, XI7 [X. XI5 — (X.X)7)  (37)
+ cuma([X, X]5 — (X, X)p) + O(K 2~ 2 E[|e])

and

cma([Y: Y]r — (X, X)) = 2gea(s) + 242 )

1 av av
+ 192ﬁEe4Cov([X, x4 1x, x4 —(x X))

av 1 av, a
EIX, XI{0 — 48— BIX, X]{* B Var((e, ")

1 av
+ 192F(Var(e))2Var([X, X9l

48 Var(e)eums(1X, XJE X, XI5 — (X, X) 7, [X, X9 — (X, X))
(38)
+ cuma ([X, X1 — (X, X)) + O(K 302 E[|e|])

g,ﬂwg) has the same distribution as

In the special case where oy is constant, and At; = A, [X, X]
[X, X]g?ll), namely o2Atx?2 .
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Thus,
cums([Y, Y] — (X, X)) = 24%1/@46)2(7-11()—1(0211)2
+8(AK) " 2(02T)” + O(K 2~ 2 E[|¢e))
and
cumy([Y, Y1599 — (X, X)) = —48%(0%)&2(4&4&}{)
4 192%(&4 + Var(e))2(aK) " (02T)
+ 48%Var(e)8(ﬁK)_2(02T)3

+54(K) 3 (02T)" + O(K 37~ 2E[|¢]”])

Also, the optimal average subsampling size for the constant o is,

oAT? 1/3
"~ (steay)

Also, the unconditional variance of the averaging estimator, under the optimal sampling,

8
B (@*T) + o(BEK ) + (02T)2(r* K) ™"

E (Var([y,y]gfvg"’”) | X))

Var([y, Y]§*)

- %6%(&2)%(0%)% +O(BEK
hence,
cumg ((B) P KA(Y, YIE0 — (X, X)p)) = O((Ele)*K~%) o,
cumy ((B) KAV, Y0 — (X, X)p)) = O((Ele)* K =0,

as n — oo and FeZ — 0.

Var (E([Y,Y}gi‘“g"”’t) | X))

13

(40)

By comparing to the expression for the sparse case, it is clear that the average volatility is

substantially closer to normal that the sparsely sampled volatility.

5 Appendix: Proofs of c¢3(n) and c¢4(n)

Lemma 1.

cs(n) = 8|(n— Z) cums(e?) — 7(n — g) cums(€)? + 6(n — %) var(e)var(e®)
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PrROOF OF LEMMA 1:
Let a; be defined as in (16).

One can then write

c3(n) = cums(2

M:

n—1
ai(e?i — Eé*) — 22 €t €041 )
=0

i
3 o

7

n—1 n n n—1

_ 2 2 2

= 8lcums() ae;,) — cumgz( E €t,€t,,) — cum( E aie,, E aje,, E €ty €tyir)
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where
cum(z aie?i, Z aje?j, Z €ty €tpsy) = 2 Z akakﬂcum(efk, e?kﬂ V€€t ) = 2(n — 1)(Ee)” (42)
i=0 j=0 k=0 k=0

since zz;é arap+1 = n — 1, and the summation is non-zero only when (i = k,j = k+ 1) or
(t=k+1,j=k).

Also,

n n—1 n—1 n—1 1
cum(z aiefi, Z €t;€ti 15 Z €ty €t 1) = 2 Z ajcum(e?j S €€ty €€ty ) = 2(n — 5)(Ee2)Var(62)
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(43)
since E?:_é a; =n— %, and the summation is non-zero only when j =k = (i, or i — 1).
And finally,
n—1 n—1 n—1 n—1 ,
cum(z €t; €ty Z €€t s Z €ty €tyrr) = Z cums (e €, ,) = n(Ee?)”, (44)
=0 j=0 k=0 i=0

n n n n 3
cum(z aiefi, Z aje?j,z ake?k) = Z ag’cumg(ei) =(n— Z)cum3(62), (45)
i=0 =0 k=0 i=0

with 37 jad =n — 3.
Inserting (42)-(45) in (41) yields (14). [
Lemma 2.

ca(n) = 16{(n — g)cum4(e2) + n(Ee4)2 - 3n(E62)4 +12(n — 1)var(e*) Bet

1
—-32(n — 1—Z)E€360U(€2, €3) 4 24(n — £)E€2(E63)2 +12(n — g)cum3(62)Ee2}
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PrROOF OF LEMMA 2:
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k=t (6)=(k b+ )[2]}
= 2(n— z)cum3(62)Ee2 +4(n — 2)(E63)2E62 +2(n — 1)(Va7‘(e2))2 (47)

where the notation (i,7) = (k+ 1,k — 1)[2] means that (i =k+ 1,7 =k—1),0or (j =k+1,i =
k —1). The last equation above holds because 2?21 a? =n— %, 2?2—11 a;—1a;+1 = n — 2, and
S aaie =n — L.
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= 6(n— Z)cum(ez, €2, €)Beé’, (48)

since 2?2—01 ataiy1 =n — %.
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- Z Z Z Z[l{iZJ':k:l} + <2> 1{i:j7k:lvi:(k+lvk_1)}]cum(€ti €tit1y €t €t Ctp Ctpyrr € 6tl+1)

i=0 j=0 k=0 (=0
= n((E" = 3(B2)") + 12(n — 1)(E2)*Var(e?)

n n 7
cum4(z aiefi) = Z atcumy(e?) = (n — g)cum4(e2)
i=0 =0

Putting together (46)-(50):

n n—1
cq(n) = cum4(22aiei - 2Zetieti+1),
i=0 i=0

(49)

(50)
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= 16[cumy( E a;ep,) + cumy( E €t;€t;1) — ) cum() _aiey, ) ajei, ) akep, ) Eney,,)
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(46)(50) 16{(n — g)cum4(e2) + n(Ee4)2 - 3n(Ee2)4 + 12(n — 1)var(e?)Ee

1 3
—32(n — 1—Z)Ee3cov(e2, €3) + 24(n — Z)Eez(Eeg)2 +12(n — Z)cumg(ez)Ee2}

since cov(€?,€3) = Ee® — Ec2Ee® and cum(e?, €%, ¢) = Ee® — 2Ee2Ee.
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