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Abstract

This article considers sample size determination methods based on Bayesian credible intervals

for θ, an unknown real-valued parameter of interest. We assume that credible intervals are

used to establish whether θ belongs to an indifference region. This problem is typical in clinical

trials, where θ represents the effect-difference of two alternative treatments and experiments

are judged conclusive only if one is able to exclude that θ belongs to a range of equivalence.

Following a robust Bayesian approach, we model uncertainty on prior specification by a class Γ

of distributions for θ and we assume that the data yield robust evidence if, as the prior varies in

Γ, either the lower bound of the inferior limit of the credible set is sufficiently large or the upper

bound of the superior limit is sufficiently small. Sample size determination criteria proposed

in the article consist in selecting the minimal number of observations such that the experiment

is likely to yield robust evidence. These criteria require computations of summaries of the

predictive distributions of upper and lower bounds of the random limits of credible intervals.

The method is developed assuming a normal mean as the parameter of interest and using

conjugate priors. An application to the determination of sample size for a trial of surgery for

gastric cancer is also illustrated.

Keywords: Bayesian power; Bayesian robustness; clinical trials; evidence; predictive analysis;

sample size determination; superiority trials.

1 Introduction

Interval estimates of θ, an unknown scalar parameter of a statistical model, are commonly

used for two different purposes: either for estimation or for testing hypotheses. When inter-

vals are used for estimation, one typically wants them to be as short as possible. Conversely,

if intervals are employed for testing, their length is not as relevant as their location. For

instance, we are often interested in establishing the sign of θ, as it is the case when θ denotes

the difference between two unknown quantities under comparison, and we want to establish

whether one is larger than the other. In this circumstance, the most relevant information
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cate. Università di Roma “La Sapienza”. Piazzale A. Moro, 5 - 00185, Roma - Italy. e.mail:

pierpaolo.brutti@uniroma1.it - fulvio.desantis@uniroma1.it

1



in an interval estimate is whether it contains or not zero or, in general, if it has intersection

with an “indifference interval”.

Even though the above mentioned problem and the methods proposed in this article

applies to a variety of different contexts, clinical trials offer an ideal example of application

for what we are going to deal with. Hence, in what follows we will often refer to this specific

context and will specialize terminology to this setup. In this scenario, θ may represents

improvement from a new treatment with respect to a standard therapy. A standard example

is given by superiority trials, (see, for instance, Julious, 2004), in which the effects of two al-

ternative treatments are compared in order to establish whether one is better than the other.

In this case, an experiment is informative if the interval estimate for θ has no intersections

with an indifference interval that, in this context is referred to as range of equivalence. Of

course, depending on the values chosen for the range of equivalence and on the formulation of

the problem, the above setup applies also to equivalence and non-inferiority trials (Julious,

2004).

The topic of this article is sample size determination (SSD) for interval estimation of θ.

Depending on the inferential approach adopted and on the purpose intervals are used for,

different SSD criteria can be used. Many criteria currently available are designed for the

estimation use of intervals and aim to the pre-experimental control of either their length (for

fixed coverage) or of their coverage (for fixed length): see, for instance, Armitage, Berry and

Matthews, (2002), and, in the Bayesian framework, Joseph and Belisle (1997), Joseph, du

Berger and Belisle (1997), De Santis and Perone Pacifico (2003). See also Adcock (1997)

and Wang and Gelfand (2002) for reviews. In this article we specifically consider Bayesian

SSD methods, under the assumption that interval estimates are used for testing goals. The

basic idea is to choose the minimal number of observations so that range of equivalence

and observed credible interval do not overlap, i.e. so that the inferior (superior) limit of

the interval estimate is larger (smaller) than the superior (inferior) limit of the indifference

region.

This problem has been already addressed, in the context of Bayesian design and analysis

of clinical trials, by Spiegelhalter and Freedman (1986), who proposed a predictive approach

to the sample size problem, based on careful elicitation and use of subjective clinical opinion.

Their approach was to determine the sample size using the predictive probability of reaching

a firm conclusion in favor of a treatment, i.e. of observing a lower (upper) limit of the interval

estimate larger (smaller) than a value of “minimal clinically important difference”. Under

the usual setup, in which a normal mean represents the unknown improvement of a new

treatment, they used classical confidence intervals (i.e. credible intervals determined with

the standard noninformative constant prior) and proposed to evaluate the probability of firm
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conclusions using, instead of the standard sampling distribution, the predictive distribution

of the data. This was determined with a prior elicited using subjective clinical opinion. Their

approach resulted in the definition of an average power function, to be used for sample size

choice as an alternative to the standard frequentist power function. Extensions to the use

of credible sets determined with proper priors are considered in Spiegelhalter et al. (2004).

In this paper we move from Spiegelhalter and Freedman’s approach but we adopt instead

a robust Bayesian viewpoint: we assume that, in place of a single distribution, a class of

priors for the unknown parameter is considered. For reviews and references on the robust

Bayesian viewpoint, see Berger (1984, 1990), Berger, Rios Insua and Ruggeri (2000) and

Wasserman (1992). Given an observed sample, for each prior in the class one can virtually

compute the limits of a (1 − α)-level credible interval and determine the lower and the

upper bounds respectively of the inferior and the superior limits, as the prior varies in

the class. Then, one can claim that the experiment yields robust evidence in favor of the

hypothesis that the parameter is outside the range of equivalence (or, with Spiegelhalter

and Freedman’s terminology, that one has reached firm conclusions) if one of the following

outcomes is observed: either the lower bound of the inferior limit of the interval estimate is

sufficiently large or the upper bound of the superior limit is sufficiently small. In the design

stage, the data, the posterior distribution and any of its functionals are random objects.

Hence, credible sets as well as upper and lower bounds of their limits are also random. The

idea is then simply to determine a sample size such that one has good chances of observing

robust evidence. This entails computations with a marginal distribution of the data and

formulation of criteria based on summaries of the predictive distributions of lower/upper

bounds of the limits of the credible interval.

Motivations for the use of the robust Bayesian approach are given, for instance, in Berger

et al. (2000). Essentially, the idea is that elicitation of a single prior is often affected by a

considerable degree of uncertainty, that might be taken into account by replacing this single

prior with a class of distributions. In design problems, it is of interest to determine sample

sizes that are robust, to a certain extent, to uncertainty in the prior, i.e. that are able to

guarantee the design goal for all the priors in a selected class of distributions. The importance

of sensitivity/robustness studies has been often pointed out in the specific context of analysis

of clinical trials data. Even though sensitivity checks should in principle concern both the

likelihood and the prior, the Bayesian literature has focused mainly of the latter input. See,

among others, Spiegelhalter et al. (2004, Section 5.6), Greenhouse and Wasserman (1995 and

1996), Carlin and Perez (2000), Carlin and Sargent (1996) and Sargent and Carlin(1996).

Robustness issues related to Bayesian interval estimation have been previously consid-

ered, for instance, by Berger and Berliner (1986) Pericchi and Walley (1991) and Wasserman
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(1989). However, these papers are concerned on studying and comparing robustness of the

posterior probability of credible intervals determined with a specific prior, as the prior varies

in specific classes. Conversely, we are here concerned in studying bounds of the limits of

credible intervals, for a given class of priors.

All of the forgoing is also related to the wider area of robust Bayesian experimental design:

see Chaloner and Verdinelli (1995) and DasGupta (1996) for general reviews. Problems of

sample size determination for robust Bayesian analysis, very close in the spirit to the ones

presented in this article, are considered in DasGupta and Mukhopadhyay (1994), Ianus

(2000) and De Santis (2005).

This article is structured as follows. Section 2, formalizes a methodology for SSD when

the goal of the experiment is to yield robust evidence in favor of a treatment. Section 3

develops the method under the assumption that θ is a normal mean and that conjugate

priors (Section 3.1) are used. Comparisons with non-robust and noninformative Bayesian

approaches to SSD are discussed in Section 4. Section 5 deals with the unknown variance

case. An extensive example in the context of designing a clinical trial is given in Section 6.

Finally, Section 7 contains a discussion.

2 Methodology

2.1 Preliminaries and choice of priors

Let Xn = (X1, . . . , Xn) be a random sample with each Xi having density f(x|θ) that depends

on a real parameter θ, the unknown difference between two alternative treatments. We are

interested in establishing whether θ belongs to the interval I = [θI , θS], the treatments range

of equivalence. Adopting a Bayesian perspective, let πA be the prior distribution of θ, xn

the observed data and

π(θ|xn; πA) =
fn(xn|θ)πA(θ)

mA(xn; πA)

the corresponding posterior density, where mA(xn; πA) =
∫

Θ
fn(xn|θ)πA(θ)dθ is the marginal

or prior predictive distribution of the data and fn(xn|θ) =
∏n

i=1 f(xi|θ). For a reason that

will shortly become clear, we will refer to πA as the analysis prior. Let us assume for

simplicity that the posterior density is unimodal and let Cα(xn; πA) be the (1 − α)-level

posterior credible interval for θ:

Cα(xn; πA) = [`n(xn; π), un(xn; πA)].

Typical examples of Cα are the (1−α)-level highest posterior density intervals and equal-tails

intervals.
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For the problem at hand, the experiment yielding xn provides conclusive inferential evi-

dence against the hypothesis that θ does not belong to I if

`n(xn; πA) > θS or un(xn; πA) < θI .

We are now interested in the pre-experimental problem of determining a sample size such

that the chances that the data yield evidence are sufficiently high. Before observing the

data, `n(Xn; πA) and un(Xn; πA), are random variables. Frequentist SSD methods typically

consider an initial guess θ̃ on the unknown parameter and use the joint density fn(·|θ̃) of Xn

for pre-posterior computations. However, this approach fails to account for uncertainty on θ

and yields designs that are only locally optimal. See, for instance, Chaloner and Verdinelli

(1995) and Spiegelhalter and Freedman (1986) for discussion. In the Bayesian approach to

the SSD problem one can take into account uncertainty on the guessed value of the parameter

by introducing a design prior πD and by replacing fn(·|θ̃) with the marginal distribution of

the data mD(xn) =
∫

Θ
fn(xn|θ)πD(θ)dθ for pre-posterior computations.

The distinction between design and analysis priors is a central aspect of the methodology.

This approach has been proposed in several previous articles: among these, see for instance

Wang and Gelfand (2002), Sahu and Smith (2004), Joseph, du Berger and Belisle (1997),

De Santis (2005). See also Clarke and Yuan (2005). The underlying idea is that analysis

and design priors serves, in the SSD-inference process, two different purposes. The analysis

prior, πA, expresses prior knowledge/uncertainty on θ that we want to take into account in

posterior analysis. The design prior, πD, describes a scenario and it serves to account for

uncertainty on possible guessed values for θ in the design stage. The marginal distribution,

mD, represents the data-generator mechanism that incorporates automatically the uncer-

tainty on the guessed value for θ formalized by πD. Following Wang and Gelfand (2002),

we say that πD arises in a “what-if” spirit: what sample size is appropriate for reaching

conclusive inferential results if we assume that θ lies in a specific subspace of the parameter

space and is distributed according to πD? The necessity of a distinction between analysis

and design prior is specifically evident in clinical trials. One example is when, in planning

an experiment for inference on θ, the design prior πD is centered on a value greater than θS,

the superior limit of the range of equivalence, that represents a plausible significative effect

level we wish to assess. At the same time, one might desire to assume an analysis prior that

expresses neutrality (centered on zero, say) and that is relatively noninformative, so to let

the data to drive the analysis, as often required by regulatory agencies. In other words, one

might want to design the experiment under optimistic expectations, but also to be as neutral

as possible in reporting posterior results.

Summarizing, πD formalizes design expectations, whereas πA expresses prior opinions /

attitudes towards the new treatment and the weight we want to attach to it in the posterior.
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The distinction between these two priors supplies flexibility to the design process. It gives

the researcher the chance of checking the effect of combinations of more or less optimistic

choices of πD (i.e. expectations) with more or less optimistic choices of πA (i.e. prior inputs)

on optimal sample size. Of course, the choice of πA and πD is crucial in the resulting sample

size. Fayers et al. (2000) point out for instance that, if sample size calculations are driven

by a trial design committee that includes a number of enthusiasts for the trial treatment,

and if the opinion of a larger community of experts that includes skeptics is not adequately

accounted for, the risk of serious underestimation of the sample size is high.

Before moving on, a technical point: whereas πA can be a standard noninformative and

improper prior, in order for the marginal mD to exist, the design prior πD, in general,

has to be proper. As a matter of fact, the use of noninformative analysis priors is the

approach followed in several previous works on Bayes SSD: see, for instance, Spiegelhalter

and Freedman (1986), Joseph et al. (1997), Wang and Gelfand (2002), Spiegelhalter et al.

(2004) and De Santis (2004).

In this article we follow an alternative approach. We suppose that uncertainty on the

analysis prior is modelled through a class of priors and consider a robust Bayesian approach

to SSD for the interval estimation problem sketched in the previous section. This is an

intermediate choice between choosing a noninformative prior and using a single proper prior

in posterior analysis. Specifically, assume that, instead of a fixed prior πA for θ, we have a

class of prior distributions, ΓA. For a given sample xn, the values of `n(xn; πA) and un(xn; πA)

change as πA varies in ΓA. Let

Ln(xn) = inf
πA∈ΓA

`n(xn; πA) and Un(xn) = sup
πA∈ΓA

un(xn; πA) (1)

be the observed lower and upper bounds of `n and un, obtained as πA varies in ΓA. We say

that the data yields robust evidence against the hypothesis that θ ∈ I if

Ln(xn) = inf
πA∈ΓA

`n(xn; πA) > θS or Un(xn) = sup
πA∈ΓA

un(xn; πA) < θI ,

i.e. if, for any prior in ΓA, C(xn; πA) ∩ I = ∅.

2.2 Robust Bayesian SSD criteria

Turning to the SSD problem, the choice of πD determines two different alternative scenarios:

one wants to design the experiment under the assumption that the guessed true value of θ

is either larger than θS (scenario A) or smaller than θI (scenario B). We can formalize these

two set-ups by choosing πD centered on a value µD > θS in the former case, and µD < θI , in

the latter. In the following we will mainly consider scenario A, under which we are interested
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in predictive control of Ln(Xn). Specifically, the requirement is now to be likely to observe

data such that Ln is larger than θS, the upper limit of I. Three summaries of the predictive

distribution of this random variable and the corresponding sample size criteria are now listed.

1. Expectation criterion. The optimal sample size is

n∗E(ΓA) = min{n ∈ IN : eL
n > θS},

where

eL
n = EmD

[Ln(Xn)] = EmD
[ inf
πA∈ΓA

`n(Xn; πa)]

and where EmD
denotes the expected value with respect to the predictive density mD.

2. Tail probability criterion. For a given ε ∈ (0, 1), the optimal sample size is

n∗P (ΓA) = min{n ∈ IN : pL
n > ε},

where

pL
n = PmD

[Ln(Xn) > θS]

and where PmD
is the probability measure corresponding to the predictive density mD.

3. Worst outcome criterion. The optimal sample size is

n∗W (ΓA) = min{n ∈ IN : wL
n > θS},

where

wL
n = inf

xn∈D
Ln(xn)

and where D is a subset of the sample space for each element of which we want to be

guaranteed that Ln is larger than θS. In the following as set D we will consider the

subset Dγ of the sample space whose marginal density is greater than a value such that

its predictive probability is equal to 1−γ (highest marginal density set, or (1−γ)-HMD

set, in the following).

SSD criteria for scenario B are easily obtained, mutatis mutandis. Denoting with

eU
n = EmD

[Un(Xn)], pU
n = PmD

[Un(Xn) > θI ] and wU
n = sup

xn∈D
Un(xn)

the three summaries of the predictive distribution of Un, the corresponding optimal sample

sizes are defined as

n∗E = min{n ∈ IN : eU
n < θI}, n∗P = min{n ∈ IN : pU

n < ε′}, ε′ ∈ (0, 1)
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and

n∗W = min{n ∈ IN : wU
n < θI}.

The use of predictive expectation and tail-probability based criteria as well as of several

alternative versions of the worst outcome criterion have been previously proposed in SSD

problems aimed to the control of the length of credible intervals: see, for instance, Joseph

and Belisle (1997) and references therein. Criteria 1-3 control three different aspects of the

predictive distribution of Ln and typically lead to quite different optimal sample sizes. The

expectation criterion is in principle the most straightforward (it does not require to choose ε,

for instance) but, unlike criterion 2, it does not take into account variability of Ln. The worst

outcome criterion requires a control on each data point in a relevant subset of the sample

space and it leads to optimal sample sizes substantially larger than those found using the

other methods, if the set D is large.

3 Sample size determination for robust inference of the

normal mean

SSD criteria introduced in the previous section are now developed for interval estimation of

the normal mean, using classes of conjugate priors. Whereas this is possibly the simplest

example one can think of, it is still important for two reasons. First of all, normal models

are widely used in clinical trials for their huge range of potential practical applications (see,

for instance Spiegelhalter et al. (2004)). Second, the use of normal conjugate models yields

explicit expressions for the three proposed criteria. This is quite a lucky situation, which

allows us to study analytically the role of all the prior inputs on optimal sample sizes.

3.1 Conjugate analysis

Let us assume that Xi has normal density with unknown mean θ and known precision λ.

Given two real and positive values nL
A and nU

A, such that nL
A < nU

A, consider the class of

restricted conjugate priors, defined as follows:

ΓRC =
{
N(θ|µA, nAλ); nA ∈ [nL

A, nU
A] ⊂ R}

, (2)

where nA, the prior sample size, ranges between the values nL
A and nU

A and where, in general,

N(·|a, b) denotes the density function of a normal random variable of mean and precision

(a, b). From standard conjugate analysis it follows that, for each prior in ΓRC , the limits of

the (1− α)-level HPD density interval are

`n(xn; nA) =
nx̄n + nAµA

n + nA

− z1−α
2
[λ(n + nA)]−1/2
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and

un(xn; nA) =
nx̄n + nAµA

n + nA

+ z1−α
2
[λ(n + nA)]−1/2,

where zε denotes the ε-level percentile of the standard normal random variable. The following

result provides the expression of the lower bound of `n and of the upper bound of un, as πA

varies in ΓRC .

Result 1. Assume that Xi has density N(·|θ, λ), with λ known, i = 1, . . . , n and

that πA belongs to the class ΓRC defined in (2). Then,

Ln(xn) = inf
πA∈ΓRC

`n(xn; nA) =





`n(x̄n; nL
A) x̄n < µA + ξL

`n(x̄n; n∗A) µA + ξL < x̄n < µA + ξU

`n(x̄n; nU
A) x̄n > µA + ξU

and

Un(xn) = sup
πA∈ΓRC

un(xn; nA) =





un(x̄n; nU
A) x̄n < µA − ξU

un(x̄n; n∗A) µA − ξU < x̄n < µA − ξL

un(x̄n; nL
A) x̄n > µA − ξL

,

where

ξk =
z1−α/2

2n

(
n + nk

A

λ

)1/2

, k = L,U, and n∗A =
4n2λ(x̄n − µA)2

z2
1−α

2

− n.

Proof. The explicit expression of Ln is obtained noting that, if x̄n < µA, `n

is an increasing function of nA; whereas, if x̄n > µA, `n has a minimum at n∗A.

The result follows by discussing the relative position of n∗A with respect to the

interval [nL
A, nU

A]. The expression of Un is obtained similarly. ¤

Remarks

i) From the expression of Ln it can be checked that, as one intuitively expect, for values

of µA sufficiently large (small), the lower bound of `n is attained in correspondence

of the minimal (maximal) precision prior in ΓRC , i.e. of the distribution with prior

sample size equal to nL
A (nU

A).

ii) It is straightforward to check that, using the class ΓC of conjugate priors with no re-

strictions on the variance, obtained from (2) as nL
A → 0 and nU

A → +∞, the expression

of infπA
`n is 




`n(x̄n; 0) x̄n < µA + ξL

`n(x̄n; n∗A) x̄n > µA + ξL

,
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with ξL = z1−α/2/(2
√

nλ).

We are now interested in the predictive distribution of Ln and Un but, for brevity, we here

report results only for the former. Assume that the design prior for θ is

πD(θ) = N(θ|µD, λnD), (3)

where µD can be interpreted as a guessed value for the unknown θ and where nD denotes

the prior sample size associated to πD. It follows that the predictive distribution of X̄n is

mD(x̄n) = N(x̄n|µD, λm), λm = λ(n−1 + n−1
D )−1.

Result 2. Under the assumptions of Result 1, using the design prior (3), the

following results hold.

a) The expression of eL
n = EmD

[Ln(Xn)] is

eL
n(ΓRC) = `n(µD; nL

A)Φ(aL) + `n(µD; nU
A)[1−Φ(aU)] + µA[Φ(aU)−Φ(aL)] + HL

n ,

where

HL
n =

1√
2πλm

[ψUe−
1
2
a2

U−ψLe−
1
2
a2

L ]−
z2
1−α/2

4
(nλ)−1

∫ µA+ξU

µA+ξL

(y−µA)−1N(y|µD, λm)dy,

ak =
√

λm(µA − µD + ξk), and ψk =
n

n + nk
A

, k = L,U.

b) The expression of pL
n = PmD

[Ln > θS], for µA < θS, is

pL
n =

{
Φ (aL)− Φ

(√
λm(bL − µD)

)}
I(bL,+∞)(µA + ξL)

+ {Φ(aU)− Φ(aL)} I(θS ,+∞)(µA)

+ 1− Φ
[√

λm(max{bU , µA + ξU} − µD)
]
,

where

bk = θS + nk
A(θS − µA)/n + 2ξk, k = L,U.

c) Let Dγ ⊂ R be the (1− γ)-HMD interval. Then

wL
n = inf

xn∈Dγ

Ln(xn) = Ln(µD − z1− γ
2
λ−1/2

m ).

Proof. Part a) follows from standard calculations, using the basic integral

∫ b

a

yN(y|m, v−2)dy = m

[
Φ

(
b−m

v

)
− Φ

(
a−m

v

)]
+

v√
2π

[
e−

1
2(

a−m
v )

2

− e−
1
2(

b−m
v )

2]
.
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Part b) follows from standard probability calculations, using the expression of

Ln derived in Result 1 and noting that, if µA < θS, the intersection of the events

(Ln > θS) and (µA + ξL < X̄n < µA + ξU) is empty. Part c) follows from noting

that the (1−γ)-HMD interval is Dγ = (x̄n− z1− γ
2
λ
−1/2
m , x̄n + z1− γ

2
λ
−1/2
m ) and that

Ln is a monotone increasing function of x̄n. Hence, as x̄n varies in Dγ, Ln attains

the minimum at the lowest limit. ¤

Remarks

i) Letting nD → +∞, one obtains the expressions corresponding to the use of the sam-

pling distribution N(·|µD, λn) instead of the marginal distribution N(·|µD, λ/(1/n +

1/nD)).

ii) The first and the second terms of eL
n are respectively O(1) and O(n−1/2) whereas

[ψUe−
1
2
a2

U−ψLe−
1
2
a2

L ] = O(n−1), (nλ)−1

∫ µA+ξU

µA+ξL

(y−µA)−1N(y|µD, λm)dy = O(n−3/2).

Hence, for sufficiently large sample sizes, the leading terms in the expression of eL
n are

the first two.

iii) The quantity pL
n represents the probability of reaching a robust significant evidence in

favor of the hypothesis θ > θS and can be interpreted as a robust Bayesian power. See

Sections 3.1.2 and 4 for details.

The following Corollary describes the behavior of eL
n , pL

n and wL
n as n goes to infinity.

Corollary. Under the assumptions of Results 1 and 2, using the design prior

(3) and assuming θS > µA, as n goes to ∞, the sequence of random vari-

ables (Ln; n ∈ N) converges in law to a normal random variable of parameters

(µD, λnD) and

eL
n → µD, pL

n → 1− Φ[
√

λnD(θS − µD)], wL
n → µD − z1− γ

2
(λnD)−1/2.

Proof. The result follows noting that, as n goes to infinity, PmD
[Ln < θS] tends

to Φ
(√

λnD(θS − µD)
)
. ¤

The above limiting values of the three sequences eL
n , pL

n and wL
n have to be taken into

account when fixing the value θS so that the sample size problem is actually solvable. Note

that, for any finite nD, the sequence
(
wL

n ; n ∈ N)
is definitively dominated by the sequence(

eL
n ; n ∈ N)

. Note also, ∀nD ∈ N, the limit of the sequence
(
pL

n ; n ∈ N)
is strictly less then

one: it converges to one only if also nD → +∞.
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3.1.1 Expectation criterion

We now focus on Criterion 1 using the following numerical example.

Example 1. Assume that λ = 1, µD = 3, nD = 1. Following the expectation criterion, we

choose the minimal sample size such that eL
n is larger than θS, the upper limit of the range

of equivalence, that now we set equal to 2.5. Table 1 (columns 2-4) shows minimal sample

sizes n∗E computed for several values of nL
A and nU

A and for several values of the analysis prior

mean, µA. As expected, one can notice what follows.

Table 1: Optimal sample sizes n∗E for several classes ΓRC and prior means µA (µD = 3, nD = 1,

λ = 1, θS = 2.5, α = 0.05)

nL
A | nU

A nL
A | nU

A nL
A | nU

A nL
A | nU

A n0 n0 n0 πN

µA 1 | 9 2 | 8 3 | 7 4 | 6 4 5 6 0

0 83 (83) 76 (76) 70 (70) 63 (63) 49 56 63 16

1.0 60 (60) 56 (56) 51 (51) 47 (47) 38 42 47 16

1.5 49 (48) 46 (45) 42 (42) 39 (39) 32 35 39 16

2.7 25 (18) 23 (18) 21 (17) 19 (17) 16 16 16 16

3.0 21 (15) 18 (14) 16 (13) 13 (12) 12 11 10 16

i) For any value of µA, the wider the class ΓRC (i.e. the difference nU
A−nL

A) the larger the

corresponding value n∗E(ΓRC). For instance, when µA = 0, the restriction of the range

of values for the prior sample size from [1,9] to [4,6] implies a reduction in minimal

sample size of 20 units. On the other hand, for any specific choice of ΓRC , the larger

µA (i.e. the more optimistic the analysis prior), the smaller n∗E(ΓRC).

ii) The design prior sample size, nD, which expresses the degree of uncertainty assigned

to the guessed value µD, has a greater impact on robust optimal sample sizes for

larger values of µA than for smaller values. The values in parentheses in Table 3.1.1

are determined for nD = ∞, i.e. using the point mass design prior at µD (i.e. using

fn(·; µD)) in pre-posterior computations. Note that for µA = 0 and µA = 1, the optimal

sample sizes are unchanged and that, as µA increases, the reduction in n∗E is stronger

and stronger. This can be explained by the fact that, for small µA, the lower bound

of `n is achieved for relatively large values of nA, making the impact of sensitivity to

changes in variability of the sampling mean (i.e. of nD), less important than they are

for large values of µA. In this latter case, in fact, the lower bound of `n is attained for

12



small values of nA, and changes in the variability of the sampling mean have a stronger

impact on eL
n and, eventually on n∗E. This fact can also be appreciated in Figure 1,

which shows eL
n as a function of n, for several values of µA and of nD, assuming λ = 1

and nL
A = 1, nU

A = 9. The first three curves from the top correspond to the optimistic

value µA = 3. The last two lines are for µA = 0. The upper solid line is for nD = 1,

whereas the dashed-dotted and the dashed line correspond respectively to the cases

nD = ∞ and nD = 0.1. In this case, for instance, for nD = ∞, n∗E = 15, that is 6

sample units less than the value found for nD = 1. Consistently, as nD gets smaller, n∗E
increases. Turning to the µA = 0 case, the optimal n∗E for nD = ∞ does not differ from

those at nD = 1. A limited increase in optimal sample sizes is noticed for nD = 0.1. ♦

0 20 40 60 80 100

0
1

2
3

n

 

Figure 1: eL
n for Example 1: µA = 0, nD = 1 (lower solid line); µA = 0, nD = 0.1 (dotted line);

µA = 3, nD = 1 (upper solid line); µA = 3, nD = ∞ (dashed-dotted line); µA = 3, nD = 0.1 (dashed

line);

The impact of the value chosen for the location of the design marginal, µD, is determinant.

What we expect is that, the larger µD, the smaller the minimum n needed by eL
n to reach

the θS level. Recall that, in the clinical trial setting, µD expresses expectations that one

has in planning the experiment, large values of it representing optimism towards the new

treatment. As an example, Figure 2 reports the plots of eL
n for µA = 0, nL

A = 1, nU
A = 9,

nD = 1, λ = 1 and for three values of µD: 3 (solid), 2.7 (dashed) and 2.6 (dotted). The
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horizontal line is drawn at the threshold level θS = 2.5. From this plot one can appreciate

the effect of µD on the steepness of eL
n and, ultimately, on n∗E’s, that result to be respectively

equal to 83, 279 and 774. The effect of the precision, λ, is discussed in Section 5.
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Figure 2: eL
n for Example 1: µD = 3 (solid line); µD = 2.7 (dashed line) and µD = 2.6 (dotted line);

3.1.2 Tail-probability criterion

As said above, the expectation criterion guarantees only an average control on the distribu-

tion of Ln, with no control on its variability. This might result in the selection of sample

sizes for which the chances of reaching robust evidence are too small. For instance, for all

the values n∗E reported in Table 1 we have that pL
n∗E
≈ 0.5. This is of course related to the

asymptotic normality of Ln and to the specific values chosen for prior inputs, which imply the

expected value and the median of Ln to get closer and closer. The use of the tail-probability

criterion allows a stricter control on (the distribution) of Ln. Of course, this might require

large sample sizes, depending on the input values and on the level ε. It is interesting to note

that, unlike eL
n , the asymptotic limit of pL

n , i.e. the limiting value it can potentially reach,

depends on λ, nD and on the difference θS − µD. One can intuitively expect that, even for

finite n, changes in these quantities have a substantial effect on pL
n .

Example 2. Consider again the set-up of Example 1. Figure 3 reports the plots of pL
n

for for three distinct values of nD: 1, 10 and +∞, this third case corresponding to the use
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of the point mass design prior on µD = 3. For these three values, pL
n is equal to 0.5 at

n∗P = 83. However, provided pL
n is greater than 0.5, the larger is nD, the greater is the value

of pL
n . For instance, the number of extra observations needed to increase pL

n from 0.5 to 0.6

depends quite dramatically on nD: only 6 extra observations when nD = +∞, 22 and 105

more when nD is respectively equal to 10 and 1. This fact is relevant since it shows that

ignoring uncertainty in the design - i.e. assuming a very large value for nD, may lead to a

non realistic assessment of the value attainable by pL
n and of the sample size necessary for

achieving conclusive evidence. For discussion and comparison between classical and Bayesian

power, see also Spiegelhalter et al. (2004, Section 6.5). Table 2 (columns 2-5), reports the

sample sizes n∗P necessary to reach ε = 0.6, for several values of nL
A, nU

A, µA and for the three

values of nD considered above. ♦
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Figure 3: pL
n for Example 2: nD = 1 (dashed line); nD = 10 (dotted line); nD = +∞ (dashed-dotted

line).

3.1.3 Worst outcome criterion

It can be easily checked that wL
n is an increasing function of γ that, as γ → 1, tends to

Ln(µD). For sufficiently large n, Ln is essentially linear in X̄n and Ln(µD) = Ln(EmD
[X̄n]) '

EmD
[Ln(X̄n)] = eL

n . Therefore in this case we expect that, for any γ < 1, wL
n ≤ eL

n and hence

that n∗W ≥ n∗E Of course, the smaller γ (i.e. the larger the set Dγ), the larger the difference
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Table 2: Optimal sample sizes n∗P for ε = 0.6 and for several classes ΓRC and prior means µA (µD = 3,

nD = 1, 10,∞, λ = 1, θS = 2.5, α = 0.05)

nL
A | nU

A nL
A | nU

A nL
A | nU

A nL
A | nU

A n0 πN

µA 1 | 9 2 | 8 3 | 7 4 | 6 5 0

0 210-105-89 195-97-82 181-89-75 166-80-68 151-72-61 65-24-20

1.0 158-77-65 149-71-61 140-66-56 130-61-52 120-55-47 ”-”-”

1.5 132-62-53 125-58-50 118-55-46 111-51-43 104-47-40 ”-”-”

between n∗E and n∗E. Note also that, as n → +∞, wL
n tends to wL

∞ = µD − z1− γ
2
(λnD)−1

whereas, as noticed above, eL
n tends to µD. In the application of the proposed sample size

criteria it is important to consider these limiting values in order to fix threshold values (here

θS) that can actually be reached by eL
n and wL

n at sufficiently large but realistic sample size.

This is numerically illustrated in the following example.

Example 3. Assume again that λ = 1, µD = 3 and nD = 1. We also assume that µA = 0

and that θS = 1. Table 3 reports the minimal sample sizes n∗W , based on the worst outcome

criterion, for values of 1− γ ranging from 0.05 to 0.95. The last column of the table reports

the asymptotic values wL
∞ that wL

n can reach for the corresponding γ levels (recall that,

in this case, eL
n → 3). The last row reports the values n∗E, obtained using the expectation

criterion. As expected, for any chosen γ level, n∗W decreases as nU
A−nL

A gets smaller. For any

choice of nU
A−nL

A, the optimal sample size decreases as 1−γ decreases. For very large values

of 1 − γ, implying a very strong predictive control on `n, the required sample size is very

large. As an extreme example, for 1 − γ = 0.95, the robust sample size is at least equal to

2740 observations. Note also that, as 1− γ tends to zero, wL
∞ tends to the asymptotic value

of eL
n (µD = 3) and the values n∗E and n∗W tend to get closer and closer. For completeness,

we report in columns 7 and 8 of Table 3 the optimal sample sizes found using respectively

a proper analysis prior (n0 = 5) and the noninformative prior: similar comments to those

given in Example 1 hold. ♦

4 Comparisons with non-robust and noninformative

approaches

It is interesting to compare sample sizes obtained using the robust methods of the previous

section to those determined with more traditional approaches based on the use of either a
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Table 3: Optimal sample sizes n∗W for several classes ΓRC and several values of 1−γ (µA = 0, µD = 3,

nD = 1, λ = 1, θS = 1, α = 0.05)

nL
A | nU

A nL
A | nU

A nL
A | nU

A nL
A | nU

A n0 πN wL
∞

1− γ 1 | 9 2 | 8 3 | 7 4 | 6 5 0

0.95 2885 2835 2787 2740 2692 2446 1.040

0.90 80 76 71 67 62 35 1.849

n∗W 0.75 25 23 22 20 18 7 2.325

0.50 15 14 12 11 10 3 2.681

0.05 9 9 8 7 6 2 2.940

n∗E 9 8 8 7 6 1

specific proper prior or of a noninformative prior. We limit our analysis to the expectation

criterion for `n under scenario A (µA ≤ µD, µD > θS), in which we want to determine the

smallest sample size such that eL
n is sufficiently large. Similar considerations, omitted for

brevity, can be extended to the worst outcome criterion.

Let us consider a specific prior π0 for θ and let eL
n(π0) denote the predictive expectation of

`n determined using π0. For any class of priors Γ such that π0 ∈ Γ, and for any class Γ′ such

that Γ ⊂ Γ′ we have that eL
n(Γ′) ≤ eL

n(Γ) ≤ eL
n(π0) and hence that n∗E(π0) ≤ n∗E(Γ) ≤ n∗E(Γ′).

For instance, in the specific case of Section 3, if π0 ∈ ΓRC ⊂ ΓC , we have that

n∗E(π0) ≤ n∗E(ΓRC) ≤ n∗E(ΓC).

Table 1 shows the minimal sample sizes n∗E(π0) obtained for some values of n0 and allows us

to quantify the number of extra observations implied by the robust approach with respect

to the use of a single prior. Consider, for instance, n0 = 5 (column 7). For any values of µA

and for any class ΓRC , n∗E(π0) ≤ n∗E(ΓRC) but, however, as seen in Example 1, the impact of

the value of µA is relevant: in fact, for µA = 0 the relative reduction in optimal sample size

that one has using π0 (with n0 = 5) in the place of ΓRC (with nA ∈ [1, 9]) is 32.5%, while,

for µA = 3, one has the 47.6% of reduction.

It is also interesting to compare sample sizes obtained with fixed analysis priors π0,

based on eL
n(π0), for several values of n0. Table 1 shows (columns 6-8) the values n∗E(π0) for

n0 = 4, 5, 6. For small values of µA, as increasing weight is assigned to the prior centered on

µA (i.e. as n0 increases), the optimal sample size n∗E(π0) increases as well; as the value of

µA gets closer and closer to µD (here, for instance, for µD > 2.7), n∗E(π0) tends to decrease

as n0 increases. Again, the assignment of increasing weight to the prior mean µA results in

a reduction of the minimal sample size required for making, on average, `n large only when
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µA is sufficiently optimistic. Specifically, it can be easily checked that, for µA ≥ µD, eL
n(π0)

increases monotonically with n0 and that, as a consequence, n∗E(π0) is a decreasing function

of n0.

Let us now consider the standard noninformative prior πN ∝ 1 that corresponds to

assigning a null weight to the analysis prior mean, µA. It can be checked that

eL
n(πN) = µD − z1−α

2
(nλ)−1/2 and n∗E(πN) =

⌈
z2
1−α

2

λ(µD − θS)2

⌉
,

where n∗E(πN) is the smallest n such that eL
n(πN) > θS. The optimal noninformative sample

size n∗E(πN) is a decreasing function of the sampling precision λ and of the difference µD−θS.

Note that, as the difference µD − θS becomes smaller and smaller, n∗E(πN) diverges. In

fact, in this case, eL
n(πN) is strictly smaller than θS for any n ∈ N. We now compare

these sample sizes, based on πN , to those determined using a proper analysis prior, which

assigns weight n0 to µA. Ideas carry over to the robust case. In general, it depends on

the value of µA whether it is convenient to use π0 or πN , i.e. whether n∗E(π0) < n∗E(πN)

or n∗E(π0) > n∗E(πN). Intuitively, under scenario A, we expect that for large values of µA

(optimistic priors), it is convenient to assign as much weight as possible to µA, i.e. we

expect n∗(π0) < n∗(πN). As a limiting case, when µA = µD, it is straightforward to check

that eL
n(π0) = nµD/(n + n0 − z[λ(n + n0)]

−1/2) and that n∗E(π0) = n∗E(πN) − n0. Hence n0

is, in this case, the number of sample units saved using π0 rather than πN . Conversely, for

small values of µA (skeptical prior), we expect to be convenient (in terms of minimal sample

sizes) to use πN rather than π0, i.e. that n∗E(π0) < n∗E(πN). Summarizing, we expect that,

for sufficiently small values of µA, n∗E(πN) ≤ n∗E(π0) ≤ n∗E(ΓRC), whereas, for sufficiently

large values of µA, n∗E(π0) ≤ n∗E(ΓRC) ≤ n∗E(πN). Table 1 exemplifies numerically the above

considerations: n∗E(πN) is uniformly smaller than the corresponding sample sizes determined

with both π0 and ΓRC for values of µA less than 2.7; when µA = µD = 3, n∗E(πN) is always

larger than n∗(π0) for the 3 values of n0 considered and than n∗E(ΓRC) only for the two

smallest classes considered.

Let us now turn to the tail-probability criterion. The quantity pL
n is related to the

classical concept of power and to the several versions of Bayesian power (Spiegelhalter et

al. (2004, Section 5)), defined as probabilities of reaching “significant” results when testing

an hypothesis on θ, in our notation, `n > θS. In fact, pL
n can be interpreted as a form

of robust Bayesian power and represents an extension of the expected power and of the

Bayesian power reported in Speigelhalter et al. (2004). The expected power, defined as

the predictive probability of observing a classically significant result, is essentially obtained

from pL
n by setting nL

A = nA = U = 0 (i.e. using a noninformative analysis prior). The

Bayesian power, defined as the predictive probability that the posterior probability of a

18



certain hypothesis is larger than a given threshold, is related to the quantity obtained by pL
n

by setting nL
A = nU

A = n0 (i.e. using a specific analysis prior instead of ΓA). The differences

between these concepts of power and the robust approach of the present paper are: a) the

distinction between design and analysis priors; b) the use of a class of analysis priors in the

place of either a noninformative prior or a single prior. The last two columns of Table 2

reports the values of n∗P obtained respectively with the single analysis priors N(θ|µA, n0λ),

where n0 = 5, and the noninformative priors. From this table one can appreciate the

increase in sample size due to the use of a class of analysis priors in the place of a single

proper or noninformative priors i.e., the extent of sample size miscalculation due to ignoring

uncertainty in the analysis prior.

5 Unknown variance

The analysis developed for the normal model relies on the restrictive assumption that λ is

known. However optimal sample sizes might depend crucially on this parameter. A typical

situation is depicted in Figure 4 where we see how, applying the expectation criterion of

Section 2, the optimal sample sizes rapidly increase from 65 to 124 as λ ranges from 3

to 1
3
. This plot clearly shows how sensitive the proposed criteria might be to sampling

precision and, consequently, suggests the necessity of using priors for λ that account for its

uncertainty. In what follows we will consider only Criterion 1 and predictive expectation will

now be denoted with ẽL
n . In the conjugate normal framework previously adopted, a natural

choice is to consider an analysis prior πA(θ, λ) = πA(θ|λ)πA(λ), where πA(θ|λ) ∈ ΓRC , defined

in Equation 2 and where πA(λ) is a conjugate gamma density. From standard results, the

posterior distribution of θ turns out to be

π(θ|xn, nA) = St
(
θ
∣∣∣θn,

(nA+n)(2ν+n)
2β+2g(xn)

, 2ν + n
)

,

where

θn = nAµA+nxn

nA+n
, g(xn) = 1

2

(
nS2 + nAn(xn−µA)2

nA+n

)
,

S2 is the sample variance, and St(a, b, c) denotes the density function of a Student t dis-

tribution with location, scale and degrees of freedom equal to (a, b, c). The extrema of the

(1 − α)–level HPD density interval coincides with those of the equal tails interval and are

given by

˜̀
n(xn; nA) = θn − t

2ν+n;1−α
2

√
2β+2g(xn)

(nA+n)(2ν+n)

and

ũn(xn; nA) = θn + t
2ν+n;1−α

2

√
2β+2g(xn)

(nA+n)(2ν+n)
,
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Figure 4: Sensitivity check with respect to variations of the prior precision λ (µA = 0, µD = 3, nD =

1, nL
A = 1, nU

A = 9): eL
n for λ = 1

3 (solid line); λ = 1 (dashed line); λ = 3 (dotted line).

where tη,ε denotes the ε–level percentile of a Student t distribution with η degrees of free-

dom. Although closed form expressions for L̃n(xn) = infπA∈ΓA
˜̀
n(xn; πA) and Ũn(xn) =

supπA∈ΓA
ũn(xn; πA) are still available, they are not structurally as neat as the previous

ones, given the coupling between sample mean and variance that manifests itself in their ex-

plicit definitions. Nevertheless, numerical computations of the proposed criteria in this new

setup are straightforward. Specifically, assuming πD(θ, λ) = πD(θ|λ)πD(λ), where πD(θ|λ) =

N(θ|µD, nDλ) and where πD(λ) = Ga(ν, β), we see that m(x; πD) = St(x|µD, ω2
n, 2ν), where

ω2
n = [nD(nD + n)−1νβ−1]−1.

Figures 5A and 5B show, as function of n and for the input values of Example 1, the plots

of ẽL
n computed with a gamma prior for λ, with parameters ν and β such that Mode[λ] =

1 and such that the prior probability of the set (1
3
, 3) is approximatively equal to 0.95.

Comparing the new optimal sample sizes with those associated to the plots in Figures 1

and 2 where λ was fixed and equal to 1, we see how they seem to behave quite differently
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Figure 5: A: ẽL
n for (µA = 0, nD = 1) (lower solid line); (µA = 0, nD = 0.1) (dotted line);

(µA = 3, nD = 1) (upper solid line); (µA = 3, nD = ∞) (dashed-dotted line); (µA = 3, nD = 0.1)

(dashed line). B: ẽL
n for µD = 3 (solid line); µD = 2.7 (dashed line) and µD = 2.6 (dotted line);

depending on the magnitude of other parameters like nD: quite close to each other for large

values of nD (n?
E = 15 and ñ?

E = 14, when µA = 3 and nD = +∞); substantially far apart

for small values of nD (n?
E = 40 and ñ?

E = 164, when µA = 3 and nD = 0.1).

6 An application to the design of a clinical trial

In this section we apply the proposed SSD methods in the context of planning the size of a

clinical trial. In this regard, we revise the UK Medical Research Council (MRC) randomized

trial of gastric surgery, ST01, discussed in Fayers et al. (2000) and Spiegelhalter et al. (2004,

pp. 197-201). This trial was conducted from 1986 to 1994 in order to compare survival

following conventional and radical surgery for gastric cancer. The goal was estimation of

the log hazard ratio (log-HR), θ, values greater than zero favoring radical treatment. The

classical statistic Yn = 4Ln/n was used, where Ln is the standard observed log-rank statistic

and n the total number of events (deaths) observed. In planning the sample size, it has
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been assumed that Yn was approximately normally distributed, with parameters (θ, nλ). It

was assumed that λ = 1/4 (for details and justifications, see Speigelhalter et al. (2004),

pages 198). The sample size for the trial was determined according to the opinion of the

surgical members of the design team which suggested that a change in 5-years survival from

20% (conventional) to 33.5% (radical) could be realistic and medically important. Hence,

the number of units was determined so that the trial were able to detect a 13.5% difference

(equivalent to a log-HR of 0.39) at the 5% significance level with 90% power. (Note: the

value 0.39 will be used here as the design value, µD in our notation). This resulted in an

overall sample size of 400 patients, predicted to yield n = 276 events. Based on the opinion

of further 23 surgeons experienced in treating gastric carcinoma, Fayers et. al (2000) elicited

a normal (analysis) prior distribution for θ, of mean 0.12, a value corresponding to 4% of

improvement with respect to the baseline survival of the conventional therapy, and precision

n0λ = (0.19)−1, so that n0 = 4(0.192) = 111. (Note: these values will be used here to

formalize the analysis prior class, ΓA). Compared to the prior mean, the design value

µD = 0.39 appears as rather optimistic, and that it was found to yield a too small sample

size. See Fayers et al. (2000) for discussion.

In addition to prior beliefs, Fayer et al. (2000) elicited also demands for radical surgery,

and established that an improvement around 10% (which corresponds to a value of 0.29 on

the log-HR scale) was judged necessary before switching to the new treatment, due to its

impact and complication risks. (Note: this value can be reasonably used as superior limit of

the range of equivalence, θS).

Let us now reconsider the sample size problem just illustrated and reformulate it in terms

of the robust Bayesian approach based on predictive control of lower bounds of credible

interval inferior limits. For brevity we here limit consideration to Criterion 1. Using the

normal approximations for Yn, results of the previous sections can be applied to this problem.

As design prior, we consider a normal density with µD = 0.39; several values for nD will be

used in numerical illustration. For the analysis prior mean, in addition to the clinical value

µA = 0.12 (4% improvement), we also consider the skeptical value µA = 0 (no improvement)

and the more optimistic value µA = 0.29 (10% improvement). The class ΓRC is defined by

fixing nU
A = 111, the full prior sample size elicited by Fayers et al. (2000), and nL

A = 1. This

choice corresponds to assigning to the weight of a single experimental unit to the prior, and

yields the so-called unit-information prior (Kass and Wasserman, 1996). In order to explore

the effect of the size of the class of priors (i.e. of the difference nU
A − nL

A), we also consider,

just as an example, the values nL
A = 0.25×111 and nU

A = 0.75×111. Finally, we also include

computation with the single prior obtained assuming n0 = 111/2.

Implementation of the sample size method require to fix θS. Fayers et al. (2000) and

22



Spiegelhalter et al. (2004) point out that: “... around a 10% of improvement was judged to

be necessary before wishing to routinely implement the more radical surgery...”. This corre-

sponds to choosing θS = 0.29. However, even under the rather optimistic design assumption

of an expected improvement around 13.5 %, the requirement that the lower bound of the in-

ferior limit of a credible interval be larger than this value results quite demanding and implies

very large sample sizes. Hence, we here fix two more modest but more realistic values for the

superior limit of the range of equivalence, namely, θS = 0.205 and θS = 0.149 correspond-

ing respectively 7% and 5% improvement in survival of radical surgery versus conventional

treatment. Table 6 reports the minimal sample sizes n∗E based on the expectation criterion,

for several values of µA, nD, θS, for two classes ΓA and for the selected single analysis prior,

determined with design prior mean µD = 0.39. As expected, sample sizes necessary to have

the mean value of Ln greater than θS, decreases as µA and/or nD increases and as nU
A − nL

A

decreases. In particular, the impact of the precision of the design prior nD is quite relevant.

Table 4: Gastric Example. Optimal sample sizes n∗E

θS = 0.205 θS = 0.149

nL
A | nU

A nL
A | nU

A n0 nL
A | nU

A nL
A | nU

A n0

µA nD 1 | 111 1
4
111 | 3

4
111 1

2
111 1 | 111 1

4
111 | 3

4
111 1

2
111

1 1301 968 607 875 631 370

0 10 857 736 ” 546 460 ”

100 748 680 ” 463 418 ”

1 1245 911 545 834 588 324

0.12 10 785 668 ” 494 411 ”

100 648 598 ” 392 359 ”

1 1170 830 452 778 527 254

0.29 10 695 577 ” 430 344 ”

100 537 496 ” 318 287 ”

In a second elicitation task, conducted when the trial was complete but before disclo-

sure of the results and based again on the opinion of the trial committee, it was found that

approximately 10% (log-HR=0.29) improvement was more realistic than 13.5% initially sup-

posed. We have repeated calculations that yielded Table 6, replacing 0.39 with 0.29 as value

for µD. The resulting sample sizes arising under this less optimistic scenario are, for all the

cases considered in Table 6, uniformly much larger than the previous ones and, in general,

unrealistic. For instance, for µA = 0.29, nD = 100, θS = 0.205, for the two classes consid-
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Table 5: Gastric Example. Optimal sample sizes n∗E(πN )

µD θS = 0.205 θS = 0.149

0.39 449 265

0.29 2127 773

ered the optimal sample sizes are respectively equal to 2278 and 2177 (instead of 537 and

496 of the previous case). The conclusion is the following: if the goal of the experiment is so

demanding that it requires an unrealistically large sample size for being achieved, either the

trial is not even started, or demands are adequately reformulated. Whereas this is a general

guideline in sample size determination problems, this is particularly relevant in this robust

approach.

Finally, Table 6 reports the optimal sample sizes for the gastric example, when a nonin-

formative analysis prior is used. As noted above, the resulting sample sizes do not depend

neither on the analysis prior mean µA nor on nD and are quite sensitive to the values chosen

for both µD and θS. The noninformative approach, that neglects the role of µA and nD,

might lead to sample sizes that strongly differ from those obtained using either a proper

analysis prior or the class ΓA and, depending on the situations, might yield quite inadequate

a sample size.

7 Discussion

In this article we propose SSD methods for interval estimation of a real-valued parameter,

with specific focus on employment of the resulting criteria in clinical trials. The main char-

acteristics of the proposed methodologies are: a) the use of a design prior for formalizing

uncertainty on the guessed value of the parameter at the design stage of the inferential

process; b) the distinction between analysis and design priors; c) the formalization of the

uncertainty on elicitation of the analysis prior through the introduction of a class of distri-

butions and, hence, of a robust approach. As far as a) is concerned, the use of a design

prior qualifies the Bayesianity of the approach and has been previously acknowledged to be

advantageous with respect to the standard practice of fixing a single value for the unknown

parameter of the model. With respect to b), the formal proposal of using distinct priors

for design and analysis is more recent in the literature (see Wang and Gelfand, 2002). This

approach allows one to evaluate the impact on SSD of the mixing of different possible sce-

narios (represented by πD) and prior expectations (represented by πA). For instance one
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can establish, in terms of required minimal sample sizes, the effect of combining optimism

or skepticism - formalized by suitable choices for the parameters of the analysis prior - with

more or less optimistic expectations on a new treatment, represented by the design prior.

Finally, turning to c), the robust approach, which represent the major novelty of our con-

tribution, allows designers of experiments to account for uncertainty in the elicitation of

the prior distribution that describes pre-experimental information on the parameter. All

the above results in a greater flexibility than the standard classical and Bayesian methods.

As shown in all the numerical examples throughout the article, the price of such a greater

flexibility is that the resulting sample sizes are in general larger than those obtained with

classical or non robust Bayesian procedures. At a first look, this may be considered a draw-

back of the proposed robust Bayesian approach to the SSD problem. On the contrary, this

approach avoids the risk that, ignoring uncertainty on the guessed value as well as on the

elicited analysis prior, one ends up with unrealistically small sample sizes, which do not

protect against an unsuccessful outcome.

In the article, in the context of normal models with classes of conjugate priors, we have

compared different aspects of the predictive distributions of the lower bound of the inferior

limit of credible intervals. Criterion 1, based on eL
n is the easiest to employ, but it allows

only a loose control on the distribution of Ln. Criterion 3, based on wL
n , may determine

a much stronger control on Ln, but it typically yields too large sample sizes. Criterion 2,

based on pL
n , is the most informative quantity among the three methods. The plots of all the

three quantities eL
n , pL

n and wL
n , as functions of n, are informative and allow to visualize the

progressive gain one can achieve by increasing the sample size. This is particularly useful

when one has to establish whether the gain in the chances of achieving robust evidence due

to the increase in the size of the experiment is worth the cost of these units.

The approach presents some undeniable limits. Among these, one possible objection is

that the class of conjugate priors is not large enough to represent properly and realistically

uncertainty on the elicited analysis prior. This is certainly true. However this class presents

also some non negligible advantages over more refined and flexible classes of prior distribu-

tions. The first advantage is analytical tractability, a characteristic that is not shared by

other classes of priors, such as ε-contaminated distributions. Furthermore, one can hope

that conjugate analysis - especially for normal and binomial models - is sufficiently popular

among users, so that a robust extension would not be considered too complicated. Having

said that, however, extending the methodology to more complex models and considering

more sophisticated classes of priors is of secure interest, at least from a methodological point

of view. We hope to elaborate on these topics in the future.
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