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The power of multiple testing procedures can be increased by using weighted p-values
(Genovese, Roeder and Wasserman 2005). We derive the optimal weights and we
show that the power is remarkably robust to misspecification of these weights. We
consider two methods for choosing weights in practice. The first, external weighting, is
based on prior information. The second, estimated weighting, uses the data to choose
weights.

1 Introduction

The power of multiple testing procedures can be increased by using weighted p-values (Genovese,

Roeder and Wasserman 2005). Dividing each p-value P by a weight w increases the probability of

rejecting some hypotheses. Provided the weights have mean one, familywise error control methods

and false discovery control methods maintain their frequentist error control guarantees.

The first such weighting scheme appears to be Holm (1979). Related ideas are in Benjamini and

Hochberg (1997) and Chen et al (2000). There are, of course, other ways to improve power aside

from weighting. Some notable recent approaches include Rubin, van der Laan and Dudoit (2005),

Storey (2005), Donoho and Jin (2004) and Signoravitch (2006). Of these, our approach is closest

to Rubin, van der Laan and Dudoit (2005), hereafter, RVD. In fact, the optimal weights derived

here, if re-expressed as cutoffs for test statistics, turn out to be identical to the cutoffs derived

in RVD. Our main contributions beyond RVD are (i) a careful study of potential power losses

due to departures from the optimal weights, (ii) robustness properties of weighted methods, and

(iii) recovering power after using data splitting to estimate the weights. An important distinction

between this paper and RVD versus Storey (2005) is that Storey uses a slightly different loss

function and he requires a common cutoff for all test statistics. This allows him to make an elegant

connection with the Neyman-Pearson lemma. In particular, his method automatically adapts from

one-sided testing to two-sided testing depending on the configuration of means. Signoravitch

(2006) uses invariance arguments to find powerful test statistics for multiple testing when the

underlying tests are multivariate.

In this paper we show that the optimal weights form a one parameter family. We also show

the power is very robust to misspecification of the weights. In particular, we show that (i) sparse

weights (a few large weights and minimum weight close to 1) lead to huge power gain for well
1Research supported by National Institute of Mental Health grants MH057881,MH066278, MH06329 and NSF

Grant AST 0434343. The authors thank Jamie Robins for helping us to clarify several issues.
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Figure 1: Power gain/loss for weighting a single hypothesis. In this example, an unweighted
hypothesis has power 1/2. The weights are w0 < 1 < w1 with w1/w0 = B. The top line shows
the power when the alternative is given the correct weight w1. The bottom line, which is nearly
indistinguishable from 1/2, shows the power when the alternative is given the incorrect weight w0.
As B increases, the power gain increases sharply while the power loss remains nearly constant.

specified weights, but minute power loss for poorly specified weights; and (ii) in the non-sparse

case, under weak conditions, the worst case power loss for poorly specified weights is typically

better than the power using equal weights. In fact, the power is degraded at most by a factor

of about γ/(1 − a) where a is the fraction of nonnulls and γ is the fraction of nulls that are

mistaken for alternatives. Figure 1 shows the sparse case. The top line shows power from correct

weighting while the bottom line shows power from incorrect weighting. We see that the power

gains overwhelm the potential power loss. Figure 2 shows the non-sparse case. The plots on the

left show the power as a function of the alternative mean ξ. The dark solid line shows the lowest

possible power assuming the weights were estimated as poorly as possible. The lighter solid line

is the power of the unweighted (Bonferroni) method. The dotted line shows the power under

theoretically optimal weights. The worst case weighted power is typically close to or larger then

the Bonferroni power except for large ξ when they are both large.

We consider two methods for choosing the weights: (i) external weights, where prior informa-

tion (based on scientific knowledge or prior data) singles out specific hypotheses and (ii) estimated

weights where the data are used to construct weights. External weights are prone to bias while

estimated weights are prone to variability. The two robustness properties reduce concerns about

bias and variance.

An example of external weighting is the following. We have test statistics {Tj : j = 1, . . . , m}
associated with spatial locations {sj : j = 1, . . . , m} where sj ∈ [0, L], say. These could be

association tests for markers on a genome. The number of tests m is large, on the order of 100,000
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Figure 2: Power as a function of the alternative mean ξ. In these plots, a = .01, m = 1000
and α = 0.05. There are (1 − a)m nulls and ma alternatives with mean ξ. The left plots shows
what happens when the weights are incorrectly computed assuming that a fraction γ of nulls are
actually alternatives with mean u. In the top plot, we restrict 0 < u < ξ. In the second and third
plot, no restriction is placed on u. The top and middle plot have γ = .1 while the third plot has
γ = 1 − a (all nulls misspecified as alternatives). The dark solid line shows the lowest possible
power assuming the weights were estimated as poorly as possible. The lighter solid line is the
power of the unweighted (Bonferroni) method. The dotted line is the power under the optimal
weights. The vertical line in the top plot is at ξ∗. The weighted method beats unweighted for al
ξ < ξ∗. The right plot shows the least favorable u as a function of ξ. That is, mistaking γm nulls
for alternatives with mean u leads to the worst power. Also shown is the line u = ξ.
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for example. Each Tj is used to test the null hypothesis that θj = E(Tj) = 0. Prior data is

in the form of a smooth stochastic process {Z(s) : s ∈ [0, L]}. This might be from a whole

genome linkage scan. At alternatives, the mean µ(s) = E(Z(s)) is a large positive value; however,

due to correlation, at nulls close to alternatives, µ(s) is also non-zero. Peaks in the process Z(s)

provide approximate information about the location of alternatives. We want to use the process Z

to generate reasonable weights for the test statistics.

When external weights are not available, the optimal weights can be estimated from the data.

One approach is to use data splitting (RVD) using a fraction of the data to estimate the weights and

the remainder to test. For example, consider the two-stage genome-wide association study (e.g.,

Thomas et al. 2005) for which a sample of n subjects is split into two subsets. Using the first subset,

we obtain test statistics {Tj : j = 1, . . . , m} associated with locations {sj : j = 1, . . . , m}.

Typically only the second subset of data are used in the final analysis. Building on the ideas of

Skol et al. (2006), we take the two-stage study design further, exploring how the first set of data

can be utilized to formulate weights, and the full data set can be used for testing.

2 Weighted Multiple Testing

We are given hypotheses H = (H1, . . . , Hm) and standardized test statistics T = (T1, . . . , Tm)

where Tj ∼ N(ξj, 1). (The methods can be extended for nonnormal test statistics but we do not

consider that case here.) For a two-sided hypothesis, Hj = 1 if ξj 6= 0 and Hj = 0 otherwise.

For the sake of parsimony, unless otherwise noted, results will be stated for a one-sided test where

Hj = 1 if ξj > 0 although the results extend easily to the two-sided case. Let θ = (ξ1, . . . , ξm)

denote the vector of means.

The original data are often of the form

X =




X11 X12 . . . X1m

X21 X22 . . . X2m
...

...
...

...
Xn1 Xn2 . . . Xnm


 (1)

where the jth test statistic Tj is based on the jth column of X. Usually, Tj is of the form Tj =
√

njXj/σj where Xj is approximately (or exactly) N(γj, σj2/nj) and the noncentrality parameter

is ξj =
√

njγj/σj.

The p-values associated with the tests are P = (P1, . . . , Pm) where Pj = Φ(Tj), Φ = 1 − Φ

and Φ denotes the standard Normal CDF. Let

P(1) ≤ · · · ≤ P(m)
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denote the sorted p-values and let

T(1) ≥ · · · ≥ T(m)

denote the sorted test statistics.

A rejection set R is a subset of {1, . . . , m}. Say that R controls familywise error at level α if

P(R∩H0) ≤ α where H0 = {j : Hj = 0}. The Bonferroni rejection set is

R = {j : Pj < α/m} = {j : Tj > zα/m} (2)

where we use the notation zβ = Φ
−1

(β).

The weighted Bonferroni procedure of Genovese, Roeder and Wasserman (2005) is as follows.

Specify nonnegative weights w = (w1, . . . , wm) and reject hypothesis Hj if

j ∈ R =

{
j :

Pj

wj
≤ α

m

}
. (3)

As long as m−1
∑

j wj = 1, the rejection set R controls familywise error at level α. For complete-

ness, we provide the proof. (All further proofs are in the appendix.)

Lemma 2.1 If m−1
∑

j wj = 1, then the rejection set R controls familywise error at level α.

Proof. The familywise error is

P((R∩H0) > 0) = P

(
Pj ≤

αwj

m
for some j ∈ H0

)

≤
∑

j∈H0

P

(
Pj ≤

αwj

m

)
=

α

m

∑

j∈H0

wj ≤ αw = α. �

Genovese, Roeder and Wasserman (2005) also showed that false discovery methods benefit by

weighting. Recall that the false discovery proportion (FDP) is

FDP =
number of false rejections

number of rejections
=

|R ∩ H0|
|R| (4)

where the ratio is defined to be 0 if the denominator is 0. The false discovery rate (FDR) is

FDR = E(FDP). Benjamini and Hochberg (1995) proved FDR ≤ α if R = {j : P(j) ≤ T}
where T = max{j : P(j) ≤ jα/m}. Genovese, Roeder and Wasserman (2004) showed that

FDR ≤ α if the P ′
js are replaced by Qj = Pj/wj as long as m−1

∑
j wj = 1 as before. This paper

will focus only on familywise error. Similar results hold for FDR and will be in a followup paper.

5



3 Power and Optimality

3.1 Power

Before weighting, that is using weight 1, the power of a single, one-sided alternative is

π(ξj, 1) = P(Tj > zα/m) = Φ(zα/m − ξj). (5)

The power2 in the weighted case is

π(ξj, wj) = P

(
Pj <

αwj

m

)
= P

(
Tj > Φ

−1
(αwj

m

))
= Φ

(
Φ

−1 (
zαwj/m

)
− ξj

)
. (6)

Weighting increases the power when wj > 1 and decreases the power when wj < 1.

Given θ = (ξ1, . . . , ξm) and w = (w1, . . . , wm) we define the average power

1

m

m∑

j=1

π(ξj, wj)I(ξj > 0). (7)

More generally, if ξ is drawn from a distribution Q and w = w(ξ) is a weight function we define

the average power ∫
π(ξ, w(ξ))I(ξ > 0)dQ(ξ). (8)

If we take Q to be the empirical distribution of (ξ1, . . . , ξm) then this reduces to the previous

expression. In this case we require w(ξ) ≥ 0 and
∫

w(ξ)dQ(ξ) = 1.

3.2 Optimality and Robustness

In the following theorem we see that the set of optimal weight functions form a one parameter

family indexed by a constant c.

Theorem 3.1 Given θ = (ξ1, . . . , ξm), the optimal weight vector w = (w1, . . . , wm) that maxi-

mizes the average power subject to wj ≥ 0 and m−1
∑m

j=1 wj = 1 is w = (ρc(ξ1), . . . , ρc(ξm))

where

ρc(ξ) =
(m

α

)
Φ

(
ξ

2
+

c

ξ

)
I(ξ > 0), (9)

and c ≡ c(θ) is defined by the condition

1

m

m∑

j=1

ρc(ξj) = 1. (10)

2For a two-sided alternative the power is

π(ξj , wj) = Φ
(
Φ
−1
(αwj

2m

)
− ξj

)
+ Φ

(
Φ
−1
(αwj

2m

)
+ ξj

)
.
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Figure 3: Optimal weight function ρc(ξ) for various c. In each case m = 1000 and α = 0.05. The
functions are normalized to have maximum 1.

The proof is in the appendix. Some plots of the function ρc(ξ) for various values of c are

shown in Figure 3. In these plots, the function is normalized to have maximum 1 for easier visual-

ization. The result generalizes to the case where the alternative means are random variables with

distribution Q in which case c is defined by
∫

ρc(ξ)dQ(ξ) = 1. (11)

Remark. Rejecting when Pj/wj ≤ α/m is the same as rejection when Zj > ξj/2+ c/ξj. This

is identical to the result of Rubin, van der Laan and Dudoit (2005), obtained independently. The

remainder of the paper, which shows some good properties of the weighted method, can thus also

be considered as providing support for their method. In particular, they noted in their simulations

then even poorly specified estimates of the cutoffs ξj/2 + c/ξj can still perform well. This paper

provides insight into why that is true.

From (6) and (9) we have immediately:

Lemma 3.2 The power at an alternative with mean ξ under optimal weights is Φ (c/ξ − ξ/2). The

average power under optimal weights, which we call the oracle power, is

1

m

m∑

j=1

Φ

(
c

ξj
− ξj

2

)
I(ξj > 0). (12)
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The oracle power is not attainable since the optimal weights depend on θ = (ξ1, . . . , ξm) or,

equivalently, on Q. In practice, the weights will either be chosen by prior information or by estimat-

ing the ξ’s. This raises the following question: how sensitive is the power to correct specification

of the weights? Now we show that the power is very robust to weight misspecification.

The weights themselves can be very sensitive to changes in θ. Consider the following example.

Suppose that θ = (ξ1, . . . , ξm) where each ξ is equal to either 0 or some fixed number ξ. The

empirical distribution of the ξj’s is thus Q = (1 − a)δ0 + aδξ where δ denotes a point mass and a

is the fraction of nonzero means. The optimal weights are 0 for ξj = 0 and 1/a for ξj = ξ. Let

Q̃ = (1 − a − γ)δ0 + γδu + aδξ where u is a small positive number. Since we have only moved

the mass at 0 to u, and u is small, we would hope that w(ξ) will not change much. But this is not

the case. Set

ξ = A +
√

A2 − 2c, u = B −
√

B2 − 2c (13)

where

A = Φ
−1
(

α

(m(γK + a))

)
, B = Φ

−1
(

Kα

(m(γK + a))

)
, (14)

yields weights w0 and w1 on u and ξ such that w0/w1 = K. For example, take m = 1000,

α = 0.05, a = .1, γ = .1, K = 1000, and c = .1. Then u = .03 and ξ = 9.8. The optimal weight

on ξ under Q is 10 but under Q̃ it is .00999 and so is reduced by a factor of 1001. More generally

we have the following result which shows that the weights are, in a certain sense, a discontinuous

function of θ.

Lemma 3.3 Fix α and m. For any δ > 0 and ε > 0 there exists Q = (1 − a)δ0 + aδξ and

Q̃ = (1 − a − γ)δ0 + γδu + aδξ such that

d(Q, Q̃) < δ, and
ρ̃(ξ)

ρ(ξ)
< ε (15)

where a = α/4, d(Q, Q̃) = supξ |Q(−∞, ξ], Q̃(−∞, ξ]| is the Kolmogorov-Smnirnov distance, ρ

is the optimal weight function for Q and ρ̃ is the optimal weight function for Q̃.

Fortunately, this problem is not serious since it is possible to have high power even with poor

weights. In fact, the power of the weighted method has the following two robustness properties:

Property I: Sparse weights (minimum weight close to 1) are highly robust. If most weights are

less than 1 and the minimum weight is close to 1 then correct specification (large weights on

alternatives) leads to large power gains but incorrect specification (large weights on nulls) leads to

little power loss.
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Property II: Worst case analysis. Weighted hypothesis testing, even with poorly chosen weights,

typically does as well or better than Bonferroni except when the the alternative means are large, in

which both have high power.

Let us now make the these statements precise. Also, see Genovese, Roeder and Wasserman

(2006) and Roeder, Bacanu, Wasserman and Devlin (2006) for other results on the effect of weight

misspecification.

Property I. Consider first the case where the weights take two distinct values and the alternatives

have a common mean ξ. Let ε denote the fraction of hypotheses given the larger of the two values

of the weights B. Then, the weight vector w is proportional to

(B, . . . , B︸ ︷︷ ︸
k terms

, 1, . . . , 1︸ ︷︷ ︸
m−k terms

)

where k = εm and B > 1 and hence the normalized weights are

w = (w1, . . . , w1︸ ︷︷ ︸
k terms

, w0, . . . , w0︸ ︷︷ ︸
m−k terms

)

where

w1 =
B

εB + (1 − ε)
, w0 =

1

εB + (1 − ε)
.

We say that the weights are sparse if ε is small, that is, if most weights are near 1.

Consider an alternative with mean ξ. The power gain by correct weighting is the power under

weight w1 minus the unweighted power π(ξ, w1) − π(ξ, 1). Similarly, the power loss for incorrect

weighting is π(ξ, 1)− π(ξ, w0). The gain minus the loss, which we call the robustness function, is

R(B, ε) ≡
(
π(ξ, w1) − π(ξ, 1)

)
+
(
π(ξ, 1) − π(ξ, w0)

)
(16)

= Φ
(
zαw1/m − ξ

)
+ Φ

(
zαw0/m − ξ

)
− 2Φ

(
zα/m − ξ

)
. (17)

The gain outweighs the loss if and only if R(B, ε) > 0. This is illustrated in figures 1 and 4.

Theorem 3.4 Fix B > 1. Then, limε→0 R(B, ε) > 0. Moreover, there exists ε∗(B) > 0 such that

R(B, ε) > 0 for all ε < ε∗(B).

We can generalize this beyond the two-valued case as follows. Let w be any weight vector such

that m−1
∑

j wj = 1. Now define the (worst case) robustness function

R(ξ) ≡ min
{j: wj>1,Hj=1}

{π(ξ, wj) − π(ξ, 1)} − max
{j: wj<1,Hj=1}

{π(ξ, 1) − π(ξ, wj)} . (18)

9
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Figure 4: Robustness function for m = 1000. In this example, ξ = zα/m which has power 1/2
without weighting. The gain of correct weighting far outweighs the loss for incorrect weighting as
long as the fraction of large weights ε is small.

We will see that R(ξ) > 0 under weak conditions and that the maximal robustness is obtained for

ξ near the Bonferroni cutoff zα/m.

Theorem 3.5 A necessary and sufficient condition for R(ξ) > 0 is

Rb,B(ξ) ≡ Φ

(
zαB/m − ξ

)
+ Φ

(
zαb/m − ξ

)
− 2Φ

(
zα/m − ξ

)
≤ 0 (19)

where B = min{wj : wj > 1}, b = min{wj}. Moreover,

Rb,B(ξ) = −∆(ξ) + O(1 − b) (20)

where

∆(ξ) =

(
Φ

(
zα/m − ξ

)
− Φ

(
zαB/m − ξ

))
> 0 (21)

and, as b → 1, µ({ξ : R(ξ) < 0}) → 0 and infξ R(ξ) → 0.

The theorem is illustrated in Figure 5. We see that there is overwhelming robustness as long as

the minimum weight is near 1. Even in the extreme case b = 0, there is still a safe zone, an interval

of values of ξ over which R(ξ) > 0.

Lemma 3.6 Suppose that B ≥ 2. Then there exists ξ∗ > 0 such that RB,b(ξ) > 0 for all 0 ≤ ξ ≤
ξ∗ and all b. An upper bound on ξ∗ is zα/m − 1/(zα/m − zBα/m).
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Figure 5: The robustness function R(ξ) for several values of b = minj wj. In each case, m = 1000,
α = 0.05, B = 10. Whenever R(ξ) > 0, power gain outweighs power loss. When b is near 1,
R(ξ) > 0 for most ξ. Even when b = 0 there is a safe zone including ξ = 0 as long as B ≥ 2.
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Property II. Even if the weights are not sparse, the power of the weighted test cannot be too bad

as we now show. To begin, assume that each mean is either equal to 0 or ξ for some fixed ξ > 0.

Thus, the empirical distribution is

Q = (1 − a)δ0 + aδξ (22)

where δ denotes a point mass and a is the fraction of nonzero ξj’s. The optimal weights are 1/a for

hypotheses whose mean is ξ. To study the effect of misspecification error, consider the case where

b = γm nulls are mistaken for alternatives with mean u > 0. This corresponds to misspecifying Q

to be

Q̃ = (1 − a − γ)δ0 + γδu + aδξ. (23)

We will study the effect of varying u so let π(u) denote the power at the true alternative ξ as

a function of u. Also, let πBonf denote the power using equal weights (Bonferroni). Note that

changing Q = (1 − a)δ0 + aδξ to Q = (1 − a)δ0 + aδξ′ for ξ′ 6= ξ does not change the weights.

As the weights are a function of c, we first need to find c as a function of u. The normalization

condition (10) reduces to

γΦ
(u

2
+

c

u

)
+ aΦ

(
ξ

2
+

c

ξ

)
=

α

m
(24)

which implicitly defines the function c(u). First we consider what happens when u is restricted to

be less than ξ.

Theorem 3.7 Assume that α/m ≤ γ + a ≤ 1. Let Q = (1− a)δ0 + aδξ and Q̃ = (1− a− γ)δ0 +

γδu + aδξ with 0 ≤ u ≤ ξ. Let C(ξ) = sup0≤u≤ξ c(u) and define ξ0 = zα/(m(γ+a)) ,

1. For ξ ≤ ξ0,

C(ξ) = ξξ0 − ξ2/2. (25)

For ξ > ξ0, C(ξ) is the solution to

γΦ(
√

2c) + aΦ

(
c

ξ
+

ξ

2

)
=

α

m
. (26)

In this case, C(ξ) = z2
α/(mγ)/2 + O(a).

2. Let

ξ∗ = zα/m +
√

z2
α/m − z2

q , where q =
α(1 − a)

mγ
. (27)

For ξ < ξ∗,

inf
0<u<ξ

π(u) ≥ πBonf . (28)
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For ξ ≥ ξ∗ we have

inf
0<u<ξ

π(u) ≥ Φ

(
z2

α/(mγ) − ξ2
∗

2ξ∗

)
− O(a) (29)

≈ 1 − Φ

(√
2 log

1 − a

γ

)
− O(a) (30)

≥ 1 − γ

1 − a
− O(a). (31)

The factor Φ
(√

2 log 1−a
γ

)
≈ γ/(1−a) is the worst case power deficit due to misspecification.

Now we drop the assumption that u ≤ ξ.

Theorem 3.8 Let Q = (1− a)δ0 + aδξ and let Qu ≡ (1− a− γ)δ0 + γδu + aδξ. Let πu denote the

power at ξ using the weights computed under Qu.

1. The least favorable u is

u∗ ≡ argminu≥0πu =
√

2c∗ = zα/(mγ) + O(a) (32)

where c∗ solves

γΦ(
√

2c∗) + aΦ

(
ξ

2
+

c∗
ξ

)
=

α

m
(33)

and c∗ = z2
α/(mγ)/2 + O(a).

2. The minimal power is

inf
u

πu = Φ

(
c∗
ξ
− ξ

2

)
= Φ

(
z2

α/(mγ) − ξ2

2ξ

)
+ O(a). (34)

3. A sufficient condition for infu πu to be larger than the power of the Bonferroni method is

ξ ≥ zα/m +
√

z2
α/m − z2

α/(mγ) + O(a). (35)

4 Choosing External Weights

In choosing external weights, we will focus here on the two-valued case. Thus,

w = (w1, . . . , w1︸ ︷︷ ︸
k terms

, w0, . . . , w0︸ ︷︷ ︸
m−k terms

) (36)

where k = εm, w1 = B/(εB+(1−ε)) and w0 = 1/(εB+(1−ε)). In practice, we would typically

have a fixed fraction of hypotheses ε that we want to give more weight to. The question is how
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Figure 6: Top plot: B0(ε) versus ε. Bottom plot shows R(B, .1) versus B. The turnaround point
B∗(ε) is shown with a vertical dotted line.

to choose B. We will focus on choosing B to produce weights with good properties at interesting

values of ξ. Now large values of ξ already have high power. Very small values of ξ have extremely

low power and benefit little by weighting. This leads us to focus on constructing weights that are

useful for a marginal effect, defined as the alternative ξm that has power 1/2 when given weight 1.

Thus, the marginal effect is ξm = zα/m. In the rest of this section then we assume that all nonzero

ξj’s are equal to ξm. Of course, the validity of the procedure does not depend on this assumption

being true.

Fix 0 < ε < 1 and vary B. As we increase B, we will eventually reach a point B0(ε) where

R(B, ε) < 0 which we call turnaround point. Formally,

B0(ε) = sup
{
B : R(B, ε) > 0

}
. (37)

The top panel in Figure 6 shows B0(ε) versus ε which shows that for small ε we can choose B large

without loss of power. The bottom panel shows R(B, ε) for ε = 0.1. We suggest using B = B∗(ε),

the value of B that maximizes R(B, ε).

Theorem 4.1 Fix 0 < ε < 1. As a function of B, R(B, ε) is unimodal and satisfies R(1, ε) = 1,

R′(1, ε) > 0 and R(∞, ε) < 0. Hence, B0(ε) exists and is unique. Also, R(B, ε) has a unique

maximum at some point B∗(ε) and R(B∗(ε), ε) > 0.
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When ε is very small, we can essentially choose B as large as we like, For example, suppose

we want to increase the chance of rejecting one particular hypothesis so that ε = 1/m. Then,

w1 =
mB

B + m − 1
≈ B, w0 =

1

B + m − 1
≈ 1

and

lim
m→∞

lim
B→∞

π(ξj, w1) = 1, while lim
m→∞

lim
B→∞

π(ξj, w0) =
1

2
.

See Figure 1.

The next results show that binary weighting schemes are optimal in a certain sense. Suppose

we want to have at least a fraction ε with high power 1 − β and otherwise we want to maximize

the minimum power.

Theorem 4.2 Consider the following optimization problem: Given 0 < ε < 1 and 0 < β < 1/2,

find a vector w = (w1, . . . , wm) that maximizes

min
j

π(ξm, wj)

subject to

w = 1, and
#{j : π(wj, ξm) ≥ 1 − β}

m
≥ ε.

The solution is given by

w = (w1, . . . , w1︸ ︷︷ ︸
k terms

, w0, . . . , w0︸ ︷︷ ︸
m−k terms

) (38)

where w1 = B/(εB + (1 − ε)), w0 = 1/(εB + (1 − ε)), k = εm, B = cm(1 − ε)/(α − εcm) and

c = Φ
(
zα/m + z1−β

)
.

If our goal is to maximize the number of alternatives with high power while maintaining a

minimum power loss, the solution is given as follows.

Theorem 4.3 Consider the following optimization problem: Given 0 < β < 1/2, find a vector

w = (w1, . . . , wm) that maximizes

#{j : π(wj, ξm) ≥ 1 − β} (39)

subject to

w = 1, and min
j

π(wj, ξm) ≥ δ. (40)

The solution is

w = (w1, . . . , w1︸ ︷︷ ︸
k terms

, w0, . . . , w0︸ ︷︷ ︸
m−k terms

) (41)
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where

w1 =
m

α
Φ
(
zα/m + z1−β

)
, w0 =

m

α
Φ
(
zα/m + zδ

)
, ε =

1 − w0

w1 − w0
(42)

and k = mε.

A special case that falls under this Theorem permits the minimum power to be 0. In this case

w0 = 0 and ε = 1/w1.

5 Estimated Weights

In this section we explain how to use the data to estimate the weights. There are two issues:

we must ensure that the error is still controlled and avoid incurring large losses of power due to

replacing θ with an estimator θ̂.

5.1 Validity With Estimated Weights

Data Splitting. The approach, taken by RVD, for ensuring that the error control is preserved relies

on data splitting. This approach relies on normalized test statistics T (l), T (2) based on a partition

of the data into subsets X
(1), X(2) which include fractions b and (1 − b) of X, respectively. Note

that Tj = b1/2T
(1)
j + (1 − b)1/2T

(2)
j , j = 1, . . . , m. The training data X

(1) is used to estimate the

noncentrality parameter of the standardized statistic T
(1)
j , where E[T

(1)
j ] =

√
b ξj ≡ ξ

(1)
j . Testing

is conducted using the remaining fraction of the data X
(2). Consequently ξ̂

(1)
j must be rescaled by

rs = (1 − b)/b)1/2 to estimate the noncentrality parameter of the standardized statistic T
(2)
j , i.e.,

ξ̂j = rs ξ̂
(1)
j . The estimated weights are ŵj(T

(1)) = ρc(ξ̂j). Because of the independence between

the two portions of the data, familywise error is controlled at the nominal level.

Lemma 5.1 The procedure that rejects when P (T
(2)
j ) < w(T (1)) α/m controls the familywise

error at level α.

Recovering Power. As noted by Skol et al. (2005), data splitting incurs a loss of power because

the p-values are computed using only a fraction the data. To recover this lost power, we need to use

all the data to compute the p-values. When using this approach ξ̂
(1)
j must be rescaled by rf = b−1/2

to estimate the noncentrality parameter of the standardized statistic Tj , i.e., ξ̂j = rf ξ̂
(1)
j . As in

the data splitting procedure, the estimated weights ŵj(T
(1)) = ρc(ξ̂j) depend only on X

(1). To

preserve error control we proceed as follows.
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Theorem 5.2 Assume T
(k)
j ∼ N(0, 1) independently for k = 1, 2. Suppose that weight w(T (1))

depends only on X
(1) but the p-value P (Tj) is allowed to depend on the full data X. Define c(T (1))

to solve

1

m

m∑

j=1


Φ




ξ̂j

2
+ c(T (1))

ξ̂j
−

√
b T

(1)
j

√
1 − b




 =

α

m
. (43)

Then the procedure that rejects when P (Tj) < wj(T
(1))α/m, where

wj(T
(1)) =

m

α
Φ

(
ξ̂j

2
+

c(T (1))

ξ̂j

)
(44)

controls the familywise error at level α.

5.2 Simulations

We simulate a study with m = 1000 tests, yielding data of the form given in (1). A test of the

hypothesis H0 : ξj 6= 0 is performed for each j using Tj , which we assume is (approximately)

normally distributed, or equivalently T 2
j ∼ χ2

1. In our simulations we generate 50 of the 1000 tests

under the alternative hypothesis with shift parameter ξj = 2, 3, 4 or 5. We compare the power

for various levels of a threshold parameter λ ∈ (0, .5, 1, 1.5, 2, 2.5). We use a fraction b = 0.5 of

the data to construct the weights and we compare four methods for estimating the noncentrality

parameter:

1. The normalized statistic ξ̂
(1)
j = T

(1)
j .

2. Hard thresholding:

ξ̂
(1)
j = T

(1)
j I(|T (1)

j | > λ). (45)

3. Soft thresholding:

ξ̂
(1)
j = sign(T

(1)
j )(|T (1)

j − λ)+. (46)

4. The James-Stein estimator

ξ̂
(1)
j =


1 − m − 2

∑
i

(
T

(1)
i

)2




+

T
(1)
j . (47)

To compute the weights we rescale ξ̂
(1)
j by rs or rf as appropriate to the followup testing

strategy.
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Power results are displayed in Fig. 7. We first consider the power of the RVD procedure

which uses the data splitting strategy and λ = 0 (Fig. 7, labeled “P” at the origin). Although

RVD suggest using λ = 0, we also examine the power of this procedure for a range of values of

λ. This extended RVD procedure is applying hard-thresholding to estimate θ. Next we consider

the power of four testing strategies that use the full data Tj for testing rather than data splitting.

The first approach (B) uses binary weights equal to m/M where M =
∑

i I{|T
(1)
j | > λ}. In this

setting, when λ = 0 the method reduces to the simple one-stage Bonferroni approach. For λ > 0

it is the method of Skol et al. (2006). The remaining three approaches rely on weights estimated

using hard-thresholding (H), soft-thresholding (S), or James-Stein (J). For λ = 0 methods H and S

reduce to the normed sample mean which is the RVD approach adapted to incorporate the full data

in the p-value. Clearly, this adaptation of the RVD method leads to a valuable increase in power.

For λ > 0 this is method imposes a hard threshold shrinkage effect on the parameter estimates.

Notice that for any fixed value of λ, method H gives the best power. In particular, the difference

in power between methods B and H illustrates the advantage of using variable weights estimated

from a fraction of the data. Method H and to a lesser extent method B are nearly invariant to λ for

moderate values of the threshold parameter. In contrast, method S, relying on soft-thresholding,

experiences a sharp decline in power as λ increases. Finally, the James-Stein approach clearly fails

in this setting, presumably because most tests follow the null hypothesis and hence the true signals

are shrunk toward 0 which diminishes the power of the procedure.

For each condition investigated the tests had size less than 0.05 as expected from the theory.

The James-Stein method was most conservative.

From this experiment it appears that shrinkage only enhances power when the signal is very

weak. A more careful analysis reveals that the effect of shrinkage for stronger signals is more

subtle. As ξ → 0, ρc(ξ) → 0. Figure 8 shows ρc(ξ) is close to zero for a broad range of values.

Consequently, for λ ≤ 1.5, the weight function performs almost the same role as the threshold pa-

rameter. Using hard-thresholding for λ < 1.5 is essentially equivalent to using using no threshold

because a moderate level of shrinkage is automatically imposed by the weight function. Figure 8

also illustrates how the optimal weights vary with the signal strength (top panel has greater signal

than bottom panel). Both panels indicate that larger weights are placed in the midrange of signal

strength. Essentially no weight is wasted on tests with small signals (ξ < 1.5) because these tests

are not likely to yield significant results. The bottom panel shows that large weights are also not

wasted on signals so strong that the tests can easily be rejected even without up-weighting (ξ > 6).

The top panel places its largest weights between 2.5 and 4. The bottom panel has fewer signals in

this range and hence stronger weights can be applied to signals between 2 and 2.5. Both panels

indicate near 0 weights would be applied to tests with signals near 0.
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Figure 7: Power of weighted tests. From top left clockwise: ξ = 2, 3, 4, 5. Methods compared use
weights based on hard thresholding (H), soft thresholding (S), binary weights (B), and James-Stein
(J).
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Figure 8: Distribution of weights for two sets of data.

6 Discussion

An interesting connection can be made between weights based on threshold-estimators and two-

stage experimental designs that perform only a subset of the tests in stage two, based on the results

obtained from stage one. The simplest example of this type of two-stage testing is the two-stage

Bonferroni procedure, for which the training data X
(1) is used to determine the M elements in

Λ = {j : |T (1)
j | > λ}; X

(2) is only measured for these columns. A Bonferroni correction with

α/(2M) controls FWER at level α for two-sided testing in this setting. In essence this approach is

a weighted test with weights equal to m/M for the elements in Λ and zero else where.

While the classic two-stage approach uses X
(1) for training, and X

(2) for testing, an alternative

is to use the training data to determine the weights and then use all of the data to conduct the

tests. This strategy was recently investigated by Skol et al. (2006), using constant weights. These

authors use the training data to determine Λ and then apply weights equal to m/M to the M tests

determined in stage one. This full data approach proved to be considerably more powerful than the

two-stage Bonferroni approach in simulations.

For hard and soft-thresholding, ξ̂j = 0 for any |T (1)
j | < λ. From (9) it follows that the weights

for any test with ξ̂j = 0 are 0 and the rejection region is Z0 = ∞. Hence, a procedure using wj = 0

for columns with ξ̂j = 0 is equivalent to a truncation procedure that tests only those columns in
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Λ. In practice, λ can be chosen to optimize power or to constrain the experimental budget. It

is worth noting that in some experimental settings, such as those described by Skol et al., this

experimental design can lead to considerable savings of effort and resources. Our results suggest

that this savings can be gleaned without loosing measurable power.

The same ideas used here can be applied to other testing methods to improve power. In partic-

ular, weights can be added to the FDR method, Holm’s stepdown test, and the Donoho-Jin (2004)

method. Weighting ideas can also be used for confidence intervals. We plan to present the details

for the other methods in a followup paper. Another item to be addressed in future work is the

connection with Bayesian methods.

As we noted, using weights is equivalent to using a separate rejection cutoff for each statistic.

The methods of Storey (2005) and Signoravich (2006) find optimal cutoffs when the cutoffs are

constrained. There is undoubtedly a bias-variance tradeoff. These constrained methods can esti-

mate optimal cutoffs well (low variance) but they will not achieve the oracle power obtained here

since they are by design biased away from these separate cutoffs. Future work should be directed

at comparing these approaches and developing methods that lie in between these extremes.

7 Appendix

Proof of Theorem 3.1. Let A denote the set of hypotheses with ξj > 0. Power is optimized if

wj = 0 for j /∈ A. The average power is

1

m

∑

j∈A

Φ
(
Φ

−1
(αwj

m

)
− ξj

)
.

with constraint ∑

j∈A

wj = m.

Choose w to maximize

π =
1

m

∑

j∈A

Φ
(
Φ

−1
(αwj

m

)
− ξj

)
− λ

(
m −

∑

j∈A

wi

)

by setting the derivative to zero

∂

∂wi
π = −λ +

φ
(
Φ

−1 (αwj

m

)
− ξj

)

φ
(
Φ

−1 (αwj

m

))
α

m
= 0

mλ

α
=

φ
(
Φ

−1 (αwj

m

)
− ξj

)

φ
(
Φ

−1 (αwj

m

))
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The w that solves these equations is given in (9). Finally, solve for c such that
∑

i wi = m. �

Proof of Lemma 3.3. Choose K > 1 such that 1/(K + 1) < 1/a − ε. Choose 1 > γ >

(2α − a)/K. Choose a small c > 0. Let ξ = A +
√

A2 − 2c and u = B −
√

B2 − 2c where

A = Φ
−1
(

α

(m(γK + a))

)
, B = Φ

−1
(

Kα

(m(γK + a))

)
. (48)

Then ρ(ξ) = 1/a and ρ̃(ξ) = 1/(K + 1). Now d(Q, Q̃) = γ. Taking K sufficiently large and γ

sufficiently close to (2α − a)/K makes γ < δ. �

Proof of Theorem 3.5. The first statement follows easily by noting that the worst case corre-

sponds to choosing weight B in the first term in R(ξ) and choosing weight b in the second term in

R(ξ). The rest follows by Taylor expanding Rb,B(ξ) around b = 1. �

Proof of Lemma 3.6. With b = 0, Rb,B(ξ) ≥ 0 when

Φ(zBα/m − ξ) − 2Φ(zα/m − ξ) ≥ 0. (49)

With B ≥ 2, (49) holds at ξ = 0. The left hand side is increasing in ξ for ξ near 0 but (49) does

not hold at ξ = zα/m. So (49) must holds in the interval [0, ξ∗]. Rewrite (49) as Φ(zBα/m − ξ) −
Φ(zα/m−ξ) ≥ Φ(zα/m−ξ). We lower bound the left hand side and upper bound the right hand side.

The left hand side is Φ(zBα/m−ξ)−Φ(zα/m−ξ) =
∫ zα/m−ξ

zBα/m−ξ φ(u)du ≥ (zα/m−zBα/m)φ(zα/m−ξ).

The right hand side can be bounded using Mill’s ratio: Φ(zα/m − ξ) ≤ φ(zα/m − ξ)/(zα/m − ξ).

Set the lower bound greater than the upper bound to obtain the stated result. �

It is convenient to prove Theorem 3.8 before proving Theorem 3.7.

Proof of Theorem 3.8. Let c∗ solve

γΦ(
√

2c∗) + aΦ

(
ξ

2
+

c∗
ξ

)
=

α

m
. (50)

We claim first that for any c > c∗, there is no u such that the weights average to 1. Fix c > c∗. The

weights average to 1 if and only if

γΦ
( c

u
+

u

2

)
+ aΦ

(
ξ

2
+

c

ξ

)
=

α

m
. (51)
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Since c > c∗ and since the second term is decreasing in c, we must have

Φ
( c

u
+

u

2

)
> Φ(

√
2c∗). (52)

The function r(u) = Φ(c/u + u/2) is maximized at u =
√

2c. So r(
√

2c) ≥ r(u). But r(
√

2c) =

Φ(
√

2c). Hence Φ(
√

2c) ≥ r(u) ≥ Φ(
√

2c∗). This implies c < c∗ which is a contradiction. This

establishes that supu c(u) ≤ c∗. On the other hand, taking c = c∗ and u =
√

2c∗ solves equation

(51). Thus c∗ is indeed the largest c that solves the equation which establishes the first claim. The

second claim follows by noting that

γΦ(
√

2c∗) + aΦ

(
ξ

2
+

c∗
ξ

)
= γΦ(

√
2c∗) + O(a). (53)

Now set this expression equal to α/m and solve. �

Proof of Theorem 3.7. Define c∗ as in (50). If u∗ =
√

2c∗ ≤ ξ then the the proof proceeds

as in the previous proof. So we first need to establish for which values of ξ is this true. Let

r(c) = γΦ(
√

2c) + aΦ(ξ/2 + c/ξ). We want to find out when the solution of r(c) = α/m is

such that
√

2c ≤ ξ, or equivalently, c ≤ ξ2/2. Now r is decreasing in c. Since γ + a ≥ α/m,

r(−∞) ≥ α/m. Hence there is a solution with c ≤ ξ2/2 if and only if r(ξ2/2) ≤ α/m. But

r(ξ2/2) = (γ + a)Φ(ξ) so we conclude that there is such a solution if and only if (γ + a)Φ(ξ) ≤
α/m, that is, ξ ≥ zα/(m(γ+a)) = ξ0.

Now suppose that ξ < ξ0. We need to find u ≤ ξ to make c as large as possible in the equation

v(u, c) ≡ γΦ(u/2 + c/u) + aΦ(ξ/2 + c/ξ) = α/m. Let u∗ = ξ and c∗ = ξzα/(m(γ+a)) − ξ2/2.

By direct substitution, v(u∗, c∗) = α/m for this choice of u and c and clearly u∗ ≤ ξ as required.

We claim that this is the largest possible c∗. To see this, note that v(u, c) < v(u, c∗). For ξ ≤ ξ0,

v(u, c∗) is a decreasing function of u. Hence, v(u, c) < v(u, c∗) ≤ v(u∗, c∗) = α/m. This

contradicts the fact that v(u, c) = α/m.

For the second claim, note that the power of the weighted test beats the power of Bonferroni if

and only if the weight w = (m/α)Φ(ξ/2 + C(ξ)/2) ≥ 1 which is equivalent to

C(ξ) ≤ ξzα/m − ξ2/2. (54)

When ξ ≤ ξ0, C(ξ) = ξξ0 − ξ2/2. By assumption, γ + a ≤ 1 so that zα/(m(γ+a)) ≤ zα/m and Now

suppose that ξ0 < ξ ≤ ξ∗. Then C(ξ) is the solution to r(c) = γΦ(
√

2c)+ aΦ(ξ/2+ c/ξ) = α/m.

We claim that (54) still holds. Suppose not. Then, since r(c) is decreasing in c, r(ξzα/m − ξ2/2) >

r(C(ξ)) = α/m. But, by direct calculation, r(ξzα/m − ξ2/2) > α/m implies that ξ > ξ∗ which is

a contradiction. Thus (28) holds.
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Finally, we turn to (29). In this case, C(ξ) = z2
α/(mγ)/2 + O(a). The worst case power is

Φ(C(ξ)/ξ − ξ/2) = Φ(z2
α/(mγ)/(2ξ)− ξ/2) + O(a). The latter is increasing in ξ and so is at least

Φ(z2
α/(mγ)/(2ξ∗) − ξ∗/2) + O(a) = Φ((z2

α/(mγ)/(2ξ∗) − ξ2
∗)/(2ξ∗)) + O(a) as claimed. The next

two equations follow from standard tail approximations for Gaussians. Specifically, a Gaussian

quantile zβ/m can be written as zβ/m =
√

2 log(mLm/β) where Lm = c loga(m) for constants a

and c (Donoho and Jin 2004). Inserting this into the previous expression yields the final expression.

�

Proof of Theorem 4.2. Setting π(w, ξm) = Φ(Φ
−1

(wα/m) − ξm) equal to 1 − β implies

w = (m/α)Φ(z1−β + zα/m) which is equal to w1 as stated in the theorem. The stated form of

w0 implies that the weights average to 1. The stated solution thus satisfies the restriction that a

fraction ε have power at least 1 − β. Increasing the weight of any hypothesis whose weight is w0

necessitates reducing the weight of another hypothesis. This either reduces the minimum power of

forces a hypothesis with power 1 − β to fall below 1 − β. Hence, the stated solution does in fact

maximize the minimum power. �

The proof of Theorem 4.3 is similar to the previous proof and is omitted.

Proof of Theorem 5.2. The familywise error is

P(R∩H0) ≤
∑

j∈H0

P

(
Pj

(
T

(1)
j , T

(2)
j

)
≤

wj(T
(1)
j )α

m

)
(55)

=
∑

j∈H0

E

(
P

(
Pj

(
t
(1)
j , T

(2)
j

)
≤

wj(t
(1)
j )α

m

∣∣∣∣ T
(1)
j = t

(1)
j

))
(56)

=
∑

j∈H0

E

(
P

(
Φ(t

(1)
j , T

(2)
j ) ≤

wj(t
(1)
j )α

m

∣∣∣∣ T
(1)
j = t

(1)
j

))
(57)

=
∑

j∈H0

E

(
P

(
(1 − b)1/2T

(2)
j ≥ Φ

−1

(
wj(t

(1)
j )α

m

)
− b1/2t

(1)
j

))
(58)

=
∑

j∈H0

E


Φ




Φ
−1
(

wj(t
(1)
j )α

m

)
− b1/2t

(1)
j

(1 − b)1/2





 (59)
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=
∑

j∈H0

E


Φ




ξ̂j

2
+ c(t(1))

ξ̂j
− b1/2t

(1)
j

(1 − b)1/2




 (60)

≤
m∑

j=1

E


Φ




ξ̂j

2
+ c(t(1))

ξ̂j
− b1/2t

(1)
j

(1 − b)1/2




 (61)

≤ E

m∑

j=1


Φ




ξ̂j

2
+ c(t(1))

ξ̂j
− b1/2t

(1)
j

(1 − b)1/2




 (62)

= α. � (63)
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